xref: /XiangShan/src/main/scala/xiangshan/backend/rob/Rob.scala (revision e4d4d30585412eb8ac83b5c75599a348356342a2)
1/***************************************************************************************
2* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
3* Copyright (c) 2020-2021 Peng Cheng Laboratory
4*
5* XiangShan is licensed under Mulan PSL v2.
6* You can use this software according to the terms and conditions of the Mulan PSL v2.
7* You may obtain a copy of Mulan PSL v2 at:
8*          http://license.coscl.org.cn/MulanPSL2
9*
10* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
11* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
12* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
13*
14* See the Mulan PSL v2 for more details.
15***************************************************************************************/
16
17package xiangshan.backend.rob
18
19import org.chipsalliance.cde.config.Parameters
20import chisel3._
21import chisel3.util._
22import difftest._
23import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
24import utility._
25import utils._
26import xiangshan._
27import xiangshan.backend.BackendParams
28import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
29import xiangshan.backend.fu.{FuConfig, FuType}
30import xiangshan.frontend.FtqPtr
31import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr}
32import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput}
33import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo}
34import xiangshan.backend.fu.vector.Bundles.VType
35import xiangshan.backend.rename.SnapshotGenerator
36
37
38class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr](
39  entries
40) with HasCircularQueuePtrHelper {
41
42  def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize)
43
44  def needFlush(redirect: Valid[Redirect]): Bool = {
45    val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx
46    redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx))
47  }
48
49  def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR
50}
51
52object RobPtr {
53  def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = {
54    val ptr = Wire(new RobPtr)
55    ptr.flag := f
56    ptr.value := v
57    ptr
58  }
59}
60
61class RobCSRIO(implicit p: Parameters) extends XSBundle {
62  val intrBitSet = Input(Bool())
63  val trapTarget = Input(UInt(VAddrBits.W))
64  val isXRet     = Input(Bool())
65  val wfiEvent   = Input(Bool())
66
67  val fflags     = Output(Valid(UInt(5.W)))
68  val vxsat      = Output(Valid(Bool()))
69  val vstart     = Output(Valid(UInt(XLEN.W)))
70  val dirty_fs   = Output(Bool())
71  val perfinfo   = new Bundle {
72    val retiredInstr = Output(UInt(3.W))
73  }
74
75  val vcsrFlag   = Output(Bool())
76}
77
78class RobLsqIO(implicit p: Parameters) extends XSBundle {
79  val lcommit = Output(UInt(log2Up(CommitWidth + 1).W))
80  val scommit = Output(UInt(log2Up(CommitWidth + 1).W))
81  val pendingld = Output(Bool())
82  val pendingst = Output(Bool())
83  val commit = Output(Bool())
84  val pendingPtr = Output(new RobPtr)
85  val pendingPtrNext = Output(new RobPtr)
86
87  val mmio = Input(Vec(LoadPipelineWidth, Bool()))
88  // Todo: what's this?
89  val uop = Input(Vec(LoadPipelineWidth, new DynInst))
90}
91
92class RobEnqIO(implicit p: Parameters) extends XSBundle {
93  val canAccept = Output(Bool())
94  val isEmpty = Output(Bool())
95  // valid vector, for robIdx gen and walk
96  val needAlloc = Vec(RenameWidth, Input(Bool()))
97  val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst)))
98  val resp = Vec(RenameWidth, Output(new RobPtr))
99}
100
101class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle {
102  val robHeadVaddr = Valid(UInt(VAddrBits.W))
103  val robHeadPaddr = Valid(UInt(PAddrBits.W))
104}
105
106class RobDispatchTopDownIO extends Bundle {
107  val robTrueCommit = Output(UInt(64.W))
108  val robHeadLsIssue = Output(Bool())
109}
110
111class RobDebugRollingIO extends Bundle {
112  val robTrueCommit = Output(UInt(64.W))
113}
114
115class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {}
116
117class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
118  val io = IO(new Bundle {
119    // for commits/flush
120    val state = Input(UInt(2.W))
121    val deq_v = Vec(CommitWidth, Input(Bool()))
122    val deq_w = Vec(CommitWidth, Input(Bool()))
123    val exception_state = Flipped(ValidIO(new RobExceptionInfo))
124    // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth)
125    val intrBitSetReg = Input(Bool())
126    val hasNoSpecExec = Input(Bool())
127    val interrupt_safe = Input(Bool())
128    val blockCommit = Input(Bool())
129    // output: the CommitWidth deqPtr
130    val out = Vec(CommitWidth, Output(new RobPtr))
131    val next_out = Vec(CommitWidth, Output(new RobPtr))
132  })
133
134  val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr))))
135
136  // for exceptions (flushPipe included) and interrupts:
137  // only consider the first instruction
138  val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe
139  val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0)
140  val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable)
141
142  // for normal commits: only to consider when there're no exceptions
143  // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions.
144  val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last)
145  val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i)))
146  val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B)
147  // when io.intrBitSetReg or there're possible exceptions in these instructions,
148  // only one instruction is allowed to commit
149  val allowOnlyOne = commit_exception || io.intrBitSetReg
150  val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt)
151
152  val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt))
153  val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec)
154
155  deqPtrVec := deqPtrVec_next
156
157  io.next_out := deqPtrVec_next
158  io.out      := deqPtrVec
159
160  when (io.state === 0.U) {
161    XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt)
162  }
163
164}
165
166class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
167  val io = IO(new Bundle {
168    // for input redirect
169    val redirect = Input(Valid(new Redirect))
170    // for enqueue
171    val allowEnqueue = Input(Bool())
172    val hasBlockBackward = Input(Bool())
173    val enq = Vec(RenameWidth, Input(Bool()))
174    val out = Output(Vec(RenameWidth, new RobPtr))
175  })
176
177  val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr)))
178
179  // enqueue
180  val canAccept = io.allowEnqueue && !io.hasBlockBackward
181  val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U)
182
183  for ((ptr, i) <- enqPtrVec.zipWithIndex) {
184    when(io.redirect.valid) {
185      ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
186    }.otherwise {
187      ptr := ptr + dispatchNum
188    }
189  }
190
191  io.out := enqPtrVec
192
193}
194
195class RobExceptionInfo(implicit p: Parameters) extends XSBundle {
196  // val valid = Bool()
197  val robIdx = new RobPtr
198  val exceptionVec = ExceptionVec()
199  val flushPipe = Bool()
200  val isVset = Bool()
201  val replayInst = Bool() // redirect to that inst itself
202  val singleStep = Bool() // TODO add frontend hit beneath
203  val crossPageIPFFix = Bool()
204  val trigger = new TriggerCf
205  val vstartEn = Bool()
206  val vstart = UInt(XLEN.W)
207
208  def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.canFire
209  def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.canFire
210  // only exceptions are allowed to writeback when enqueue
211  def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.canFire
212}
213
214class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper {
215  val io = IO(new Bundle {
216    val redirect = Input(Valid(new Redirect))
217    val flush = Input(Bool())
218    val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo)))
219    // csr + load + store + varith + vload + vstore
220    val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo)))
221    val out = ValidIO(new RobExceptionInfo)
222    val state = ValidIO(new RobExceptionInfo)
223  })
224
225  val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty)
226
227  def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = {
228    def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = {
229      assert(valid.length == bits.length)
230      if (valid.length == 1) {
231        (valid, bits)
232      } else if (valid.length == 2) {
233        val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0)))))
234        for (i <- res.indices) {
235          res(i).valid := valid(i)
236          res(i).bits := bits(i)
237        }
238        val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1))
239        (Seq(oldest.valid), Seq(oldest.bits))
240      } else {
241        val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2))
242        val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2))
243        getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2)
244      }
245    }
246    getOldest_recursion(valid, bits)._2.head
247  }
248
249
250  val currentValid = RegInit(false.B)
251  val current = Reg(new RobExceptionInfo)
252
253  // orR the exceptionVec
254  val lastCycleFlush = RegNext(io.flush)
255  val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush))
256
257  // s0: compare wb in 6 groups
258  val csr_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr).nonEmpty).map(_._1)
259  val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1)
260  val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1)
261  val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1)
262  val vload_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vldu).nonEmpty).map(_._1)
263  val vstore_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vstu).nonEmpty).map(_._1)
264
265  val writebacks = Seq(csr_wb, load_wb, store_wb, varith_wb, vload_wb, vstore_wb)
266  val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush))
267  val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) =>
268    valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _)
269  }
270  val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))}
271
272  val s0_out_valid = wb_valid.map(x => RegNext(x))
273  val s0_out_bits = wb_bits.zip(wb_valid).map{ case(b, v) => RegEnable(b, v)}
274
275  // s1: compare last six and current flush
276  val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) })
277  val s1_out_bits = RegEnable(getOldest(s0_out_valid, s0_out_bits), s1_valid.asUInt.orR)
278  val s1_out_valid = RegNext(s1_valid.asUInt.orR)
279
280  val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
281  val enq_bits = RegEnable(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)), in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush)
282
283  // s2: compare the input exception with the current one
284  // priorities:
285  // (1) system reset
286  // (2) current is valid: flush, remain, merge, update
287  // (3) current is not valid: s1 or enq
288  val current_flush = current.robIdx.needFlush(io.redirect) || io.flush
289  val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush
290  when (currentValid) {
291    when (current_flush) {
292      currentValid := Mux(s1_flush, false.B, s1_out_valid)
293    }
294    when (s1_out_valid && !s1_flush) {
295      when (isAfter(current.robIdx, s1_out_bits.robIdx)) {
296        current := s1_out_bits
297      }.elsewhen (current.robIdx === s1_out_bits.robIdx) {
298        current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec())
299        current.flushPipe := s1_out_bits.flushPipe || current.flushPipe
300        current.replayInst := s1_out_bits.replayInst || current.replayInst
301        current.singleStep := s1_out_bits.singleStep || current.singleStep
302        current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf)
303      }
304    }
305  }.elsewhen (s1_out_valid && !s1_flush) {
306    currentValid := true.B
307    current := s1_out_bits
308  }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) {
309    currentValid := true.B
310    current := enq_bits
311  }
312
313  io.out.valid   := s1_out_valid || enq_valid && enq_bits.can_writeback
314  io.out.bits    := Mux(s1_out_valid, s1_out_bits, enq_bits)
315  io.state.valid := currentValid
316  io.state.bits  := current
317
318}
319
320class RobFlushInfo(implicit p: Parameters) extends XSBundle {
321  val ftqIdx = new FtqPtr
322  val robIdx = new RobPtr
323  val ftqOffset = UInt(log2Up(PredictWidth).W)
324  val replayInst = Bool()
325}
326
327class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter {
328  override def shouldBeInlined: Boolean = false
329
330  lazy val module = new RobImp(this)(p, params)
331}
332
333class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper)
334  with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents {
335
336  private val LduCnt = params.LduCnt
337  private val StaCnt = params.StaCnt
338  private val HyuCnt = params.HyuCnt
339
340  val io = IO(new Bundle() {
341    val hartId = Input(UInt(8.W))
342    val redirect = Input(Valid(new Redirect))
343    val enq = new RobEnqIO
344    val flushOut = ValidIO(new Redirect)
345    val exception = ValidIO(new ExceptionInfo)
346    // exu + brq
347    val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles)
348    val commits = Output(new RobCommitIO)
349    val rabCommits = Output(new RobCommitIO)
350    val diffCommits = Output(new DiffCommitIO)
351    val isVsetFlushPipe = Output(Bool())
352    val vconfigPdest = Output(UInt(PhyRegIdxWidth.W))
353    val lsq = new RobLsqIO
354    val robDeqPtr = Output(new RobPtr)
355    val csr = new RobCSRIO
356    val snpt = Input(new SnapshotPort)
357    val robFull = Output(Bool())
358    val headNotReady = Output(Bool())
359    val cpu_halt = Output(Bool())
360    val wfi_enable = Input(Bool())
361    val toDecode = new Bundle {
362      val vtype = ValidIO(VType())
363    }
364
365    val debug_ls = Flipped(new DebugLSIO)
366    val debugRobHead = Output(new DynInst)
367    val debugEnqLsq = Input(new LsqEnqIO)
368    val debugHeadLsIssue = Input(Bool())
369    val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo))
370    val debugTopDown = new Bundle {
371      val toCore = new RobCoreTopDownIO
372      val toDispatch = new RobDispatchTopDownIO
373      val robHeadLqIdx = Valid(new LqPtr)
374    }
375    val debugRolling = new RobDebugRollingIO
376  })
377
378  val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq
379  val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq
380  val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty)
381  val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
382  val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty)
383
384  val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu)
385  val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu)
386  val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty)
387  val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty)
388  val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty)
389  val numExuWbPorts = exuWBs.length
390  val numStdWbPorts = stdWBs.length
391
392
393  println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth")
394//  println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}")
395//  println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}")
396//  println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}")
397
398
399  // instvalid field
400  val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
401  // writeback status
402
403  val stdWritebacked = Reg(Vec(RobSize, Bool()))
404  val commitTrigger = Mem(RobSize, Bool())
405  val uopNumVec          = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
406  val realDestSize       = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W))))
407  val fflagsDataModule   = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W))))
408  val vxsatDataModule    = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
409
410  def isWritebacked(ptr: UInt): Bool = {
411    !uopNumVec(ptr).orR && stdWritebacked(ptr)
412  }
413
414  def isUopWritebacked(ptr: UInt): Bool = {
415    !uopNumVec(ptr).orR
416  }
417
418  val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B)))
419
420  // data for redirect, exception, etc.
421  val flagBkup = Mem(RobSize, Bool())
422  // some instructions are not allowed to trigger interrupts
423  // They have side effects on the states of the processor before they write back
424  val interrupt_safe = RegInit(VecInit(Seq.fill(RobSize)(true.B)))
425
426  // data for debug
427  // Warn: debug_* prefix should not exist in generated verilog.
428  val debug_microOp = DebugMem(RobSize, new DynInst)
429  val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug
430  val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug
431  val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init)))
432  val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init)))
433  val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B))
434  val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B))
435
436  // pointers
437  // For enqueue ptr, we don't duplicate it since only enqueue needs it.
438  val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr))
439  val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr))
440
441  dontTouch(enqPtrVec)
442  dontTouch(deqPtrVec)
443
444  val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr))
445  val lastWalkPtr = Reg(new RobPtr)
446  val allowEnqueue = RegInit(true.B)
447
448  val enqPtr = enqPtrVec.head
449  val deqPtr = deqPtrVec(0)
450  val walkPtr = walkPtrVec(0)
451
452  val isEmpty = enqPtr === deqPtr
453  val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level)
454
455  val snptEnq = io.enq.canAccept && io.enq.req.map(x => x.valid && x.bits.snapshot).reduce(_ || _)
456  val snapshotPtrVec = Wire(Vec(RenameWidth, new RobPtr))
457  snapshotPtrVec(0) := io.enq.req(0).bits.robIdx
458  for (i <- 1 until RenameWidth) {
459    snapshotPtrVec(i) := snapshotPtrVec(0) + i.U
460  }
461  val snapshots = SnapshotGenerator(snapshotPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec)
462  val debug_lsIssue = WireDefault(debug_lsIssued)
463  debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue
464
465  /**
466    * states of Rob
467    */
468  val s_idle :: s_walk :: Nil = Enum(2)
469  val state = RegInit(s_idle)
470
471  /**
472    * Data Modules
473    *
474    * CommitDataModule: data from dispatch
475    * (1) read: commits/walk/exception
476    * (2) write: enqueue
477    *
478    * WritebackData: data from writeback
479    * (1) read: commits/walk/exception
480    * (2) write: write back from exe units
481    */
482  val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth))
483  val dispatchDataRead = dispatchData.io.rdata
484
485  val exceptionGen = Module(new ExceptionGen(params))
486  val exceptionDataRead = exceptionGen.io.state
487  val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W)))
488  val vxsatDataRead = Wire(Vec(CommitWidth, Bool()))
489
490  io.robDeqPtr := deqPtr
491  io.debugRobHead := debug_microOp(deqPtr.value)
492
493  val rab = Module(new RenameBuffer(RabSize))
494  val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize))
495
496  /**
497   * connection of [[rab]]
498   */
499  rab.io.redirect.valid := io.redirect.valid
500
501  rab.io.req.zip(io.enq.req).map { case (dest, src) =>
502    dest.bits := src.bits
503    dest.valid := src.valid && io.enq.canAccept
504  }
505
506  val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value))
507  val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value))
508
509  val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) =>
510    Mux(io.commits.isCommit && commitValid, destSize, 0.U)
511  }.reduce(_ +& _)
512  val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) =>
513    Mux(io.commits.isWalk && walkValid, destSize, 0.U)
514  }.reduce(_ +& _)
515
516  rab.io.fromRob.commitSize := commitSizeSum
517  rab.io.fromRob.walkSize := walkSizeSum
518  rab.io.snpt := io.snpt
519  rab.io.snpt.snptEnq := snptEnq
520
521  io.rabCommits := rab.io.commits
522  io.diffCommits := rab.io.diffCommits
523
524  /**
525   * connection of [[vtypeBuffer]]
526   */
527
528  vtypeBuffer.io.redirect.valid := io.redirect.valid
529
530  vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) =>
531    sink.valid := source.valid && io.enq.canAccept
532    sink.bits := source.bits
533  }
534
535  private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => valid && info.isVset })
536  private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(io.commits.info).map { case (valid, info) => valid && info.isVset })
537  vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec)
538  vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec)
539  vtypeBuffer.io.snpt := io.snpt
540  vtypeBuffer.io.snpt.snptEnq := snptEnq
541  io.toDecode.vtype := vtypeBuffer.io.toDecode.vtype
542
543  /**
544    * Enqueue (from dispatch)
545    */
546  // special cases
547  val hasBlockBackward = RegInit(false.B)
548  val hasWaitForward = RegInit(false.B)
549  val doingSvinval = RegInit(false.B)
550  // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B
551  // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty.
552  when (isEmpty) { hasBlockBackward:= false.B }
553  // When any instruction commits, hasNoSpecExec should be set to false.B
554  when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B }
555
556  // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing.
557  // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle.
558  // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts.
559  val hasWFI = RegInit(false.B)
560  io.cpu_halt := hasWFI
561  // WFI Timeout: 2^20 = 1M cycles
562  val wfi_cycles = RegInit(0.U(20.W))
563  when (hasWFI) {
564    wfi_cycles := wfi_cycles + 1.U
565  }.elsewhen (!hasWFI && RegNext(hasWFI)) {
566    wfi_cycles := 0.U
567  }
568  val wfi_timeout = wfi_cycles.andR
569  when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) {
570    hasWFI := false.B
571  }
572
573  val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop)))))
574  io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq
575  io.enq.resp      := allocatePtrVec
576  val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept))
577  val timer = GTimer()
578  for (i <- 0 until RenameWidth) {
579    // we don't check whether io.redirect is valid here since redirect has higher priority
580    when (canEnqueue(i)) {
581      val enqUop = io.enq.req(i).bits
582      val enqIndex = allocatePtrVec(i).value
583      // store uop in data module and debug_microOp Vec
584      debug_microOp(enqIndex) := enqUop
585      debug_microOp(enqIndex).debugInfo.dispatchTime := timer
586      debug_microOp(enqIndex).debugInfo.enqRsTime := timer
587      debug_microOp(enqIndex).debugInfo.selectTime := timer
588      debug_microOp(enqIndex).debugInfo.issueTime := timer
589      debug_microOp(enqIndex).debugInfo.writebackTime := timer
590      debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer
591      debug_microOp(enqIndex).debugInfo.tlbRespTime := timer
592      debug_lsInfo(enqIndex) := DebugLsInfo.init
593      debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init
594      debug_lqIdxValid(enqIndex) := false.B
595      debug_lsIssued(enqIndex) := false.B
596
597      when (enqUop.blockBackward) {
598        hasBlockBackward := true.B
599      }
600      when (enqUop.waitForward) {
601        hasWaitForward := true.B
602      }
603      val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire
604      val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR
605      // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process
606      when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe))
607      {
608        doingSvinval := true.B
609      }
610      // the end instruction of Svinval enqs so clear doingSvinval
611      when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe))
612      {
613        doingSvinval := false.B
614      }
615      // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear
616      assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe)))
617      when (enqUop.isWFI && !enqHasException && !enqHasTriggerCanFire) {
618        hasWFI := true.B
619      }
620
621      mmio(enqIndex) := false.B
622    }
623  }
624  val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U)
625  io.enq.isEmpty   := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR)
626
627  when (!io.wfi_enable) {
628    hasWFI := false.B
629  }
630  // sel vsetvl's flush position
631  val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3)
632  val vsetvlState = RegInit(vs_idle)
633
634  val firstVInstrFtqPtr    = RegInit(0.U.asTypeOf(new FtqPtr))
635  val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W)))
636  val firstVInstrRobIdx    = RegInit(0.U.asTypeOf(new RobPtr))
637
638  val enq0            = io.enq.req(0)
639  val enq0IsVset      = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0)
640  val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe
641  val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire}
642  // for vs_idle
643  val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType)))
644  // for vs_waitVinstr
645  val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1)
646  val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req)
647  when(vsetvlState === vs_idle){
648    firstVInstrFtqPtr    := firstVInstrIdle.bits.ftqPtr
649    firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset
650    firstVInstrRobIdx    := firstVInstrIdle.bits.robIdx
651  }.elsewhen(vsetvlState === vs_waitVinstr){
652    when(Cat(enqIsVInstrOrVset).orR){
653      firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr
654      firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset
655      firstVInstrRobIdx := firstVInstrWait.bits.robIdx
656    }
657  }
658
659  val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR
660  when(vsetvlState === vs_idle && !io.redirect.valid){
661    when(enq0IsVsetFlush){
662      vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr)
663    }
664  }.elsewhen(vsetvlState === vs_waitVinstr){
665    when(io.redirect.valid){
666      vsetvlState := vs_idle
667    }.elsewhen(Cat(enqIsVInstrOrVset).orR){
668      vsetvlState := vs_waitFlush
669    }
670  }.elsewhen(vsetvlState === vs_waitFlush){
671    when(io.redirect.valid){
672      vsetvlState := vs_idle
673    }
674  }
675
676  // lqEnq
677  io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) =>
678    when(io.debugEnqLsq.canAccept && alloc && req.valid) {
679      debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx
680      debug_lqIdxValid(req.bits.robIdx.value) := true.B
681    }
682  }
683
684  // lsIssue
685  when(io.debugHeadLsIssue) {
686    debug_lsIssued(deqPtr.value) := true.B
687  }
688
689  /**
690    * Writeback (from execution units)
691    */
692  for (wb <- exuWBs) {
693    when (wb.valid) {
694      val wbIdx = wb.bits.robIdx.value
695      debug_exuData(wbIdx) := wb.bits.data
696      debug_exuDebug(wbIdx) := wb.bits.debug
697      debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime
698      debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime
699      debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime
700      debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime
701
702      // debug for lqidx and sqidx
703      debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr))
704      debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr))
705
706      val debug_Uop = debug_microOp(wbIdx)
707      XSInfo(true.B,
708        p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " +
709        p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " +
710        p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n"
711      )
712    }
713  }
714
715  val writebackNum = PopCount(exuWBs.map(_.valid))
716  XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum)
717
718  for (i <- 0 until LoadPipelineWidth) {
719    when (RegNext(io.lsq.mmio(i))) {
720      mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B
721    }
722  }
723
724  /**
725    * RedirectOut: Interrupt and Exceptions
726    */
727  val deqDispatchData = dispatchDataRead(0)
728  val debug_deqUop = debug_microOp(deqPtr.value)
729
730  val intrBitSetReg = RegNext(io.csr.intrBitSet)
731  val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value)
732  val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr
733  val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR ||
734    exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.canFire)
735  val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe
736  val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst
737  val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException
738
739  XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n")
740  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getFrontendCanFire, "Debug Mode: Deq has frontend trigger exception\n")
741  XSDebug(deqHasException && exceptionDataRead.bits.trigger.getBackendCanFire, "Debug Mode: Deq has backend trigger exception\n")
742
743  val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst)
744
745  val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset
746//  val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush)
747  val needModifyFtqIdxOffset = false.B
748  io.isVsetFlushPipe := isVsetFlushPipe
749  io.vconfigPdest := rab.io.vconfigPdest
750  // io.flushOut will trigger redirect at the next cycle.
751  // Block any redirect or commit at the next cycle.
752  val lastCycleFlush = RegNext(io.flushOut.valid)
753
754  io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush
755  io.flushOut.bits := DontCare
756  io.flushOut.bits.isRVC := deqDispatchData.isRVC
757  io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr)
758  io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx)
759  io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset)
760  io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next"
761  io.flushOut.bits.interrupt := true.B
762  XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable)
763  XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable)
764  XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe)
765  XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst)
766
767  val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush
768  io.exception.valid                := RegNext(exceptionHappen)
769  io.exception.bits.pc              := RegEnable(debug_deqUop.pc, exceptionHappen)
770  io.exception.bits.instr           := RegEnable(debug_deqUop.instr, exceptionHappen)
771  io.exception.bits.commitType      := RegEnable(deqDispatchData.commitType, exceptionHappen)
772  io.exception.bits.exceptionVec    := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen)
773  io.exception.bits.singleStep      := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen)
774  io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen)
775  io.exception.bits.isInterrupt     := RegEnable(intrEnable, exceptionHappen)
776  io.exception.bits.trigger         := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen)
777  io.csr.vstart.valid               := RegEnable(exceptionDataRead.bits.vstartEn, false.B, exceptionHappen)
778  io.csr.vstart.bits                := RegEnable(exceptionDataRead.bits.vstart, exceptionHappen)
779
780  XSDebug(io.flushOut.valid,
781    p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " +
782    p"excp $exceptionEnable flushPipe $isFlushPipe " +
783    p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n")
784
785
786  /**
787    * Commits (and walk)
788    * They share the same width.
789    */
790  val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr))
791  val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR
792  rab.io.fromRob.walkEnd := state === s_walk && walkFinished
793  vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished
794
795  require(RenameWidth <= CommitWidth)
796
797  // wiring to csr
798  val (wflags, dirtyFs) = (0 until CommitWidth).map(i => {
799    val v = io.commits.commitValid(i)
800    val info = io.commits.info(i)
801    (v & info.wflags, v & info.dirtyFs)
802  }).unzip
803  val fflags = Wire(Valid(UInt(5.W)))
804  fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR
805  fflags.bits := wflags.zip(fflagsDataRead).map({
806    case (w, f) => Mux(w, f, 0.U)
807  }).reduce(_|_)
808  val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR
809
810  val vxsat = Wire(Valid(Bool()))
811  vxsat.valid := io.commits.isCommit && vxsat.bits
812  vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map {
813    case (valid, vxsat) => valid & vxsat
814  }.reduce(_ | _)
815
816  // when mispredict branches writeback, stop commit in the next 2 cycles
817  // TODO: don't check all exu write back
818  val misPredWb = Cat(VecInit(redirectWBs.map(wb =>
819    wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid
820  ).toSeq)).orR
821  val misPredBlockCounter = Reg(UInt(3.W))
822  misPredBlockCounter := Mux(misPredWb,
823    "b111".U,
824    misPredBlockCounter >> 1.U
825  )
826  val misPredBlock = misPredBlockCounter(0)
827  val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid
828
829  io.commits.isWalk := state === s_walk
830  io.commits.isCommit := state === s_idle && !blockCommit
831  val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value)))
832  val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value)))
833  // store will be commited iff both sta & std have been writebacked
834  val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value) && commitTrigger(ptr.value)))
835  val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last)
836  val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i)))
837  val allowOnlyOneCommit = commit_exception || intrBitSetReg
838  // for instructions that may block others, we don't allow them to commit
839  for (i <- 0 until CommitWidth) {
840    // defaults: state === s_idle and instructions commit
841    // when intrBitSetReg, allow only one instruction to commit at each clock cycle
842    val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst
843    io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked
844    io.commits.info(i) := dispatchDataRead(i)
845    io.commits.robIdx(i) := deqPtrVec(i)
846
847    io.commits.walkValid(i) := shouldWalkVec(i)
848    when (state === s_walk) {
849      when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) {
850        XSError(!walk_v(i), s"The walking entry($i) should be valid\n")
851      }
852    }
853
854    XSInfo(io.commits.isCommit && io.commits.commitValid(i),
855      "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n",
856      debug_microOp(deqPtrVec(i).value).pc,
857      io.commits.info(i).rfWen,
858      io.commits.info(i).ldest,
859      io.commits.info(i).pdest,
860      debug_exuData(deqPtrVec(i).value),
861      fflagsDataRead(i),
862      vxsatDataRead(i)
863    )
864    XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n",
865      debug_microOp(walkPtrVec(i).value).pc,
866      io.commits.info(i).rfWen,
867      io.commits.info(i).ldest,
868      debug_exuData(walkPtrVec(i).value)
869    )
870  }
871  if (env.EnableDifftest) {
872    io.commits.info.map(info => dontTouch(info.pc))
873  }
874
875  // sync fflags/dirty_fs/vxsat to csr
876  io.csr.fflags := RegNext(fflags)
877  io.csr.dirty_fs := RegNext(dirty_fs)
878  io.csr.vxsat := RegNext(vxsat)
879
880  // sync v csr to csr
881  // for difftest
882  if(env.AlwaysBasicDiff || env.EnableDifftest) {
883    val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse
884    io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR)
885  }
886  else{
887    io.csr.vcsrFlag := false.B
888  }
889
890  // commit load/store to lsq
891  val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD))
892  val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE))
893  val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr)))
894  io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U))
895  io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U))
896  // indicate a pending load or store
897  io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value))
898  io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value))
899  io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0))
900  io.lsq.pendingPtr := RegNext(deqPtr)
901  io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head)
902
903  /**
904    * state changes
905    * (1) redirect: switch to s_walk
906    * (2) walk: when walking comes to the end, switch to s_idle
907    */
908  val state_next = Mux(
909    io.redirect.valid, s_walk,
910    Mux(
911      state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle,
912      state
913    )
914  )
915  XSPerfAccumulate("s_idle_to_idle",            state === s_idle && state_next === s_idle)
916  XSPerfAccumulate("s_idle_to_walk",            state === s_idle && state_next === s_walk)
917  XSPerfAccumulate("s_walk_to_idle",            state === s_walk && state_next === s_idle)
918  XSPerfAccumulate("s_walk_to_walk",            state === s_walk && state_next === s_walk)
919  state := state_next
920
921  /**
922    * pointers and counters
923    */
924  val deqPtrGenModule = Module(new RobDeqPtrWrapper)
925  deqPtrGenModule.io.state := state
926  deqPtrGenModule.io.deq_v := commit_v
927  deqPtrGenModule.io.deq_w := commit_w
928  deqPtrGenModule.io.exception_state := exceptionDataRead
929  deqPtrGenModule.io.intrBitSetReg := intrBitSetReg
930  deqPtrGenModule.io.hasNoSpecExec := hasWaitForward
931  deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value)
932  deqPtrGenModule.io.blockCommit := blockCommit
933  deqPtrVec := deqPtrGenModule.io.out
934  deqPtrVec_next := deqPtrGenModule.io.next_out
935
936  val enqPtrGenModule = Module(new RobEnqPtrWrapper)
937  enqPtrGenModule.io.redirect := io.redirect
938  enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq
939  enqPtrGenModule.io.hasBlockBackward := hasBlockBackward
940  enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop))
941  enqPtrVec := enqPtrGenModule.io.out
942
943  // next walkPtrVec:
944  // (1) redirect occurs: update according to state
945  // (2) walk: move forwards
946  val walkPtrVec_next = Mux(io.redirect.valid,
947    Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next),
948    Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec)
949  )
950  walkPtrVec := walkPtrVec_next
951
952  val numValidEntries = distanceBetween(enqPtr, deqPtr)
953  val commitCnt = PopCount(io.commits.commitValid)
954
955  allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U
956
957  val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0))
958  when (io.redirect.valid) {
959    lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx)
960  }
961
962
963  /**
964    * States
965    * We put all the stage bits changes here.
966
967    * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit);
968    * All states: (1) valid; (2) writebacked; (3) flagBkup
969    */
970  val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value)))
971
972  // redirect logic writes 6 valid
973  val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr))
974  val redirectTail = Reg(new RobPtr)
975  val redirectIdle :: redirectBusy :: Nil = Enum(2)
976  val redirectState = RegInit(redirectIdle)
977  val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail))
978  when(redirectState === redirectBusy) {
979    redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U)
980    redirectHeadVec zip invMask foreach {
981      case (redirectHead, inv) => when(inv) {
982        valid(redirectHead.value) := false.B
983      }
984    }
985    when(!invMask.last) {
986      redirectState := redirectIdle
987    }
988  }
989  when(io.redirect.valid) {
990    redirectState := redirectBusy
991    when(redirectState === redirectIdle) {
992      redirectTail := enqPtr
993    }
994    redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) =>
995      redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U)
996    }
997  }
998  // enqueue logic writes 6 valid
999  for (i <- 0 until RenameWidth) {
1000    when (canEnqueue(i) && !io.redirect.valid) {
1001      valid(allocatePtrVec(i).value) := true.B
1002    }
1003  }
1004  // dequeue logic writes 6 valid
1005  for (i <- 0 until CommitWidth) {
1006    val commitValid = io.commits.isCommit && io.commits.commitValid(i)
1007    when (commitValid) {
1008      valid(commitReadAddr(i)) := false.B
1009    }
1010  }
1011
1012  // debug_inst update
1013  for(i <- 0 until (LduCnt + StaCnt)) {
1014    debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i))
1015    debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i))
1016  }
1017  for (i <- 0 until LduCnt) {
1018    debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i))
1019    debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i))
1020  }
1021
1022  // status field: writebacked
1023  // enqueue logic set 6 writebacked to false
1024  for (i <- 0 until RenameWidth) {
1025    when(canEnqueue(i)) {
1026      val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR
1027      val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire
1028      val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove
1029      val isStu = FuType.isStore(io.enq.req(i).bits.fuType)
1030      commitTrigger(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerCanFire && !isStu
1031    }
1032  }
1033  when(exceptionGen.io.out.valid) {
1034    val wbIdx = exceptionGen.io.out.bits.robIdx.value
1035    commitTrigger(wbIdx) := true.B
1036  }
1037
1038  // writeback logic set numWbPorts writebacked to true
1039  val blockWbSeq = Wire(Vec(exuWBs.length, Bool()))
1040  blockWbSeq.map(_ := false.B)
1041  for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) {
1042    when(wb.valid) {
1043      val wbIdx = wb.bits.robIdx.value
1044      val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR
1045      val wbHasTriggerCanFire = wb.bits.trigger.getOrElse(0.U).asTypeOf(io.enq.req(0).bits.trigger).getBackendCanFire //Todo: wb.bits.trigger.getHitBackend
1046      val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B)
1047      val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst
1048      blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerCanFire
1049      commitTrigger(wbIdx) := !blockWb
1050    }
1051  }
1052
1053  // if the first uop of an instruction is valid , write writebackedCounter
1054  val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid)
1055  val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop)
1056  val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf)
1057  val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value)
1058  val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops))
1059  val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB))
1060  val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove))
1061
1062  private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map {
1063    req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType)
1064  })
1065  val fflags_wb = fflagsPorts
1066  val vxsat_wb = vxsatPorts
1067  for(i <- 0 until RobSize){
1068
1069    val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U)
1070    val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1071    val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch }
1072    val instCanEnqFlag = Cat(instCanEnqSeq).orR
1073
1074    realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U)
1075
1076    val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec)
1077    val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec)
1078    val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec)
1079    val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec)
1080
1081    val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1082    val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb }
1083    val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U))
1084    val wbCnt = PopCount(canWbNoBlockSeq)
1085
1086    val exceptionHas = RegInit(false.B)
1087    val exceptionHasWire = Wire(Bool())
1088    exceptionHasWire := MuxCase(exceptionHas, Seq(
1089      (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B,
1090      !valid(i) -> false.B
1091    ))
1092    exceptionHas := exceptionHasWire
1093
1094    when (exceptionHas || exceptionHasWire) {
1095      // exception flush
1096      uopNumVec(i) := 0.U
1097      stdWritebacked(i) := true.B
1098    }.elsewhen(!valid(i) && instCanEnqFlag) {
1099      // enq set num of uops
1100      uopNumVec(i) := enqWBNum
1101      stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B)
1102    }.elsewhen(valid(i)) {
1103      // update by writing back
1104      uopNumVec(i) := uopNumVec(i) - wbCnt
1105      assert(!(uopNumVec(i) - wbCnt > uopNumVec(i)), "Overflow!")
1106      when (canStdWbSeq.asUInt.orR) {
1107        stdWritebacked(i) := true.B
1108      }
1109    }.otherwise {
1110      uopNumVec(i) := 0.U
1111    }
1112
1113    val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B))
1114    val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _)
1115    fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes)
1116
1117    val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)
1118    val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _)
1119    vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes)
1120  }
1121
1122  // flagBkup
1123  // enqueue logic set 6 flagBkup at most
1124  for (i <- 0 until RenameWidth) {
1125    when (canEnqueue(i)) {
1126      flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag
1127    }
1128  }
1129
1130  // interrupt_safe
1131  for (i <- 0 until RenameWidth) {
1132    // We RegNext the updates for better timing.
1133    // Note that instructions won't change the system's states in this cycle.
1134    when (RegNext(canEnqueue(i))) {
1135      // For now, we allow non-load-store instructions to trigger interrupts
1136      // For MMIO instructions, they should not trigger interrupts since they may
1137      // be sent to lower level before it writes back.
1138      // However, we cannot determine whether a load/store instruction is MMIO.
1139      // Thus, we don't allow load/store instructions to trigger an interrupt.
1140      // TODO: support non-MMIO load-store instructions to trigger interrupts
1141      val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType)
1142      interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts)
1143    }
1144  }
1145
1146  /**
1147    * read and write of data modules
1148    */
1149  val commitReadAddr_next = Mux(state_next === s_idle,
1150    VecInit(deqPtrVec_next.map(_.value)),
1151    VecInit(walkPtrVec_next.map(_.value))
1152  )
1153  dispatchData.io.wen := canEnqueue
1154  dispatchData.io.waddr := allocatePtrVec.map(_.value)
1155  dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) =>
1156    wdata.ldest := req.ldest
1157    wdata.rfWen := req.rfWen
1158    wdata.dirtyFs := req.dirtyFs
1159    wdata.vecWen := req.vecWen
1160    wdata.wflags := req.wfflags
1161    wdata.commitType := req.commitType
1162    wdata.pdest := req.pdest
1163    wdata.ftqIdx := req.ftqPtr
1164    wdata.ftqOffset := req.ftqOffset
1165    wdata.isMove := req.eliminatedMove
1166    wdata.isRVC := req.preDecodeInfo.isRVC
1167    wdata.pc := req.pc
1168    wdata.vtype := req.vpu.vtype
1169    wdata.isVset := req.isVset
1170    wdata.instrSize := req.instrSize
1171  }
1172  dispatchData.io.raddr := commitReadAddr_next
1173
1174  exceptionGen.io.redirect <> io.redirect
1175  exceptionGen.io.flush := io.flushOut.valid
1176
1177  val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept))
1178  for (i <- 0 until RenameWidth) {
1179    exceptionGen.io.enq(i).valid := canEnqueueEG(i)
1180    exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx
1181    exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec)
1182    exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe
1183    exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset
1184    exceptionGen.io.enq(i).bits.replayInst := false.B
1185    XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst")
1186    exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep
1187    exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix
1188    exceptionGen.io.enq(i).bits.trigger.clear()
1189    exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit
1190    exceptionGen.io.enq(i).bits.trigger.frontendCanFire := io.enq.req(i).bits.trigger.frontendCanFire
1191    exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare
1192    exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare
1193  }
1194
1195  println(s"ExceptionGen:")
1196  println(s"num of exceptions: ${params.numException}")
1197  require(exceptionWBs.length == exceptionGen.io.wb.length,
1198    f"exceptionWBs.length: ${exceptionWBs.length}, " +
1199      f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}")
1200  for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) {
1201    exc_wb.valid                := wb.valid
1202    exc_wb.bits.robIdx          := wb.bits.robIdx
1203    exc_wb.bits.exceptionVec    := wb.bits.exceptionVec.get
1204    exc_wb.bits.flushPipe       := wb.bits.flushPipe.getOrElse(false.B)
1205    exc_wb.bits.isVset          := false.B
1206    exc_wb.bits.replayInst      := wb.bits.replay.getOrElse(false.B)
1207    exc_wb.bits.singleStep      := false.B
1208    exc_wb.bits.crossPageIPFFix := false.B
1209    // TODO: make trigger configurable
1210    val trigger = wb.bits.trigger.getOrElse(0.U).asTypeOf(exc_wb.bits.trigger)
1211    exc_wb.bits.trigger.clear() // Don't care frontend timing, chain, hit and canFire
1212    exc_wb.bits.trigger.backendHit := trigger.backendHit
1213    exc_wb.bits.trigger.backendCanFire := trigger.backendCanFire
1214    exc_wb.bits.vstartEn := false.B //wb.bits.vstartEn.getOrElse(false.B) // todo need add vstart in ExuOutput
1215    exc_wb.bits.vstart := 0.U //wb.bits.vstart.getOrElse(0.U)
1216//    println(s"  [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " +
1217//      s"flushPipe ${configs.exists(_.flushPipe)}, " +
1218//      s"replayInst ${configs.exists(_.replayInst)}")
1219  }
1220
1221  fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value))
1222  vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value))
1223
1224  val instrCntReg = RegInit(0.U(64.W))
1225  val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) })
1226  val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt
1227  val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U)
1228  val instrCnt = instrCntReg + retireCounter
1229  instrCntReg := instrCnt
1230  io.csr.perfinfo.retiredInstr := retireCounter
1231  io.robFull := !allowEnqueue
1232  io.headNotReady := commit_v.head && !commit_w.head
1233
1234  /**
1235    * debug info
1236    */
1237  XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n")
1238  XSDebug("")
1239  XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n")
1240  for(i <- 0 until RobSize) {
1241    XSDebug(false, !valid(i), "-")
1242    XSDebug(false, valid(i) && isWritebacked(i.U), "w")
1243    XSDebug(false, valid(i) && !isWritebacked(i.U), "v")
1244  }
1245  XSDebug(false, true.B, "\n")
1246
1247  for(i <- 0 until RobSize) {
1248    if (i % 4 == 0) XSDebug("")
1249    XSDebug(false, true.B, "%x ", debug_microOp(i).pc)
1250    XSDebug(false, !valid(i), "- ")
1251    XSDebug(false, valid(i) && isWritebacked(i.U), "w ")
1252    XSDebug(false, valid(i) && !isWritebacked(i.U), "v ")
1253    if (i % 4 == 3) XSDebug(false, true.B, "\n")
1254  }
1255
1256  def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U)
1257  def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U)
1258
1259  val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_))
1260  XSPerfAccumulate("clock_cycle", 1.U)
1261  QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U)
1262  XSPerfAccumulate("commitUop", ifCommit(commitCnt))
1263  XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt))
1264  XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset)
1265  XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset)
1266  val commitIsMove = commitDebugUop.map(_.isMove)
1267  XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })))
1268  val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove)
1269  XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e })))
1270  XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt))
1271  val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD)
1272  val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t }
1273  XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid)))
1274  val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH)
1275  val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t }
1276  XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid)))
1277  val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit)
1278  XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })))
1279  val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE)
1280  XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })))
1281  XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U))))
1282  // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire)))
1283  // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready)))
1284  XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U))
1285  XSPerfAccumulate("walkCycleTotal", state === s_walk)
1286  XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd)
1287  private val walkCycle = RegInit(0.U(8.W))
1288  private val waitRabWalkCycle = RegInit(0.U(8.W))
1289  walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1290  waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U))
1291
1292  XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32)
1293  XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32)
1294  XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32)
1295
1296  private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value)
1297  private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value)
1298  private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value)
1299  private val deqHeadInfo = debug_microOp(deqPtr.value)
1300  val deqUopCommitType = io.commits.info(0).commitType
1301
1302  XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U)
1303  XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U)
1304  XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U)
1305  XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U)
1306  XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U)
1307  XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U)
1308  XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U)
1309  XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U)
1310  XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U)
1311  XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1312  XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1313  XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U)
1314  XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U)
1315
1316  XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL)
1317  XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH)
1318  XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD)
1319  XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE)
1320  XSPerfAccumulate("robHeadPC", io.commits.info(0).pc)
1321  XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U}))
1322  (2 to RenameWidth).foreach(i =>
1323    XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U}))
1324  )
1325  XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _))
1326  val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime)
1327  val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime)
1328  val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime)
1329  val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime)
1330  val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime)
1331  val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime)
1332  val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime)
1333  def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = {
1334    cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _)
1335  }
1336  for (fuType <- FuType.functionNameMap.keys) {
1337    val fuName = FuType.functionNameMap(fuType)
1338    val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U )
1339    XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset)
1340    XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType)))
1341    XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency)))
1342    XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency)))
1343    XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency)))
1344    XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency)))
1345    XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency)))
1346    XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency)))
1347    XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency)))
1348  }
1349  XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt)
1350
1351  // top-down info
1352  io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid
1353  io.debugTopDown.toCore.robHeadVaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits
1354  io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid
1355  io.debugTopDown.toCore.robHeadPaddr.bits  := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits
1356  io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt)
1357  io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value)
1358  io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value)
1359  io.debugTopDown.robHeadLqIdx.bits  := debug_microOp(deqPtr.value).lqIdx
1360
1361  // rolling
1362  io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt)
1363
1364  /**
1365    * DataBase info:
1366    * log trigger is at writeback valid
1367    * */
1368
1369  /**
1370    * @todo add InstInfoEntry back
1371    * @author Maxpicca-Li
1372    */
1373
1374  //difftest signals
1375  val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value
1376
1377  val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1378  val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W)))
1379
1380  for(i <- 0 until CommitWidth) {
1381    val idx = deqPtrVec(i).value
1382    wdata(i) := debug_exuData(idx)
1383    wpc(i) := SignExt(commitDebugUop(i).pc, XLEN)
1384  }
1385
1386  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1387    // These are the structures used by difftest only and should be optimized after synthesis.
1388    val dt_eliminatedMove = Mem(RobSize, Bool())
1389    val dt_isRVC = Mem(RobSize, Bool())
1390    val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle))
1391    for (i <- 0 until RenameWidth) {
1392      when (canEnqueue(i)) {
1393        dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove
1394        dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC
1395      }
1396    }
1397    for (wb <- exuWBs) {
1398      when (wb.valid) {
1399        val wbIdx = wb.bits.robIdx.value
1400        dt_exuDebug(wbIdx) := wb.bits.debug
1401      }
1402    }
1403    // Always instantiate basic difftest modules.
1404    for (i <- 0 until CommitWidth) {
1405      val uop = commitDebugUop(i)
1406      val commitInfo = io.commits.info(i)
1407      val ptr = deqPtrVec(i).value
1408      val exuOut = dt_exuDebug(ptr)
1409      val eliminatedMove = dt_eliminatedMove(ptr)
1410      val isRVC = dt_isRVC(ptr)
1411
1412      val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true)
1413      difftest.coreid  := io.hartId
1414      difftest.index   := i.U
1415      difftest.valid   := io.commits.commitValid(i) && io.commits.isCommit
1416      difftest.skip    := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt)
1417      difftest.isRVC   := isRVC
1418      difftest.rfwen   := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U
1419      difftest.fpwen   := io.commits.commitValid(i) && uop.fpWen
1420      difftest.wpdest  := commitInfo.pdest
1421      difftest.wdest   := commitInfo.ldest
1422      difftest.nFused  := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U
1423      when(difftest.valid) {
1424        assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U)
1425      }
1426      if (env.EnableDifftest) {
1427        val uop = commitDebugUop(i)
1428        difftest.pc       := SignExt(uop.pc, XLEN)
1429        difftest.instr    := uop.instr
1430        difftest.robIdx   := ZeroExt(ptr, 10)
1431        difftest.lqIdx    := ZeroExt(uop.lqIdx.value, 7)
1432        difftest.sqIdx    := ZeroExt(uop.sqIdx.value, 7)
1433        difftest.isLoad   := io.commits.info(i).commitType === CommitType.LOAD
1434        difftest.isStore  := io.commits.info(i).commitType === CommitType.STORE
1435      }
1436    }
1437  }
1438
1439  if (env.EnableDifftest) {
1440    for (i <- 0 until CommitWidth) {
1441      val difftest = DifftestModule(new DiffLoadEvent, delay = 3)
1442      difftest.coreid := io.hartId
1443      difftest.index  := i.U
1444
1445      val ptr = deqPtrVec(i).value
1446      val uop = commitDebugUop(i)
1447      val exuOut = debug_exuDebug(ptr)
1448      difftest.valid  := io.commits.commitValid(i) && io.commits.isCommit
1449      difftest.paddr  := exuOut.paddr
1450      difftest.opType := uop.fuOpType
1451      difftest.fuType := uop.fuType
1452    }
1453  }
1454
1455  if (env.EnableDifftest || env.AlwaysBasicDiff) {
1456    val dt_isXSTrap = Mem(RobSize, Bool())
1457    for (i <- 0 until RenameWidth) {
1458      when (canEnqueue(i)) {
1459        dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap
1460      }
1461    }
1462    val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) =>
1463      io.commits.isCommit && v && dt_isXSTrap(d.value)
1464    }
1465    val hitTrap = trapVec.reduce(_||_)
1466    val difftest = DifftestModule(new DiffTrapEvent, dontCare = true)
1467    difftest.coreid   := io.hartId
1468    difftest.hasTrap  := hitTrap
1469    difftest.cycleCnt := timer
1470    difftest.instrCnt := instrCnt
1471    difftest.hasWFI   := hasWFI
1472
1473    if (env.EnableDifftest) {
1474      val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1))
1475      val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN)
1476      difftest.code     := trapCode
1477      difftest.pc       := trapPC
1478    }
1479  }
1480
1481  val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32))))
1482  val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _))
1483  val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m })
1484  val commitLoadVec = VecInit(commitLoadValid)
1485  val commitBranchVec = VecInit(commitBranchValid)
1486  val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w })
1487  val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t })
1488  val perfEvents = Seq(
1489    ("rob_interrupt_num      ", io.flushOut.valid && intrEnable                                       ),
1490    ("rob_exception_num      ", io.flushOut.valid && exceptionEnable                                  ),
1491    ("rob_flush_pipe_num     ", io.flushOut.valid && isFlushPipe                                      ),
1492    ("rob_replay_inst_num    ", io.flushOut.valid && isFlushPipe && deqHasReplayInst                  ),
1493    ("rob_commitUop          ", ifCommit(commitCnt)                                                   ),
1494    ("rob_commitInstr        ", ifCommitReg(trueCommitCnt)                                            ),
1495    ("rob_commitInstrMove    ", ifCommitReg(PopCount(RegNext(commitMoveVec)))                         ),
1496    ("rob_commitInstrFused   ", ifCommitReg(fuseCommitCnt)                                            ),
1497    ("rob_commitInstrLoad    ", ifCommitReg(PopCount(RegNext(commitLoadVec)))                         ),
1498    ("rob_commitInstrBranch  ", ifCommitReg(PopCount(RegNext(commitBranchVec)))                       ),
1499    ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec)))                     ),
1500    ("rob_commitInstrStore   ", ifCommitReg(PopCount(RegNext(commitStoreVec)))                        ),
1501    ("rob_walkInstr          ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)           ),
1502    ("rob_walkCycle          ", (state === s_walk)                                                    ),
1503    ("rob_1_4_valid          ", validEntries <= (RobSize / 4).U                                       ),
1504    ("rob_2_4_valid          ", validEntries >  (RobSize / 4).U && validEntries <= (RobSize / 2).U    ),
1505    ("rob_3_4_valid          ", validEntries >  (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U),
1506    ("rob_4_4_valid          ", validEntries >  (RobSize * 3 / 4).U                                   ),
1507  )
1508  generatePerfEvent()
1509}
1510