/* * Copyright 2020 Google LLC. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/ganesh/tessellate/GrStrokeTessellationShader.h" #include "include/core/SkMatrix.h" #include "include/core/SkPaint.h" #include "include/core/SkString.h" #include "include/private/base/SkAssert.h" #include "include/private/base/SkMacros.h" #include "include/private/base/SkPoint_impl.h" #include "include/private/gpu/ganesh/GrTypesPriv.h" #include "src/core/SkSLTypeShared.h" #include "src/gpu/KeyBuilder.h" #include "src/gpu/ganesh/GrGeometryProcessor.h" #include "src/gpu/ganesh/GrShaderCaps.h" #include "src/gpu/ganesh/GrShaderVar.h" #include "src/gpu/ganesh/glsl/GrGLSLFragmentShaderBuilder.h" #include "src/gpu/ganesh/glsl/GrGLSLProgramDataManager.h" #include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h" #include "src/gpu/ganesh/glsl/GrGLSLVarying.h" #include "src/gpu/ganesh/glsl/GrGLSLVertexGeoBuilder.h" #include "src/gpu/tessellate/FixedCountBufferUtils.h" #include #include namespace { // float2 robust_normalize_diff(float2 a, float b) { ... } // // Returns the normalized difference between a and b, i.e. normalize(a - b), with care taken for // if 'a' and/or 'b' have large coordinates. static const char* kRobustNormalizeDiffFn = "float2 robust_normalize_diff(float2 a, float2 b) {" "float2 diff = a - b;" "if (diff == float2(0.0)) {" "return float2(0.0);" "} else {" "float invMag = 1.0 / max(abs(diff.x), abs(diff.y));" "return normalize(invMag * diff);" "}" "}"; // float cosine_between_unit_vectors(float2 a, float2 b) { ... // // Returns the cosine of the angle between a and b, assuming a and b are unit vectors already. // Guaranteed to be between [-1, 1]. static const char* kCosineBetweenUnitVectorsFn = "float cosine_between_unit_vectors(float2 a, float2 b) {" // Since a and b are assumed to be normalized, the cosine is equal to the dot product, although // we clamp that to ensure it falls within the expected range of [-1, 1]. "return clamp(dot(a, b), -1.0, 1.0);" "}" ; // float miter_extent(float cosTheta, float miterLimit) { ... // // Extends the middle radius to either the miter point, or the bevel edge if we surpassed the // miter limit and need to revert to a bevel join. static const char* kMiterExtentFn = "float miter_extent(float cosTheta, float miterLimit) {" "float x = fma(cosTheta, .5, .5);" "return (x * miterLimit * miterLimit >= 1.0) ? inversesqrt(x) : sqrt(x);" "}" ; // float num_radial_segments_per_radian(float approxDevStrokeRadius) { ... // // Returns the number of radial segments required for each radian of rotation, in order for the // curve to appear "smooth" as defined by the approximate device-space stroke radius. static const char* kNumRadialSegmentsPerRadianFn = "float num_radial_segments_per_radian(float approxDevStrokeRadius) {" "return .5 / acos(max(1.0 - (1.0 / PRECISION) / approxDevStrokeRadius, -1.0));" "}"; // float unchecked_mix(float a, float b, float T) { ... // // Unlike mix(), this does not return b when t==1. But it otherwise seems to get better // precision than "a*(1 - t) + b*t" for things like chopping cubics on exact cusp points. // We override this result anyway when t==1 so it shouldn't be a problem. static const char* kUncheckedMixFn = "float unchecked_mix(float a, float b, float T) {" "return fma(b - a, T, a);" "}" "float2 unchecked_mix(float2 a, float2 b, float T) {" "return fma(b - a, float2(T), a);" "}" "float4 unchecked_mix(float4 a, float4 b, float4 T) {" "return fma(b - a, T, a);" "}" ; using skgpu::tess::FixedCountStrokes; } // anonymous namespace GrStrokeTessellationShader::GrStrokeTessellationShader(const GrShaderCaps& shaderCaps, PatchAttribs attribs, const SkMatrix& viewMatrix, const SkStrokeRec& stroke, SkPMColor4f color) : GrTessellationShader(kTessellate_GrStrokeTessellationShader_ClassID, GrPrimitiveType::kTriangleStrip, viewMatrix, color) , fPatchAttribs(attribs | PatchAttribs::kJoinControlPoint) , fStroke(stroke) { // We should use explicit curve type when, and only when, there isn't infinity support. // Otherwise the GPU can infer curve type based on infinity. SkASSERT(shaderCaps.fInfinitySupport != (attribs & PatchAttribs::kExplicitCurveType)); // pts 0..3 define the stroke as a cubic bezier. If p3.y is infinity, then it's a conic // with w=p3.x. // // An empty stroke (p0==p1==p2==p3) is a special case that denotes a circle, or // 180-degree point stroke. fAttribs.emplace_back("pts01Attr", kFloat4_GrVertexAttribType, SkSLType::kFloat4); fAttribs.emplace_back("pts23Attr", kFloat4_GrVertexAttribType, SkSLType::kFloat4); // argsAttr contains the lastControlPoint for setting up the join. fAttribs.emplace_back("argsAttr", kFloat2_GrVertexAttribType, SkSLType::kFloat2); if (fPatchAttribs & PatchAttribs::kStrokeParams) { fAttribs.emplace_back("dynamicStrokeAttr", kFloat2_GrVertexAttribType, SkSLType::kFloat2); } if (fPatchAttribs & PatchAttribs::kColor) { fAttribs.emplace_back("dynamicColorAttr", (fPatchAttribs & PatchAttribs::kWideColorIfEnabled) ? kFloat4_GrVertexAttribType : kUByte4_norm_GrVertexAttribType, SkSLType::kHalf4); } if (fPatchAttribs & PatchAttribs::kExplicitCurveType) { // A conic curve is written out with p3=[w,Infinity], but GPUs that don't support // infinity can't detect this. On these platforms we write out an extra float with each // patch that explicitly tells the shader what type of curve it is. fAttribs.emplace_back("curveTypeAttr", kFloat_GrVertexAttribType, SkSLType::kFloat); } this->setInstanceAttributesWithImplicitOffsets(fAttribs.data(), fAttribs.size()); SkASSERT(this->instanceStride() == sizeof(SkPoint) * 4 + PatchAttribsStride(fPatchAttribs)); if (!shaderCaps.fVertexIDSupport) { constexpr static Attribute kVertexAttrib("edgeID", kFloat_GrVertexAttribType, SkSLType::kFloat); this->setVertexAttributesWithImplicitOffsets(&kVertexAttrib, 1); } SkASSERT(fAttribs.size() <= kMaxAttribCount); } // This base class emits shader code for our parametric/radial stroke tessellation algorithm // described above. The subclass emits its own specific setup code before calling into // emitTessellationCode and emitFragment code. class GrStrokeTessellationShader::Impl : public ProgramImpl { void onEmitCode(EmitArgs&, GrGPArgs*) override; // Emits code that calculates the vertex position and any other inputs to the fragment shader. // The onEmitCode() is responsible to define the following symbols before calling this method: // // // Functions. // float2 unchecked_mix(float2, float2, float); // float unchecked_mix(float, float, float); // // // Values provided by either uniforms or attribs. // float2 p0, p1, p2, p3; // float w; // float STROKE_RADIUS; // float 2x2 AFFINE_MATRIX; // float2 TRANSLATE; // // // Values calculated by the specific subclass. // float combinedEdgeID; // bool isFinalEdge; // float numParametricSegments; // float radsPerSegment; // float2 tan0; // Must be pre-normalized // float2 tan1; // Must be pre-normalized // float strokeOutset; // void emitTessellationCode(const GrStrokeTessellationShader& shader, SkString* code, GrGPArgs* gpArgs, const GrShaderCaps& shaderCaps) const; // Emits all necessary fragment code. If using dynamic color, the impl is responsible to set up // a half4 varying for color and provide its name in 'fDynamicColorName'. void emitFragmentCode(const GrStrokeTessellationShader&, const EmitArgs&); void setData(const GrGLSLProgramDataManager& pdman, const GrShaderCaps&, const GrGeometryProcessor&) final; GrGLSLUniformHandler::UniformHandle fTessControlArgsUniform; GrGLSLUniformHandler::UniformHandle fTranslateUniform; GrGLSLUniformHandler::UniformHandle fAffineMatrixUniform; GrGLSLUniformHandler::UniformHandle fColorUniform; SkString fDynamicColorName; }; void GrStrokeTessellationShader::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { const auto& shader = args.fGeomProc.cast(); SkPaint::Join joinType = shader.stroke().getJoin(); args.fVaryingHandler->emitAttributes(shader); args.fVertBuilder->defineConstant("float", "PI", "3.141592653589793238"); args.fVertBuilder->defineConstant("PRECISION", skgpu::tess::kPrecision); // There is an artificial maximum number of edges (compared to the max limit calculated based on // the number of radial segments per radian, Wang's formula, and join type). When there is // vertex ID support, the limit is what can be represented in a uint16; otherwise the limit is // the size of the fallback vertex buffer. float maxEdges = args.fShaderCaps->fVertexIDSupport ? FixedCountStrokes::kMaxEdges : FixedCountStrokes::kMaxEdgesNoVertexIDs; args.fVertBuilder->defineConstant("NUM_TOTAL_EDGES", maxEdges); // Helper functions. if (shader.hasDynamicStroke()) { args.fVertBuilder->insertFunction(kNumRadialSegmentsPerRadianFn); } args.fVertBuilder->insertFunction(kRobustNormalizeDiffFn); args.fVertBuilder->insertFunction(kCosineBetweenUnitVectorsFn); args.fVertBuilder->insertFunction(kMiterExtentFn); args.fVertBuilder->insertFunction(kUncheckedMixFn); args.fVertBuilder->insertFunction(GrTessellationShader::WangsFormulaSkSL()); // Tessellation control uniforms and/or dynamic attributes. if (!shader.hasDynamicStroke()) { // [NUM_RADIAL_SEGMENTS_PER_RADIAN, JOIN_TYPE, STROKE_RADIUS] const char* tessArgsName; fTessControlArgsUniform = args.fUniformHandler->addUniform( nullptr, kVertex_GrShaderFlag, SkSLType::kFloat3, "tessControlArgs", &tessArgsName); args.fVertBuilder->codeAppendf( "float NUM_RADIAL_SEGMENTS_PER_RADIAN = %s.x;" "float JOIN_TYPE = %s.y;" "float STROKE_RADIUS = %s.z;", tessArgsName, tessArgsName, tessArgsName); } else { // The shader does not currently support dynamic hairlines, so this case only needs to // configure NUM_RADIAL_SEGMENTS_PER_RADIAN based on the fixed maxScale and per-instance // stroke radius attribute that's defined in local space. SkASSERT(!shader.stroke().isHairlineStyle()); const char* maxScaleName; fTessControlArgsUniform = args.fUniformHandler->addUniform( nullptr, kVertex_GrShaderFlag, SkSLType::kFloat, "maxScale", &maxScaleName); args.fVertBuilder->codeAppendf( "float STROKE_RADIUS = dynamicStrokeAttr.x;" "float JOIN_TYPE = dynamicStrokeAttr.y;" "float NUM_RADIAL_SEGMENTS_PER_RADIAN = num_radial_segments_per_radian(" "%s * STROKE_RADIUS);", maxScaleName); } if (shader.hasDynamicColor()) { // Create a varying for color to get passed in through. GrGLSLVarying dynamicColor{SkSLType::kHalf4}; args.fVaryingHandler->addVarying("dynamicColor", &dynamicColor); args.fVertBuilder->codeAppendf("%s = dynamicColorAttr;", dynamicColor.vsOut()); fDynamicColorName = dynamicColor.fsIn(); } // View matrix uniforms. const char* translateName, *affineMatrixName; fAffineMatrixUniform = args.fUniformHandler->addUniform(nullptr, kVertex_GrShaderFlag, SkSLType::kFloat4, "affineMatrix", &affineMatrixName); fTranslateUniform = args.fUniformHandler->addUniform(nullptr, kVertex_GrShaderFlag, SkSLType::kFloat2, "translate", &translateName); args.fVertBuilder->codeAppendf("float2x2 AFFINE_MATRIX = float2x2(%s.xy, %s.zw);\n", affineMatrixName, affineMatrixName); args.fVertBuilder->codeAppendf("float2 TRANSLATE = %s;\n", translateName); if (shader.hasExplicitCurveType()) { args.fVertBuilder->insertFunction(SkStringPrintf( "bool is_conic_curve() { return curveTypeAttr != %g; }", skgpu::tess::kCubicCurveType).c_str()); } else { args.fVertBuilder->insertFunction( "bool is_conic_curve() { return isinf(pts23Attr.w); }"); } // Tessellation code. args.fVertBuilder->codeAppend( "float2 p0=pts01Attr.xy, p1=pts01Attr.zw, p2=pts23Attr.xy, p3=pts23Attr.zw;" "float2 lastControlPoint = argsAttr.xy;" "float w = -1;" // w<0 means the curve is an integral cubic. "if (is_conic_curve()) {" // Conics are 3 points, with the weight in p3. "w = p3.x;" "p3 = p2;" // Setting p3 equal to p2 works for the remaining rotational logic. "}" ); // Emit code to call Wang's formula to determine parametric segments. We do this before // transform points for hairlines so that it is consistent with how the CPU tested the control // points for chopping. args.fVertBuilder->codeAppend( // Find how many parametric segments this stroke requires. "float numParametricSegments;" "if (w < 0) {" "if (p0 == p1 && p2 == p3) {" "numParametricSegments = 1;" // a line "} else {" "numParametricSegments = wangs_formula_cubic(PRECISION, p0, p1, p2, p3, AFFINE_MATRIX);" "}" "} else {" "numParametricSegments = wangs_formula_conic(PRECISION," "AFFINE_MATRIX * p0," "AFFINE_MATRIX * p1," "AFFINE_MATRIX * p2, w);" "}" ); if (shader.stroke().isHairlineStyle()) { // Hairline case. Transform the points before tessellation. We can still hold off on the // translate until the end; we just need to perform the scale and skew right now. args.fVertBuilder->codeAppend( "p0 = AFFINE_MATRIX * p0;" "p1 = AFFINE_MATRIX * p1;" "p2 = AFFINE_MATRIX * p2;" "p3 = AFFINE_MATRIX * p3;" "lastControlPoint = AFFINE_MATRIX * lastControlPoint;" ); } args.fVertBuilder->codeAppend( // Find the starting and ending tangents. "float2 tan0 = robust_normalize_diff((p0 == p1) ? ((p1 == p2) ? p3 : p2) : p1, p0);" "float2 tan1 = robust_normalize_diff(p3, (p3 == p2) ? ((p2 == p1) ? p0 : p1) : p2);" "if (tan0 == float2(0)) {" // The stroke is a point. This special case tells us to draw a stroke-width circle as a // 180 degree point stroke instead. "tan0 = float2(1,0);" "tan1 = float2(-1,0);" "}" ); if (args.fShaderCaps->fVertexIDSupport) { // If we don't have sk_VertexID support then "edgeID" already came in as a vertex attrib. args.fVertBuilder->codeAppend( "float edgeID = float(sk_VertexID >> 1);" "if ((sk_VertexID & 1) != 0) {" "edgeID = -edgeID;" "}" ); } // Potential optimization: (shader.hasDynamicStroke() && shader.hasRoundJoins())? if (shader.stroke().getJoin() == SkPaint::kRound_Join || shader.hasDynamicStroke()) { args.fVertBuilder->codeAppend( // Determine how many edges to give to the round join. We emit the first and final edges // of the join twice: once full width and once restricted to half width. This guarantees // perfect seaming by matching the vertices from the join as well as from the strokes on // either side. "float2 prevTan = robust_normalize_diff(p0, lastControlPoint);" "float joinRads = acos(cosine_between_unit_vectors(prevTan, tan0));" "float numRadialSegmentsInJoin = max(ceil(joinRads * NUM_RADIAL_SEGMENTS_PER_RADIAN), 1);" // +2 because we emit the beginning and ending edges twice (see above comment). "float numEdgesInJoin = numRadialSegmentsInJoin + 2;" // The stroke section needs at least two edges. Don't assign more to the join than // "NUM_TOTAL_EDGES - 2". (This is only relevant when the ideal max edge count calculated // on the CPU had to be limited to NUM_TOTAL_EDGES in the draw call). "numEdgesInJoin = min(numEdgesInJoin, NUM_TOTAL_EDGES - 2);"); if (shader.hasDynamicStroke()) { args.fVertBuilder->codeAppend( "if (JOIN_TYPE >= 0) {" // Is the join not a round type? // Bevel and miter joins get 1 and 2 segments respectively. // +2 because we emit the beginning and ending edges twice (see above comments). "numEdgesInJoin = sign(JOIN_TYPE) + 1 + 2;" "}"); } } else { args.fVertBuilder->codeAppendf("float numEdgesInJoin = %i;", skgpu::tess::NumFixedEdgesInJoin(joinType)); } args.fVertBuilder->codeAppend( // Find which direction the curve turns. // NOTE: Since the curve is not allowed to inflect, we can just check F'(.5) x F''(.5). // NOTE: F'(.5) x F''(.5) has the same sign as (P2 - P0) x (P3 - P1) "float turn = cross_length_2d(p2 - p0, p3 - p1);" "float combinedEdgeID = abs(edgeID) - numEdgesInJoin;" "if (combinedEdgeID < 0) {" "tan1 = tan0;" // Don't let tan0 become zero. The code as-is isn't built to handle that case. tan0=0 // means the join is disabled, and to disable it with the existing code we can leave // tan0 equal to tan1. "if (lastControlPoint != p0) {" "tan0 = robust_normalize_diff(p0, lastControlPoint);" "}" "turn = cross_length_2d(tan0, tan1);" "}" // Calculate the curve's starting angle and rotation. "float cosTheta = cosine_between_unit_vectors(tan0, tan1);" "float rotation = acos(cosTheta);" "if (turn < 0) {" // Adjust sign of rotation to match the direction the curve turns. "rotation = -rotation;" "}" "float numRadialSegments;" "float strokeOutset = sign(edgeID);" "if (combinedEdgeID < 0) {" // We belong to the preceding join. The first and final edges get duplicated, so we only // have "numEdgesInJoin - 2" segments. "numRadialSegments = numEdgesInJoin - 2;" "numParametricSegments = 1;" // Joins don't have parametric segments. "p3 = p2 = p1 = p0;" // Colocate all points on the junction point. // Shift combinedEdgeID to the range [-1, numRadialSegments]. This duplicates the first // edge and lands one edge at the very end of the join. (The duplicated final edge will // actually come from the section of our strip that belongs to the stroke.) "combinedEdgeID += numRadialSegments + 1;" // We normally restrict the join on one side of the junction, but if the tangents are // nearly equivalent this could theoretically result in bad seaming and/or cracks on the // side we don't put it on. If the tangents are nearly equivalent then we leave the join // double-sided. " float sinEpsilon = 1e-2;" // ~= sin(180deg / 3000) "bool tangentsNearlyParallel =" "(abs(turn) * inversesqrt(dot(tan0, tan0) * dot(tan1, tan1))) < sinEpsilon;" "if (!tangentsNearlyParallel || dot(tan0, tan1) < 0) {" // There are two edges colocated at the beginning. Leave the first one double sided // for seaming with the previous stroke. (The double sided edge at the end will // actually come from the section of our strip that belongs to the stroke.) "if (combinedEdgeID >= 0) {" "strokeOutset = (turn < 0) ? min(strokeOutset, 0) : max(strokeOutset, 0);" "}" "}" "combinedEdgeID = max(combinedEdgeID, 0);" "} else {" // We belong to the stroke. Unless NUM_RADIAL_SEGMENTS_PER_RADIAN is incredibly high, // clamping to maxCombinedSegments will be a no-op because the draw call was invoked with // sufficient vertices to cover the worst case scenario of 180 degree rotation. "float maxCombinedSegments = NUM_TOTAL_EDGES - numEdgesInJoin - 1;" "numRadialSegments = max(ceil(abs(rotation) * NUM_RADIAL_SEGMENTS_PER_RADIAN), 1);" "numRadialSegments = min(numRadialSegments, maxCombinedSegments);" "numParametricSegments = min(numParametricSegments," "maxCombinedSegments - numRadialSegments + 1);" "}" // Additional parameters for emitTessellationCode(). "float radsPerSegment = rotation / numRadialSegments;" "float numCombinedSegments = numParametricSegments + numRadialSegments - 1;" "bool isFinalEdge = (combinedEdgeID >= numCombinedSegments);" "if (combinedEdgeID > numCombinedSegments) {" "strokeOutset = 0;" // The strip has more edges than we need. Drop this one. "}"); if (joinType == SkPaint::kMiter_Join || shader.hasDynamicStroke()) { args.fVertBuilder->codeAppendf( // Edge #2 extends to the miter point. "if (abs(edgeID) == 2 && %s) {" "strokeOutset *= miter_extent(cosTheta, JOIN_TYPE);" // miterLimit "}", shader.hasDynamicStroke() ? "JOIN_TYPE > 0" /*Is the join a miter type?*/ : "true"); } this->emitTessellationCode(shader, &args.fVertBuilder->code(), gpArgs, *args.fShaderCaps); this->emitFragmentCode(shader, args); } void GrStrokeTessellationShader::Impl::emitTessellationCode( const GrStrokeTessellationShader& shader, SkString* code, GrGPArgs* gpArgs, const GrShaderCaps& shaderCaps) const { // The subclass is responsible to define the following symbols before calling this method: // // // Functions. // float2 unchecked_mix(float2, float2, float); // float unchecked_mix(float, float, float); // // // Values provided by either uniforms or attribs. // float2 p0, p1, p2, p3; // float w; // float STROKE_RADIUS; // float 2x2 AFFINE_MATRIX; // float2 TRANSLATE; // // // Values calculated by the specific subclass. // float combinedEdgeID; // bool isFinalEdge; // float numParametricSegments; // float radsPerSegment; // float2 tan0; // Must be pre-normalized // float2 tan1; // Must be pre-normalized // float strokeOutset; // code->appendf( "float2 tangent, strokeCoord;" "if (combinedEdgeID != 0 && !isFinalEdge) {" // Compute the location and tangent direction of the stroke edge with the integral id // "combinedEdgeID", where combinedEdgeID is the sorted-order index of parametric and radial // edges. Start by finding the tangent function's power basis coefficients. These define a // tangent direction (scaled by some uniform value) as: // |T^2| // Tangent_Direction(T) = dx,dy = |A 2B C| * |T | // |. . .| |1 | "float2 A, B, C = p1 - p0;" "float2 D = p3 - p0;" "if (w >= 0.0) {" // P0..P2 represent a conic and P3==P2. The derivative of a conic has a cumbersome // order-4 denominator. However, this isn't necessary if we are only interested in a // vector in the same *direction* as a given tangent line. Since the denominator scales // dx and dy uniformly, we can throw it out completely after evaluating the derivative // with the standard quotient rule. This leaves us with a simpler quadratic function // that we use to find a tangent. "C *= w;" "B = .5*D - C;" "A = (w - 1.0) * D;" "p1 *= w;" "} else {" "float2 E = p2 - p1;" "B = E - C;" "A = fma(float2(-3), E, D);" "}" // FIXME(crbug.com/800804,skbug.com/11268): Consider normalizing the exponents in A,B,C at // this point in order to prevent fp32 overflow. // Now find the coefficients that give a tangent direction from a parametric edge ID: // // |parametricEdgeID^2| // Tangent_Direction(parametricEdgeID) = dx,dy = |A B_ C_| * |parametricEdgeID | // |. . .| |1 | // "float2 B_ = B * (numParametricSegments * 2.0);" "float2 C_ = C * (numParametricSegments * numParametricSegments);" // Run a binary search to determine the highest parametric edge that is located on or before // the combinedEdgeID. A combined ID is determined by the sum of complete parametric and // radial segments behind it. i.e., find the highest parametric edge where: // // parametricEdgeID + floor(numRadialSegmentsAtParametricT) <= combinedEdgeID // "float lastParametricEdgeID = 0.0;" "float maxParametricEdgeID = min(numParametricSegments - 1.0, combinedEdgeID);" "float negAbsRadsPerSegment = -abs(radsPerSegment);" "float maxRotation0 = (1.0 + combinedEdgeID) * abs(radsPerSegment);" "for (int exp = %i - 1; exp >= 0; --exp) {" // Test the parametric edge at lastParametricEdgeID + 2^exp. "float testParametricID = lastParametricEdgeID + exp2(float(exp));" "if (testParametricID <= maxParametricEdgeID) {" "float2 testTan = fma(float2(testParametricID), A, B_);" "testTan = fma(float2(testParametricID), testTan, C_);" "float cosRotation = dot(normalize(testTan), tan0);" "float maxRotation = fma(testParametricID, negAbsRadsPerSegment, maxRotation0);" "maxRotation = min(maxRotation, PI);" // Is rotation <= maxRotation? (i.e., is the number of complete radial segments // behind testT, + testParametricID <= combinedEdgeID?) "if (cosRotation >= cos(maxRotation)) {" // testParametricID is on or before the combinedEdgeID. Keep it! "lastParametricEdgeID = testParametricID;" "}" "}" "}" // Find the T value of the parametric edge at lastParametricEdgeID. "float parametricT = lastParametricEdgeID / numParametricSegments;" // Now that we've identified the highest parametric edge on or before the // combinedEdgeID, the highest radial edge is easy: "float lastRadialEdgeID = combinedEdgeID - lastParametricEdgeID;" // Find the angle of tan0, i.e. the angle between tan0 and the positive x axis. "float angle0 = acos(clamp(tan0.x, -1.0, 1.0));" "angle0 = tan0.y >= 0.0 ? angle0 : -angle0;" // Find the tangent vector on the edge at lastRadialEdgeID. By construction it is already // normalized. "float radialAngle = fma(lastRadialEdgeID, radsPerSegment, angle0);" "tangent = float2(cos(radialAngle), sin(radialAngle));" "float2 norm = float2(-tangent.y, tangent.x);" // Find the T value where the tangent is orthogonal to norm. This is a quadratic: // // dot(norm, Tangent_Direction(T)) == 0 // // |T^2| // norm * |A 2B C| * |T | == 0 // |. . .| |1 | // "float a=dot(norm,A), b_over_2=dot(norm,B), c=dot(norm,C);" "float discr_over_4 = max(b_over_2*b_over_2 - a*c, 0.0);" "float q = sqrt(discr_over_4);" "if (b_over_2 > 0.0) {" "q = -q;" "}" "q -= b_over_2;" // Roots are q/a and c/q. Since each curve section does not inflect or rotate more than 180 // degrees, there can only be one tangent orthogonal to "norm" inside 0..1. Pick the root // nearest .5. "float _5qa = -.5*q*a;" "float2 root = (abs(fma(q,q,_5qa)) < abs(fma(a,c,_5qa))) ? float2(q,a) : float2(c,q);" "float radialT = (root.t != 0.0) ? root.s / root.t : 0.0;" "radialT = clamp(radialT, 0.0, 1.0);" "if (lastRadialEdgeID == 0.0) {" // The root finder above can become unstable when lastRadialEdgeID == 0 (e.g., if // there are roots at exatly 0 and 1 both). radialT should always == 0 in this case. "radialT = 0.0;" "}" // Now that we've identified the T values of the last parametric and radial edges, our final // T value for combinedEdgeID is whichever is larger. "float T = max(parametricT, radialT);" // Evaluate the cubic at T. Use De Casteljau's for its accuracy and stability. "float2 ab = unchecked_mix(p0, p1, T);" "float2 bc = unchecked_mix(p1, p2, T);" "float2 cd = unchecked_mix(p2, p3, T);" "float2 abc = unchecked_mix(ab, bc, T);" "float2 bcd = unchecked_mix(bc, cd, T);" "float2 abcd = unchecked_mix(abc, bcd, T);" // Evaluate the conic weight at T. "float u = unchecked_mix(1.0, w, T);" "float v = w + 1 - u;" // == mix(w, 1, T) "float uv = unchecked_mix(u, v, T);" // If we went with T=parametricT, then update the tangent. Otherwise leave it at the radial // tangent found previously. (In the event that parametricT == radialT, we keep the radial // tangent.) "if (T != radialT) {" // We must re-normalize here because the tangent is determined by the curve coefficients "tangent = w >= 0.0 ? robust_normalize_diff(bc*u, ab*v)" ": robust_normalize_diff(bcd, abc);" "}" "strokeCoord = (w >= 0.0) ? abc/uv : abcd;" "} else {" // Edges at the beginning and end of the strip use exact endpoints and tangents. This // ensures crack-free seaming between instances. "tangent = (combinedEdgeID == 0) ? tan0 : tan1;" "strokeCoord = (combinedEdgeID == 0) ? p0 : p3;" "}", skgpu::tess::kMaxResolveLevel /* Parametric/radial sort loop count. */); code->append( // At this point 'tangent' is normalized, so the orthogonal vector is also normalized. "float2 ortho = float2(tangent.y, -tangent.x);" "strokeCoord += ortho * (STROKE_RADIUS * strokeOutset);"); if (!shader.stroke().isHairlineStyle()) { // Normal case. Do the transform after tessellation. code->append("float2 devCoord = AFFINE_MATRIX * strokeCoord + TRANSLATE;"); gpArgs->fPositionVar.set(SkSLType::kFloat2, "devCoord"); gpArgs->fLocalCoordVar.set(SkSLType::kFloat2, "strokeCoord"); } else { // Hairline case. The scale and skew already happened before tessellation. code->append( "float2 devCoord = strokeCoord + TRANSLATE;" "float2 localCoord = inverse(AFFINE_MATRIX) * strokeCoord;"); gpArgs->fPositionVar.set(SkSLType::kFloat2, "devCoord"); gpArgs->fLocalCoordVar.set(SkSLType::kFloat2, "localCoord"); } } void GrStrokeTessellationShader::Impl::emitFragmentCode(const GrStrokeTessellationShader& shader, const EmitArgs& args) { if (!shader.hasDynamicColor()) { // The fragment shader just outputs a uniform color. const char* colorUniformName; fColorUniform = args.fUniformHandler->addUniform(nullptr, kFragment_GrShaderFlag, SkSLType::kHalf4, "color", &colorUniformName); args.fFragBuilder->codeAppendf("half4 %s = %s;", args.fOutputColor, colorUniformName); } else { args.fFragBuilder->codeAppendf("half4 %s = %s;", args.fOutputColor, fDynamicColorName.c_str()); } args.fFragBuilder->codeAppendf("const half4 %s = half4(1);", args.fOutputCoverage); } void GrStrokeTessellationShader::Impl::setData(const GrGLSLProgramDataManager& pdman, const GrShaderCaps&, const GrGeometryProcessor& geomProc) { const auto& shader = geomProc.cast(); const auto& stroke = shader.stroke(); // getMaxScale() returns -1 if it can't compute a scale factor (e.g. perspective), taking the // absolute value automatically converts that to an identity scale factor for our purposes. const float maxScale = std::abs(shader.viewMatrix().getMaxScale()); if (!shader.hasDynamicStroke()) { // Set up the tessellation control uniforms. In the hairline case we transform prior to // tessellation, so it will be defined in device space units instead of local units. const float strokeRadius = 0.5f * (stroke.isHairlineStyle() ? 1.f : stroke.getWidth()); float numRadialSegmentsPerRadian = skgpu::tess::CalcNumRadialSegmentsPerRadian( (stroke.isHairlineStyle() ? 1.f : maxScale) * strokeRadius); pdman.set3f(fTessControlArgsUniform, numRadialSegmentsPerRadian, // NUM_RADIAL_SEGMENTS_PER_RADIAN skgpu::tess::GetJoinType(stroke), // JOIN_TYPE strokeRadius); // STROKE_RADIUS } else { SkASSERT(!stroke.isHairlineStyle()); pdman.set1f(fTessControlArgsUniform, maxScale); } // Set up the view matrix, if any. const SkMatrix& m = shader.viewMatrix(); pdman.set2f(fTranslateUniform, m.getTranslateX(), m.getTranslateY()); pdman.set4f(fAffineMatrixUniform, m.getScaleX(), m.getSkewY(), m.getSkewX(), m.getScaleY()); if (!shader.hasDynamicColor()) { pdman.set4fv(fColorUniform, 1, shader.color().vec()); } } void GrStrokeTessellationShader::addToKey(const GrShaderCaps&, skgpu::KeyBuilder* b) const { bool keyNeedsJoin = !(fPatchAttribs & PatchAttribs::kStrokeParams); SkASSERT(fStroke.getJoin() >> 2 == 0); // Attribs get worked into the key automatically during GrGeometryProcessor::getAttributeKey(). // When color is in a uniform, it's always wide. kWideColor doesn't need to be considered here. uint32_t key = (uint32_t)(fPatchAttribs & ~PatchAttribs::kColor); key = (key << 2) | ((keyNeedsJoin) ? fStroke.getJoin() : 0); key = (key << 1) | (uint32_t)fStroke.isHairlineStyle(); b->add32(key); } std::unique_ptr GrStrokeTessellationShader::makeProgramImpl( const GrShaderCaps&) const { return std::make_unique(); }