1 /*
2 * Copyright 2020 Google LLC.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 #include "src/gpu/ganesh/tessellate/GrStrokeTessellationShader.h"
8
9 #include "include/core/SkMatrix.h"
10 #include "include/core/SkPaint.h"
11 #include "include/core/SkString.h"
12 #include "include/private/base/SkAssert.h"
13 #include "include/private/base/SkMacros.h"
14 #include "include/private/base/SkPoint_impl.h"
15 #include "include/private/gpu/ganesh/GrTypesPriv.h"
16 #include "src/core/SkSLTypeShared.h"
17 #include "src/gpu/KeyBuilder.h"
18 #include "src/gpu/ganesh/GrGeometryProcessor.h"
19 #include "src/gpu/ganesh/GrShaderCaps.h"
20 #include "src/gpu/ganesh/GrShaderVar.h"
21 #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h"
22 #include "src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h"
23 #include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h"
24 #include "src/gpu/ganesh/glsl/GrGLSLVarying.h"
25 #include "src/gpu/ganesh/glsl/GrGLSLVertexGeoBuilder.h"
26 #include "src/gpu/tessellate/FixedCountBufferUtils.h"
27
28 #include <cmath>
29 #include <cstdint>
30
31 namespace {
32
33 // float2 robust_normalize_diff(float2 a, float b) { ... }
34 //
35 // Returns the normalized difference between a and b, i.e. normalize(a - b), with care taken for
36 // if 'a' and/or 'b' have large coordinates.
37 static const char* kRobustNormalizeDiffFn =
38 "float2 robust_normalize_diff(float2 a, float2 b) {"
39 "float2 diff = a - b;"
40 "if (diff == float2(0.0)) {"
41 "return float2(0.0);"
42 "} else {"
43 "float invMag = 1.0 / max(abs(diff.x), abs(diff.y));"
44 "return normalize(invMag * diff);"
45 "}"
46 "}";
47
48 // float cosine_between_unit_vectors(float2 a, float2 b) { ...
49 //
50 // Returns the cosine of the angle between a and b, assuming a and b are unit vectors already.
51 // Guaranteed to be between [-1, 1].
52 static const char* kCosineBetweenUnitVectorsFn =
53 "float cosine_between_unit_vectors(float2 a, float2 b) {"
54 // Since a and b are assumed to be normalized, the cosine is equal to the dot product, although
55 // we clamp that to ensure it falls within the expected range of [-1, 1].
56 "return clamp(dot(a, b), -1.0, 1.0);"
57 "}"
58 ;
59
60
61 // float miter_extent(float cosTheta, float miterLimit) { ...
62 //
63 // Extends the middle radius to either the miter point, or the bevel edge if we surpassed the
64 // miter limit and need to revert to a bevel join.
65 static const char* kMiterExtentFn =
66 "float miter_extent(float cosTheta, float miterLimit) {"
67 "float x = fma(cosTheta, .5, .5);"
68 "return (x * miterLimit * miterLimit >= 1.0) ? inversesqrt(x) : sqrt(x);"
69 "}"
70 ;
71
72 // float num_radial_segments_per_radian(float approxDevStrokeRadius) { ...
73 //
74 // Returns the number of radial segments required for each radian of rotation, in order for the
75 // curve to appear "smooth" as defined by the approximate device-space stroke radius.
76 static const char* kNumRadialSegmentsPerRadianFn =
77 "float num_radial_segments_per_radian(float approxDevStrokeRadius) {"
78 "return .5 / acos(max(1.0 - (1.0 / PRECISION) / approxDevStrokeRadius, -1.0));"
79 "}";
80
81 // float<N> unchecked_mix(float<N> a, float<N> b, float<N> T) { ...
82 //
83 // Unlike mix(), this does not return b when t==1. But it otherwise seems to get better
84 // precision than "a*(1 - t) + b*t" for things like chopping cubics on exact cusp points.
85 // We override this result anyway when t==1 so it shouldn't be a problem.
86 static const char* kUncheckedMixFn =
87 "float unchecked_mix(float a, float b, float T) {"
88 "return fma(b - a, T, a);"
89 "}"
90 "float2 unchecked_mix(float2 a, float2 b, float T) {"
91 "return fma(b - a, float2(T), a);"
92 "}"
93 "float4 unchecked_mix(float4 a, float4 b, float4 T) {"
94 "return fma(b - a, T, a);"
95 "}"
96 ;
97
98 using skgpu::tess::FixedCountStrokes;
99
100 } // anonymous namespace
101
GrStrokeTessellationShader(const GrShaderCaps & shaderCaps,PatchAttribs attribs,const SkMatrix & viewMatrix,const SkStrokeRec & stroke,SkPMColor4f color)102 GrStrokeTessellationShader::GrStrokeTessellationShader(const GrShaderCaps& shaderCaps,
103 PatchAttribs attribs,
104 const SkMatrix& viewMatrix,
105 const SkStrokeRec& stroke,
106 SkPMColor4f color)
107 : GrTessellationShader(kTessellate_GrStrokeTessellationShader_ClassID,
108 GrPrimitiveType::kTriangleStrip, viewMatrix, color)
109 , fPatchAttribs(attribs | PatchAttribs::kJoinControlPoint)
110 , fStroke(stroke) {
111 // We should use explicit curve type when, and only when, there isn't infinity support.
112 // Otherwise the GPU can infer curve type based on infinity.
113 SkASSERT(shaderCaps.fInfinitySupport != (attribs & PatchAttribs::kExplicitCurveType));
114 // pts 0..3 define the stroke as a cubic bezier. If p3.y is infinity, then it's a conic
115 // with w=p3.x.
116 //
117 // An empty stroke (p0==p1==p2==p3) is a special case that denotes a circle, or
118 // 180-degree point stroke.
119 fAttribs.emplace_back("pts01Attr", kFloat4_GrVertexAttribType, SkSLType::kFloat4);
120 fAttribs.emplace_back("pts23Attr", kFloat4_GrVertexAttribType, SkSLType::kFloat4);
121
122 // argsAttr contains the lastControlPoint for setting up the join.
123 fAttribs.emplace_back("argsAttr", kFloat2_GrVertexAttribType, SkSLType::kFloat2);
124
125 if (fPatchAttribs & PatchAttribs::kStrokeParams) {
126 fAttribs.emplace_back("dynamicStrokeAttr", kFloat2_GrVertexAttribType,
127 SkSLType::kFloat2);
128 }
129 if (fPatchAttribs & PatchAttribs::kColor) {
130 fAttribs.emplace_back("dynamicColorAttr",
131 (fPatchAttribs & PatchAttribs::kWideColorIfEnabled)
132 ? kFloat4_GrVertexAttribType
133 : kUByte4_norm_GrVertexAttribType,
134 SkSLType::kHalf4);
135 }
136 if (fPatchAttribs & PatchAttribs::kExplicitCurveType) {
137 // A conic curve is written out with p3=[w,Infinity], but GPUs that don't support
138 // infinity can't detect this. On these platforms we write out an extra float with each
139 // patch that explicitly tells the shader what type of curve it is.
140 fAttribs.emplace_back("curveTypeAttr", kFloat_GrVertexAttribType, SkSLType::kFloat);
141 }
142
143 this->setInstanceAttributesWithImplicitOffsets(fAttribs.data(), fAttribs.size());
144 SkASSERT(this->instanceStride() == sizeof(SkPoint) * 4 + PatchAttribsStride(fPatchAttribs));
145 if (!shaderCaps.fVertexIDSupport) {
146 constexpr static Attribute kVertexAttrib("edgeID", kFloat_GrVertexAttribType,
147 SkSLType::kFloat);
148 this->setVertexAttributesWithImplicitOffsets(&kVertexAttrib, 1);
149 }
150 SkASSERT(fAttribs.size() <= kMaxAttribCount);
151 }
152
153 // This base class emits shader code for our parametric/radial stroke tessellation algorithm
154 // described above. The subclass emits its own specific setup code before calling into
155 // emitTessellationCode and emitFragment code.
156 class GrStrokeTessellationShader::Impl : public ProgramImpl {
157 void onEmitCode(EmitArgs&, GrGPArgs*) override;
158
159 // Emits code that calculates the vertex position and any other inputs to the fragment shader.
160 // The onEmitCode() is responsible to define the following symbols before calling this method:
161 //
162 // // Functions.
163 // float2 unchecked_mix(float2, float2, float);
164 // float unchecked_mix(float, float, float);
165 //
166 // // Values provided by either uniforms or attribs.
167 // float2 p0, p1, p2, p3;
168 // float w;
169 // float STROKE_RADIUS;
170 // float 2x2 AFFINE_MATRIX;
171 // float2 TRANSLATE;
172 //
173 // // Values calculated by the specific subclass.
174 // float combinedEdgeID;
175 // bool isFinalEdge;
176 // float numParametricSegments;
177 // float radsPerSegment;
178 // float2 tan0; // Must be pre-normalized
179 // float2 tan1; // Must be pre-normalized
180 // float strokeOutset;
181 //
182 void emitTessellationCode(const GrStrokeTessellationShader& shader, SkString* code,
183 GrGPArgs* gpArgs, const GrShaderCaps& shaderCaps) const;
184
185 // Emits all necessary fragment code. If using dynamic color, the impl is responsible to set up
186 // a half4 varying for color and provide its name in 'fDynamicColorName'.
187 void emitFragmentCode(const GrStrokeTessellationShader&, const EmitArgs&);
188
189 void setData(const GrGLSLProgramDataManager& pdman, const GrShaderCaps&,
190 const GrGeometryProcessor&) final;
191
192 GrGLSLUniformHandler::UniformHandle fTessControlArgsUniform;
193 GrGLSLUniformHandler::UniformHandle fTranslateUniform;
194 GrGLSLUniformHandler::UniformHandle fAffineMatrixUniform;
195 GrGLSLUniformHandler::UniformHandle fColorUniform;
196 SkString fDynamicColorName;
197 };
198
onEmitCode(EmitArgs & args,GrGPArgs * gpArgs)199 void GrStrokeTessellationShader::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) {
200 const auto& shader = args.fGeomProc.cast<GrStrokeTessellationShader>();
201 SkPaint::Join joinType = shader.stroke().getJoin();
202 args.fVaryingHandler->emitAttributes(shader);
203
204 args.fVertBuilder->defineConstant("float", "PI", "3.141592653589793238");
205 args.fVertBuilder->defineConstant("PRECISION", skgpu::tess::kPrecision);
206 // There is an artificial maximum number of edges (compared to the max limit calculated based on
207 // the number of radial segments per radian, Wang's formula, and join type). When there is
208 // vertex ID support, the limit is what can be represented in a uint16; otherwise the limit is
209 // the size of the fallback vertex buffer.
210 float maxEdges = args.fShaderCaps->fVertexIDSupport ? FixedCountStrokes::kMaxEdges
211 : FixedCountStrokes::kMaxEdgesNoVertexIDs;
212 args.fVertBuilder->defineConstant("NUM_TOTAL_EDGES", maxEdges);
213
214 // Helper functions.
215 if (shader.hasDynamicStroke()) {
216 args.fVertBuilder->insertFunction(kNumRadialSegmentsPerRadianFn);
217 }
218 args.fVertBuilder->insertFunction(kRobustNormalizeDiffFn);
219 args.fVertBuilder->insertFunction(kCosineBetweenUnitVectorsFn);
220 args.fVertBuilder->insertFunction(kMiterExtentFn);
221 args.fVertBuilder->insertFunction(kUncheckedMixFn);
222 args.fVertBuilder->insertFunction(GrTessellationShader::WangsFormulaSkSL());
223
224 // Tessellation control uniforms and/or dynamic attributes.
225 if (!shader.hasDynamicStroke()) {
226 // [NUM_RADIAL_SEGMENTS_PER_RADIAN, JOIN_TYPE, STROKE_RADIUS]
227 const char* tessArgsName;
228 fTessControlArgsUniform = args.fUniformHandler->addUniform(
229 nullptr, kVertex_GrShaderFlag, SkSLType::kFloat3, "tessControlArgs",
230 &tessArgsName);
231 args.fVertBuilder->codeAppendf(
232 "float NUM_RADIAL_SEGMENTS_PER_RADIAN = %s.x;"
233 "float JOIN_TYPE = %s.y;"
234 "float STROKE_RADIUS = %s.z;", tessArgsName, tessArgsName, tessArgsName);
235 } else {
236 // The shader does not currently support dynamic hairlines, so this case only needs to
237 // configure NUM_RADIAL_SEGMENTS_PER_RADIAN based on the fixed maxScale and per-instance
238 // stroke radius attribute that's defined in local space.
239 SkASSERT(!shader.stroke().isHairlineStyle());
240 const char* maxScaleName;
241 fTessControlArgsUniform = args.fUniformHandler->addUniform(
242 nullptr, kVertex_GrShaderFlag, SkSLType::kFloat, "maxScale",
243 &maxScaleName);
244 args.fVertBuilder->codeAppendf(
245 "float STROKE_RADIUS = dynamicStrokeAttr.x;"
246 "float JOIN_TYPE = dynamicStrokeAttr.y;"
247 "float NUM_RADIAL_SEGMENTS_PER_RADIAN = num_radial_segments_per_radian("
248 "%s * STROKE_RADIUS);", maxScaleName);
249
250 }
251
252 if (shader.hasDynamicColor()) {
253 // Create a varying for color to get passed in through.
254 GrGLSLVarying dynamicColor{SkSLType::kHalf4};
255 args.fVaryingHandler->addVarying("dynamicColor", &dynamicColor);
256 args.fVertBuilder->codeAppendf("%s = dynamicColorAttr;", dynamicColor.vsOut());
257 fDynamicColorName = dynamicColor.fsIn();
258 }
259
260 // View matrix uniforms.
261 const char* translateName, *affineMatrixName;
262 fAffineMatrixUniform = args.fUniformHandler->addUniform(nullptr, kVertex_GrShaderFlag,
263 SkSLType::kFloat4, "affineMatrix",
264 &affineMatrixName);
265 fTranslateUniform = args.fUniformHandler->addUniform(nullptr, kVertex_GrShaderFlag,
266 SkSLType::kFloat2, "translate",
267 &translateName);
268 args.fVertBuilder->codeAppendf("float2x2 AFFINE_MATRIX = float2x2(%s.xy, %s.zw);\n",
269 affineMatrixName, affineMatrixName);
270 args.fVertBuilder->codeAppendf("float2 TRANSLATE = %s;\n", translateName);
271
272 if (shader.hasExplicitCurveType()) {
273 args.fVertBuilder->insertFunction(SkStringPrintf(
274 "bool is_conic_curve() { return curveTypeAttr != %g; }",
275 skgpu::tess::kCubicCurveType).c_str());
276 } else {
277 args.fVertBuilder->insertFunction(
278 "bool is_conic_curve() { return isinf(pts23Attr.w); }");
279 }
280
281 // Tessellation code.
282 args.fVertBuilder->codeAppend(
283 "float2 p0=pts01Attr.xy, p1=pts01Attr.zw, p2=pts23Attr.xy, p3=pts23Attr.zw;"
284 "float2 lastControlPoint = argsAttr.xy;"
285 "float w = -1;" // w<0 means the curve is an integral cubic.
286 "if (is_conic_curve()) {"
287 // Conics are 3 points, with the weight in p3.
288 "w = p3.x;"
289 "p3 = p2;" // Setting p3 equal to p2 works for the remaining rotational logic.
290 "}"
291 );
292
293 // Emit code to call Wang's formula to determine parametric segments. We do this before
294 // transform points for hairlines so that it is consistent with how the CPU tested the control
295 // points for chopping.
296 args.fVertBuilder->codeAppend(
297 // Find how many parametric segments this stroke requires.
298 "float numParametricSegments;"
299 "if (w < 0) {"
300 "if (p0 == p1 && p2 == p3) {"
301 "numParametricSegments = 1;" // a line
302 "} else {"
303 "numParametricSegments = wangs_formula_cubic(PRECISION, p0, p1, p2, p3, AFFINE_MATRIX);"
304 "}"
305 "} else {"
306 "numParametricSegments = wangs_formula_conic(PRECISION,"
307 "AFFINE_MATRIX * p0,"
308 "AFFINE_MATRIX * p1,"
309 "AFFINE_MATRIX * p2, w);"
310 "}"
311 );
312
313 if (shader.stroke().isHairlineStyle()) {
314 // Hairline case. Transform the points before tessellation. We can still hold off on the
315 // translate until the end; we just need to perform the scale and skew right now.
316 args.fVertBuilder->codeAppend(
317 "p0 = AFFINE_MATRIX * p0;"
318 "p1 = AFFINE_MATRIX * p1;"
319 "p2 = AFFINE_MATRIX * p2;"
320 "p3 = AFFINE_MATRIX * p3;"
321 "lastControlPoint = AFFINE_MATRIX * lastControlPoint;"
322 );
323 }
324
325 args.fVertBuilder->codeAppend(
326 // Find the starting and ending tangents.
327 "float2 tan0 = robust_normalize_diff((p0 == p1) ? ((p1 == p2) ? p3 : p2) : p1, p0);"
328 "float2 tan1 = robust_normalize_diff(p3, (p3 == p2) ? ((p2 == p1) ? p0 : p1) : p2);"
329 "if (tan0 == float2(0)) {"
330 // The stroke is a point. This special case tells us to draw a stroke-width circle as a
331 // 180 degree point stroke instead.
332 "tan0 = float2(1,0);"
333 "tan1 = float2(-1,0);"
334 "}"
335 );
336
337 if (args.fShaderCaps->fVertexIDSupport) {
338 // If we don't have sk_VertexID support then "edgeID" already came in as a vertex attrib.
339 args.fVertBuilder->codeAppend(
340 "float edgeID = float(sk_VertexID >> 1);"
341 "if ((sk_VertexID & 1) != 0) {"
342 "edgeID = -edgeID;"
343 "}"
344 );
345 }
346
347 // Potential optimization: (shader.hasDynamicStroke() && shader.hasRoundJoins())?
348 if (shader.stroke().getJoin() == SkPaint::kRound_Join || shader.hasDynamicStroke()) {
349 args.fVertBuilder->codeAppend(
350 // Determine how many edges to give to the round join. We emit the first and final edges
351 // of the join twice: once full width and once restricted to half width. This guarantees
352 // perfect seaming by matching the vertices from the join as well as from the strokes on
353 // either side.
354 "float2 prevTan = robust_normalize_diff(p0, lastControlPoint);"
355 "float joinRads = acos(cosine_between_unit_vectors(prevTan, tan0));"
356 "float numRadialSegmentsInJoin = max(ceil(joinRads * NUM_RADIAL_SEGMENTS_PER_RADIAN), 1);"
357 // +2 because we emit the beginning and ending edges twice (see above comment).
358 "float numEdgesInJoin = numRadialSegmentsInJoin + 2;"
359 // The stroke section needs at least two edges. Don't assign more to the join than
360 // "NUM_TOTAL_EDGES - 2". (This is only relevant when the ideal max edge count calculated
361 // on the CPU had to be limited to NUM_TOTAL_EDGES in the draw call).
362 "numEdgesInJoin = min(numEdgesInJoin, NUM_TOTAL_EDGES - 2);");
363 if (shader.hasDynamicStroke()) {
364 args.fVertBuilder->codeAppend(
365 "if (JOIN_TYPE >= 0) {" // Is the join not a round type?
366 // Bevel and miter joins get 1 and 2 segments respectively.
367 // +2 because we emit the beginning and ending edges twice (see above comments).
368 "numEdgesInJoin = sign(JOIN_TYPE) + 1 + 2;"
369 "}");
370 }
371 } else {
372 args.fVertBuilder->codeAppendf("float numEdgesInJoin = %i;",
373 skgpu::tess::NumFixedEdgesInJoin(joinType));
374 }
375
376 args.fVertBuilder->codeAppend(
377 // Find which direction the curve turns.
378 // NOTE: Since the curve is not allowed to inflect, we can just check F'(.5) x F''(.5).
379 // NOTE: F'(.5) x F''(.5) has the same sign as (P2 - P0) x (P3 - P1)
380 "float turn = cross_length_2d(p2 - p0, p3 - p1);"
381 "float combinedEdgeID = abs(edgeID) - numEdgesInJoin;"
382 "if (combinedEdgeID < 0) {"
383 "tan1 = tan0;"
384 // Don't let tan0 become zero. The code as-is isn't built to handle that case. tan0=0
385 // means the join is disabled, and to disable it with the existing code we can leave
386 // tan0 equal to tan1.
387 "if (lastControlPoint != p0) {"
388 "tan0 = robust_normalize_diff(p0, lastControlPoint);"
389 "}"
390 "turn = cross_length_2d(tan0, tan1);"
391 "}"
392
393 // Calculate the curve's starting angle and rotation.
394 "float cosTheta = cosine_between_unit_vectors(tan0, tan1);"
395 "float rotation = acos(cosTheta);"
396 "if (turn < 0) {"
397 // Adjust sign of rotation to match the direction the curve turns.
398 "rotation = -rotation;"
399 "}"
400
401 "float numRadialSegments;"
402 "float strokeOutset = sign(edgeID);"
403 "if (combinedEdgeID < 0) {"
404 // We belong to the preceding join. The first and final edges get duplicated, so we only
405 // have "numEdgesInJoin - 2" segments.
406 "numRadialSegments = numEdgesInJoin - 2;"
407 "numParametricSegments = 1;" // Joins don't have parametric segments.
408 "p3 = p2 = p1 = p0;" // Colocate all points on the junction point.
409 // Shift combinedEdgeID to the range [-1, numRadialSegments]. This duplicates the first
410 // edge and lands one edge at the very end of the join. (The duplicated final edge will
411 // actually come from the section of our strip that belongs to the stroke.)
412 "combinedEdgeID += numRadialSegments + 1;"
413 // We normally restrict the join on one side of the junction, but if the tangents are
414 // nearly equivalent this could theoretically result in bad seaming and/or cracks on the
415 // side we don't put it on. If the tangents are nearly equivalent then we leave the join
416 // double-sided.
417 " float sinEpsilon = 1e-2;" // ~= sin(180deg / 3000)
418 "bool tangentsNearlyParallel ="
419 "(abs(turn) * inversesqrt(dot(tan0, tan0) * dot(tan1, tan1))) < sinEpsilon;"
420 "if (!tangentsNearlyParallel || dot(tan0, tan1) < 0) {"
421 // There are two edges colocated at the beginning. Leave the first one double sided
422 // for seaming with the previous stroke. (The double sided edge at the end will
423 // actually come from the section of our strip that belongs to the stroke.)
424 "if (combinedEdgeID >= 0) {"
425 "strokeOutset = (turn < 0) ? min(strokeOutset, 0) : max(strokeOutset, 0);"
426 "}"
427 "}"
428 "combinedEdgeID = max(combinedEdgeID, 0);"
429 "} else {"
430 // We belong to the stroke. Unless NUM_RADIAL_SEGMENTS_PER_RADIAN is incredibly high,
431 // clamping to maxCombinedSegments will be a no-op because the draw call was invoked with
432 // sufficient vertices to cover the worst case scenario of 180 degree rotation.
433 "float maxCombinedSegments = NUM_TOTAL_EDGES - numEdgesInJoin - 1;"
434 "numRadialSegments = max(ceil(abs(rotation) * NUM_RADIAL_SEGMENTS_PER_RADIAN), 1);"
435 "numRadialSegments = min(numRadialSegments, maxCombinedSegments);"
436 "numParametricSegments = min(numParametricSegments,"
437 "maxCombinedSegments - numRadialSegments + 1);"
438 "}"
439
440 // Additional parameters for emitTessellationCode().
441 "float radsPerSegment = rotation / numRadialSegments;"
442 "float numCombinedSegments = numParametricSegments + numRadialSegments - 1;"
443 "bool isFinalEdge = (combinedEdgeID >= numCombinedSegments);"
444 "if (combinedEdgeID > numCombinedSegments) {"
445 "strokeOutset = 0;" // The strip has more edges than we need. Drop this one.
446 "}");
447
448 if (joinType == SkPaint::kMiter_Join || shader.hasDynamicStroke()) {
449 args.fVertBuilder->codeAppendf(
450 // Edge #2 extends to the miter point.
451 "if (abs(edgeID) == 2 && %s) {"
452 "strokeOutset *= miter_extent(cosTheta, JOIN_TYPE);" // miterLimit
453 "}", shader.hasDynamicStroke() ? "JOIN_TYPE > 0" /*Is the join a miter type?*/ : "true");
454 }
455
456 this->emitTessellationCode(shader, &args.fVertBuilder->code(), gpArgs, *args.fShaderCaps);
457
458 this->emitFragmentCode(shader, args);
459 }
460
emitTessellationCode(const GrStrokeTessellationShader & shader,SkString * code,GrGPArgs * gpArgs,const GrShaderCaps & shaderCaps) const461 void GrStrokeTessellationShader::Impl::emitTessellationCode(
462 const GrStrokeTessellationShader& shader, SkString* code, GrGPArgs* gpArgs,
463 const GrShaderCaps& shaderCaps) const {
464 // The subclass is responsible to define the following symbols before calling this method:
465 //
466 // // Functions.
467 // float2 unchecked_mix(float2, float2, float);
468 // float unchecked_mix(float, float, float);
469 //
470 // // Values provided by either uniforms or attribs.
471 // float2 p0, p1, p2, p3;
472 // float w;
473 // float STROKE_RADIUS;
474 // float 2x2 AFFINE_MATRIX;
475 // float2 TRANSLATE;
476 //
477 // // Values calculated by the specific subclass.
478 // float combinedEdgeID;
479 // bool isFinalEdge;
480 // float numParametricSegments;
481 // float radsPerSegment;
482 // float2 tan0; // Must be pre-normalized
483 // float2 tan1; // Must be pre-normalized
484 // float strokeOutset;
485 //
486 code->appendf(
487 "float2 tangent, strokeCoord;"
488 "if (combinedEdgeID != 0 && !isFinalEdge) {"
489 // Compute the location and tangent direction of the stroke edge with the integral id
490 // "combinedEdgeID", where combinedEdgeID is the sorted-order index of parametric and radial
491 // edges. Start by finding the tangent function's power basis coefficients. These define a
492 // tangent direction (scaled by some uniform value) as:
493 // |T^2|
494 // Tangent_Direction(T) = dx,dy = |A 2B C| * |T |
495 // |. . .| |1 |
496 "float2 A, B, C = p1 - p0;"
497 "float2 D = p3 - p0;"
498 "if (w >= 0.0) {"
499 // P0..P2 represent a conic and P3==P2. The derivative of a conic has a cumbersome
500 // order-4 denominator. However, this isn't necessary if we are only interested in a
501 // vector in the same *direction* as a given tangent line. Since the denominator scales
502 // dx and dy uniformly, we can throw it out completely after evaluating the derivative
503 // with the standard quotient rule. This leaves us with a simpler quadratic function
504 // that we use to find a tangent.
505 "C *= w;"
506 "B = .5*D - C;"
507 "A = (w - 1.0) * D;"
508 "p1 *= w;"
509 "} else {"
510 "float2 E = p2 - p1;"
511 "B = E - C;"
512 "A = fma(float2(-3), E, D);"
513 "}"
514 // FIXME(crbug.com/800804,skbug.com/11268): Consider normalizing the exponents in A,B,C at
515 // this point in order to prevent fp32 overflow.
516
517 // Now find the coefficients that give a tangent direction from a parametric edge ID:
518 //
519 // |parametricEdgeID^2|
520 // Tangent_Direction(parametricEdgeID) = dx,dy = |A B_ C_| * |parametricEdgeID |
521 // |. . .| |1 |
522 //
523 "float2 B_ = B * (numParametricSegments * 2.0);"
524 "float2 C_ = C * (numParametricSegments * numParametricSegments);"
525
526 // Run a binary search to determine the highest parametric edge that is located on or before
527 // the combinedEdgeID. A combined ID is determined by the sum of complete parametric and
528 // radial segments behind it. i.e., find the highest parametric edge where:
529 //
530 // parametricEdgeID + floor(numRadialSegmentsAtParametricT) <= combinedEdgeID
531 //
532 "float lastParametricEdgeID = 0.0;"
533 "float maxParametricEdgeID = min(numParametricSegments - 1.0, combinedEdgeID);"
534 "float negAbsRadsPerSegment = -abs(radsPerSegment);"
535 "float maxRotation0 = (1.0 + combinedEdgeID) * abs(radsPerSegment);"
536 "for (int exp = %i - 1; exp >= 0; --exp) {"
537 // Test the parametric edge at lastParametricEdgeID + 2^exp.
538 "float testParametricID = lastParametricEdgeID + exp2(float(exp));"
539 "if (testParametricID <= maxParametricEdgeID) {"
540 "float2 testTan = fma(float2(testParametricID), A, B_);"
541 "testTan = fma(float2(testParametricID), testTan, C_);"
542 "float cosRotation = dot(normalize(testTan), tan0);"
543 "float maxRotation = fma(testParametricID, negAbsRadsPerSegment, maxRotation0);"
544 "maxRotation = min(maxRotation, PI);"
545 // Is rotation <= maxRotation? (i.e., is the number of complete radial segments
546 // behind testT, + testParametricID <= combinedEdgeID?)
547 "if (cosRotation >= cos(maxRotation)) {"
548 // testParametricID is on or before the combinedEdgeID. Keep it!
549 "lastParametricEdgeID = testParametricID;"
550 "}"
551 "}"
552 "}"
553
554 // Find the T value of the parametric edge at lastParametricEdgeID.
555 "float parametricT = lastParametricEdgeID / numParametricSegments;"
556
557 // Now that we've identified the highest parametric edge on or before the
558 // combinedEdgeID, the highest radial edge is easy:
559 "float lastRadialEdgeID = combinedEdgeID - lastParametricEdgeID;"
560
561 // Find the angle of tan0, i.e. the angle between tan0 and the positive x axis.
562 "float angle0 = acos(clamp(tan0.x, -1.0, 1.0));"
563 "angle0 = tan0.y >= 0.0 ? angle0 : -angle0;"
564
565 // Find the tangent vector on the edge at lastRadialEdgeID. By construction it is already
566 // normalized.
567 "float radialAngle = fma(lastRadialEdgeID, radsPerSegment, angle0);"
568 "tangent = float2(cos(radialAngle), sin(radialAngle));"
569 "float2 norm = float2(-tangent.y, tangent.x);"
570
571 // Find the T value where the tangent is orthogonal to norm. This is a quadratic:
572 //
573 // dot(norm, Tangent_Direction(T)) == 0
574 //
575 // |T^2|
576 // norm * |A 2B C| * |T | == 0
577 // |. . .| |1 |
578 //
579 "float a=dot(norm,A), b_over_2=dot(norm,B), c=dot(norm,C);"
580 "float discr_over_4 = max(b_over_2*b_over_2 - a*c, 0.0);"
581 "float q = sqrt(discr_over_4);"
582 "if (b_over_2 > 0.0) {"
583 "q = -q;"
584 "}"
585 "q -= b_over_2;"
586
587 // Roots are q/a and c/q. Since each curve section does not inflect or rotate more than 180
588 // degrees, there can only be one tangent orthogonal to "norm" inside 0..1. Pick the root
589 // nearest .5.
590 "float _5qa = -.5*q*a;"
591 "float2 root = (abs(fma(q,q,_5qa)) < abs(fma(a,c,_5qa))) ? float2(q,a) : float2(c,q);"
592 "float radialT = (root.t != 0.0) ? root.s / root.t : 0.0;"
593 "radialT = clamp(radialT, 0.0, 1.0);"
594
595 "if (lastRadialEdgeID == 0.0) {"
596 // The root finder above can become unstable when lastRadialEdgeID == 0 (e.g., if
597 // there are roots at exatly 0 and 1 both). radialT should always == 0 in this case.
598 "radialT = 0.0;"
599 "}"
600
601 // Now that we've identified the T values of the last parametric and radial edges, our final
602 // T value for combinedEdgeID is whichever is larger.
603 "float T = max(parametricT, radialT);"
604
605 // Evaluate the cubic at T. Use De Casteljau's for its accuracy and stability.
606 "float2 ab = unchecked_mix(p0, p1, T);"
607 "float2 bc = unchecked_mix(p1, p2, T);"
608 "float2 cd = unchecked_mix(p2, p3, T);"
609 "float2 abc = unchecked_mix(ab, bc, T);"
610 "float2 bcd = unchecked_mix(bc, cd, T);"
611 "float2 abcd = unchecked_mix(abc, bcd, T);"
612
613 // Evaluate the conic weight at T.
614 "float u = unchecked_mix(1.0, w, T);"
615 "float v = w + 1 - u;" // == mix(w, 1, T)
616 "float uv = unchecked_mix(u, v, T);"
617
618 // If we went with T=parametricT, then update the tangent. Otherwise leave it at the radial
619 // tangent found previously. (In the event that parametricT == radialT, we keep the radial
620 // tangent.)
621 "if (T != radialT) {"
622 // We must re-normalize here because the tangent is determined by the curve coefficients
623 "tangent = w >= 0.0 ? robust_normalize_diff(bc*u, ab*v)"
624 ": robust_normalize_diff(bcd, abc);"
625 "}"
626
627 "strokeCoord = (w >= 0.0) ? abc/uv : abcd;"
628 "} else {"
629 // Edges at the beginning and end of the strip use exact endpoints and tangents. This
630 // ensures crack-free seaming between instances.
631 "tangent = (combinedEdgeID == 0) ? tan0 : tan1;"
632 "strokeCoord = (combinedEdgeID == 0) ? p0 : p3;"
633 "}", skgpu::tess::kMaxResolveLevel /* Parametric/radial sort loop count. */);
634
635 code->append(
636 // At this point 'tangent' is normalized, so the orthogonal vector is also normalized.
637 "float2 ortho = float2(tangent.y, -tangent.x);"
638 "strokeCoord += ortho * (STROKE_RADIUS * strokeOutset);");
639
640 if (!shader.stroke().isHairlineStyle()) {
641 // Normal case. Do the transform after tessellation.
642 code->append("float2 devCoord = AFFINE_MATRIX * strokeCoord + TRANSLATE;");
643 gpArgs->fPositionVar.set(SkSLType::kFloat2, "devCoord");
644 gpArgs->fLocalCoordVar.set(SkSLType::kFloat2, "strokeCoord");
645 } else {
646 // Hairline case. The scale and skew already happened before tessellation.
647 code->append(
648 "float2 devCoord = strokeCoord + TRANSLATE;"
649 "float2 localCoord = inverse(AFFINE_MATRIX) * strokeCoord;");
650 gpArgs->fPositionVar.set(SkSLType::kFloat2, "devCoord");
651 gpArgs->fLocalCoordVar.set(SkSLType::kFloat2, "localCoord");
652 }
653 }
654
emitFragmentCode(const GrStrokeTessellationShader & shader,const EmitArgs & args)655 void GrStrokeTessellationShader::Impl::emitFragmentCode(const GrStrokeTessellationShader& shader,
656 const EmitArgs& args) {
657 if (!shader.hasDynamicColor()) {
658 // The fragment shader just outputs a uniform color.
659 const char* colorUniformName;
660 fColorUniform = args.fUniformHandler->addUniform(nullptr, kFragment_GrShaderFlag,
661 SkSLType::kHalf4, "color",
662 &colorUniformName);
663 args.fFragBuilder->codeAppendf("half4 %s = %s;", args.fOutputColor, colorUniformName);
664 } else {
665 args.fFragBuilder->codeAppendf("half4 %s = %s;", args.fOutputColor,
666 fDynamicColorName.c_str());
667 }
668 args.fFragBuilder->codeAppendf("const half4 %s = half4(1);", args.fOutputCoverage);
669 }
670
setData(const GrGLSLProgramDataManager & pdman,const GrShaderCaps &,const GrGeometryProcessor & geomProc)671 void GrStrokeTessellationShader::Impl::setData(const GrGLSLProgramDataManager& pdman,
672 const GrShaderCaps&,
673 const GrGeometryProcessor& geomProc) {
674 const auto& shader = geomProc.cast<GrStrokeTessellationShader>();
675 const auto& stroke = shader.stroke();
676
677 // getMaxScale() returns -1 if it can't compute a scale factor (e.g. perspective), taking the
678 // absolute value automatically converts that to an identity scale factor for our purposes.
679 const float maxScale = std::abs(shader.viewMatrix().getMaxScale());
680 if (!shader.hasDynamicStroke()) {
681 // Set up the tessellation control uniforms. In the hairline case we transform prior to
682 // tessellation, so it will be defined in device space units instead of local units.
683 const float strokeRadius = 0.5f * (stroke.isHairlineStyle() ? 1.f : stroke.getWidth());
684 float numRadialSegmentsPerRadian = skgpu::tess::CalcNumRadialSegmentsPerRadian(
685 (stroke.isHairlineStyle() ? 1.f : maxScale) * strokeRadius);
686
687 pdman.set3f(fTessControlArgsUniform,
688 numRadialSegmentsPerRadian, // NUM_RADIAL_SEGMENTS_PER_RADIAN
689 skgpu::tess::GetJoinType(stroke), // JOIN_TYPE
690 strokeRadius); // STROKE_RADIUS
691 } else {
692 SkASSERT(!stroke.isHairlineStyle());
693 pdman.set1f(fTessControlArgsUniform, maxScale);
694 }
695
696 // Set up the view matrix, if any.
697 const SkMatrix& m = shader.viewMatrix();
698 pdman.set2f(fTranslateUniform, m.getTranslateX(), m.getTranslateY());
699 pdman.set4f(fAffineMatrixUniform, m.getScaleX(), m.getSkewY(), m.getSkewX(),
700 m.getScaleY());
701
702 if (!shader.hasDynamicColor()) {
703 pdman.set4fv(fColorUniform, 1, shader.color().vec());
704 }
705 }
706
addToKey(const GrShaderCaps &,skgpu::KeyBuilder * b) const707 void GrStrokeTessellationShader::addToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const {
708 bool keyNeedsJoin = !(fPatchAttribs & PatchAttribs::kStrokeParams);
709 SkASSERT(fStroke.getJoin() >> 2 == 0);
710 // Attribs get worked into the key automatically during GrGeometryProcessor::getAttributeKey().
711 // When color is in a uniform, it's always wide. kWideColor doesn't need to be considered here.
712 uint32_t key = (uint32_t)(fPatchAttribs & ~PatchAttribs::kColor);
713 key = (key << 2) | ((keyNeedsJoin) ? fStroke.getJoin() : 0);
714 key = (key << 1) | (uint32_t)fStroke.isHairlineStyle();
715 b->add32(key);
716 }
717
makeProgramImpl(const GrShaderCaps &) const718 std::unique_ptr<GrGeometryProcessor::ProgramImpl> GrStrokeTessellationShader::makeProgramImpl(
719 const GrShaderCaps&) const {
720 return std::make_unique<Impl>();
721 }
722