/aosp_15_r20/external/eigen/unsupported/test/ |
H A D | cxx11_tensor_contraction.cpp | 22 Tensor<float, 2, DataLayout> mat1(2, 3); in test_evals() local 26 mat1.setRandom(); in test_evals() 33 typedef TensorEvaluator<decltype(mat1.contract(mat2, dims3)), DefaultDevice> Evaluator; in test_evals() 34 Evaluator eval(mat1.contract(mat2, dims3), DefaultDevice()); in test_evals() 40 VERIFY_IS_APPROX(mat4(0,0), mat1(0,0)*mat2(0,0) + mat1(1,0)*mat2(1,0)); in test_evals() 41 VERIFY_IS_APPROX(mat4(0,1), mat1(0,0)*mat2(0,1) + mat1(1,0)*mat2(1,1)); in test_evals() 42 VERIFY_IS_APPROX(mat4(0,2), mat1(0,0)*mat2(0,2) + mat1(1,0)*mat2(1,2)); in test_evals() 43 VERIFY_IS_APPROX(mat4(1,0), mat1(0,1)*mat2(0,0) + mat1(1,1)*mat2(1,0)); in test_evals() 44 VERIFY_IS_APPROX(mat4(1,1), mat1(0,1)*mat2(0,1) + mat1(1,1)*mat2(1,1)); in test_evals() 45 VERIFY_IS_APPROX(mat4(1,2), mat1(0,1)*mat2(0,2) + mat1(1,1)*mat2(1,2)); in test_evals() [all …]
|
H A D | cxx11_tensor_expr.cpp | 74 TensorMap<Tensor<float, 2>> mat1(data1, 2, 3); in test_2d() local 78 mat1(0,0) = 0.0; in test_2d() 79 mat1(0,1) = 1.0; in test_2d() 80 mat1(0,2) = 2.0; in test_2d() 81 mat1(1,0) = 3.0; in test_2d() 82 mat1(1,1) = 4.0; in test_2d() 83 mat1(1,2) = 5.0; in test_2d() 94 mat3 = mat1.abs(); in test_2d() 114 Tensor<float, 3> mat1(2,3,7); in test_3d() local 121 mat1(i,j,k) = val; in test_3d() [all …]
|
H A D | cxx11_tensor_fixed_size.cpp | 133 TensorMap<TensorFixedSize<float, Sizes<2, 3> > > mat1(data1,2,3); in test_2d() local 137 VERIFY_IS_EQUAL((mat1.size()), 2*3); in test_2d() 138 VERIFY_IS_EQUAL(mat1.rank(), 2); in test_2d() 139 // VERIFY_IS_EQUAL((mat1.dimension(0)), 2); in test_2d() 140 // VERIFY_IS_EQUAL((mat1.dimension(1)), 3); in test_2d() 142 mat1(0,0) = 0.0; in test_2d() 143 mat1(0,1) = 1.0; in test_2d() 144 mat1(0,2) = 2.0; in test_2d() 145 mat1(1,0) = 3.0; in test_2d() 146 mat1(1,1) = 4.0; in test_2d() [all …]
|
H A D | cxx11_tensor_comparisons.cpp | 19 Tensor<float, 3> mat1(2,3,7); in test_orderings() local 26 mat1.setRandom(); in test_orderings() 29 lt = mat1 < mat2; in test_orderings() 30 le = mat1 <= mat2; in test_orderings() 31 gt = mat1 > mat2; in test_orderings() 32 ge = mat1 >= mat2; in test_orderings() 37 VERIFY_IS_EQUAL(lt(i,j,k), mat1(i,j,k) < mat2(i,j,k)); in test_orderings() 38 VERIFY_IS_EQUAL(le(i,j,k), mat1(i,j,k) <= mat2(i,j,k)); in test_orderings() 39 VERIFY_IS_EQUAL(gt(i,j,k), mat1(i,j,k) > mat2(i,j,k)); in test_orderings() 40 VERIFY_IS_EQUAL(ge(i,j,k), mat1(i,j,k) >= mat2(i,j,k)); in test_orderings() [all …]
|
/aosp_15_r20/external/pytorch/torch/_inductor/kernel/ |
H A D | mm.py | 144 def bias_addmm(inp, mat1, mat2, *, out=None, alpha=1, beta=1): argument 151 return torch.addmm(inp[0], mat1, mat2, out=out, alpha=alpha, beta=beta) 152 return torch.addmm(inp, mat1, mat2, out=out, alpha=alpha, beta=beta) 159 def tuned_mm(mat1, mat2, *, layout=None): argument 160 m, n, k, layout, mat1, mat2 = mm_args(mat1, mat2, layout=layout) 171 [aten_mm.bind((mat1, mat2), aten_layout)] if use_aten_gemm_kernels() else [] 173 static_shape, is_nonzero = _is_static_problem([mat1, mat2], layout) 178 input_nodes=(mat1, mat2), 183 CUTLASS3xGemmTemplate.add_cutlass_gemm_choices(choices, layout, [mat1, mat2]) 186 CKGemmTemplate.add_ck_gemm_choices(choices, layout, [mat1, mat2]) [all …]
|
H A D | bmm.py | 107 def tuned_bmm(mat1, mat2, *, layout=None): argument 108 if all(x.get_device().type == "cpu" for x in [mat1, mat2]): 110 if mat1.get_size()[1] == 1 or mat2.get_size()[2] == 1: 111 mat1 = L.unsqueeze(mat1, -1) 113 return L.sum_(L.mul(mat1, mat2), axis=2) 138 if is_valid_to_require_contiguous(mat1): 140 mat1 = may_require_contiguous(mat1, meta_mat1) 145 m, n, k, layout, mat1, mat2 = mm_args(mat1, mat2, layout=layout) 148 choices = [aten_bmm.bind((mat1, mat2), layout)] if use_aten_gemm_kernels() else [] 153 input_nodes=(mat1, mat2), [all …]
|
/aosp_15_r20/external/pytorch/torch/_inductor/fx_passes/ |
H A D | pad_mm.py | 85 mat1: Tensor, mat2: Tensor, input: Optional[Tensor] = None 113 and check_device(mat1, mat2) 114 and check_dtype(mat1, mat2) 115 and all(valid_shape_and_stride(t) for t in (mat1, mat2, input)) 139 input: Tensor, mat1: Tensor, mat2: Tensor, beta: float, alpha: float 141 return aten.addmm(input, mat1, mat2, beta=beta, alpha=alpha) 145 mat1, mat2, input = fetch_fake_tensors(match, ("mat1", "mat2", "input")) 146 return should_pad_common(mat1, mat2, input) and should_pad_bench( 147 match, mat1, mat2, torch.ops.aten.addmm, input=input 153 mat1: Tensor, [all …]
|
H A D | decompose_mem_bound_mm.py | 42 def should_decompose_bmm(mat1, mat2) -> bool: argument 43 if is_node_meta_valid(mat1) and is_node_meta_valid(mat2): 44 mat1 = mat1.meta["val"] 48 if not check_device(mat1, mat2): 51 if len(mat1.shape) != 3 or len(mat2.shape) != 3: 53 if mat1.shape[0] < min_first_dimension_decomposition: 56 if (mat1.shape[1] < max_other_dimention_decomposition) + ( 57 mat1.shape[2] < max_other_dimention_decomposition 63 def should_decompose_mm(mat1, mat2) -> bool: argument 64 if is_node_meta_valid(mat1) and is_node_meta_valid(mat2): [all …]
|
/aosp_15_r20/external/eigen/doc/ |
H A D | QuickReference.dox | 330 mat3 = mat1 + mat2; mat3 += mat1; 331 mat3 = mat1 - mat2; mat3 -= mat1;\endcode 335 mat3 = mat1 * s1; mat3 *= s1; mat3 = s1 * mat1; 336 mat3 = mat1 / s1; mat3 /= s1;\endcode 340 col2 = mat1 * col1; 341 row2 = row1 * mat1; row1 *= mat1; 342 mat3 = mat1 * mat2; mat3 *= mat1; \endcode 346 mat1 = mat2.transpose(); mat1.transposeInPlace(); 347 mat1 = mat2.adjoint(); mat1.adjointInPlace(); 433 mat1.real() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mkldnn/ |
H A D | Matmul.cpp | 13 const Tensor &mat1, in mkldnn_matmul() argument 22 const Tensor& mat1, in use_mkldnn_bf16_matmul() argument 29 const Tensor& mat1, in use_mkldnn_fp16_matmul() argument 68 const Tensor& mat1, in use_mkldnn_bf32_matmul() argument 75 const Tensor& mat1, in use_mkldnn_matmul() argument 82 const Tensor &mat1, in mkldnn_matmul_i8i8i32() argument 228 const Tensor &mat1, in mkldnn_matmul() argument 233 TORCH_CHECK((mat1.dim() == 2 && mat2.dim() == 2) || // aten::addmm in mkldnn_matmul() 234 (mat1.dim() == 3 && mat2.dim() == 3) || // aten::bmm, aten::baddbmm in mkldnn_matmul() 235 (mat1.dim() == 2 && mat2.dim() == 1) || // aten::mv in mkldnn_matmul() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/sparse/ |
H A D | SparseBlas.cpp | 112 * `mat1` - [in] dense Tensor A of size m × k. 119 const Tensor& mat1, in sparse_sampled_addmm_out_sparse_csr_cpu() argument 124 at::native::sparse::sparse_sampled_addmm_check_inputs(self, mat1, mat2, beta, alpha, result); in sparse_sampled_addmm_out_sparse_csr_cpu() 131 // We allow self to be a single matrix when mat1 and mat2 are batched in sparse_sampled_addmm_out_sparse_csr_cpu() 132 auto result_sizes = DimVector(mat1.sizes().slice(0, mat1.dim() - 2)); in sparse_sampled_addmm_out_sparse_csr_cpu() 139 if (mat1.numel() == 0 || mat2.numel() == 0 || result._nnz() == 0) { in sparse_sampled_addmm_out_sparse_csr_cpu() 148 sampled_addmm_sparse_csr_stub(kCPU, mat1.contiguous(), mat2_t, beta, alpha, result); in sparse_sampled_addmm_out_sparse_csr_cpu() 155 const Tensor& mat1, in sparse_sampled_addmm_sparse_csr_cpu() argument 160 at::native::sparse_sampled_addmm_out_sparse_csr_cpu(self, mat1, mat2, beta, alpha, result); in sparse_sampled_addmm_sparse_csr_cpu() 168 const Tensor& mat1, in sparse_sampled_addmm_check_inputs() argument [all …]
|
/aosp_15_r20/external/deqp-deps/glslang/Test/baseResults/ |
D | hlsl.matpack-pragma.frag.out | 17 0:31 mat1: direct index for structure (layout( row_major) temp 4X4 matrix of flo… 18 …jor std140) uniform structure{layout( row_major) temp 4X4 matrix of float mat1, layout( column_maj… 19 …mat1, layout( column_major) temp 4X4 matrix of float mat2, layout( column_major) temp 4X4 matrix o… 28 …jor std140) uniform structure{layout( row_major) temp 4X4 matrix of float mat1, layout( column_maj… 29 …mat1, layout( column_major) temp 4X4 matrix of float mat2, layout( column_major) temp 4X4 matrix o… 38 …jor std140) uniform structure{layout( row_major) temp 4X4 matrix of float mat1, layout( column_maj… 39 …mat1, layout( column_major) temp 4X4 matrix of float mat2, layout( column_major) temp 4X4 matrix o… 47 0:32 mat1: direct index for structure (layout( row_major) temp 4X4 matrix of float) 48 …jor std140) uniform structure{layout( row_major) temp 4X4 matrix of float mat1, layout( column_maj… 49 …mat1, layout( column_major) temp 4X4 matrix of float mat2, layout( column_major) temp 4X4 matrix o… [all …]
|
D | hlsl.matpack-1.frag.out | 12 …jor std140) uniform structure{layout( row_major) temp 4X4 matrix of float mat1, layout( column_maj… 13 …mat1, layout( column_major) temp 4X4 matrix of float mat2, temp 4-component vector of float vec1,… 18 0:24 mat1: direct index for structure (layout( row_major) temp 4X4 matrix of float) 19 …jor std140) uniform structure{layout( row_major) temp 4X4 matrix of float mat1, layout( column_maj… 20 …mat1, layout( column_major) temp 4X4 matrix of float mat2, temp 4-component vector of float vec1,… 27 … std140) uniform structure{layout( column_major) temp 4X4 matrix of float mat1, temp 4-component … 28 …mat1, layout( column_major) temp 4X4 matrix of float mat2, temp 4-component vector of float vec1,… 33 0:25 mat1: direct index for structure (layout( column_major) temp 4X4 matrix of float) 34 … std140) uniform structure{layout( column_major) temp 4X4 matrix of float mat1, temp 4-component … 35 …mat1, layout( column_major) temp 4X4 matrix of float mat2, temp 4-component vector of float vec1,… [all …]
|
/aosp_15_r20/external/angle/third_party/glslang/src/Test/baseResults/ |
H A D | hlsl.matpack-pragma.frag.out | 17 0:31 mat1: direct index for structure (layout( row_major) temp 4X4 matrix of flo… 18 …jor std140) uniform structure{layout( row_major) temp 4X4 matrix of float mat1, layout( column_maj… 19 …mat1, layout( column_major) temp 4X4 matrix of float mat2, layout( column_major) temp 4X4 matrix o… 28 …jor std140) uniform structure{layout( row_major) temp 4X4 matrix of float mat1, layout( column_maj… 29 …mat1, layout( column_major) temp 4X4 matrix of float mat2, layout( column_major) temp 4X4 matrix o… 38 …jor std140) uniform structure{layout( row_major) temp 4X4 matrix of float mat1, layout( column_maj… 39 …mat1, layout( column_major) temp 4X4 matrix of float mat2, layout( column_major) temp 4X4 matrix o… 47 0:32 mat1: direct index for structure (layout( row_major) temp 4X4 matrix of float) 48 …jor std140) uniform structure{layout( row_major) temp 4X4 matrix of float mat1, layout( column_maj… 49 …mat1, layout( column_major) temp 4X4 matrix of float mat2, layout( column_major) temp 4X4 matrix o… [all …]
|
H A D | hlsl.matpack-1.frag.out | 12 …jor std140) uniform structure{layout( row_major) temp 4X4 matrix of float mat1, layout( column_maj… 13 …mat1, layout( column_major) temp 4X4 matrix of float mat2, temp 4-component vector of float vec1,… 18 0:24 mat1: direct index for structure (layout( row_major) temp 4X4 matrix of float) 19 …jor std140) uniform structure{layout( row_major) temp 4X4 matrix of float mat1, layout( column_maj… 20 …mat1, layout( column_major) temp 4X4 matrix of float mat2, temp 4-component vector of float vec1,… 27 … std140) uniform structure{layout( column_major) temp 4X4 matrix of float mat1, temp 4-component … 28 …mat1, layout( column_major) temp 4X4 matrix of float mat2, temp 4-component vector of float vec1,… 33 0:25 mat1: direct index for structure (layout( column_major) temp 4X4 matrix of float) 34 … std140) uniform structure{layout( column_major) temp 4X4 matrix of float mat1, temp 4-component … 35 …mat1, layout( column_major) temp 4X4 matrix of float mat2, temp 4-component vector of float vec1,… [all …]
|
/aosp_15_r20/external/executorch/backends/vulkan/runtime/graph/ops/impl/ |
H A D | QuantizedLinear.cpp | 20 const ValueRef mat1, in check_q_8w_linear_args() argument 24 std::vector<int64_t> mat1_sizes = graph.sizes_of(mat1); in check_q_8w_linear_args() 32 VK_CHECK_COND(graph.packed_dim_of(mat1) == graph.packed_dim_of(out)); in check_q_8w_linear_args() 47 vTensorPtr mat1 = graph->get_tensor(args[1].refs[0]); in resize_q_8w_linear_node() local 50 const int out_cols = utils::val_at(-2, mat1->sizes()); in resize_q_8w_linear_node() 54 if (mat1->sizes().size() == 2) { in resize_q_8w_linear_node() 59 new_out_sizes.at(0) = mat1->sizes().at(0); in resize_q_8w_linear_node() 69 const ValueRef mat1, in add_q_8w_linear_node() argument 74 ValueRef mat1_W_packed = mat1; in add_q_8w_linear_node() 77 graph.packed_dim_of(mat1) != WHCN::kWidthDim) { in add_q_8w_linear_node() [all …]
|
H A D | MatMul.cpp | 23 const ValueRef mat1, in check_matmul_args() argument 26 std::vector<int64_t> mat1_sizes = graph.sizes_of(mat1); in check_matmul_args() 32 VK_CHECK_COND(graph.packed_dim_of(mat1) == graph.packed_dim_of(out)); in check_matmul_args() 42 vTensorPtr mat1 = graph->get_tensor(args[1].refs[0]); in resize_matmul_node() local 47 const int out_cols = utils::val_at(-2, mat1->sizes()); in resize_matmul_node() 52 std::vector<int64_t> new_out_sizes(mat1->sizes()); in resize_matmul_node() 61 const ValueRef mat1, in add_matmul_naive_buffer_node() argument 92 {{mat1, mat2}, vkapi::MemoryAccessType::READ}}, in add_matmul_naive_buffer_node() 97 graph.sizes_ubo(mat1), in add_matmul_naive_buffer_node() 98 graph.strides_ubo(mat1), in add_matmul_naive_buffer_node() [all …]
|
H A D | Linear.cpp | 24 const ValueRef mat1, in check_addmm_args() argument 33 std::vector<int64_t> mat1_sizes = graph.sizes_of(mat1); in check_addmm_args() 39 VK_CHECK_COND(graph.packed_dim_of(mat1) == graph.packed_dim_of(out)); in check_addmm_args() 58 vTensorPtr mat1 = graph->get_tensor(args[1].refs[0]); in resize_addmm_node() local 64 const int out_cols = utils::val_at(-2, mat1->sizes()); in resize_addmm_node() 69 if (mat1->sizes().size() == 2) { in resize_addmm_node() 74 new_out_sizes.at(0) = mat1->sizes().at(0); in resize_addmm_node() 90 const ValueRef mat1, in add_addmm_naive_node() argument 117 {{mat1, mat2, self}, vkapi::MemoryAccessType::READ}}, in add_addmm_naive_node() 122 graph.sizes_ubo(mat1), in add_addmm_naive_node() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/sparse/cuda/ |
H A D | SparseBlas.cpp | 33 * `mat1` - [in] dense Tensor A of size m × k. 40 const Tensor& mat1, in sparse_sampled_addmm_out_sparse_csr_cuda() argument 46 self, mat1, mat2, beta, alpha, result); in sparse_sampled_addmm_out_sparse_csr_cuda() 49 // We allow self to be a single matrix when mat1 and mat2 are batched in sparse_sampled_addmm_out_sparse_csr_cuda() 50 auto result_sizes = DimVector(mat1.sizes().slice(0, mat1.dim() - 2)); in sparse_sampled_addmm_out_sparse_csr_cuda() 58 if (mat1.numel() == 0 || mat2.numel() == 0) { in sparse_sampled_addmm_out_sparse_csr_cuda() 63 sparse::impl::cuda::sampled_addmm_out_sparse_csr(mat1, mat2, beta, alpha, result); in sparse_sampled_addmm_out_sparse_csr_cuda() 69 const Tensor& mat1, in sparse_sampled_addmm_sparse_csr_cuda() argument 74 at::native::sparse_sampled_addmm_out_sparse_csr_cuda(self, mat1, mat2, beta, alpha, result); in sparse_sampled_addmm_sparse_csr_cuda() 78 // result = beta * self + alpha * (mat1 @ mat2) [all …]
|
H A D | SparseBlasImpl.cpp | 73 const at::sparse_csr::SparseCsrTensor& mat1, in addmm_out_legacy() argument 78 TORCH_INTERNAL_ASSERT_DEBUG_ONLY(mat1.is_sparse_csr()); in addmm_out_legacy() 79 auto nnz = mat1._nnz(); in addmm_out_legacy() 80 auto m = mat1.size(0); in addmm_out_legacy() 81 auto k = mat1.size(1); in addmm_out_legacy() 83 auto crow_indices = mat1.crow_indices().to(kInt); in addmm_out_legacy() 84 auto col_indices = mat1.col_indices().to(kInt); in addmm_out_legacy() 85 auto values = mat1.values(); in addmm_out_legacy() 464 const at::sparse_csr::SparseCsrTensor& mat1, in block_sparse_mm() argument 469 TORCH_INTERNAL_ASSERT_DEBUG_ONLY(mat1.layout() == kSparseBsr); in block_sparse_mm() [all …]
|
/aosp_15_r20/external/vixl/examples/aarch64/ |
H A D | neon-matrix-multiply.cc | 63 // mat1 -> x1 in GenerateNEONMatrixMultiply() 117 float mat1[kLength], mat2[kLength], output[kLength]; in main() local 124 // float mat1[kLength] = { 1.0f, 52.03f, 4.43f, ... }; in main() 127 mat1[0] = 1.0f; in main() 128 mat1[4] = 2.0f; in main() 129 mat1[8] = 3.0f; in main() 130 mat1[12] = 4.0f; in main() 131 mat1[1] = 52.03f; in main() 132 mat1[5] = 12.24f; in main() 133 mat1[9] = 53.56f; in main() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/mkl/ |
H A D | SparseBlasImpl.cpp | 288 * `mat1` - Sparse CSR Tensor storing m x k matrix A. 294 const Tensor& mat1, in addmm_sparse_result() argument 314 if (mat1._nnz() == 0 || mat2._nnz() == 0) { in addmm_sparse_result() 325 at::mkl::sparse::MklSparseCsrDescriptor<scalar_t>(mat1); in addmm_sparse_result() 353 * `mat1` - Tensor storing m x k matrix A. 359 const Tensor& mat1, in addmm_out_sparse_csr() argument 365 mat1.dim() == 2 && mat2.dim() == 2 && result.dim() == 2); in addmm_out_sparse_csr() 367 !((mat1.layout() == kStrided) && (mat2.layout() == kStrided) && in addmm_out_sparse_csr() 371 // Layout checks are nested mat1, mat2, result in addmm_out_sparse_csr() 376 if (mat1.layout() == kStrided) { in addmm_out_sparse_csr() [all …]
|
/aosp_15_r20/external/pytorch/test/distributed/_tensor/ |
H A D | test_common_rules.py | 41 mat1, mat2 = [-1, -1], [-1, 0] 46 mesh, mat1, [], tensor_meta=mat1_tensor_meta 59 mat1, mat2 = [0, -1], [-1, -1] 61 mesh, mat1, [], tensor_meta=mat1_tensor_meta 74 mat1, mat2 = [-1, 0], [0, -1] 76 mesh, mat1, [], tensor_meta=mat1_tensor_meta 95 mat1 = [0, -1] 97 mesh, mat1, [], tensor_meta=mat1_tensor_meta 108 mat1 = [-1, 0, -1] 110 mesh, mat1, [], tensor_meta=mat1_tensor_meta [all …]
|
/aosp_15_r20/external/eigen/test/ |
H A D | evaluators.cpp | 250 MatrixXd mat1(6,6), mat2(6,6); in EIGEN_DECLARE_TEST() local 251 VERIFY_IS_APPROX_EVALUATOR(mat1, MatrixXd::Identity(6,6)); in EIGEN_DECLARE_TEST() 252 VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); in EIGEN_DECLARE_TEST() 253 copy_using_evaluator(mat2.transpose(), mat1); in EIGEN_DECLARE_TEST() 254 VERIFY_IS_APPROX(mat2.transpose(), mat1); in EIGEN_DECLARE_TEST() 262 VERIFY_IS_APPROX_EVALUATOR(mat2, mat1); in EIGEN_DECLARE_TEST() 332 mat1.setRandom(); in EIGEN_DECLARE_TEST() 335 copy_using_evaluator(matXcd.real(), mat1); in EIGEN_DECLARE_TEST() 337 matXcd_ref.real() = mat1; in EIGEN_DECLARE_TEST() 355 VERIFY_IS_APPROX_EVALUATOR(vec1, mat1.rowwise().sum()); in EIGEN_DECLARE_TEST() [all …]
|
/aosp_15_r20/external/pytorch/aten/src/ATen/native/cuda/ |
H A D | Blas.cpp | 97 cublasCommonArgs(const Tensor& mat1, const Tensor& mat2, Tensor& c) { in cublasCommonArgs() 100 …mata = prepare_matrix_for_cublas(transpose_result ? mat2 : mat1, transpose_mat1, transpose_result); in cublasCommonArgs() 101 …matb = prepare_matrix_for_cublas(transpose_result ? mat1 : mat2, transpose_mat2, transpose_result); in cublasCommonArgs() 102 auto mat1_sizes = mat1.sizes(); in cublasCommonArgs() 256 Tensor& addmm_out_cuda_impl(Tensor& result, const Tensor& self, const Tensor& mat1, const Tensor& m… in addmm_out_cuda_impl() argument 260 TORCH_CHECK(mat1.dim() == 2 && mat2.dim() == 2, "tensors must be 2-D"); in addmm_out_cuda_impl() 262 mat1.dtype() == mat2.dtype(), in addmm_out_cuda_impl() 263 "expected mat1 and mat2 to have the same dtype, but got: ", mat1.dtype(), " != ", mat2.dtype() in addmm_out_cuda_impl() 266 TensorArg targs[]{{result, "out", 0}, {self, "self", 1}, {mat1, "mat1", 2}, {mat2, "mat2", 3}}; in addmm_out_cuda_impl() 269 IntArrayRef mat1_sizes = mat1.sizes(); in addmm_out_cuda_impl() [all …]
|