/*************************************************************************************** * Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences * Copyright (c) 2020-2021 Peng Cheng Laboratory * * XiangShan is licensed under Mulan PSL v2. * You can use this software according to the terms and conditions of the Mulan PSL v2. * You may obtain a copy of Mulan PSL v2 at: * http://license.coscl.org.cn/MulanPSL2 * * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, * EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, * MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. * * See the Mulan PSL v2 for more details. ***************************************************************************************/ package xiangshan.backend.rob import org.chipsalliance.cde.config.Parameters import chisel3._ import chisel3.util._ import difftest._ import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp} import utility._ import utils._ import xiangshan._ import xiangshan.backend.BackendParams import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} import xiangshan.backend.fu.{FuConfig, FuType} import xiangshan.frontend.FtqPtr import xiangshan.mem.{LqPtr, LsqEnqIO, SqPtr} import xiangshan.backend.Bundles.{DynInst, ExceptionInfo, ExuOutput} import xiangshan.backend.ctrlblock.{DebugLSIO, DebugLsInfo, LsTopdownInfo} import xiangshan.backend.fu.vector.Bundles.VType import xiangshan.backend.rename.SnapshotGenerator class RobPtr(entries: Int) extends CircularQueuePtr[RobPtr]( entries ) with HasCircularQueuePtrHelper { def this()(implicit p: Parameters) = this(p(XSCoreParamsKey).RobSize) def needFlush(redirect: Valid[Redirect]): Bool = { val flushItself = redirect.bits.flushItself() && this === redirect.bits.robIdx redirect.valid && (flushItself || isAfter(this, redirect.bits.robIdx)) } def needFlush(redirect: Seq[Valid[Redirect]]): Bool = VecInit(redirect.map(needFlush)).asUInt.orR } object RobPtr { def apply(f: Bool, v: UInt)(implicit p: Parameters): RobPtr = { val ptr = Wire(new RobPtr) ptr.flag := f ptr.value := v ptr } } class RobCSRIO(implicit p: Parameters) extends XSBundle { val intrBitSet = Input(Bool()) val trapTarget = Input(UInt(VAddrBits.W)) val isXRet = Input(Bool()) val wfiEvent = Input(Bool()) val fflags = Output(Valid(UInt(5.W))) val vxsat = Output(Valid(Bool())) val vstart = Output(Valid(UInt(XLEN.W))) val dirty_fs = Output(Bool()) val perfinfo = new Bundle { val retiredInstr = Output(UInt(3.W)) } val vcsrFlag = Output(Bool()) } class RobLsqIO(implicit p: Parameters) extends XSBundle { val lcommit = Output(UInt(log2Up(CommitWidth + 1).W)) val scommit = Output(UInt(log2Up(CommitWidth + 1).W)) val pendingld = Output(Bool()) val pendingst = Output(Bool()) val commit = Output(Bool()) val pendingPtr = Output(new RobPtr) val pendingPtrNext = Output(new RobPtr) val mmio = Input(Vec(LoadPipelineWidth, Bool())) // Todo: what's this? val uop = Input(Vec(LoadPipelineWidth, new DynInst)) } class RobEnqIO(implicit p: Parameters) extends XSBundle { val canAccept = Output(Bool()) val isEmpty = Output(Bool()) // valid vector, for robIdx gen and walk val needAlloc = Vec(RenameWidth, Input(Bool())) val req = Vec(RenameWidth, Flipped(ValidIO(new DynInst))) val resp = Vec(RenameWidth, Output(new RobPtr)) } class RobCoreTopDownIO(implicit p: Parameters) extends XSBundle { val robHeadVaddr = Valid(UInt(VAddrBits.W)) val robHeadPaddr = Valid(UInt(PAddrBits.W)) } class RobDispatchTopDownIO extends Bundle { val robTrueCommit = Output(UInt(64.W)) val robHeadLsIssue = Output(Bool()) } class RobDebugRollingIO extends Bundle { val robTrueCommit = Output(UInt(64.W)) } class RobDispatchData(implicit p: Parameters) extends RobCommitInfo {} class RobDeqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { val io = IO(new Bundle { // for commits/flush val state = Input(UInt(2.W)) val deq_v = Vec(CommitWidth, Input(Bool())) val deq_w = Vec(CommitWidth, Input(Bool())) val exception_state = Flipped(ValidIO(new RobExceptionInfo)) // for flush: when exception occurs, reset deqPtrs to range(0, CommitWidth) val intrBitSetReg = Input(Bool()) val hasNoSpecExec = Input(Bool()) val interrupt_safe = Input(Bool()) val blockCommit = Input(Bool()) // output: the CommitWidth deqPtr val out = Vec(CommitWidth, Output(new RobPtr)) val next_out = Vec(CommitWidth, Output(new RobPtr)) }) val deqPtrVec = RegInit(VecInit((0 until CommitWidth).map(_.U.asTypeOf(new RobPtr)))) // for exceptions (flushPipe included) and interrupts: // only consider the first instruction val intrEnable = io.intrBitSetReg && !io.hasNoSpecExec && io.interrupt_safe val exceptionEnable = io.deq_w(0) && io.exception_state.valid && io.exception_state.bits.not_commit && io.exception_state.bits.robIdx === deqPtrVec(0) val redirectOutValid = io.state === 0.U && io.deq_v(0) && (intrEnable || exceptionEnable) // for normal commits: only to consider when there're no exceptions // we don't need to consider whether the first instruction has exceptions since it wil trigger exceptions. val commit_exception = io.exception_state.valid && !isAfter(io.exception_state.bits.robIdx, deqPtrVec.last) val canCommit = VecInit((0 until CommitWidth).map(i => io.deq_v(i) && io.deq_w(i))) val normalCommitCnt = PriorityEncoder(canCommit.map(c => !c) :+ true.B) // when io.intrBitSetReg or there're possible exceptions in these instructions, // only one instruction is allowed to commit val allowOnlyOne = commit_exception || io.intrBitSetReg val commitCnt = Mux(allowOnlyOne, canCommit(0), normalCommitCnt) val commitDeqPtrVec = VecInit(deqPtrVec.map(_ + commitCnt)) val deqPtrVec_next = Mux(io.state === 0.U && !redirectOutValid && !io.blockCommit, commitDeqPtrVec, deqPtrVec) deqPtrVec := deqPtrVec_next io.next_out := deqPtrVec_next io.out := deqPtrVec when (io.state === 0.U) { XSInfo(io.state === 0.U && commitCnt > 0.U, "retired %d insts\n", commitCnt) } } class RobEnqPtrWrapper(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { val io = IO(new Bundle { // for input redirect val redirect = Input(Valid(new Redirect)) // for enqueue val allowEnqueue = Input(Bool()) val hasBlockBackward = Input(Bool()) val enq = Vec(RenameWidth, Input(Bool())) val out = Output(Vec(RenameWidth, new RobPtr)) }) val enqPtrVec = RegInit(VecInit.tabulate(RenameWidth)(_.U.asTypeOf(new RobPtr))) // enqueue val canAccept = io.allowEnqueue && !io.hasBlockBackward val dispatchNum = Mux(canAccept, PopCount(io.enq), 0.U) for ((ptr, i) <- enqPtrVec.zipWithIndex) { when(io.redirect.valid) { ptr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) }.otherwise { ptr := ptr + dispatchNum } } io.out := enqPtrVec } class RobExceptionInfo(implicit p: Parameters) extends XSBundle { // val valid = Bool() val robIdx = new RobPtr val exceptionVec = ExceptionVec() val flushPipe = Bool() val isVset = Bool() val replayInst = Bool() // redirect to that inst itself val singleStep = Bool() // TODO add frontend hit beneath val crossPageIPFFix = Bool() val trigger = new TriggerCf val vstartEn = Bool() val vstart = UInt(XLEN.W) def has_exception = exceptionVec.asUInt.orR || flushPipe || singleStep || replayInst || trigger.canFire def not_commit = exceptionVec.asUInt.orR || singleStep || replayInst || trigger.canFire // only exceptions are allowed to writeback when enqueue def can_writeback = exceptionVec.asUInt.orR || singleStep || trigger.canFire } class ExceptionGen(params: BackendParams)(implicit p: Parameters) extends XSModule with HasCircularQueuePtrHelper { val io = IO(new Bundle { val redirect = Input(Valid(new Redirect)) val flush = Input(Bool()) val enq = Vec(RenameWidth, Flipped(ValidIO(new RobExceptionInfo))) // csr + load + store + varith + vload + vstore val wb = Vec(params.numException, Flipped(ValidIO(new RobExceptionInfo))) val out = ValidIO(new RobExceptionInfo) val state = ValidIO(new RobExceptionInfo) }) val wbExuParams = params.allExuParams.filter(_.exceptionOut.nonEmpty) def getOldest(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): RobExceptionInfo = { def getOldest_recursion(valid: Seq[Bool], bits: Seq[RobExceptionInfo]): (Seq[Bool], Seq[RobExceptionInfo]) = { assert(valid.length == bits.length) if (valid.length == 1) { (valid, bits) } else if (valid.length == 2) { val res = Seq.fill(2)(Wire(ValidIO(chiselTypeOf(bits(0))))) for (i <- res.indices) { res(i).valid := valid(i) res(i).bits := bits(i) } val oldest = Mux(!valid(1) || valid(0) && isAfter(bits(1).robIdx, bits(0).robIdx), res(0), res(1)) (Seq(oldest.valid), Seq(oldest.bits)) } else { val left = getOldest_recursion(valid.take(valid.length / 2), bits.take(valid.length / 2)) val right = getOldest_recursion(valid.drop(valid.length / 2), bits.drop(valid.length / 2)) getOldest_recursion(left._1 ++ right._1, left._2 ++ right._2) } } getOldest_recursion(valid, bits)._2.head } val currentValid = RegInit(false.B) val current = Reg(new RobExceptionInfo) // orR the exceptionVec val lastCycleFlush = RegNext(io.flush) val in_enq_valid = VecInit(io.enq.map(e => e.valid && e.bits.has_exception && !lastCycleFlush)) // s0: compare wb in 6 groups val csr_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isCsr).nonEmpty).map(_._1) val load_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.ldu).nonEmpty).map(_._1) val store_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(t => t.isSta || t.fuType == FuType.mou).nonEmpty).map(_._1) val varith_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.isVecArith).nonEmpty).map(_._1) val vload_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vldu).nonEmpty).map(_._1) val vstore_wb = io.wb.zip(wbExuParams).filter(_._2.fuConfigs.filter(_.fuType == FuType.vstu).nonEmpty).map(_._1) val writebacks = Seq(csr_wb, load_wb, store_wb, varith_wb, vload_wb, vstore_wb) val in_wb_valids = writebacks.map(_.map(w => w.valid && w.bits.has_exception && !lastCycleFlush)) val wb_valid = in_wb_valids.zip(writebacks).map { case (valid, wb) => valid.zip(wb.map(_.bits)).map { case (v, bits) => v && !(bits.robIdx.needFlush(io.redirect) || io.flush) }.reduce(_ || _) } val wb_bits = in_wb_valids.zip(writebacks).map { case (valid, wb) => getOldest(valid, wb.map(_.bits))} val s0_out_valid = wb_valid.map(x => RegNext(x)) val s0_out_bits = wb_bits.zip(wb_valid).map{ case(b, v) => RegEnable(b, v)} // s1: compare last six and current flush val s1_valid = VecInit(s0_out_valid.zip(s0_out_bits).map{ case (v, b) => v && !(b.robIdx.needFlush(io.redirect) || io.flush) }) val s1_out_bits = RegEnable(getOldest(s0_out_valid, s0_out_bits), s1_valid.asUInt.orR) val s1_out_valid = RegNext(s1_valid.asUInt.orR) val enq_valid = RegNext(in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) val enq_bits = RegEnable(ParallelPriorityMux(in_enq_valid, io.enq.map(_.bits)), in_enq_valid.asUInt.orR && !io.redirect.valid && !io.flush) // s2: compare the input exception with the current one // priorities: // (1) system reset // (2) current is valid: flush, remain, merge, update // (3) current is not valid: s1 or enq val current_flush = current.robIdx.needFlush(io.redirect) || io.flush val s1_flush = s1_out_bits.robIdx.needFlush(io.redirect) || io.flush when (currentValid) { when (current_flush) { currentValid := Mux(s1_flush, false.B, s1_out_valid) } when (s1_out_valid && !s1_flush) { when (isAfter(current.robIdx, s1_out_bits.robIdx)) { current := s1_out_bits }.elsewhen (current.robIdx === s1_out_bits.robIdx) { current.exceptionVec := (s1_out_bits.exceptionVec.asUInt | current.exceptionVec.asUInt).asTypeOf(ExceptionVec()) current.flushPipe := s1_out_bits.flushPipe || current.flushPipe current.replayInst := s1_out_bits.replayInst || current.replayInst current.singleStep := s1_out_bits.singleStep || current.singleStep current.trigger := (s1_out_bits.trigger.asUInt | current.trigger.asUInt).asTypeOf(new TriggerCf) } } }.elsewhen (s1_out_valid && !s1_flush) { currentValid := true.B current := s1_out_bits }.elsewhen (enq_valid && !(io.redirect.valid || io.flush)) { currentValid := true.B current := enq_bits } io.out.valid := s1_out_valid || enq_valid && enq_bits.can_writeback io.out.bits := Mux(s1_out_valid, s1_out_bits, enq_bits) io.state.valid := currentValid io.state.bits := current } class RobFlushInfo(implicit p: Parameters) extends XSBundle { val ftqIdx = new FtqPtr val robIdx = new RobPtr val ftqOffset = UInt(log2Up(PredictWidth).W) val replayInst = Bool() } class Rob(params: BackendParams)(implicit p: Parameters) extends LazyModule with HasXSParameter { override def shouldBeInlined: Boolean = false lazy val module = new RobImp(this)(p, params) } class RobImp(override val wrapper: Rob)(implicit p: Parameters, params: BackendParams) extends LazyModuleImp(wrapper) with HasXSParameter with HasCircularQueuePtrHelper with HasPerfEvents { private val LduCnt = params.LduCnt private val StaCnt = params.StaCnt private val HyuCnt = params.HyuCnt val io = IO(new Bundle() { val hartId = Input(UInt(8.W)) val redirect = Input(Valid(new Redirect)) val enq = new RobEnqIO val flushOut = ValidIO(new Redirect) val exception = ValidIO(new ExceptionInfo) // exu + brq val writeback: MixedVec[ValidIO[ExuOutput]] = Flipped(params.genWrite2CtrlBundles) val commits = Output(new RobCommitIO) val rabCommits = Output(new RobCommitIO) val diffCommits = Output(new DiffCommitIO) val isVsetFlushPipe = Output(Bool()) val vconfigPdest = Output(UInt(PhyRegIdxWidth.W)) val lsq = new RobLsqIO val robDeqPtr = Output(new RobPtr) val csr = new RobCSRIO val snpt = Input(new SnapshotPort) val robFull = Output(Bool()) val headNotReady = Output(Bool()) val cpu_halt = Output(Bool()) val wfi_enable = Input(Bool()) val toDecode = new Bundle { val vtype = ValidIO(VType()) } val debug_ls = Flipped(new DebugLSIO) val debugRobHead = Output(new DynInst) val debugEnqLsq = Input(new LsqEnqIO) val debugHeadLsIssue = Input(Bool()) val lsTopdownInfo = Vec(LduCnt + HyuCnt, Input(new LsTopdownInfo)) val debugTopDown = new Bundle { val toCore = new RobCoreTopDownIO val toDispatch = new RobDispatchTopDownIO val robHeadLqIdx = Valid(new LqPtr) } val debugRolling = new RobDebugRollingIO }) val exuWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(!_.bits.params.hasStdFu).toSeq val stdWBs: Seq[ValidIO[ExuOutput]] = io.writeback.filter(_.bits.params.hasStdFu).toSeq val fflagsWBs = io.writeback.filter(x => x.bits.fflags.nonEmpty) val exceptionWBs = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) val redirectWBs = io.writeback.filter(x => x.bits.redirect.nonEmpty) val exuWbPorts = io.writeback.filter(!_.bits.params.hasStdFu) val stdWbPorts = io.writeback.filter(_.bits.params.hasStdFu) val fflagsPorts = io.writeback.filter(x => x.bits.fflags.nonEmpty) val vxsatPorts = io.writeback.filter(x => x.bits.vxsat.nonEmpty) val exceptionPorts = io.writeback.filter(x => x.bits.exceptionVec.nonEmpty) val numExuWbPorts = exuWBs.length val numStdWbPorts = stdWBs.length println(s"Rob: size $RobSize, numExuWbPorts: $numExuWbPorts, numStdWbPorts: $numStdWbPorts, commitwidth: $CommitWidth") // println(s"exuPorts: ${exuWbPorts.map(_._1.map(_.name))}") // println(s"stdPorts: ${stdWbPorts.map(_._1.map(_.name))}") // println(s"fflags: ${fflagsPorts.map(_._1.map(_.name))}") // instvalid field val valid = RegInit(VecInit(Seq.fill(RobSize)(false.B))) // writeback status val stdWritebacked = Reg(Vec(RobSize, Bool())) val commitTrigger = Mem(RobSize, Bool()) val uopNumVec = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) val realDestSize = RegInit(VecInit(Seq.fill(RobSize)(0.U(log2Up(MaxUopSize + 1).W)))) val fflagsDataModule = RegInit(VecInit(Seq.fill(RobSize)(0.U(5.W)))) val vxsatDataModule = RegInit(VecInit(Seq.fill(RobSize)(false.B))) def isWritebacked(ptr: UInt): Bool = { !uopNumVec(ptr).orR && stdWritebacked(ptr) } def isUopWritebacked(ptr: UInt): Bool = { !uopNumVec(ptr).orR } val mmio = RegInit(VecInit(Seq.fill(RobSize)(false.B))) // data for redirect, exception, etc. val flagBkup = Mem(RobSize, Bool()) // some instructions are not allowed to trigger interrupts // They have side effects on the states of the processor before they write back val interrupt_safe = RegInit(VecInit(Seq.fill(RobSize)(true.B))) // data for debug // Warn: debug_* prefix should not exist in generated verilog. val debug_microOp = DebugMem(RobSize, new DynInst) val debug_exuData = Reg(Vec(RobSize, UInt(XLEN.W)))//for debug val debug_exuDebug = Reg(Vec(RobSize, new DebugBundle))//for debug val debug_lsInfo = RegInit(VecInit(Seq.fill(RobSize)(DebugLsInfo.init))) val debug_lsTopdownInfo = RegInit(VecInit(Seq.fill(RobSize)(LsTopdownInfo.init))) val debug_lqIdxValid = RegInit(VecInit.fill(RobSize)(false.B)) val debug_lsIssued = RegInit(VecInit.fill(RobSize)(false.B)) // pointers // For enqueue ptr, we don't duplicate it since only enqueue needs it. val enqPtrVec = Wire(Vec(RenameWidth, new RobPtr)) val deqPtrVec = Wire(Vec(CommitWidth, new RobPtr)) dontTouch(enqPtrVec) dontTouch(deqPtrVec) val walkPtrVec = Reg(Vec(CommitWidth, new RobPtr)) val lastWalkPtr = Reg(new RobPtr) val allowEnqueue = RegInit(true.B) val enqPtr = enqPtrVec.head val deqPtr = deqPtrVec(0) val walkPtr = walkPtrVec(0) val isEmpty = enqPtr === deqPtr val isReplaying = io.redirect.valid && RedirectLevel.flushItself(io.redirect.bits.level) val snptEnq = io.enq.canAccept && io.enq.req.map(x => x.valid && x.bits.snapshot).reduce(_ || _) val snapshotPtrVec = Wire(Vec(RenameWidth, new RobPtr)) snapshotPtrVec(0) := io.enq.req(0).bits.robIdx for (i <- 1 until RenameWidth) { snapshotPtrVec(i) := snapshotPtrVec(0) + i.U } val snapshots = SnapshotGenerator(snapshotPtrVec, snptEnq, io.snpt.snptDeq, io.redirect.valid, io.snpt.flushVec) val debug_lsIssue = WireDefault(debug_lsIssued) debug_lsIssue(deqPtr.value) := io.debugHeadLsIssue /** * states of Rob */ val s_idle :: s_walk :: Nil = Enum(2) val state = RegInit(s_idle) /** * Data Modules * * CommitDataModule: data from dispatch * (1) read: commits/walk/exception * (2) write: enqueue * * WritebackData: data from writeback * (1) read: commits/walk/exception * (2) write: write back from exe units */ val dispatchData = Module(new SyncDataModuleTemplate(new RobDispatchData, RobSize, CommitWidth, RenameWidth)) val dispatchDataRead = dispatchData.io.rdata val exceptionGen = Module(new ExceptionGen(params)) val exceptionDataRead = exceptionGen.io.state val fflagsDataRead = Wire(Vec(CommitWidth, UInt(5.W))) val vxsatDataRead = Wire(Vec(CommitWidth, Bool())) io.robDeqPtr := deqPtr io.debugRobHead := debug_microOp(deqPtr.value) val rab = Module(new RenameBuffer(RabSize)) val vtypeBuffer = Module(new VTypeBuffer(VTypeBufferSize)) /** * connection of [[rab]] */ rab.io.redirect.valid := io.redirect.valid rab.io.req.zip(io.enq.req).map { case (dest, src) => dest.bits := src.bits dest.valid := src.valid && io.enq.canAccept } val commitDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(deqPtrVec(i).value)) val walkDestSizeSeq = (0 until CommitWidth).map(i => realDestSize(walkPtrVec(i).value)) val commitSizeSum = io.commits.commitValid.zip(commitDestSizeSeq).map { case (commitValid, destSize) => Mux(io.commits.isCommit && commitValid, destSize, 0.U) }.reduce(_ +& _) val walkSizeSum = io.commits.walkValid.zip(walkDestSizeSeq).map { case (walkValid, destSize) => Mux(io.commits.isWalk && walkValid, destSize, 0.U) }.reduce(_ +& _) rab.io.fromRob.commitSize := commitSizeSum rab.io.fromRob.walkSize := walkSizeSum rab.io.snpt := io.snpt rab.io.snpt.snptEnq := snptEnq io.rabCommits := rab.io.commits io.diffCommits := rab.io.diffCommits /** * connection of [[vtypeBuffer]] */ vtypeBuffer.io.redirect.valid := io.redirect.valid vtypeBuffer.io.req.zip(io.enq.req).map { case (sink, source) => sink.valid := source.valid && io.enq.canAccept sink.bits := source.bits } private val commitIsVTypeVec = VecInit(io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => valid && info.isVset }) private val walkIsVTypeVec = VecInit(io.commits.walkValid.zip(io.commits.info).map { case (valid, info) => valid && info.isVset }) vtypeBuffer.io.fromRob.commitSize := PopCount(commitIsVTypeVec) vtypeBuffer.io.fromRob.walkSize := PopCount(walkIsVTypeVec) vtypeBuffer.io.snpt := io.snpt vtypeBuffer.io.snpt.snptEnq := snptEnq io.toDecode.vtype := vtypeBuffer.io.toDecode.vtype /** * Enqueue (from dispatch) */ // special cases val hasBlockBackward = RegInit(false.B) val hasWaitForward = RegInit(false.B) val doingSvinval = RegInit(false.B) // When blockBackward instruction leaves Rob (commit or walk), hasBlockBackward should be set to false.B // To reduce registers usage, for hasBlockBackward cases, we allow enqueue after ROB is empty. when (isEmpty) { hasBlockBackward:= false.B } // When any instruction commits, hasNoSpecExec should be set to false.B when (io.commits.hasWalkInstr || io.commits.hasCommitInstr) { hasWaitForward:= false.B } // The wait-for-interrupt (WFI) instruction waits in the ROB until an interrupt might need servicing. // io.csr.wfiEvent will be asserted if the WFI can resume execution, and we change the state to s_wfi_idle. // It does not affect how interrupts are serviced. Note that WFI is noSpecExec and it does not trigger interrupts. val hasWFI = RegInit(false.B) io.cpu_halt := hasWFI // WFI Timeout: 2^20 = 1M cycles val wfi_cycles = RegInit(0.U(20.W)) when (hasWFI) { wfi_cycles := wfi_cycles + 1.U }.elsewhen (!hasWFI && RegNext(hasWFI)) { wfi_cycles := 0.U } val wfi_timeout = wfi_cycles.andR when (RegNext(RegNext(io.csr.wfiEvent)) || io.flushOut.valid || wfi_timeout) { hasWFI := false.B } val allocatePtrVec = VecInit((0 until RenameWidth).map(i => enqPtrVec(PopCount(io.enq.req.take(i).map(req => req.valid && req.bits.firstUop))))) io.enq.canAccept := allowEnqueue && !hasBlockBackward && rab.io.canEnq && vtypeBuffer.io.canEnq io.enq.resp := allocatePtrVec val canEnqueue = VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop && io.enq.canAccept)) val timer = GTimer() for (i <- 0 until RenameWidth) { // we don't check whether io.redirect is valid here since redirect has higher priority when (canEnqueue(i)) { val enqUop = io.enq.req(i).bits val enqIndex = allocatePtrVec(i).value // store uop in data module and debug_microOp Vec debug_microOp(enqIndex) := enqUop debug_microOp(enqIndex).debugInfo.dispatchTime := timer debug_microOp(enqIndex).debugInfo.enqRsTime := timer debug_microOp(enqIndex).debugInfo.selectTime := timer debug_microOp(enqIndex).debugInfo.issueTime := timer debug_microOp(enqIndex).debugInfo.writebackTime := timer debug_microOp(enqIndex).debugInfo.tlbFirstReqTime := timer debug_microOp(enqIndex).debugInfo.tlbRespTime := timer debug_lsInfo(enqIndex) := DebugLsInfo.init debug_lsTopdownInfo(enqIndex) := LsTopdownInfo.init debug_lqIdxValid(enqIndex) := false.B debug_lsIssued(enqIndex) := false.B when (enqUop.blockBackward) { hasBlockBackward := true.B } when (enqUop.waitForward) { hasWaitForward := true.B } val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire val enqHasException = ExceptionNO.selectFrontend(enqUop.exceptionVec).asUInt.orR // the begin instruction of Svinval enqs so mark doingSvinval as true to indicate this process when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalBegin(enqUop.flushPipe)) { doingSvinval := true.B } // the end instruction of Svinval enqs so clear doingSvinval when(!enqHasTriggerCanFire && !enqHasException && enqUop.isSvinvalEnd(enqUop.flushPipe)) { doingSvinval := false.B } // when we are in the process of Svinval software code area , only Svinval.vma and end instruction of Svinval can appear assert(!doingSvinval || (enqUop.isSvinval(enqUop.flushPipe) || enqUop.isSvinvalEnd(enqUop.flushPipe))) when (enqUop.isWFI && !enqHasException && !enqHasTriggerCanFire) { hasWFI := true.B } mmio(enqIndex) := false.B } } val dispatchNum = Mux(io.enq.canAccept, PopCount(io.enq.req.map(req => req.valid && req.bits.firstUop)), 0.U) io.enq.isEmpty := RegNext(isEmpty && !VecInit(io.enq.req.map(_.valid)).asUInt.orR) when (!io.wfi_enable) { hasWFI := false.B } // sel vsetvl's flush position val vs_idle :: vs_waitVinstr :: vs_waitFlush :: Nil = Enum(3) val vsetvlState = RegInit(vs_idle) val firstVInstrFtqPtr = RegInit(0.U.asTypeOf(new FtqPtr)) val firstVInstrFtqOffset = RegInit(0.U.asTypeOf(UInt(log2Up(PredictWidth).W))) val firstVInstrRobIdx = RegInit(0.U.asTypeOf(new RobPtr)) val enq0 = io.enq.req(0) val enq0IsVset = enq0.bits.isVset && enq0.bits.lastUop && canEnqueue(0) val enq0IsVsetFlush = enq0IsVset && enq0.bits.flushPipe val enqIsVInstrVec = io.enq.req.zip(canEnqueue).map{case (req, fire) => FuType.isVArith(req.bits.fuType) && fire} // for vs_idle val firstVInstrIdle = PriorityMux(enqIsVInstrVec.zip(io.enq.req).drop(1) :+ (true.B, 0.U.asTypeOf(io.enq.req(0).cloneType))) // for vs_waitVinstr val enqIsVInstrOrVset = (enqIsVInstrVec(0) || enq0IsVset) +: enqIsVInstrVec.drop(1) val firstVInstrWait = PriorityMux(enqIsVInstrOrVset, io.enq.req) when(vsetvlState === vs_idle){ firstVInstrFtqPtr := firstVInstrIdle.bits.ftqPtr firstVInstrFtqOffset := firstVInstrIdle.bits.ftqOffset firstVInstrRobIdx := firstVInstrIdle.bits.robIdx }.elsewhen(vsetvlState === vs_waitVinstr){ when(Cat(enqIsVInstrOrVset).orR){ firstVInstrFtqPtr := firstVInstrWait.bits.ftqPtr firstVInstrFtqOffset := firstVInstrWait.bits.ftqOffset firstVInstrRobIdx := firstVInstrWait.bits.robIdx } } val hasVInstrAfterI = Cat(enqIsVInstrVec(0)).orR when(vsetvlState === vs_idle && !io.redirect.valid){ when(enq0IsVsetFlush){ vsetvlState := Mux(hasVInstrAfterI, vs_waitFlush, vs_waitVinstr) } }.elsewhen(vsetvlState === vs_waitVinstr){ when(io.redirect.valid){ vsetvlState := vs_idle }.elsewhen(Cat(enqIsVInstrOrVset).orR){ vsetvlState := vs_waitFlush } }.elsewhen(vsetvlState === vs_waitFlush){ when(io.redirect.valid){ vsetvlState := vs_idle } } // lqEnq io.debugEnqLsq.needAlloc.map(_(0)).zip(io.debugEnqLsq.req).foreach { case (alloc, req) => when(io.debugEnqLsq.canAccept && alloc && req.valid) { debug_microOp(req.bits.robIdx.value).lqIdx := req.bits.lqIdx debug_lqIdxValid(req.bits.robIdx.value) := true.B } } // lsIssue when(io.debugHeadLsIssue) { debug_lsIssued(deqPtr.value) := true.B } /** * Writeback (from execution units) */ for (wb <- exuWBs) { when (wb.valid) { val wbIdx = wb.bits.robIdx.value debug_exuData(wbIdx) := wb.bits.data debug_exuDebug(wbIdx) := wb.bits.debug debug_microOp(wbIdx).debugInfo.enqRsTime := wb.bits.debugInfo.enqRsTime debug_microOp(wbIdx).debugInfo.selectTime := wb.bits.debugInfo.selectTime debug_microOp(wbIdx).debugInfo.issueTime := wb.bits.debugInfo.issueTime debug_microOp(wbIdx).debugInfo.writebackTime := wb.bits.debugInfo.writebackTime // debug for lqidx and sqidx debug_microOp(wbIdx).lqIdx := wb.bits.lqIdx.getOrElse(0.U.asTypeOf(new LqPtr)) debug_microOp(wbIdx).sqIdx := wb.bits.sqIdx.getOrElse(0.U.asTypeOf(new SqPtr)) val debug_Uop = debug_microOp(wbIdx) XSInfo(true.B, p"writebacked pc 0x${Hexadecimal(debug_Uop.pc)} wen ${debug_Uop.rfWen} " + p"data 0x${Hexadecimal(wb.bits.data)} ldst ${debug_Uop.ldest} pdst ${debug_Uop.pdest} " + p"skip ${wb.bits.debug.isMMIO} robIdx: ${wb.bits.robIdx}\n" ) } } val writebackNum = PopCount(exuWBs.map(_.valid)) XSInfo(writebackNum =/= 0.U, "writebacked %d insts\n", writebackNum) for (i <- 0 until LoadPipelineWidth) { when (RegNext(io.lsq.mmio(i))) { mmio(RegNext(io.lsq.uop(i).robIdx).value) := true.B } } /** * RedirectOut: Interrupt and Exceptions */ val deqDispatchData = dispatchDataRead(0) val debug_deqUop = debug_microOp(deqPtr.value) val intrBitSetReg = RegNext(io.csr.intrBitSet) val intrEnable = intrBitSetReg && !hasWaitForward && interrupt_safe(deqPtr.value) val deqHasExceptionOrFlush = exceptionDataRead.valid && exceptionDataRead.bits.robIdx === deqPtr val deqHasException = deqHasExceptionOrFlush && (exceptionDataRead.bits.exceptionVec.asUInt.orR || exceptionDataRead.bits.singleStep || exceptionDataRead.bits.trigger.canFire) val deqHasFlushPipe = deqHasExceptionOrFlush && exceptionDataRead.bits.flushPipe val deqHasReplayInst = deqHasExceptionOrFlush && exceptionDataRead.bits.replayInst val exceptionEnable = isWritebacked(deqPtr.value) && deqHasException XSDebug(deqHasException && exceptionDataRead.bits.singleStep, "Debug Mode: Deq has singlestep exception\n") XSDebug(deqHasException && exceptionDataRead.bits.trigger.getFrontendCanFire, "Debug Mode: Deq has frontend trigger exception\n") XSDebug(deqHasException && exceptionDataRead.bits.trigger.getBackendCanFire, "Debug Mode: Deq has backend trigger exception\n") val isFlushPipe = isWritebacked(deqPtr.value) && (deqHasFlushPipe || deqHasReplayInst) val isVsetFlushPipe = isWritebacked(deqPtr.value) && deqHasFlushPipe && exceptionDataRead.bits.isVset // val needModifyFtqIdxOffset = isVsetFlushPipe && (vsetvlState === vs_waitFlush) val needModifyFtqIdxOffset = false.B io.isVsetFlushPipe := isVsetFlushPipe io.vconfigPdest := rab.io.vconfigPdest // io.flushOut will trigger redirect at the next cycle. // Block any redirect or commit at the next cycle. val lastCycleFlush = RegNext(io.flushOut.valid) io.flushOut.valid := (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable || isFlushPipe) && !lastCycleFlush io.flushOut.bits := DontCare io.flushOut.bits.isRVC := deqDispatchData.isRVC io.flushOut.bits.robIdx := Mux(needModifyFtqIdxOffset, firstVInstrRobIdx, deqPtr) io.flushOut.bits.ftqIdx := Mux(needModifyFtqIdxOffset, firstVInstrFtqPtr, deqDispatchData.ftqIdx) io.flushOut.bits.ftqOffset := Mux(needModifyFtqIdxOffset, firstVInstrFtqOffset, deqDispatchData.ftqOffset) io.flushOut.bits.level := Mux(deqHasReplayInst || intrEnable || exceptionEnable || needModifyFtqIdxOffset, RedirectLevel.flush, RedirectLevel.flushAfter) // TODO use this to implement "exception next" io.flushOut.bits.interrupt := true.B XSPerfAccumulate("interrupt_num", io.flushOut.valid && intrEnable) XSPerfAccumulate("exception_num", io.flushOut.valid && exceptionEnable) XSPerfAccumulate("flush_pipe_num", io.flushOut.valid && isFlushPipe) XSPerfAccumulate("replay_inst_num", io.flushOut.valid && isFlushPipe && deqHasReplayInst) val exceptionHappen = (state === s_idle) && valid(deqPtr.value) && (intrEnable || exceptionEnable) && !lastCycleFlush io.exception.valid := RegNext(exceptionHappen) io.exception.bits.pc := RegEnable(debug_deqUop.pc, exceptionHappen) io.exception.bits.instr := RegEnable(debug_deqUop.instr, exceptionHappen) io.exception.bits.commitType := RegEnable(deqDispatchData.commitType, exceptionHappen) io.exception.bits.exceptionVec := RegEnable(exceptionDataRead.bits.exceptionVec, exceptionHappen) io.exception.bits.singleStep := RegEnable(exceptionDataRead.bits.singleStep, exceptionHappen) io.exception.bits.crossPageIPFFix := RegEnable(exceptionDataRead.bits.crossPageIPFFix, exceptionHappen) io.exception.bits.isInterrupt := RegEnable(intrEnable, exceptionHappen) io.exception.bits.trigger := RegEnable(exceptionDataRead.bits.trigger, exceptionHappen) io.csr.vstart.valid := RegEnable(exceptionDataRead.bits.vstartEn, false.B, exceptionHappen) io.csr.vstart.bits := RegEnable(exceptionDataRead.bits.vstart, exceptionHappen) XSDebug(io.flushOut.valid, p"generate redirect: pc 0x${Hexadecimal(io.exception.bits.pc)} intr $intrEnable " + p"excp $exceptionEnable flushPipe $isFlushPipe " + p"Trap_target 0x${Hexadecimal(io.csr.trapTarget)} exceptionVec ${Binary(exceptionDataRead.bits.exceptionVec.asUInt)}\n") /** * Commits (and walk) * They share the same width. */ val shouldWalkVec = VecInit(walkPtrVec.map(_ <= lastWalkPtr)) val walkFinished = VecInit(walkPtrVec.map(_ >= lastWalkPtr)).asUInt.orR rab.io.fromRob.walkEnd := state === s_walk && walkFinished vtypeBuffer.io.fromRob.walkEnd := state === s_walk && walkFinished require(RenameWidth <= CommitWidth) // wiring to csr val (wflags, dirtyFs) = (0 until CommitWidth).map(i => { val v = io.commits.commitValid(i) val info = io.commits.info(i) (v & info.wflags, v & info.dirtyFs) }).unzip val fflags = Wire(Valid(UInt(5.W))) fflags.valid := io.commits.isCommit && VecInit(wflags).asUInt.orR fflags.bits := wflags.zip(fflagsDataRead).map({ case (w, f) => Mux(w, f, 0.U) }).reduce(_|_) val dirty_fs = io.commits.isCommit && VecInit(dirtyFs).asUInt.orR val vxsat = Wire(Valid(Bool())) vxsat.valid := io.commits.isCommit && vxsat.bits vxsat.bits := io.commits.commitValid.zip(vxsatDataRead).map { case (valid, vxsat) => valid & vxsat }.reduce(_ | _) // when mispredict branches writeback, stop commit in the next 2 cycles // TODO: don't check all exu write back val misPredWb = Cat(VecInit(redirectWBs.map(wb => wb.bits.redirect.get.bits.cfiUpdate.isMisPred && wb.bits.redirect.get.valid && wb.valid ).toSeq)).orR val misPredBlockCounter = Reg(UInt(3.W)) misPredBlockCounter := Mux(misPredWb, "b111".U, misPredBlockCounter >> 1.U ) val misPredBlock = misPredBlockCounter(0) val blockCommit = misPredBlock || isReplaying || lastCycleFlush || hasWFI || io.redirect.valid io.commits.isWalk := state === s_walk io.commits.isCommit := state === s_idle && !blockCommit val walk_v = VecInit(walkPtrVec.map(ptr => valid(ptr.value))) val commit_v = VecInit(deqPtrVec.map(ptr => valid(ptr.value))) // store will be commited iff both sta & std have been writebacked val commit_w = VecInit(deqPtrVec.map(ptr => isWritebacked(ptr.value) && commitTrigger(ptr.value))) val commit_exception = exceptionDataRead.valid && !isAfter(exceptionDataRead.bits.robIdx, deqPtrVec.last) val commit_block = VecInit((0 until CommitWidth).map(i => !commit_w(i))) val allowOnlyOneCommit = commit_exception || intrBitSetReg // for instructions that may block others, we don't allow them to commit for (i <- 0 until CommitWidth) { // defaults: state === s_idle and instructions commit // when intrBitSetReg, allow only one instruction to commit at each clock cycle val isBlocked = if (i != 0) Cat(commit_block.take(i)).orR || allowOnlyOneCommit else intrEnable || deqHasException || deqHasReplayInst io.commits.commitValid(i) := commit_v(i) && commit_w(i) && !isBlocked io.commits.info(i) := dispatchDataRead(i) io.commits.robIdx(i) := deqPtrVec(i) io.commits.walkValid(i) := shouldWalkVec(i) when (state === s_walk) { when (io.commits.isWalk && state === s_walk && shouldWalkVec(i)) { XSError(!walk_v(i), s"The walking entry($i) should be valid\n") } } XSInfo(io.commits.isCommit && io.commits.commitValid(i), "retired pc %x wen %d ldest %d pdest %x data %x fflags: %b vxsat: %b\n", debug_microOp(deqPtrVec(i).value).pc, io.commits.info(i).rfWen, io.commits.info(i).ldest, io.commits.info(i).pdest, debug_exuData(deqPtrVec(i).value), fflagsDataRead(i), vxsatDataRead(i) ) XSInfo(state === s_walk && io.commits.walkValid(i), "walked pc %x wen %d ldst %d data %x\n", debug_microOp(walkPtrVec(i).value).pc, io.commits.info(i).rfWen, io.commits.info(i).ldest, debug_exuData(walkPtrVec(i).value) ) } if (env.EnableDifftest) { io.commits.info.map(info => dontTouch(info.pc)) } // sync fflags/dirty_fs/vxsat to csr io.csr.fflags := RegNext(fflags) io.csr.dirty_fs := RegNext(dirty_fs) io.csr.vxsat := RegNext(vxsat) // sync v csr to csr // for difftest if(env.AlwaysBasicDiff || env.EnableDifftest) { val isDiffWriteVconfigVec = io.diffCommits.commitValid.zip(io.diffCommits.info).map { case (valid, info) => valid && info.ldest === VCONFIG_IDX.U && info.vecWen }.reverse io.csr.vcsrFlag := RegNext(io.diffCommits.isCommit && Cat(isDiffWriteVconfigVec).orR) } else{ io.csr.vcsrFlag := false.B } // commit load/store to lsq val ldCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.LOAD)) val stCommitVec = VecInit((0 until CommitWidth).map(i => io.commits.commitValid(i) && io.commits.info(i).commitType === CommitType.STORE)) val deqPtrVec_next = Wire(Vec(CommitWidth, Output(new RobPtr))) io.lsq.lcommit := RegNext(Mux(io.commits.isCommit, PopCount(ldCommitVec), 0.U)) io.lsq.scommit := RegNext(Mux(io.commits.isCommit, PopCount(stCommitVec), 0.U)) // indicate a pending load or store io.lsq.pendingld := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.LOAD && valid(deqPtr.value) && mmio(deqPtr.value)) io.lsq.pendingst := RegNext(io.commits.isCommit && io.commits.info(0).commitType === CommitType.STORE && valid(deqPtr.value)) io.lsq.commit := RegNext(io.commits.isCommit && io.commits.commitValid(0)) io.lsq.pendingPtr := RegNext(deqPtr) io.lsq.pendingPtrNext := RegNext(deqPtrVec_next.head) /** * state changes * (1) redirect: switch to s_walk * (2) walk: when walking comes to the end, switch to s_idle */ val state_next = Mux( io.redirect.valid, s_walk, Mux( state === s_walk && walkFinished && rab.io.status.walkEnd && vtypeBuffer.io.status.walkEnd, s_idle, state ) ) XSPerfAccumulate("s_idle_to_idle", state === s_idle && state_next === s_idle) XSPerfAccumulate("s_idle_to_walk", state === s_idle && state_next === s_walk) XSPerfAccumulate("s_walk_to_idle", state === s_walk && state_next === s_idle) XSPerfAccumulate("s_walk_to_walk", state === s_walk && state_next === s_walk) state := state_next /** * pointers and counters */ val deqPtrGenModule = Module(new RobDeqPtrWrapper) deqPtrGenModule.io.state := state deqPtrGenModule.io.deq_v := commit_v deqPtrGenModule.io.deq_w := commit_w deqPtrGenModule.io.exception_state := exceptionDataRead deqPtrGenModule.io.intrBitSetReg := intrBitSetReg deqPtrGenModule.io.hasNoSpecExec := hasWaitForward deqPtrGenModule.io.interrupt_safe := interrupt_safe(deqPtr.value) deqPtrGenModule.io.blockCommit := blockCommit deqPtrVec := deqPtrGenModule.io.out deqPtrVec_next := deqPtrGenModule.io.next_out val enqPtrGenModule = Module(new RobEnqPtrWrapper) enqPtrGenModule.io.redirect := io.redirect enqPtrGenModule.io.allowEnqueue := allowEnqueue && rab.io.canEnq enqPtrGenModule.io.hasBlockBackward := hasBlockBackward enqPtrGenModule.io.enq := VecInit(io.enq.req.map(req => req.valid && req.bits.firstUop)) enqPtrVec := enqPtrGenModule.io.out // next walkPtrVec: // (1) redirect occurs: update according to state // (2) walk: move forwards val walkPtrVec_next = Mux(io.redirect.valid, Mux(io.snpt.useSnpt, snapshots(io.snpt.snptSelect), deqPtrVec_next), Mux(state === s_walk, VecInit(walkPtrVec.map(_ + CommitWidth.U)), walkPtrVec) ) walkPtrVec := walkPtrVec_next val numValidEntries = distanceBetween(enqPtr, deqPtr) val commitCnt = PopCount(io.commits.commitValid) allowEnqueue := numValidEntries + dispatchNum <= (RobSize - RenameWidth).U val redirectWalkDistance = distanceBetween(io.redirect.bits.robIdx, deqPtrVec_next(0)) when (io.redirect.valid) { lastWalkPtr := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx - 1.U, io.redirect.bits.robIdx) } /** * States * We put all the stage bits changes here. * All events: (1) enqueue (dispatch); (2) writeback; (3) cancel; (4) dequeue (commit); * All states: (1) valid; (2) writebacked; (3) flagBkup */ val commitReadAddr = Mux(state === s_idle, VecInit(deqPtrVec.map(_.value)), VecInit(walkPtrVec.map(_.value))) // redirect logic writes 6 valid val redirectHeadVec = Reg(Vec(RenameWidth, new RobPtr)) val redirectTail = Reg(new RobPtr) val redirectIdle :: redirectBusy :: Nil = Enum(2) val redirectState = RegInit(redirectIdle) val invMask = redirectHeadVec.map(redirectHead => isBefore(redirectHead, redirectTail)) when(redirectState === redirectBusy) { redirectHeadVec.foreach(redirectHead => redirectHead := redirectHead + RenameWidth.U) redirectHeadVec zip invMask foreach { case (redirectHead, inv) => when(inv) { valid(redirectHead.value) := false.B } } when(!invMask.last) { redirectState := redirectIdle } } when(io.redirect.valid) { redirectState := redirectBusy when(redirectState === redirectIdle) { redirectTail := enqPtr } redirectHeadVec.zipWithIndex.foreach { case (redirectHead, i) => redirectHead := Mux(io.redirect.bits.flushItself(), io.redirect.bits.robIdx + i.U, io.redirect.bits.robIdx + (i + 1).U) } } // enqueue logic writes 6 valid for (i <- 0 until RenameWidth) { when (canEnqueue(i) && !io.redirect.valid) { valid(allocatePtrVec(i).value) := true.B } } // dequeue logic writes 6 valid for (i <- 0 until CommitWidth) { val commitValid = io.commits.isCommit && io.commits.commitValid(i) when (commitValid) { valid(commitReadAddr(i)) := false.B } } // debug_inst update for(i <- 0 until (LduCnt + StaCnt)) { debug_lsInfo(io.debug_ls.debugLsInfo(i).s1_robIdx).s1SignalEnable(io.debug_ls.debugLsInfo(i)) debug_lsInfo(io.debug_ls.debugLsInfo(i).s2_robIdx).s2SignalEnable(io.debug_ls.debugLsInfo(i)) } for (i <- 0 until LduCnt) { debug_lsTopdownInfo(io.lsTopdownInfo(i).s1.robIdx).s1SignalEnable(io.lsTopdownInfo(i)) debug_lsTopdownInfo(io.lsTopdownInfo(i).s2.robIdx).s2SignalEnable(io.lsTopdownInfo(i)) } // status field: writebacked // enqueue logic set 6 writebacked to false for (i <- 0 until RenameWidth) { when(canEnqueue(i)) { val enqHasException = ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec).asUInt.orR val enqHasTriggerCanFire = io.enq.req(i).bits.trigger.getFrontendCanFire val enqIsWritebacked = io.enq.req(i).bits.eliminatedMove val isStu = FuType.isStore(io.enq.req(i).bits.fuType) commitTrigger(allocatePtrVec(i).value) := enqIsWritebacked && !enqHasException && !enqHasTriggerCanFire && !isStu } } when(exceptionGen.io.out.valid) { val wbIdx = exceptionGen.io.out.bits.robIdx.value commitTrigger(wbIdx) := true.B } // writeback logic set numWbPorts writebacked to true val blockWbSeq = Wire(Vec(exuWBs.length, Bool())) blockWbSeq.map(_ := false.B) for ((wb, blockWb) <- exuWBs.zip(blockWbSeq)) { when(wb.valid) { val wbIdx = wb.bits.robIdx.value val wbHasException = wb.bits.exceptionVec.getOrElse(0.U).asUInt.orR val wbHasTriggerCanFire = wb.bits.trigger.getOrElse(0.U).asTypeOf(io.enq.req(0).bits.trigger).getBackendCanFire //Todo: wb.bits.trigger.getHitBackend val wbHasFlushPipe = wb.bits.flushPipe.getOrElse(false.B) val wbHasReplayInst = wb.bits.replay.getOrElse(false.B) //Todo: && wb.bits.replayInst blockWb := wbHasException || wbHasFlushPipe || wbHasReplayInst || wbHasTriggerCanFire commitTrigger(wbIdx) := !blockWb } } // if the first uop of an instruction is valid , write writebackedCounter val uopEnqValidSeq = io.enq.req.map(req => io.enq.canAccept && req.valid) val instEnqValidSeq = io.enq.req.map (req => io.enq.canAccept && req.valid && req.bits.firstUop) val enqNeedWriteRFSeq = io.enq.req.map(_.bits.needWriteRf) val enqRobIdxSeq = io.enq.req.map(req => req.bits.robIdx.value) val enqUopNumVec = VecInit(io.enq.req.map(req => req.bits.numUops)) val enqWBNumVec = VecInit(io.enq.req.map(req => req.bits.numWB)) val enqEliminatedMoveVec = VecInit(io.enq.req.map(req => req.bits.eliminatedMove)) private val enqWriteStdVec: Vec[Bool] = VecInit(io.enq.req.map { req => FuType.isAMO(req.bits.fuType) || FuType.isStore(req.bits.fuType) }) val fflags_wb = fflagsPorts val vxsat_wb = vxsatPorts for(i <- 0 until RobSize){ val robIdxMatchSeq = io.enq.req.map(_.bits.robIdx.value === i.U) val uopCanEnqSeq = uopEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } val instCanEnqSeq = instEnqValidSeq.zip(robIdxMatchSeq).map{ case(valid, isMatch) => valid && isMatch } val instCanEnqFlag = Cat(instCanEnqSeq).orR realDestSize(i) := Mux(!valid(i) && instCanEnqFlag || valid(i), realDestSize(i) + PopCount(enqNeedWriteRFSeq.zip(uopCanEnqSeq).map{ case(writeFlag, valid) => writeFlag && valid }), 0.U) val enqUopNum = PriorityMux(instCanEnqSeq, enqUopNumVec) val enqWBNum = PriorityMux(instCanEnqSeq, enqWBNumVec) val enqEliminatedMove = PriorityMux(instCanEnqSeq, enqEliminatedMoveVec) val enqWriteStd = PriorityMux(instCanEnqSeq, enqWriteStdVec) val canWbSeq = exuWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) val canWbNoBlockSeq = canWbSeq.zip(blockWbSeq).map{ case(canWb, blockWb) => canWb && !blockWb } val canStdWbSeq = VecInit(stdWBs.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U)) val wbCnt = PopCount(canWbNoBlockSeq) val exceptionHas = RegInit(false.B) val exceptionHasWire = Wire(Bool()) exceptionHasWire := MuxCase(exceptionHas, Seq( (valid(i) && exceptionGen.io.out.valid && exceptionGen.io.out.bits.robIdx.value === i.U) -> true.B, !valid(i) -> false.B )) exceptionHas := exceptionHasWire when (exceptionHas || exceptionHasWire) { // exception flush uopNumVec(i) := 0.U stdWritebacked(i) := true.B }.elsewhen(!valid(i) && instCanEnqFlag) { // enq set num of uops uopNumVec(i) := enqWBNum stdWritebacked(i) := Mux(enqWriteStd, false.B, true.B) }.elsewhen(valid(i)) { // update by writing back uopNumVec(i) := uopNumVec(i) - wbCnt assert(!(uopNumVec(i) - wbCnt > uopNumVec(i)), "Overflow!") when (canStdWbSeq.asUInt.orR) { stdWritebacked(i) := true.B } }.otherwise { uopNumVec(i) := 0.U } val fflagsCanWbSeq = fflags_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U && writeback.bits.wflags.getOrElse(false.B)) val fflagsRes = fflagsCanWbSeq.zip(fflags_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.fflags.get, 0.U) }.fold(false.B)(_ | _) fflagsDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, fflagsDataModule(i) | fflagsRes) val vxsatCanWbSeq = vxsat_wb.map(writeback => writeback.valid && writeback.bits.robIdx.value === i.U) val vxsatRes = vxsatCanWbSeq.zip(vxsat_wb).map { case (canWb, wb) => Mux(canWb, wb.bits.vxsat.get, 0.U) }.fold(false.B)(_ | _) vxsatDataModule(i) := Mux(!valid(i) && instCanEnqFlag, 0.U, vxsatDataModule(i) | vxsatRes) } // flagBkup // enqueue logic set 6 flagBkup at most for (i <- 0 until RenameWidth) { when (canEnqueue(i)) { flagBkup(allocatePtrVec(i).value) := allocatePtrVec(i).flag } } // interrupt_safe for (i <- 0 until RenameWidth) { // We RegNext the updates for better timing. // Note that instructions won't change the system's states in this cycle. when (RegNext(canEnqueue(i))) { // For now, we allow non-load-store instructions to trigger interrupts // For MMIO instructions, they should not trigger interrupts since they may // be sent to lower level before it writes back. // However, we cannot determine whether a load/store instruction is MMIO. // Thus, we don't allow load/store instructions to trigger an interrupt. // TODO: support non-MMIO load-store instructions to trigger interrupts val allow_interrupts = !CommitType.isLoadStore(io.enq.req(i).bits.commitType) interrupt_safe(RegNext(allocatePtrVec(i).value)) := RegNext(allow_interrupts) } } /** * read and write of data modules */ val commitReadAddr_next = Mux(state_next === s_idle, VecInit(deqPtrVec_next.map(_.value)), VecInit(walkPtrVec_next.map(_.value)) ) dispatchData.io.wen := canEnqueue dispatchData.io.waddr := allocatePtrVec.map(_.value) dispatchData.io.wdata.zip(io.enq.req.map(_.bits)).zipWithIndex.foreach { case ((wdata, req), portIdx) => wdata.ldest := req.ldest wdata.rfWen := req.rfWen wdata.dirtyFs := req.dirtyFs wdata.vecWen := req.vecWen wdata.wflags := req.wfflags wdata.commitType := req.commitType wdata.pdest := req.pdest wdata.ftqIdx := req.ftqPtr wdata.ftqOffset := req.ftqOffset wdata.isMove := req.eliminatedMove wdata.isRVC := req.preDecodeInfo.isRVC wdata.pc := req.pc wdata.vtype := req.vpu.vtype wdata.isVset := req.isVset wdata.instrSize := req.instrSize } dispatchData.io.raddr := commitReadAddr_next exceptionGen.io.redirect <> io.redirect exceptionGen.io.flush := io.flushOut.valid val canEnqueueEG = VecInit(io.enq.req.map(req => req.valid && io.enq.canAccept)) for (i <- 0 until RenameWidth) { exceptionGen.io.enq(i).valid := canEnqueueEG(i) exceptionGen.io.enq(i).bits.robIdx := io.enq.req(i).bits.robIdx exceptionGen.io.enq(i).bits.exceptionVec := ExceptionNO.selectFrontend(io.enq.req(i).bits.exceptionVec) exceptionGen.io.enq(i).bits.flushPipe := io.enq.req(i).bits.flushPipe exceptionGen.io.enq(i).bits.isVset := io.enq.req(i).bits.isVset exceptionGen.io.enq(i).bits.replayInst := false.B XSError(canEnqueue(i) && io.enq.req(i).bits.replayInst, "enq should not set replayInst") exceptionGen.io.enq(i).bits.singleStep := io.enq.req(i).bits.singleStep exceptionGen.io.enq(i).bits.crossPageIPFFix := io.enq.req(i).bits.crossPageIPFFix exceptionGen.io.enq(i).bits.trigger.clear() exceptionGen.io.enq(i).bits.trigger.frontendHit := io.enq.req(i).bits.trigger.frontendHit exceptionGen.io.enq(i).bits.trigger.frontendCanFire := io.enq.req(i).bits.trigger.frontendCanFire exceptionGen.io.enq(i).bits.vstartEn := false.B //DontCare exceptionGen.io.enq(i).bits.vstart := 0.U //DontCare } println(s"ExceptionGen:") println(s"num of exceptions: ${params.numException}") require(exceptionWBs.length == exceptionGen.io.wb.length, f"exceptionWBs.length: ${exceptionWBs.length}, " + f"exceptionGen.io.wb.length: ${exceptionGen.io.wb.length}") for (((wb, exc_wb), i) <- exceptionWBs.zip(exceptionGen.io.wb).zipWithIndex) { exc_wb.valid := wb.valid exc_wb.bits.robIdx := wb.bits.robIdx exc_wb.bits.exceptionVec := wb.bits.exceptionVec.get exc_wb.bits.flushPipe := wb.bits.flushPipe.getOrElse(false.B) exc_wb.bits.isVset := false.B exc_wb.bits.replayInst := wb.bits.replay.getOrElse(false.B) exc_wb.bits.singleStep := false.B exc_wb.bits.crossPageIPFFix := false.B // TODO: make trigger configurable val trigger = wb.bits.trigger.getOrElse(0.U).asTypeOf(exc_wb.bits.trigger) exc_wb.bits.trigger.clear() // Don't care frontend timing, chain, hit and canFire exc_wb.bits.trigger.backendHit := trigger.backendHit exc_wb.bits.trigger.backendCanFire := trigger.backendCanFire exc_wb.bits.vstartEn := false.B //wb.bits.vstartEn.getOrElse(false.B) // todo need add vstart in ExuOutput exc_wb.bits.vstart := 0.U //wb.bits.vstart.getOrElse(0.U) // println(s" [$i] ${configs.map(_.name)}: exception ${exceptionCases(i)}, " + // s"flushPipe ${configs.exists(_.flushPipe)}, " + // s"replayInst ${configs.exists(_.replayInst)}") } fflagsDataRead := (0 until CommitWidth).map(i => fflagsDataModule(deqPtrVec(i).value)) vxsatDataRead := (0 until CommitWidth).map(i => vxsatDataModule(deqPtrVec(i).value)) val instrCntReg = RegInit(0.U(64.W)) val fuseCommitCnt = PopCount(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => RegNext(v && CommitType.isFused(i.commitType)) }) val trueCommitCnt = RegNext(io.commits.commitValid.zip(io.commits.info).map{ case (v, i) => Mux(v, i.instrSize, 0.U) }.reduce(_ +& _)) +& fuseCommitCnt val retireCounter = Mux(RegNext(io.commits.isCommit), trueCommitCnt, 0.U) val instrCnt = instrCntReg + retireCounter instrCntReg := instrCnt io.csr.perfinfo.retiredInstr := retireCounter io.robFull := !allowEnqueue io.headNotReady := commit_v.head && !commit_w.head /** * debug info */ XSDebug(p"enqPtr ${enqPtr} deqPtr ${deqPtr}\n") XSDebug("") XSError(isBefore(enqPtr, deqPtr) && !isFull(enqPtr, deqPtr), "\ndeqPtr is older than enqPtr!\n") for(i <- 0 until RobSize) { XSDebug(false, !valid(i), "-") XSDebug(false, valid(i) && isWritebacked(i.U), "w") XSDebug(false, valid(i) && !isWritebacked(i.U), "v") } XSDebug(false, true.B, "\n") for(i <- 0 until RobSize) { if (i % 4 == 0) XSDebug("") XSDebug(false, true.B, "%x ", debug_microOp(i).pc) XSDebug(false, !valid(i), "- ") XSDebug(false, valid(i) && isWritebacked(i.U), "w ") XSDebug(false, valid(i) && !isWritebacked(i.U), "v ") if (i % 4 == 3) XSDebug(false, true.B, "\n") } def ifCommit(counter: UInt): UInt = Mux(io.commits.isCommit, counter, 0.U) def ifCommitReg(counter: UInt): UInt = Mux(RegNext(io.commits.isCommit), counter, 0.U) val commitDebugUop = deqPtrVec.map(_.value).map(debug_microOp(_)) XSPerfAccumulate("clock_cycle", 1.U) QueuePerf(RobSize, numValidEntries, numValidEntries === RobSize.U) XSPerfAccumulate("commitUop", ifCommit(commitCnt)) XSPerfAccumulate("commitInstr", ifCommitReg(trueCommitCnt)) XSPerfRolling("ipc", ifCommitReg(trueCommitCnt), 1000, clock, reset) XSPerfRolling("cpi", perfCnt = 1.U/*Cycle*/, eventTrigger = ifCommitReg(trueCommitCnt), granularity = 1000, clock, reset) val commitIsMove = commitDebugUop.map(_.isMove) XSPerfAccumulate("commitInstrMove", ifCommit(PopCount(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }))) val commitMoveElim = commitDebugUop.map(_.debugInfo.eliminatedMove) XSPerfAccumulate("commitInstrMoveElim", ifCommit(PopCount(io.commits.commitValid zip commitMoveElim map { case (v, e) => v && e }))) XSPerfAccumulate("commitInstrFused", ifCommitReg(fuseCommitCnt)) val commitIsLoad = io.commits.info.map(_.commitType).map(_ === CommitType.LOAD) val commitLoadValid = io.commits.commitValid.zip(commitIsLoad).map{ case (v, t) => v && t } XSPerfAccumulate("commitInstrLoad", ifCommit(PopCount(commitLoadValid))) val commitIsBranch = io.commits.info.map(_.commitType).map(_ === CommitType.BRANCH) val commitBranchValid = io.commits.commitValid.zip(commitIsBranch).map{ case (v, t) => v && t } XSPerfAccumulate("commitInstrBranch", ifCommit(PopCount(commitBranchValid))) val commitLoadWaitBit = commitDebugUop.map(_.loadWaitBit) XSPerfAccumulate("commitInstrLoadWait", ifCommit(PopCount(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }))) val commitIsStore = io.commits.info.map(_.commitType).map(_ === CommitType.STORE) XSPerfAccumulate("commitInstrStore", ifCommit(PopCount(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }))) XSPerfAccumulate("writeback", PopCount((0 until RobSize).map(i => valid(i) && isWritebacked(i.U)))) // XSPerfAccumulate("enqInstr", PopCount(io.dp1Req.map(_.fire))) // XSPerfAccumulate("d2rVnR", PopCount(io.dp1Req.map(p => p.valid && !p.ready))) XSPerfAccumulate("walkInstr", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U)) XSPerfAccumulate("walkCycleTotal", state === s_walk) XSPerfAccumulate("waitRabWalkEnd", state === s_walk && walkFinished && !rab.io.status.walkEnd) private val walkCycle = RegInit(0.U(8.W)) private val waitRabWalkCycle = RegInit(0.U(8.W)) walkCycle := Mux(io.redirect.valid, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) waitRabWalkCycle := Mux(state === s_walk && walkFinished, 0.U, Mux(state === s_walk, walkCycle + 1.U, 0.U)) XSPerfHistogram("walkRobCycleHist", walkCycle, state === s_walk && walkFinished, 0, 32) XSPerfHistogram("walkRabExtraCycleHist", waitRabWalkCycle, state === s_walk && walkFinished && rab.io.status.walkEnd, 0, 32) XSPerfHistogram("walkTotalCycleHist", walkCycle, state === s_walk && state_next === s_idle, 0, 32) private val deqNotWritebacked = valid(deqPtr.value) && !isWritebacked(deqPtr.value) private val deqStdNotWritebacked = valid(deqPtr.value) && !stdWritebacked(deqPtr.value) private val deqUopNotWritebacked = valid(deqPtr.value) && !isUopWritebacked(deqPtr.value) private val deqHeadInfo = debug_microOp(deqPtr.value) val deqUopCommitType = io.commits.info(0).commitType XSPerfAccumulate("waitAluCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.alu.U) XSPerfAccumulate("waitMulCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.mul.U) XSPerfAccumulate("waitDivCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.div.U) XSPerfAccumulate("waitBrhCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.brh.U) XSPerfAccumulate("waitJmpCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.jmp.U) XSPerfAccumulate("waitCsrCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.csr.U) XSPerfAccumulate("waitFenCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.fence.U) XSPerfAccumulate("waitBkuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.bku.U) XSPerfAccumulate("waitLduCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.ldu.U) XSPerfAccumulate("waitStuCycle", deqNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) XSPerfAccumulate("waitStaCycle", deqUopNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) XSPerfAccumulate("waitStdCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.stu.U) XSPerfAccumulate("waitAtmCycle", deqStdNotWritebacked && deqHeadInfo.fuType === FuType.mou.U) XSPerfAccumulate("waitNormalCycle", deqNotWritebacked && deqUopCommitType === CommitType.NORMAL) XSPerfAccumulate("waitBranchCycle", deqNotWritebacked && deqUopCommitType === CommitType.BRANCH) XSPerfAccumulate("waitLoadCycle", deqNotWritebacked && deqUopCommitType === CommitType.LOAD) XSPerfAccumulate("waitStoreCycle", deqNotWritebacked && deqUopCommitType === CommitType.STORE) XSPerfAccumulate("robHeadPC", io.commits.info(0).pc) XSPerfAccumulate("commitCompressCntAll", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize > 1.U})) (2 to RenameWidth).foreach(i => XSPerfAccumulate(s"commitCompressCnt${i}", PopCount(io.commits.commitValid.zip(io.commits.info).map{case(valid, info) => io.commits.isCommit && valid && info.instrSize === i.U})) ) XSPerfAccumulate("compressSize", io.commits.commitValid.zip(io.commits.info).map { case (valid, info) => Mux(io.commits.isCommit && valid && info.instrSize > 1.U, info.instrSize, 0.U) }.reduce(_ +& _)) val dispatchLatency = commitDebugUop.map(uop => uop.debugInfo.dispatchTime - uop.debugInfo.renameTime) val enqRsLatency = commitDebugUop.map(uop => uop.debugInfo.enqRsTime - uop.debugInfo.dispatchTime) val selectLatency = commitDebugUop.map(uop => uop.debugInfo.selectTime - uop.debugInfo.enqRsTime) val issueLatency = commitDebugUop.map(uop => uop.debugInfo.issueTime - uop.debugInfo.selectTime) val executeLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.issueTime) val rsFuLatency = commitDebugUop.map(uop => uop.debugInfo.writebackTime - uop.debugInfo.enqRsTime) val commitLatency = commitDebugUop.map(uop => timer - uop.debugInfo.writebackTime) def latencySum(cond: Seq[Bool], latency: Seq[UInt]): UInt = { cond.zip(latency).map(x => Mux(x._1, x._2, 0.U)).reduce(_ +& _) } for (fuType <- FuType.functionNameMap.keys) { val fuName = FuType.functionNameMap(fuType) val commitIsFuType = io.commits.commitValid.zip(commitDebugUop).map(x => x._1 && x._2.fuType === fuType.U ) XSPerfRolling(s"ipc_futype_${fuName}", ifCommit(PopCount(commitIsFuType)), 1000, clock, reset) XSPerfAccumulate(s"${fuName}_instr_cnt", ifCommit(PopCount(commitIsFuType))) XSPerfAccumulate(s"${fuName}_latency_dispatch", ifCommit(latencySum(commitIsFuType, dispatchLatency))) XSPerfAccumulate(s"${fuName}_latency_enq_rs", ifCommit(latencySum(commitIsFuType, enqRsLatency))) XSPerfAccumulate(s"${fuName}_latency_select", ifCommit(latencySum(commitIsFuType, selectLatency))) XSPerfAccumulate(s"${fuName}_latency_issue", ifCommit(latencySum(commitIsFuType, issueLatency))) XSPerfAccumulate(s"${fuName}_latency_execute", ifCommit(latencySum(commitIsFuType, executeLatency))) XSPerfAccumulate(s"${fuName}_latency_enq_rs_execute", ifCommit(latencySum(commitIsFuType, rsFuLatency))) XSPerfAccumulate(s"${fuName}_latency_commit", ifCommit(latencySum(commitIsFuType, commitLatency))) } XSPerfAccumulate(s"redirect_use_snapshot", io.redirect.valid && io.snpt.useSnpt) // top-down info io.debugTopDown.toCore.robHeadVaddr.valid := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_valid io.debugTopDown.toCore.robHeadVaddr.bits := debug_lsTopdownInfo(deqPtr.value).s1.vaddr_bits io.debugTopDown.toCore.robHeadPaddr.valid := debug_lsTopdownInfo(deqPtr.value).s2.paddr_valid io.debugTopDown.toCore.robHeadPaddr.bits := debug_lsTopdownInfo(deqPtr.value).s2.paddr_bits io.debugTopDown.toDispatch.robTrueCommit := ifCommitReg(trueCommitCnt) io.debugTopDown.toDispatch.robHeadLsIssue := debug_lsIssue(deqPtr.value) io.debugTopDown.robHeadLqIdx.valid := debug_lqIdxValid(deqPtr.value) io.debugTopDown.robHeadLqIdx.bits := debug_microOp(deqPtr.value).lqIdx // rolling io.debugRolling.robTrueCommit := ifCommitReg(trueCommitCnt) /** * DataBase info: * log trigger is at writeback valid * */ /** * @todo add InstInfoEntry back * @author Maxpicca-Li */ //difftest signals val firstValidCommit = (deqPtr + PriorityMux(io.commits.commitValid, VecInit(List.tabulate(CommitWidth)(_.U(log2Up(CommitWidth).W))))).value val wdata = Wire(Vec(CommitWidth, UInt(XLEN.W))) val wpc = Wire(Vec(CommitWidth, UInt(XLEN.W))) for(i <- 0 until CommitWidth) { val idx = deqPtrVec(i).value wdata(i) := debug_exuData(idx) wpc(i) := SignExt(commitDebugUop(i).pc, XLEN) } if (env.EnableDifftest || env.AlwaysBasicDiff) { // These are the structures used by difftest only and should be optimized after synthesis. val dt_eliminatedMove = Mem(RobSize, Bool()) val dt_isRVC = Mem(RobSize, Bool()) val dt_exuDebug = Reg(Vec(RobSize, new DebugBundle)) for (i <- 0 until RenameWidth) { when (canEnqueue(i)) { dt_eliminatedMove(allocatePtrVec(i).value) := io.enq.req(i).bits.eliminatedMove dt_isRVC(allocatePtrVec(i).value) := io.enq.req(i).bits.preDecodeInfo.isRVC } } for (wb <- exuWBs) { when (wb.valid) { val wbIdx = wb.bits.robIdx.value dt_exuDebug(wbIdx) := wb.bits.debug } } // Always instantiate basic difftest modules. for (i <- 0 until CommitWidth) { val uop = commitDebugUop(i) val commitInfo = io.commits.info(i) val ptr = deqPtrVec(i).value val exuOut = dt_exuDebug(ptr) val eliminatedMove = dt_eliminatedMove(ptr) val isRVC = dt_isRVC(ptr) val difftest = DifftestModule(new DiffInstrCommit(MaxPhyPregs), delay = 3, dontCare = true) difftest.coreid := io.hartId difftest.index := i.U difftest.valid := io.commits.commitValid(i) && io.commits.isCommit difftest.skip := Mux(eliminatedMove, false.B, exuOut.isMMIO || exuOut.isPerfCnt) difftest.isRVC := isRVC difftest.rfwen := io.commits.commitValid(i) && commitInfo.rfWen && commitInfo.ldest =/= 0.U difftest.fpwen := io.commits.commitValid(i) && uop.fpWen difftest.wpdest := commitInfo.pdest difftest.wdest := commitInfo.ldest difftest.nFused := CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize - 1.U when(difftest.valid) { assert(CommitType.isFused(commitInfo.commitType).asUInt + commitInfo.instrSize >= 1.U) } if (env.EnableDifftest) { val uop = commitDebugUop(i) difftest.pc := SignExt(uop.pc, XLEN) difftest.instr := uop.instr difftest.robIdx := ZeroExt(ptr, 10) difftest.lqIdx := ZeroExt(uop.lqIdx.value, 7) difftest.sqIdx := ZeroExt(uop.sqIdx.value, 7) difftest.isLoad := io.commits.info(i).commitType === CommitType.LOAD difftest.isStore := io.commits.info(i).commitType === CommitType.STORE } } } if (env.EnableDifftest) { for (i <- 0 until CommitWidth) { val difftest = DifftestModule(new DiffLoadEvent, delay = 3) difftest.coreid := io.hartId difftest.index := i.U val ptr = deqPtrVec(i).value val uop = commitDebugUop(i) val exuOut = debug_exuDebug(ptr) difftest.valid := io.commits.commitValid(i) && io.commits.isCommit difftest.paddr := exuOut.paddr difftest.opType := uop.fuOpType difftest.fuType := uop.fuType } } if (env.EnableDifftest || env.AlwaysBasicDiff) { val dt_isXSTrap = Mem(RobSize, Bool()) for (i <- 0 until RenameWidth) { when (canEnqueue(i)) { dt_isXSTrap(allocatePtrVec(i).value) := io.enq.req(i).bits.isXSTrap } } val trapVec = io.commits.commitValid.zip(deqPtrVec).map{ case (v, d) => io.commits.isCommit && v && dt_isXSTrap(d.value) } val hitTrap = trapVec.reduce(_||_) val difftest = DifftestModule(new DiffTrapEvent, dontCare = true) difftest.coreid := io.hartId difftest.hasTrap := hitTrap difftest.cycleCnt := timer difftest.instrCnt := instrCnt difftest.hasWFI := hasWFI if (env.EnableDifftest) { val trapCode = PriorityMux(wdata.zip(trapVec).map(x => x._2 -> x._1)) val trapPC = SignExt(PriorityMux(wpc.zip(trapVec).map(x => x._2 ->x._1)), XLEN) difftest.code := trapCode difftest.pc := trapPC } } val validEntriesBanks = (0 until (RobSize + 31) / 32).map(i => RegNext(PopCount(valid.drop(i * 32).take(32)))) val validEntries = RegNext(VecInit(validEntriesBanks).reduceTree(_ +& _)) val commitMoveVec = VecInit(io.commits.commitValid.zip(commitIsMove).map{ case (v, m) => v && m }) val commitLoadVec = VecInit(commitLoadValid) val commitBranchVec = VecInit(commitBranchValid) val commitLoadWaitVec = VecInit(commitLoadValid.zip(commitLoadWaitBit).map{ case (v, w) => v && w }) val commitStoreVec = VecInit(io.commits.commitValid.zip(commitIsStore).map{ case (v, t) => v && t }) val perfEvents = Seq( ("rob_interrupt_num ", io.flushOut.valid && intrEnable ), ("rob_exception_num ", io.flushOut.valid && exceptionEnable ), ("rob_flush_pipe_num ", io.flushOut.valid && isFlushPipe ), ("rob_replay_inst_num ", io.flushOut.valid && isFlushPipe && deqHasReplayInst ), ("rob_commitUop ", ifCommit(commitCnt) ), ("rob_commitInstr ", ifCommitReg(trueCommitCnt) ), ("rob_commitInstrMove ", ifCommitReg(PopCount(RegNext(commitMoveVec))) ), ("rob_commitInstrFused ", ifCommitReg(fuseCommitCnt) ), ("rob_commitInstrLoad ", ifCommitReg(PopCount(RegNext(commitLoadVec))) ), ("rob_commitInstrBranch ", ifCommitReg(PopCount(RegNext(commitBranchVec))) ), ("rob_commitInstrLoadWait", ifCommitReg(PopCount(RegNext(commitLoadWaitVec))) ), ("rob_commitInstrStore ", ifCommitReg(PopCount(RegNext(commitStoreVec))) ), ("rob_walkInstr ", Mux(io.commits.isWalk, PopCount(io.commits.walkValid), 0.U) ), ("rob_walkCycle ", (state === s_walk) ), ("rob_1_4_valid ", validEntries <= (RobSize / 4).U ), ("rob_2_4_valid ", validEntries > (RobSize / 4).U && validEntries <= (RobSize / 2).U ), ("rob_3_4_valid ", validEntries > (RobSize / 2).U && validEntries <= (RobSize * 3 / 4).U), ("rob_4_4_valid ", validEntries > (RobSize * 3 / 4).U ), ) generatePerfEvent() }