1*bf2c3715SXin Linamespace Eigen { 2*bf2c3715SXin Li 3*bf2c3715SXin Li/** \eigenManualPage QuickRefPage Quick reference guide 4*bf2c3715SXin Li 5*bf2c3715SXin Li\eigenAutoToc 6*bf2c3715SXin Li 7*bf2c3715SXin Li<hr> 8*bf2c3715SXin Li 9*bf2c3715SXin Li<a href="#" class="top">top</a> 10*bf2c3715SXin Li\section QuickRef_Headers Modules and Header files 11*bf2c3715SXin Li 12*bf2c3715SXin LiThe Eigen library is divided in a Core module and several additional modules. Each module has a corresponding header file which has to be included in order to use the module. The \c %Dense and \c Eigen header files are provided to conveniently gain access to several modules at once. 13*bf2c3715SXin Li 14*bf2c3715SXin Li<table class="manual"> 15*bf2c3715SXin Li<tr><th>Module</th><th>Header file</th><th>Contents</th></tr> 16*bf2c3715SXin Li<tr ><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr> 17*bf2c3715SXin Li<tr class="alt"><td>\link Geometry_Module Geometry \endlink</td><td>\code#include <Eigen/Geometry>\endcode</td><td>Transform, Translation, Scaling, Rotation2D and 3D rotations (Quaternion, AngleAxis)</td></tr> 18*bf2c3715SXin Li<tr ><td>\link LU_Module LU \endlink</td><td>\code#include <Eigen/LU>\endcode</td><td>Inverse, determinant, LU decompositions with solver (FullPivLU, PartialPivLU)</td></tr> 19*bf2c3715SXin Li<tr class="alt"><td>\link Cholesky_Module Cholesky \endlink</td><td>\code#include <Eigen/Cholesky>\endcode</td><td>LLT and LDLT Cholesky factorization with solver</td></tr> 20*bf2c3715SXin Li<tr ><td>\link Householder_Module Householder \endlink</td><td>\code#include <Eigen/Householder>\endcode</td><td>Householder transformations; this module is used by several linear algebra modules</td></tr> 21*bf2c3715SXin Li<tr class="alt"><td>\link SVD_Module SVD \endlink</td><td>\code#include <Eigen/SVD>\endcode</td><td>SVD decompositions with least-squares solver (JacobiSVD, BDCSVD)</td></tr> 22*bf2c3715SXin Li<tr ><td>\link QR_Module QR \endlink</td><td>\code#include <Eigen/QR>\endcode</td><td>QR decomposition with solver (HouseholderQR, ColPivHouseholderQR, FullPivHouseholderQR)</td></tr> 23*bf2c3715SXin Li<tr class="alt"><td>\link Eigenvalues_Module Eigenvalues \endlink</td><td>\code#include <Eigen/Eigenvalues>\endcode</td><td>Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver, ComplexEigenSolver)</td></tr> 24*bf2c3715SXin Li<tr ><td>\link Sparse_Module Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, SparseVector) \n (see \ref SparseQuickRefPage for details on sparse modules)</td></tr> 25*bf2c3715SXin Li<tr class="alt"><td></td><td>\code#include <Eigen/Dense>\endcode</td><td>Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files</td></tr> 26*bf2c3715SXin Li<tr ><td></td><td>\code#include <Eigen/Eigen>\endcode</td><td>Includes %Dense and %Sparse header files (the whole Eigen library)</td></tr> 27*bf2c3715SXin Li</table> 28*bf2c3715SXin Li 29*bf2c3715SXin Li<a href="#" class="top">top</a> 30*bf2c3715SXin Li\section QuickRef_Types Array, matrix and vector types 31*bf2c3715SXin Li 32*bf2c3715SXin Li 33*bf2c3715SXin Li\b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array: 34*bf2c3715SXin Li\code 35*bf2c3715SXin Litypedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType; 36*bf2c3715SXin Litypedef Array<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyArrayType; 37*bf2c3715SXin Li\endcode 38*bf2c3715SXin Li 39*bf2c3715SXin Li\li \c Scalar is the scalar type of the coefficients (e.g., \c float, \c double, \c bool, \c int, etc.). 40*bf2c3715SXin Li\li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic. 41*bf2c3715SXin Li\li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options) 42*bf2c3715SXin Li 43*bf2c3715SXin LiAll combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid: 44*bf2c3715SXin Li\code 45*bf2c3715SXin LiMatrix<double, 6, Dynamic> // Dynamic number of columns (heap allocation) 46*bf2c3715SXin LiMatrix<double, Dynamic, 2> // Dynamic number of rows (heap allocation) 47*bf2c3715SXin LiMatrix<double, Dynamic, Dynamic, RowMajor> // Fully dynamic, row major (heap allocation) 48*bf2c3715SXin LiMatrix<double, 13, 3> // Fully fixed (usually allocated on stack) 49*bf2c3715SXin Li\endcode 50*bf2c3715SXin Li 51*bf2c3715SXin LiIn most cases, you can simply use one of the convenience typedefs for \ref matrixtypedefs "matrices" and \ref arraytypedefs "arrays". Some examples: 52*bf2c3715SXin Li<table class="example"> 53*bf2c3715SXin Li<tr><th>Matrices</th><th>Arrays</th></tr> 54*bf2c3715SXin Li<tr><td>\code 55*bf2c3715SXin LiMatrix<float,Dynamic,Dynamic> <=> MatrixXf 56*bf2c3715SXin LiMatrix<double,Dynamic,1> <=> VectorXd 57*bf2c3715SXin LiMatrix<int,1,Dynamic> <=> RowVectorXi 58*bf2c3715SXin LiMatrix<float,3,3> <=> Matrix3f 59*bf2c3715SXin LiMatrix<float,4,1> <=> Vector4f 60*bf2c3715SXin Li\endcode</td><td>\code 61*bf2c3715SXin LiArray<float,Dynamic,Dynamic> <=> ArrayXXf 62*bf2c3715SXin LiArray<double,Dynamic,1> <=> ArrayXd 63*bf2c3715SXin LiArray<int,1,Dynamic> <=> RowArrayXi 64*bf2c3715SXin LiArray<float,3,3> <=> Array33f 65*bf2c3715SXin LiArray<float,4,1> <=> Array4f 66*bf2c3715SXin Li\endcode</td></tr> 67*bf2c3715SXin Li</table> 68*bf2c3715SXin Li 69*bf2c3715SXin LiConversion between the matrix and array worlds: 70*bf2c3715SXin Li\code 71*bf2c3715SXin LiArray44f a1, a2; 72*bf2c3715SXin LiMatrix4f m1, m2; 73*bf2c3715SXin Lim1 = a1 * a2; // coeffwise product, implicit conversion from array to matrix. 74*bf2c3715SXin Lia1 = m1 * m2; // matrix product, implicit conversion from matrix to array. 75*bf2c3715SXin Lia2 = a1 + m1.array(); // mixing array and matrix is forbidden 76*bf2c3715SXin Lim2 = a1.matrix() + m1; // and explicit conversion is required. 77*bf2c3715SXin LiArrayWrapper<Matrix4f> m1a(m1); // m1a is an alias for m1.array(), they share the same coefficients 78*bf2c3715SXin LiMatrixWrapper<Array44f> a1m(a1); 79*bf2c3715SXin Li\endcode 80*bf2c3715SXin Li 81*bf2c3715SXin LiIn the rest of this document we will use the following symbols to emphasize the features which are specifics to a given kind of object: 82*bf2c3715SXin Li\li <a name="matrixonly"></a>\matrixworld linear algebra matrix and vector only 83*bf2c3715SXin Li\li <a name="arrayonly"></a>\arrayworld array objects only 84*bf2c3715SXin Li 85*bf2c3715SXin Li\subsection QuickRef_Basics Basic matrix manipulation 86*bf2c3715SXin Li 87*bf2c3715SXin Li<table class="manual"> 88*bf2c3715SXin Li<tr><th></th><th>1D objects</th><th>2D objects</th><th>Notes</th></tr> 89*bf2c3715SXin Li<tr><td>Constructors</td> 90*bf2c3715SXin Li<td>\code 91*bf2c3715SXin LiVector4d v4; 92*bf2c3715SXin LiVector2f v1(x, y); 93*bf2c3715SXin LiArray3i v2(x, y, z); 94*bf2c3715SXin LiVector4d v3(x, y, z, w); 95*bf2c3715SXin Li 96*bf2c3715SXin LiVectorXf v5; // empty object 97*bf2c3715SXin LiArrayXf v6(size); 98*bf2c3715SXin Li\endcode</td><td>\code 99*bf2c3715SXin LiMatrix4f m1; 100*bf2c3715SXin Li 101*bf2c3715SXin Li 102*bf2c3715SXin Li 103*bf2c3715SXin Li 104*bf2c3715SXin LiMatrixXf m5; // empty object 105*bf2c3715SXin LiMatrixXf m6(nb_rows, nb_columns); 106*bf2c3715SXin Li\endcode</td><td class="note"> 107*bf2c3715SXin LiBy default, the coefficients \n are left uninitialized</td></tr> 108*bf2c3715SXin Li<tr class="alt"><td>Comma initializer</td> 109*bf2c3715SXin Li<td>\code 110*bf2c3715SXin LiVector3f v1; v1 << x, y, z; 111*bf2c3715SXin LiArrayXf v2(4); v2 << 1, 2, 3, 4; 112*bf2c3715SXin Li 113*bf2c3715SXin Li\endcode</td><td>\code 114*bf2c3715SXin LiMatrix3f m1; m1 << 1, 2, 3, 115*bf2c3715SXin Li 4, 5, 6, 116*bf2c3715SXin Li 7, 8, 9; 117*bf2c3715SXin Li\endcode</td><td></td></tr> 118*bf2c3715SXin Li 119*bf2c3715SXin Li<tr><td>Comma initializer (bis)</td> 120*bf2c3715SXin Li<td colspan="2"> 121*bf2c3715SXin Li\include Tutorial_commainit_02.cpp 122*bf2c3715SXin Li</td> 123*bf2c3715SXin Li<td> 124*bf2c3715SXin Lioutput: 125*bf2c3715SXin Li\verbinclude Tutorial_commainit_02.out 126*bf2c3715SXin Li</td> 127*bf2c3715SXin Li</tr> 128*bf2c3715SXin Li 129*bf2c3715SXin Li<tr class="alt"><td>Runtime info</td> 130*bf2c3715SXin Li<td>\code 131*bf2c3715SXin Livector.size(); 132*bf2c3715SXin Li 133*bf2c3715SXin Livector.innerStride(); 134*bf2c3715SXin Livector.data(); 135*bf2c3715SXin Li\endcode</td><td>\code 136*bf2c3715SXin Limatrix.rows(); matrix.cols(); 137*bf2c3715SXin Limatrix.innerSize(); matrix.outerSize(); 138*bf2c3715SXin Limatrix.innerStride(); matrix.outerStride(); 139*bf2c3715SXin Limatrix.data(); 140*bf2c3715SXin Li\endcode</td><td class="note">Inner/Outer* are storage order dependent</td></tr> 141*bf2c3715SXin Li<tr><td>Compile-time info</td> 142*bf2c3715SXin Li<td colspan="2">\code 143*bf2c3715SXin LiObjectType::Scalar ObjectType::RowsAtCompileTime 144*bf2c3715SXin LiObjectType::RealScalar ObjectType::ColsAtCompileTime 145*bf2c3715SXin LiObjectType::Index ObjectType::SizeAtCompileTime 146*bf2c3715SXin Li\endcode</td><td></td></tr> 147*bf2c3715SXin Li<tr class="alt"><td>Resizing</td> 148*bf2c3715SXin Li<td>\code 149*bf2c3715SXin Livector.resize(size); 150*bf2c3715SXin Li 151*bf2c3715SXin Li 152*bf2c3715SXin Livector.resizeLike(other_vector); 153*bf2c3715SXin Livector.conservativeResize(size); 154*bf2c3715SXin Li\endcode</td><td>\code 155*bf2c3715SXin Limatrix.resize(nb_rows, nb_cols); 156*bf2c3715SXin Limatrix.resize(Eigen::NoChange, nb_cols); 157*bf2c3715SXin Limatrix.resize(nb_rows, Eigen::NoChange); 158*bf2c3715SXin Limatrix.resizeLike(other_matrix); 159*bf2c3715SXin Limatrix.conservativeResize(nb_rows, nb_cols); 160*bf2c3715SXin Li\endcode</td><td class="note">no-op if the new sizes match,<br/>otherwise data are lost<br/><br/>resizing with data preservation</td></tr> 161*bf2c3715SXin Li 162*bf2c3715SXin Li<tr><td>Coeff access with \n range checking</td> 163*bf2c3715SXin Li<td>\code 164*bf2c3715SXin Livector(i) vector.x() 165*bf2c3715SXin Livector[i] vector.y() 166*bf2c3715SXin Li vector.z() 167*bf2c3715SXin Li vector.w() 168*bf2c3715SXin Li\endcode</td><td>\code 169*bf2c3715SXin Limatrix(i,j) 170*bf2c3715SXin Li\endcode</td><td class="note">Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined</td></tr> 171*bf2c3715SXin Li 172*bf2c3715SXin Li<tr class="alt"><td>Coeff access without \n range checking</td> 173*bf2c3715SXin Li<td>\code 174*bf2c3715SXin Livector.coeff(i) 175*bf2c3715SXin Livector.coeffRef(i) 176*bf2c3715SXin Li\endcode</td><td>\code 177*bf2c3715SXin Limatrix.coeff(i,j) 178*bf2c3715SXin Limatrix.coeffRef(i,j) 179*bf2c3715SXin Li\endcode</td><td></td></tr> 180*bf2c3715SXin Li 181*bf2c3715SXin Li<tr><td>Assignment/copy</td> 182*bf2c3715SXin Li<td colspan="2">\code 183*bf2c3715SXin Liobject = expression; 184*bf2c3715SXin Liobject_of_float = expression_of_double.cast<float>(); 185*bf2c3715SXin Li\endcode</td><td class="note">the destination is automatically resized (if possible)</td></tr> 186*bf2c3715SXin Li 187*bf2c3715SXin Li</table> 188*bf2c3715SXin Li 189*bf2c3715SXin Li\subsection QuickRef_PredefMat Predefined Matrices 190*bf2c3715SXin Li 191*bf2c3715SXin Li<table class="manual"> 192*bf2c3715SXin Li<tr> 193*bf2c3715SXin Li <th>Fixed-size matrix or vector</th> 194*bf2c3715SXin Li <th>Dynamic-size matrix</th> 195*bf2c3715SXin Li <th>Dynamic-size vector</th> 196*bf2c3715SXin Li</tr> 197*bf2c3715SXin Li<tr style="border-bottom-style: none;"> 198*bf2c3715SXin Li <td> 199*bf2c3715SXin Li\code 200*bf2c3715SXin Litypedef {Matrix3f|Array33f} FixedXD; 201*bf2c3715SXin LiFixedXD x; 202*bf2c3715SXin Li 203*bf2c3715SXin Lix = FixedXD::Zero(); 204*bf2c3715SXin Lix = FixedXD::Ones(); 205*bf2c3715SXin Lix = FixedXD::Constant(value); 206*bf2c3715SXin Lix = FixedXD::Random(); 207*bf2c3715SXin Lix = FixedXD::LinSpaced(size, low, high); 208*bf2c3715SXin Li 209*bf2c3715SXin Lix.setZero(); 210*bf2c3715SXin Lix.setOnes(); 211*bf2c3715SXin Lix.setConstant(value); 212*bf2c3715SXin Lix.setRandom(); 213*bf2c3715SXin Lix.setLinSpaced(size, low, high); 214*bf2c3715SXin Li\endcode 215*bf2c3715SXin Li </td> 216*bf2c3715SXin Li <td> 217*bf2c3715SXin Li\code 218*bf2c3715SXin Litypedef {MatrixXf|ArrayXXf} Dynamic2D; 219*bf2c3715SXin LiDynamic2D x; 220*bf2c3715SXin Li 221*bf2c3715SXin Lix = Dynamic2D::Zero(rows, cols); 222*bf2c3715SXin Lix = Dynamic2D::Ones(rows, cols); 223*bf2c3715SXin Lix = Dynamic2D::Constant(rows, cols, value); 224*bf2c3715SXin Lix = Dynamic2D::Random(rows, cols); 225*bf2c3715SXin LiN/A 226*bf2c3715SXin Li 227*bf2c3715SXin Lix.setZero(rows, cols); 228*bf2c3715SXin Lix.setOnes(rows, cols); 229*bf2c3715SXin Lix.setConstant(rows, cols, value); 230*bf2c3715SXin Lix.setRandom(rows, cols); 231*bf2c3715SXin LiN/A 232*bf2c3715SXin Li\endcode 233*bf2c3715SXin Li </td> 234*bf2c3715SXin Li <td> 235*bf2c3715SXin Li\code 236*bf2c3715SXin Litypedef {VectorXf|ArrayXf} Dynamic1D; 237*bf2c3715SXin LiDynamic1D x; 238*bf2c3715SXin Li 239*bf2c3715SXin Lix = Dynamic1D::Zero(size); 240*bf2c3715SXin Lix = Dynamic1D::Ones(size); 241*bf2c3715SXin Lix = Dynamic1D::Constant(size, value); 242*bf2c3715SXin Lix = Dynamic1D::Random(size); 243*bf2c3715SXin Lix = Dynamic1D::LinSpaced(size, low, high); 244*bf2c3715SXin Li 245*bf2c3715SXin Lix.setZero(size); 246*bf2c3715SXin Lix.setOnes(size); 247*bf2c3715SXin Lix.setConstant(size, value); 248*bf2c3715SXin Lix.setRandom(size); 249*bf2c3715SXin Lix.setLinSpaced(size, low, high); 250*bf2c3715SXin Li\endcode 251*bf2c3715SXin Li </td> 252*bf2c3715SXin Li</tr> 253*bf2c3715SXin Li 254*bf2c3715SXin Li<tr><td colspan="3">Identity and \link MatrixBase::Unit basis vectors \endlink \matrixworld</td></tr> 255*bf2c3715SXin Li<tr style="border-bottom-style: none;"> 256*bf2c3715SXin Li <td> 257*bf2c3715SXin Li\code 258*bf2c3715SXin Lix = FixedXD::Identity(); 259*bf2c3715SXin Lix.setIdentity(); 260*bf2c3715SXin Li 261*bf2c3715SXin LiVector3f::UnitX() // 1 0 0 262*bf2c3715SXin LiVector3f::UnitY() // 0 1 0 263*bf2c3715SXin LiVector3f::UnitZ() // 0 0 1 264*bf2c3715SXin LiVector4f::Unit(i) 265*bf2c3715SXin Lix.setUnit(i); 266*bf2c3715SXin Li\endcode 267*bf2c3715SXin Li </td> 268*bf2c3715SXin Li <td> 269*bf2c3715SXin Li\code 270*bf2c3715SXin Lix = Dynamic2D::Identity(rows, cols); 271*bf2c3715SXin Lix.setIdentity(rows, cols); 272*bf2c3715SXin Li 273*bf2c3715SXin Li 274*bf2c3715SXin Li 275*bf2c3715SXin LiN/A 276*bf2c3715SXin Li\endcode 277*bf2c3715SXin Li </td> 278*bf2c3715SXin Li <td>\code 279*bf2c3715SXin LiN/A 280*bf2c3715SXin Li 281*bf2c3715SXin Li 282*bf2c3715SXin LiVectorXf::Unit(size,i) 283*bf2c3715SXin Lix.setUnit(size,i); 284*bf2c3715SXin LiVectorXf::Unit(4,1) == Vector4f(0,1,0,0) 285*bf2c3715SXin Li == Vector4f::UnitY() 286*bf2c3715SXin Li\endcode 287*bf2c3715SXin Li </td> 288*bf2c3715SXin Li</tr> 289*bf2c3715SXin Li</table> 290*bf2c3715SXin Li 291*bf2c3715SXin LiNote that it is allowed to call any of the \c set* functions to a dynamic-sized vector or matrix without passing new sizes. 292*bf2c3715SXin LiFor instance: 293*bf2c3715SXin Li\code 294*bf2c3715SXin LiMatrixXi M(3,3); 295*bf2c3715SXin LiM.setIdentity(); 296*bf2c3715SXin Li\endcode 297*bf2c3715SXin Li 298*bf2c3715SXin Li\subsection QuickRef_Map Mapping external arrays 299*bf2c3715SXin Li 300*bf2c3715SXin Li<table class="manual"> 301*bf2c3715SXin Li<tr> 302*bf2c3715SXin Li<td>Contiguous \n memory</td> 303*bf2c3715SXin Li<td>\code 304*bf2c3715SXin Lifloat data[] = {1,2,3,4}; 305*bf2c3715SXin LiMap<Vector3f> v1(data); // uses v1 as a Vector3f object 306*bf2c3715SXin LiMap<ArrayXf> v2(data,3); // uses v2 as a ArrayXf object 307*bf2c3715SXin LiMap<Array22f> m1(data); // uses m1 as a Array22f object 308*bf2c3715SXin LiMap<MatrixXf> m2(data,2,2); // uses m2 as a MatrixXf object 309*bf2c3715SXin Li\endcode</td> 310*bf2c3715SXin Li</tr> 311*bf2c3715SXin Li<tr> 312*bf2c3715SXin Li<td>Typical usage \n of strides</td> 313*bf2c3715SXin Li<td>\code 314*bf2c3715SXin Lifloat data[] = {1,2,3,4,5,6,7,8,9}; 315*bf2c3715SXin LiMap<VectorXf,0,InnerStride<2> > v1(data,3); // = [1,3,5] 316*bf2c3715SXin LiMap<VectorXf,0,InnerStride<> > v2(data,3,InnerStride<>(3)); // = [1,4,7] 317*bf2c3715SXin LiMap<MatrixXf,0,OuterStride<3> > m2(data,2,3); // both lines |1,4,7| 318*bf2c3715SXin LiMap<MatrixXf,0,OuterStride<> > m1(data,2,3,OuterStride<>(3)); // are equal to: |2,5,8| 319*bf2c3715SXin Li\endcode</td> 320*bf2c3715SXin Li</tr> 321*bf2c3715SXin Li</table> 322*bf2c3715SXin Li 323*bf2c3715SXin Li 324*bf2c3715SXin Li<a href="#" class="top">top</a> 325*bf2c3715SXin Li\section QuickRef_ArithmeticOperators Arithmetic Operators 326*bf2c3715SXin Li 327*bf2c3715SXin Li<table class="manual"> 328*bf2c3715SXin Li<tr><td> 329*bf2c3715SXin Liadd \n subtract</td><td>\code 330*bf2c3715SXin Limat3 = mat1 + mat2; mat3 += mat1; 331*bf2c3715SXin Limat3 = mat1 - mat2; mat3 -= mat1;\endcode 332*bf2c3715SXin Li</td></tr> 333*bf2c3715SXin Li<tr class="alt"><td> 334*bf2c3715SXin Liscalar product</td><td>\code 335*bf2c3715SXin Limat3 = mat1 * s1; mat3 *= s1; mat3 = s1 * mat1; 336*bf2c3715SXin Limat3 = mat1 / s1; mat3 /= s1;\endcode 337*bf2c3715SXin Li</td></tr> 338*bf2c3715SXin Li<tr><td> 339*bf2c3715SXin Limatrix/vector \n products \matrixworld</td><td>\code 340*bf2c3715SXin Licol2 = mat1 * col1; 341*bf2c3715SXin Lirow2 = row1 * mat1; row1 *= mat1; 342*bf2c3715SXin Limat3 = mat1 * mat2; mat3 *= mat1; \endcode 343*bf2c3715SXin Li</td></tr> 344*bf2c3715SXin Li<tr class="alt"><td> 345*bf2c3715SXin Litransposition \n adjoint \matrixworld</td><td>\code 346*bf2c3715SXin Limat1 = mat2.transpose(); mat1.transposeInPlace(); 347*bf2c3715SXin Limat1 = mat2.adjoint(); mat1.adjointInPlace(); 348*bf2c3715SXin Li\endcode 349*bf2c3715SXin Li</td></tr> 350*bf2c3715SXin Li<tr><td> 351*bf2c3715SXin Li\link MatrixBase::dot dot \endlink product \n inner product \matrixworld</td><td>\code 352*bf2c3715SXin Liscalar = vec1.dot(vec2); 353*bf2c3715SXin Liscalar = col1.adjoint() * col2; 354*bf2c3715SXin Liscalar = (col1.adjoint() * col2).value();\endcode 355*bf2c3715SXin Li</td></tr> 356*bf2c3715SXin Li<tr class="alt"><td> 357*bf2c3715SXin Liouter product \matrixworld</td><td>\code 358*bf2c3715SXin Limat = col1 * col2.transpose();\endcode 359*bf2c3715SXin Li</td></tr> 360*bf2c3715SXin Li 361*bf2c3715SXin Li<tr><td> 362*bf2c3715SXin Li\link MatrixBase::norm() norm \endlink \n \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code 363*bf2c3715SXin Liscalar = vec1.norm(); scalar = vec1.squaredNorm() 364*bf2c3715SXin Livec2 = vec1.normalized(); vec1.normalize(); // inplace \endcode 365*bf2c3715SXin Li</td></tr> 366*bf2c3715SXin Li 367*bf2c3715SXin Li<tr class="alt"><td> 368*bf2c3715SXin Li\link MatrixBase::cross() cross product \endlink \matrixworld</td><td>\code 369*bf2c3715SXin Li#include <Eigen/Geometry> 370*bf2c3715SXin Livec3 = vec1.cross(vec2);\endcode</td></tr> 371*bf2c3715SXin Li</table> 372*bf2c3715SXin Li 373*bf2c3715SXin Li<a href="#" class="top">top</a> 374*bf2c3715SXin Li\section QuickRef_Coeffwise Coefficient-wise \& Array operators 375*bf2c3715SXin Li 376*bf2c3715SXin LiIn addition to the aforementioned operators, Eigen supports numerous coefficient-wise operator and functions. 377*bf2c3715SXin LiMost of them unambiguously makes sense in array-world\arrayworld. The following operators are readily available for arrays, 378*bf2c3715SXin Lior available through .array() for vectors and matrices: 379*bf2c3715SXin Li 380*bf2c3715SXin Li<table class="manual"> 381*bf2c3715SXin Li<tr><td>Arithmetic operators</td><td>\code 382*bf2c3715SXin Liarray1 * array2 array1 / array2 array1 *= array2 array1 /= array2 383*bf2c3715SXin Liarray1 + scalar array1 - scalar array1 += scalar array1 -= scalar 384*bf2c3715SXin Li\endcode</td></tr> 385*bf2c3715SXin Li<tr><td>Comparisons</td><td>\code 386*bf2c3715SXin Liarray1 < array2 array1 > array2 array1 < scalar array1 > scalar 387*bf2c3715SXin Liarray1 <= array2 array1 >= array2 array1 <= scalar array1 >= scalar 388*bf2c3715SXin Liarray1 == array2 array1 != array2 array1 == scalar array1 != scalar 389*bf2c3715SXin Liarray1.min(array2) array1.max(array2) array1.min(scalar) array1.max(scalar) 390*bf2c3715SXin Li\endcode</td></tr> 391*bf2c3715SXin Li<tr><td>Trigo, power, and \n misc functions \n and the STL-like variants</td><td>\code 392*bf2c3715SXin Liarray1.abs2() 393*bf2c3715SXin Liarray1.abs() abs(array1) 394*bf2c3715SXin Liarray1.sqrt() sqrt(array1) 395*bf2c3715SXin Liarray1.log() log(array1) 396*bf2c3715SXin Liarray1.log10() log10(array1) 397*bf2c3715SXin Liarray1.exp() exp(array1) 398*bf2c3715SXin Liarray1.pow(array2) pow(array1,array2) 399*bf2c3715SXin Liarray1.pow(scalar) pow(array1,scalar) 400*bf2c3715SXin Li pow(scalar,array2) 401*bf2c3715SXin Liarray1.square() 402*bf2c3715SXin Liarray1.cube() 403*bf2c3715SXin Liarray1.inverse() 404*bf2c3715SXin Li 405*bf2c3715SXin Liarray1.sin() sin(array1) 406*bf2c3715SXin Liarray1.cos() cos(array1) 407*bf2c3715SXin Liarray1.tan() tan(array1) 408*bf2c3715SXin Liarray1.asin() asin(array1) 409*bf2c3715SXin Liarray1.acos() acos(array1) 410*bf2c3715SXin Liarray1.atan() atan(array1) 411*bf2c3715SXin Liarray1.sinh() sinh(array1) 412*bf2c3715SXin Liarray1.cosh() cosh(array1) 413*bf2c3715SXin Liarray1.tanh() tanh(array1) 414*bf2c3715SXin Liarray1.arg() arg(array1) 415*bf2c3715SXin Li 416*bf2c3715SXin Liarray1.floor() floor(array1) 417*bf2c3715SXin Liarray1.ceil() ceil(array1) 418*bf2c3715SXin Liarray1.round() round(aray1) 419*bf2c3715SXin Li 420*bf2c3715SXin Liarray1.isFinite() isfinite(array1) 421*bf2c3715SXin Liarray1.isInf() isinf(array1) 422*bf2c3715SXin Liarray1.isNaN() isnan(array1) 423*bf2c3715SXin Li\endcode 424*bf2c3715SXin Li</td></tr> 425*bf2c3715SXin Li</table> 426*bf2c3715SXin Li 427*bf2c3715SXin Li 428*bf2c3715SXin LiThe following coefficient-wise operators are available for all kind of expressions (matrices, vectors, and arrays), and for both real or complex scalar types: 429*bf2c3715SXin Li 430*bf2c3715SXin Li<table class="manual"> 431*bf2c3715SXin Li<tr><th>Eigen's API</th><th>STL-like APIs\arrayworld </th><th>Comments</th></tr> 432*bf2c3715SXin Li<tr><td>\code 433*bf2c3715SXin Limat1.real() 434*bf2c3715SXin Limat1.imag() 435*bf2c3715SXin Limat1.conjugate() 436*bf2c3715SXin Li\endcode 437*bf2c3715SXin Li</td><td>\code 438*bf2c3715SXin Lireal(array1) 439*bf2c3715SXin Liimag(array1) 440*bf2c3715SXin Liconj(array1) 441*bf2c3715SXin Li\endcode 442*bf2c3715SXin Li</td><td> 443*bf2c3715SXin Li\code 444*bf2c3715SXin Li // read-write, no-op for real expressions 445*bf2c3715SXin Li // read-only for real, read-write for complexes 446*bf2c3715SXin Li // no-op for real expressions 447*bf2c3715SXin Li\endcode 448*bf2c3715SXin Li</td></tr> 449*bf2c3715SXin Li</table> 450*bf2c3715SXin Li 451*bf2c3715SXin LiSome coefficient-wise operators are readily available for for matrices and vectors through the following cwise* methods: 452*bf2c3715SXin Li<table class="manual"> 453*bf2c3715SXin Li<tr><th>Matrix API \matrixworld</th><th>Via Array conversions</th></tr> 454*bf2c3715SXin Li<tr><td>\code 455*bf2c3715SXin Limat1.cwiseMin(mat2) mat1.cwiseMin(scalar) 456*bf2c3715SXin Limat1.cwiseMax(mat2) mat1.cwiseMax(scalar) 457*bf2c3715SXin Limat1.cwiseAbs2() 458*bf2c3715SXin Limat1.cwiseAbs() 459*bf2c3715SXin Limat1.cwiseSqrt() 460*bf2c3715SXin Limat1.cwiseInverse() 461*bf2c3715SXin Limat1.cwiseProduct(mat2) 462*bf2c3715SXin Limat1.cwiseQuotient(mat2) 463*bf2c3715SXin Limat1.cwiseEqual(mat2) mat1.cwiseEqual(scalar) 464*bf2c3715SXin Limat1.cwiseNotEqual(mat2) 465*bf2c3715SXin Li\endcode 466*bf2c3715SXin Li</td><td>\code 467*bf2c3715SXin Limat1.array().min(mat2.array()) mat1.array().min(scalar) 468*bf2c3715SXin Limat1.array().max(mat2.array()) mat1.array().max(scalar) 469*bf2c3715SXin Limat1.array().abs2() 470*bf2c3715SXin Limat1.array().abs() 471*bf2c3715SXin Limat1.array().sqrt() 472*bf2c3715SXin Limat1.array().inverse() 473*bf2c3715SXin Limat1.array() * mat2.array() 474*bf2c3715SXin Limat1.array() / mat2.array() 475*bf2c3715SXin Limat1.array() == mat2.array() mat1.array() == scalar 476*bf2c3715SXin Limat1.array() != mat2.array() 477*bf2c3715SXin Li\endcode</td></tr> 478*bf2c3715SXin Li</table> 479*bf2c3715SXin LiThe main difference between the two API is that the one based on cwise* methods returns an expression in the matrix world, 480*bf2c3715SXin Liwhile the second one (based on .array()) returns an array expression. 481*bf2c3715SXin LiRecall that .array() has no cost, it only changes the available API and interpretation of the data. 482*bf2c3715SXin Li 483*bf2c3715SXin LiIt is also very simple to apply any user defined function \c foo using DenseBase::unaryExpr together with <a href="http://en.cppreference.com/w/cpp/utility/functional/ptr_fun">std::ptr_fun</a> (c++03, deprecated or removed in newer C++ versions), <a href="http://en.cppreference.com/w/cpp/utility/functional/ref">std::ref</a> (c++11), or <a href="http://en.cppreference.com/w/cpp/language/lambda">lambdas</a> (c++11): 484*bf2c3715SXin Li\code 485*bf2c3715SXin Limat1.unaryExpr(std::ptr_fun(foo)); 486*bf2c3715SXin Limat1.unaryExpr(std::ref(foo)); 487*bf2c3715SXin Limat1.unaryExpr([](double x) { return foo(x); }); 488*bf2c3715SXin Li\endcode 489*bf2c3715SXin Li 490*bf2c3715SXin LiPlease note that it's not possible to pass a raw function pointer to \c unaryExpr, so please warp it as shown above. 491*bf2c3715SXin Li 492*bf2c3715SXin Li<a href="#" class="top">top</a> 493*bf2c3715SXin Li\section QuickRef_Reductions Reductions 494*bf2c3715SXin Li 495*bf2c3715SXin LiEigen provides several reduction methods such as: 496*bf2c3715SXin Li\link DenseBase::minCoeff() minCoeff() \endlink, \link DenseBase::maxCoeff() maxCoeff() \endlink, 497*bf2c3715SXin Li\link DenseBase::sum() sum() \endlink, \link DenseBase::prod() prod() \endlink, 498*bf2c3715SXin Li\link MatrixBase::trace() trace() \endlink \matrixworld, 499*bf2c3715SXin Li\link MatrixBase::norm() norm() \endlink \matrixworld, \link MatrixBase::squaredNorm() squaredNorm() \endlink \matrixworld, 500*bf2c3715SXin Li\link DenseBase::all() all() \endlink, and \link DenseBase::any() any() \endlink. 501*bf2c3715SXin LiAll reduction operations can be done matrix-wise, 502*bf2c3715SXin Li\link DenseBase::colwise() column-wise \endlink or 503*bf2c3715SXin Li\link DenseBase::rowwise() row-wise \endlink. Usage example: 504*bf2c3715SXin Li<table class="manual"> 505*bf2c3715SXin Li<tr><td rowspan="3" style="border-right-style:dashed;vertical-align:middle">\code 506*bf2c3715SXin Li 5 3 1 507*bf2c3715SXin Limat = 2 7 8 508*bf2c3715SXin Li 9 4 6 \endcode 509*bf2c3715SXin Li</td> <td>\code mat.minCoeff(); \endcode</td><td>\code 1 \endcode</td></tr> 510*bf2c3715SXin Li<tr class="alt"><td>\code mat.colwise().minCoeff(); \endcode</td><td>\code 2 3 1 \endcode</td></tr> 511*bf2c3715SXin Li<tr style="vertical-align:middle"><td>\code mat.rowwise().minCoeff(); \endcode</td><td>\code 512*bf2c3715SXin Li1 513*bf2c3715SXin Li2 514*bf2c3715SXin Li4 515*bf2c3715SXin Li\endcode</td></tr> 516*bf2c3715SXin Li</table> 517*bf2c3715SXin Li 518*bf2c3715SXin LiSpecial versions of \link DenseBase::minCoeff(IndexType*,IndexType*) const minCoeff \endlink and \link DenseBase::maxCoeff(IndexType*,IndexType*) const maxCoeff \endlink: 519*bf2c3715SXin Li\code 520*bf2c3715SXin Liint i, j; 521*bf2c3715SXin Lis = vector.minCoeff(&i); // s == vector[i] 522*bf2c3715SXin Lis = matrix.maxCoeff(&i, &j); // s == matrix(i,j) 523*bf2c3715SXin Li\endcode 524*bf2c3715SXin LiTypical use cases of all() and any(): 525*bf2c3715SXin Li\code 526*bf2c3715SXin Liif((array1 > 0).all()) ... // if all coefficients of array1 are greater than 0 ... 527*bf2c3715SXin Liif((array1 < array2).any()) ... // if there exist a pair i,j such that array1(i,j) < array2(i,j) ... 528*bf2c3715SXin Li\endcode 529*bf2c3715SXin Li 530*bf2c3715SXin Li 531*bf2c3715SXin Li<a href="#" class="top">top</a>\section QuickRef_Blocks Sub-matrices 532*bf2c3715SXin Li 533*bf2c3715SXin Li<div class="warningbox"> 534*bf2c3715SXin Li<strong>PLEASE HELP US IMPROVING THIS SECTION.</strong> 535*bf2c3715SXin Li%Eigen 3.4 supports a much improved API for sub-matrices, including, 536*bf2c3715SXin Lislicing and indexing from arrays: \ref TutorialSlicingIndexing 537*bf2c3715SXin Li</div> 538*bf2c3715SXin Li 539*bf2c3715SXin LiRead-write access to a \link DenseBase::col(Index) column \endlink 540*bf2c3715SXin Lior a \link DenseBase::row(Index) row \endlink of a matrix (or array): 541*bf2c3715SXin Li\code 542*bf2c3715SXin Limat1.row(i) = mat2.col(j); 543*bf2c3715SXin Limat1.col(j1).swap(mat1.col(j2)); 544*bf2c3715SXin Li\endcode 545*bf2c3715SXin Li 546*bf2c3715SXin LiRead-write access to sub-vectors: 547*bf2c3715SXin Li<table class="manual"> 548*bf2c3715SXin Li<tr> 549*bf2c3715SXin Li<th>Default versions</th> 550*bf2c3715SXin Li<th>Optimized versions when the size \n is known at compile time</th></tr> 551*bf2c3715SXin Li<th></th> 552*bf2c3715SXin Li 553*bf2c3715SXin Li<tr><td>\code vec1.head(n)\endcode</td><td>\code vec1.head<n>()\endcode</td><td>the first \c n coeffs </td></tr> 554*bf2c3715SXin Li<tr><td>\code vec1.tail(n)\endcode</td><td>\code vec1.tail<n>()\endcode</td><td>the last \c n coeffs </td></tr> 555*bf2c3715SXin Li<tr><td>\code vec1.segment(pos,n)\endcode</td><td>\code vec1.segment<n>(pos)\endcode</td> 556*bf2c3715SXin Li <td>the \c n coeffs in the \n range [\c pos : \c pos + \c n - 1]</td></tr> 557*bf2c3715SXin Li<tr class="alt"><td colspan="3"> 558*bf2c3715SXin Li 559*bf2c3715SXin LiRead-write access to sub-matrices:</td></tr> 560*bf2c3715SXin Li<tr> 561*bf2c3715SXin Li <td>\code mat1.block(i,j,rows,cols)\endcode 562*bf2c3715SXin Li \link DenseBase::block(Index,Index,Index,Index) (more) \endlink</td> 563*bf2c3715SXin Li <td>\code mat1.block<rows,cols>(i,j)\endcode 564*bf2c3715SXin Li \link DenseBase::block(Index,Index) (more) \endlink</td> 565*bf2c3715SXin Li <td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr> 566*bf2c3715SXin Li<tr><td>\code 567*bf2c3715SXin Li mat1.topLeftCorner(rows,cols) 568*bf2c3715SXin Li mat1.topRightCorner(rows,cols) 569*bf2c3715SXin Li mat1.bottomLeftCorner(rows,cols) 570*bf2c3715SXin Li mat1.bottomRightCorner(rows,cols)\endcode 571*bf2c3715SXin Li <td>\code 572*bf2c3715SXin Li mat1.topLeftCorner<rows,cols>() 573*bf2c3715SXin Li mat1.topRightCorner<rows,cols>() 574*bf2c3715SXin Li mat1.bottomLeftCorner<rows,cols>() 575*bf2c3715SXin Li mat1.bottomRightCorner<rows,cols>()\endcode 576*bf2c3715SXin Li <td>the \c rows x \c cols sub-matrix \n taken in one of the four corners</td></tr> 577*bf2c3715SXin Li <tr><td>\code 578*bf2c3715SXin Li mat1.topRows(rows) 579*bf2c3715SXin Li mat1.bottomRows(rows) 580*bf2c3715SXin Li mat1.leftCols(cols) 581*bf2c3715SXin Li mat1.rightCols(cols)\endcode 582*bf2c3715SXin Li <td>\code 583*bf2c3715SXin Li mat1.topRows<rows>() 584*bf2c3715SXin Li mat1.bottomRows<rows>() 585*bf2c3715SXin Li mat1.leftCols<cols>() 586*bf2c3715SXin Li mat1.rightCols<cols>()\endcode 587*bf2c3715SXin Li <td>specialized versions of block() \n when the block fit two corners</td></tr> 588*bf2c3715SXin Li</table> 589*bf2c3715SXin Li 590*bf2c3715SXin Li 591*bf2c3715SXin Li 592*bf2c3715SXin Li<a href="#" class="top">top</a>\section QuickRef_Misc Miscellaneous operations 593*bf2c3715SXin Li 594*bf2c3715SXin Li<div class="warningbox"> 595*bf2c3715SXin Li<strong>PLEASE HELP US IMPROVING THIS SECTION.</strong> 596*bf2c3715SXin Li%Eigen 3.4 supports a new API for reshaping: \ref TutorialReshape 597*bf2c3715SXin Li</div> 598*bf2c3715SXin Li 599*bf2c3715SXin Li\subsection QuickRef_Reverse Reverse 600*bf2c3715SXin LiVectors, rows, and/or columns of a matrix can be reversed (see DenseBase::reverse(), DenseBase::reverseInPlace(), VectorwiseOp::reverse()). 601*bf2c3715SXin Li\code 602*bf2c3715SXin Livec.reverse() mat.colwise().reverse() mat.rowwise().reverse() 603*bf2c3715SXin Livec.reverseInPlace() 604*bf2c3715SXin Li\endcode 605*bf2c3715SXin Li 606*bf2c3715SXin Li\subsection QuickRef_Replicate Replicate 607*bf2c3715SXin LiVectors, matrices, rows, and/or columns can be replicated in any direction (see DenseBase::replicate(), VectorwiseOp::replicate()) 608*bf2c3715SXin Li\code 609*bf2c3715SXin Livec.replicate(times) vec.replicate<Times> 610*bf2c3715SXin Limat.replicate(vertical_times, horizontal_times) mat.replicate<VerticalTimes, HorizontalTimes>() 611*bf2c3715SXin Limat.colwise().replicate(vertical_times, horizontal_times) mat.colwise().replicate<VerticalTimes, HorizontalTimes>() 612*bf2c3715SXin Limat.rowwise().replicate(vertical_times, horizontal_times) mat.rowwise().replicate<VerticalTimes, HorizontalTimes>() 613*bf2c3715SXin Li\endcode 614*bf2c3715SXin Li 615*bf2c3715SXin Li 616*bf2c3715SXin Li<a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices 617*bf2c3715SXin Li(matrix world \matrixworld) 618*bf2c3715SXin Li 619*bf2c3715SXin Li\subsection QuickRef_Diagonal Diagonal matrices 620*bf2c3715SXin Li 621*bf2c3715SXin Li<table class="example"> 622*bf2c3715SXin Li<tr><th>Operation</th><th>Code</th></tr> 623*bf2c3715SXin Li<tr><td> 624*bf2c3715SXin Liview a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code 625*bf2c3715SXin Limat1 = vec1.asDiagonal();\endcode 626*bf2c3715SXin Li</td></tr> 627*bf2c3715SXin Li<tr><td> 628*bf2c3715SXin LiDeclare a diagonal matrix</td><td>\code 629*bf2c3715SXin LiDiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size); 630*bf2c3715SXin Lidiag1.diagonal() = vector;\endcode 631*bf2c3715SXin Li</td></tr> 632*bf2c3715SXin Li<tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td> 633*bf2c3715SXin Li <td>\code 634*bf2c3715SXin Livec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal 635*bf2c3715SXin Livec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal 636*bf2c3715SXin Livec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal 637*bf2c3715SXin Livec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal 638*bf2c3715SXin Livec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal 639*bf2c3715SXin Li\endcode</td> 640*bf2c3715SXin Li</tr> 641*bf2c3715SXin Li 642*bf2c3715SXin Li<tr><td>Optimized products and inverse</td> 643*bf2c3715SXin Li <td>\code 644*bf2c3715SXin Limat3 = scalar * diag1 * mat1; 645*bf2c3715SXin Limat3 += scalar * mat1 * vec1.asDiagonal(); 646*bf2c3715SXin Limat3 = vec1.asDiagonal().inverse() * mat1 647*bf2c3715SXin Limat3 = mat1 * diag1.inverse() 648*bf2c3715SXin Li\endcode</td> 649*bf2c3715SXin Li</tr> 650*bf2c3715SXin Li 651*bf2c3715SXin Li</table> 652*bf2c3715SXin Li 653*bf2c3715SXin Li\subsection QuickRef_TriangularView Triangular views 654*bf2c3715SXin Li 655*bf2c3715SXin LiTriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information. 656*bf2c3715SXin Li 657*bf2c3715SXin Li\note The .triangularView() template member function requires the \c template keyword if it is used on an 658*bf2c3715SXin Liobject of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details. 659*bf2c3715SXin Li 660*bf2c3715SXin Li<table class="example"> 661*bf2c3715SXin Li<tr><th>Operation</th><th>Code</th></tr> 662*bf2c3715SXin Li<tr><td> 663*bf2c3715SXin LiReference to a triangular with optional \n 664*bf2c3715SXin Liunit or null diagonal (read/write): 665*bf2c3715SXin Li</td><td>\code 666*bf2c3715SXin Lim.triangularView<Xxx>() 667*bf2c3715SXin Li\endcode \n 668*bf2c3715SXin Li\c Xxx = ::Upper, ::Lower, ::StrictlyUpper, ::StrictlyLower, ::UnitUpper, ::UnitLower 669*bf2c3715SXin Li</td></tr> 670*bf2c3715SXin Li<tr><td> 671*bf2c3715SXin LiWriting to a specific triangular part:\n (only the referenced triangular part is evaluated) 672*bf2c3715SXin Li</td><td>\code 673*bf2c3715SXin Lim1.triangularView<Eigen::Lower>() = m2 + m3 \endcode 674*bf2c3715SXin Li</td></tr> 675*bf2c3715SXin Li<tr><td> 676*bf2c3715SXin LiConversion to a dense matrix setting the opposite triangular part to zero: 677*bf2c3715SXin Li</td><td>\code 678*bf2c3715SXin Lim2 = m1.triangularView<Eigen::UnitUpper>()\endcode 679*bf2c3715SXin Li</td></tr> 680*bf2c3715SXin Li<tr><td> 681*bf2c3715SXin LiProducts: 682*bf2c3715SXin Li</td><td>\code 683*bf2c3715SXin Lim3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2 684*bf2c3715SXin Lim3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode 685*bf2c3715SXin Li</td></tr> 686*bf2c3715SXin Li<tr><td> 687*bf2c3715SXin LiSolving linear equations:\n 688*bf2c3715SXin Li\f$ M_2 := L_1^{-1} M_2 \f$ \n 689*bf2c3715SXin Li\f$ M_3 := {L_1^*}^{-1} M_3 \f$ \n 690*bf2c3715SXin Li\f$ M_4 := M_4 U_1^{-1} \f$ 691*bf2c3715SXin Li</td><td>\n \code 692*bf2c3715SXin LiL1.triangularView<Eigen::UnitLower>().solveInPlace(M2) 693*bf2c3715SXin LiL1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3) 694*bf2c3715SXin LiU1.triangularView<Eigen::Upper>().solveInPlace<OnTheRight>(M4)\endcode 695*bf2c3715SXin Li</td></tr> 696*bf2c3715SXin Li</table> 697*bf2c3715SXin Li 698*bf2c3715SXin Li\subsection QuickRef_SelfadjointMatrix Symmetric/selfadjoint views 699*bf2c3715SXin Li 700*bf2c3715SXin LiJust as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint 701*bf2c3715SXin Limatrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be 702*bf2c3715SXin Liused to store other information. 703*bf2c3715SXin Li 704*bf2c3715SXin Li\note The .selfadjointView() template member function requires the \c template keyword if it is used on an 705*bf2c3715SXin Liobject of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details. 706*bf2c3715SXin Li 707*bf2c3715SXin Li<table class="example"> 708*bf2c3715SXin Li<tr><th>Operation</th><th>Code</th></tr> 709*bf2c3715SXin Li<tr><td> 710*bf2c3715SXin LiConversion to a dense matrix: 711*bf2c3715SXin Li</td><td>\code 712*bf2c3715SXin Lim2 = m.selfadjointView<Eigen::Lower>();\endcode 713*bf2c3715SXin Li</td></tr> 714*bf2c3715SXin Li<tr><td> 715*bf2c3715SXin LiProduct with another general matrix or vector: 716*bf2c3715SXin Li</td><td>\code 717*bf2c3715SXin Lim3 = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3; 718*bf2c3715SXin Lim3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode 719*bf2c3715SXin Li</td></tr> 720*bf2c3715SXin Li<tr><td> 721*bf2c3715SXin LiRank 1 and rank K update: \n 722*bf2c3715SXin Li\f$ upper(M_1) \mathrel{{+}{=}} s_1 M_2 M_2^* \f$ \n 723*bf2c3715SXin Li\f$ lower(M_1) \mathbin{{-}{=}} M_2^* M_2 \f$ 724*bf2c3715SXin Li</td><td>\n \code 725*bf2c3715SXin LiM1.selfadjointView<Eigen::Upper>().rankUpdate(M2,s1); 726*bf2c3715SXin LiM1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1); \endcode 727*bf2c3715SXin Li</td></tr> 728*bf2c3715SXin Li<tr><td> 729*bf2c3715SXin LiRank 2 update: (\f$ M \mathrel{{+}{=}} s u v^* + s v u^* \f$) 730*bf2c3715SXin Li</td><td>\code 731*bf2c3715SXin LiM.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s); 732*bf2c3715SXin Li\endcode 733*bf2c3715SXin Li</td></tr> 734*bf2c3715SXin Li<tr><td> 735*bf2c3715SXin LiSolving linear equations:\n(\f$ M_2 := M_1^{-1} M_2 \f$) 736*bf2c3715SXin Li</td><td>\code 737*bf2c3715SXin Li// via a standard Cholesky factorization 738*bf2c3715SXin Lim2 = m1.selfadjointView<Eigen::Upper>().llt().solve(m2); 739*bf2c3715SXin Li// via a Cholesky factorization with pivoting 740*bf2c3715SXin Lim2 = m1.selfadjointView<Eigen::Lower>().ldlt().solve(m2); 741*bf2c3715SXin Li\endcode 742*bf2c3715SXin Li</td></tr> 743*bf2c3715SXin Li</table> 744*bf2c3715SXin Li 745*bf2c3715SXin Li*/ 746*bf2c3715SXin Li 747*bf2c3715SXin Li/* 748*bf2c3715SXin Li<table class="tutorial_code"> 749*bf2c3715SXin Li<tr><td> 750*bf2c3715SXin Li\link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code 751*bf2c3715SXin Limat1 = vec1.asDiagonal();\endcode 752*bf2c3715SXin Li</td></tr> 753*bf2c3715SXin Li<tr><td> 754*bf2c3715SXin LiDeclare a diagonal matrix</td><td>\code 755*bf2c3715SXin LiDiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size); 756*bf2c3715SXin Lidiag1.diagonal() = vector;\endcode 757*bf2c3715SXin Li</td></tr> 758*bf2c3715SXin Li<tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td> 759*bf2c3715SXin Li <td>\code 760*bf2c3715SXin Livec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal 761*bf2c3715SXin Livec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal 762*bf2c3715SXin Livec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal 763*bf2c3715SXin Livec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal 764*bf2c3715SXin Livec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal 765*bf2c3715SXin Li\endcode</td> 766*bf2c3715SXin Li</tr> 767*bf2c3715SXin Li 768*bf2c3715SXin Li<tr><td>View on a triangular part of a matrix (read/write)</td> 769*bf2c3715SXin Li <td>\code 770*bf2c3715SXin Limat2 = mat1.triangularView<Xxx>(); 771*bf2c3715SXin Li// Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper, UnitLower 772*bf2c3715SXin Limat1.triangularView<Upper>() = mat2 + mat3; // only the upper part is evaluated and referenced 773*bf2c3715SXin Li\endcode</td></tr> 774*bf2c3715SXin Li 775*bf2c3715SXin Li<tr><td>View a triangular part as a symmetric/self-adjoint matrix (read/write)</td> 776*bf2c3715SXin Li <td>\code 777*bf2c3715SXin Limat2 = mat1.selfadjointView<Xxx>(); // Xxx = Upper or Lower 778*bf2c3715SXin Limat1.selfadjointView<Upper>() = mat2 + mat2.adjoint(); // evaluated and write to the upper triangular part only 779*bf2c3715SXin Li\endcode</td></tr> 780*bf2c3715SXin Li 781*bf2c3715SXin Li</table> 782*bf2c3715SXin Li 783*bf2c3715SXin LiOptimized products: 784*bf2c3715SXin Li\code 785*bf2c3715SXin Limat3 += scalar * vec1.asDiagonal() * mat1 786*bf2c3715SXin Limat3 += scalar * mat1 * vec1.asDiagonal() 787*bf2c3715SXin Limat3.noalias() += scalar * mat1.triangularView<Xxx>() * mat2 788*bf2c3715SXin Limat3.noalias() += scalar * mat2 * mat1.triangularView<Xxx>() 789*bf2c3715SXin Limat3.noalias() += scalar * mat1.selfadjointView<Upper or Lower>() * mat2 790*bf2c3715SXin Limat3.noalias() += scalar * mat2 * mat1.selfadjointView<Upper or Lower>() 791*bf2c3715SXin Limat1.selfadjointView<Upper or Lower>().rankUpdate(mat2); 792*bf2c3715SXin Limat1.selfadjointView<Upper or Lower>().rankUpdate(mat2.adjoint(), scalar); 793*bf2c3715SXin Li\endcode 794*bf2c3715SXin Li 795*bf2c3715SXin LiInverse products: (all are optimized) 796*bf2c3715SXin Li\code 797*bf2c3715SXin Limat3 = vec1.asDiagonal().inverse() * mat1 798*bf2c3715SXin Limat3 = mat1 * diag1.inverse() 799*bf2c3715SXin Limat1.triangularView<Xxx>().solveInPlace(mat2) 800*bf2c3715SXin Limat1.triangularView<Xxx>().solveInPlace<OnTheRight>(mat2) 801*bf2c3715SXin Limat2 = mat1.selfadjointView<Upper or Lower>().llt().solve(mat2) 802*bf2c3715SXin Li\endcode 803*bf2c3715SXin Li 804*bf2c3715SXin Li*/ 805*bf2c3715SXin Li} 806