xref: /aosp_15_r20/external/eigen/unsupported/test/cxx11_tensor_expr.cpp (revision bf2c37156dfe67e5dfebd6d394bad8b2ab5804d4)
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <[email protected]>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include <numeric>
11 
12 #include "main.h"
13 
14 #include <Eigen/CXX11/Tensor>
15 
16 using Eigen::Tensor;
17 using Eigen::RowMajor;
18 
test_1d()19 static void test_1d()
20 {
21   Tensor<float, 1> vec1(6);
22   Tensor<float, 1, RowMajor> vec2(6);
23 
24   vec1(0) = 4.0;  vec2(0) = 0.0;
25   vec1(1) = 8.0;  vec2(1) = 1.0;
26   vec1(2) = 15.0; vec2(2) = 2.0;
27   vec1(3) = 16.0; vec2(3) = 3.0;
28   vec1(4) = 23.0; vec2(4) = 4.0;
29   vec1(5) = 42.0; vec2(5) = 5.0;
30 
31   float data3[6];
32   TensorMap<Tensor<float, 1>> vec3(data3, 6);
33   vec3 = vec1.sqrt();
34   float data4[6];
35   TensorMap<Tensor<float, 1, RowMajor>> vec4(data4, 6);
36   vec4 = vec2.square();
37   float data5[6];
38   TensorMap<Tensor<float, 1, RowMajor>> vec5(data5, 6);
39   vec5 = vec2.cube();
40 
41   VERIFY_IS_APPROX(vec3(0), sqrtf(4.0));
42   VERIFY_IS_APPROX(vec3(1), sqrtf(8.0));
43   VERIFY_IS_APPROX(vec3(2), sqrtf(15.0));
44   VERIFY_IS_APPROX(vec3(3), sqrtf(16.0));
45   VERIFY_IS_APPROX(vec3(4), sqrtf(23.0));
46   VERIFY_IS_APPROX(vec3(5), sqrtf(42.0));
47 
48   VERIFY_IS_APPROX(vec4(0), 0.0f);
49   VERIFY_IS_APPROX(vec4(1), 1.0f);
50   VERIFY_IS_APPROX(vec4(2), 2.0f * 2.0f);
51   VERIFY_IS_APPROX(vec4(3), 3.0f * 3.0f);
52   VERIFY_IS_APPROX(vec4(4), 4.0f * 4.0f);
53   VERIFY_IS_APPROX(vec4(5), 5.0f * 5.0f);
54 
55   VERIFY_IS_APPROX(vec5(0), 0.0f);
56   VERIFY_IS_APPROX(vec5(1), 1.0f);
57   VERIFY_IS_APPROX(vec5(2), 2.0f * 2.0f * 2.0f);
58   VERIFY_IS_APPROX(vec5(3), 3.0f * 3.0f * 3.0f);
59   VERIFY_IS_APPROX(vec5(4), 4.0f * 4.0f * 4.0f);
60   VERIFY_IS_APPROX(vec5(5), 5.0f * 5.0f * 5.0f);
61 
62   vec3 = vec1 + vec2;
63   VERIFY_IS_APPROX(vec3(0), 4.0f + 0.0f);
64   VERIFY_IS_APPROX(vec3(1), 8.0f + 1.0f);
65   VERIFY_IS_APPROX(vec3(2), 15.0f + 2.0f);
66   VERIFY_IS_APPROX(vec3(3), 16.0f + 3.0f);
67   VERIFY_IS_APPROX(vec3(4), 23.0f + 4.0f);
68   VERIFY_IS_APPROX(vec3(5), 42.0f + 5.0f);
69 }
70 
test_2d()71 static void test_2d()
72 {
73   float data1[6];
74   TensorMap<Tensor<float, 2>> mat1(data1, 2, 3);
75   float data2[6];
76   TensorMap<Tensor<float, 2, RowMajor>> mat2(data2, 2, 3);
77 
78   mat1(0,0) = 0.0;
79   mat1(0,1) = 1.0;
80   mat1(0,2) = 2.0;
81   mat1(1,0) = 3.0;
82   mat1(1,1) = 4.0;
83   mat1(1,2) = 5.0;
84 
85   mat2(0,0) = -0.0;
86   mat2(0,1) = -1.0;
87   mat2(0,2) = -2.0;
88   mat2(1,0) = -3.0;
89   mat2(1,1) = -4.0;
90   mat2(1,2) = -5.0;
91 
92   Tensor<float, 2> mat3(2,3);
93   Tensor<float, 2, RowMajor> mat4(2,3);
94   mat3 = mat1.abs();
95   mat4 = mat2.abs();
96 
97   VERIFY_IS_APPROX(mat3(0,0), 0.0f);
98   VERIFY_IS_APPROX(mat3(0,1), 1.0f);
99   VERIFY_IS_APPROX(mat3(0,2), 2.0f);
100   VERIFY_IS_APPROX(mat3(1,0), 3.0f);
101   VERIFY_IS_APPROX(mat3(1,1), 4.0f);
102   VERIFY_IS_APPROX(mat3(1,2), 5.0f);
103 
104   VERIFY_IS_APPROX(mat4(0,0), 0.0f);
105   VERIFY_IS_APPROX(mat4(0,1), 1.0f);
106   VERIFY_IS_APPROX(mat4(0,2), 2.0f);
107   VERIFY_IS_APPROX(mat4(1,0), 3.0f);
108   VERIFY_IS_APPROX(mat4(1,1), 4.0f);
109   VERIFY_IS_APPROX(mat4(1,2), 5.0f);
110 }
111 
test_3d()112 static void test_3d()
113 {
114   Tensor<float, 3> mat1(2,3,7);
115   Tensor<float, 3, RowMajor> mat2(2,3,7);
116 
117   float val = 1.0f;
118   for (int i = 0; i < 2; ++i) {
119     for (int j = 0; j < 3; ++j) {
120       for (int k = 0; k < 7; ++k) {
121         mat1(i,j,k) = val;
122         mat2(i,j,k) = val;
123         val += 1.0f;
124       }
125     }
126   }
127 
128   Tensor<float, 3> mat3(2,3,7);
129   mat3 = mat1 + mat1;
130   Tensor<float, 3, RowMajor> mat4(2,3,7);
131   mat4 = mat2 * 3.14f;
132   Tensor<float, 3> mat5(2,3,7);
133   mat5 = mat1.inverse().log();
134   Tensor<float, 3, RowMajor> mat6(2,3,7);
135   mat6 = mat2.pow(0.5f) * 3.14f;
136   Tensor<float, 3> mat7(2,3,7);
137   mat7 = mat1.cwiseMax(mat5 * 2.0f).exp();
138   Tensor<float, 3, RowMajor> mat8(2,3,7);
139   mat8 = (-mat2).exp() * 3.14f;
140   Tensor<float, 3, RowMajor> mat9(2,3,7);
141   mat9 = mat2 + 3.14f;
142   Tensor<float, 3, RowMajor> mat10(2,3,7);
143   mat10 = mat2 - 3.14f;
144   Tensor<float, 3, RowMajor> mat11(2,3,7);
145   mat11 = mat2 / 3.14f;
146 
147   val = 1.0f;
148   for (int i = 0; i < 2; ++i) {
149     for (int j = 0; j < 3; ++j) {
150       for (int k = 0; k < 7; ++k) {
151         VERIFY_IS_APPROX(mat3(i,j,k), val + val);
152         VERIFY_IS_APPROX(mat4(i,j,k), val * 3.14f);
153         VERIFY_IS_APPROX(mat5(i,j,k), logf(1.0f/val));
154         VERIFY_IS_APPROX(mat6(i,j,k), sqrtf(val) * 3.14f);
155         VERIFY_IS_APPROX(mat7(i,j,k), expf((std::max)(val, mat5(i,j,k) * 2.0f)));
156         VERIFY_IS_APPROX(mat8(i,j,k), expf(-val) * 3.14f);
157         VERIFY_IS_APPROX(mat9(i,j,k), val + 3.14f);
158         VERIFY_IS_APPROX(mat10(i,j,k), val - 3.14f);
159         VERIFY_IS_APPROX(mat11(i,j,k), val / 3.14f);
160         val += 1.0f;
161       }
162     }
163   }
164 }
165 
test_constants()166 static void test_constants()
167 {
168   Tensor<float, 3> mat1(2,3,7);
169   Tensor<float, 3> mat2(2,3,7);
170   Tensor<float, 3> mat3(2,3,7);
171 
172   float val = 1.0f;
173   for (int i = 0; i < 2; ++i) {
174     for (int j = 0; j < 3; ++j) {
175       for (int k = 0; k < 7; ++k) {
176         mat1(i,j,k) = val;
177         val += 1.0f;
178       }
179     }
180   }
181   mat2 = mat1.constant(3.14f);
182   mat3 = mat1.cwiseMax(7.3f).exp();
183 
184   val = 1.0f;
185   for (int i = 0; i < 2; ++i) {
186     for (int j = 0; j < 3; ++j) {
187       for (int k = 0; k < 7; ++k) {
188         VERIFY_IS_APPROX(mat2(i,j,k), 3.14f);
189         VERIFY_IS_APPROX(mat3(i,j,k), expf((std::max)(val, 7.3f)));
190         val += 1.0f;
191       }
192     }
193   }
194 }
195 
test_boolean()196 static void test_boolean()
197 {
198   const int kSize = 31;
199   Tensor<int, 1> vec(kSize);
200   std::iota(vec.data(), vec.data() + kSize, 0);
201 
202   // Test ||.
203   Tensor<bool, 1> bool1 = vec < vec.constant(1) || vec > vec.constant(4);
204   for (int i = 0; i < kSize; ++i) {
205     bool expected = i < 1 || i > 4;
206     VERIFY_IS_EQUAL(bool1[i], expected);
207   }
208 
209   // Test &&, including cast of operand vec.
210   Tensor<bool, 1> bool2 = vec.cast<bool>() && vec < vec.constant(4);
211   for (int i = 0; i < kSize; ++i) {
212     bool expected = bool(i) && i < 4;
213     VERIFY_IS_EQUAL(bool2[i], expected);
214   }
215 
216   // Compilation tests:
217   // Test Tensor<bool> against results of cast or comparison; verifies that
218   // CoeffReturnType is set to match Op return type of bool for Unary and Binary
219   // Ops.
220   Tensor<bool, 1> bool3 = vec.cast<bool>() && bool2;
221   bool3 = vec < vec.constant(4) && bool2;
222 }
223 
test_functors()224 static void test_functors()
225 {
226   Tensor<float, 3> mat1(2,3,7);
227   Tensor<float, 3> mat2(2,3,7);
228   Tensor<float, 3> mat3(2,3,7);
229 
230   float val = 1.0f;
231   for (int i = 0; i < 2; ++i) {
232     for (int j = 0; j < 3; ++j) {
233       for (int k = 0; k < 7; ++k) {
234         mat1(i,j,k) = val;
235         val += 1.0f;
236       }
237     }
238   }
239   mat2 = mat1.inverse().unaryExpr(&asinf);
240   mat3 = mat1.unaryExpr(&tanhf);
241 
242   val = 1.0f;
243   for (int i = 0; i < 2; ++i) {
244     for (int j = 0; j < 3; ++j) {
245       for (int k = 0; k < 7; ++k) {
246         VERIFY_IS_APPROX(mat2(i,j,k), asinf(1.0f / mat1(i,j,k)));
247         VERIFY_IS_APPROX(mat3(i,j,k), tanhf(mat1(i,j,k)));
248         val += 1.0f;
249       }
250     }
251   }
252 }
253 
test_type_casting()254 static void test_type_casting()
255 {
256   Tensor<bool, 3> mat1(2,3,7);
257   Tensor<float, 3> mat2(2,3,7);
258   Tensor<double, 3> mat3(2,3,7);
259   mat1.setRandom();
260   mat2.setRandom();
261 
262   mat3 = mat1.cast<double>();
263   for (int i = 0; i < 2; ++i) {
264     for (int j = 0; j < 3; ++j) {
265       for (int k = 0; k < 7; ++k) {
266         VERIFY_IS_APPROX(mat3(i,j,k), mat1(i,j,k) ? 1.0 : 0.0);
267       }
268     }
269   }
270 
271   mat3 = mat2.cast<double>();
272   for (int i = 0; i < 2; ++i) {
273     for (int j = 0; j < 3; ++j) {
274       for (int k = 0; k < 7; ++k) {
275         VERIFY_IS_APPROX(mat3(i,j,k), static_cast<double>(mat2(i,j,k)));
276       }
277     }
278   }
279 }
280 
test_select()281 static void test_select()
282 {
283   Tensor<float, 3> selector(2,3,7);
284   Tensor<float, 3> mat1(2,3,7);
285   Tensor<float, 3> mat2(2,3,7);
286   Tensor<float, 3> result(2,3,7);
287 
288   selector.setRandom();
289   mat1.setRandom();
290   mat2.setRandom();
291   result = (selector > selector.constant(0.5f)).select(mat1, mat2);
292 
293   for (int i = 0; i < 2; ++i) {
294     for (int j = 0; j < 3; ++j) {
295       for (int k = 0; k < 7; ++k) {
296         VERIFY_IS_APPROX(result(i,j,k), (selector(i,j,k) > 0.5f) ? mat1(i,j,k) : mat2(i,j,k));
297       }
298     }
299   }
300 }
301 
302 template <typename Scalar>
test_minmax_nan_propagation_templ()303 void test_minmax_nan_propagation_templ() {
304   for (int size = 1; size < 17; ++size) {
305     const Scalar kNaN = std::numeric_limits<Scalar>::quiet_NaN();
306     const Scalar kInf = std::numeric_limits<Scalar>::infinity();
307     const Scalar kZero(0);
308     Tensor<Scalar, 1> vec_all_nan(size);
309     Tensor<Scalar, 1> vec_one_nan(size);
310     Tensor<Scalar, 1> vec_zero(size);
311     vec_all_nan.setConstant(kNaN);
312     vec_zero.setZero();
313     vec_one_nan.setZero();
314     vec_one_nan(size/2) = kNaN;
315 
316     auto verify_all_nan = [&](const Tensor<Scalar, 1>& v) {
317       for (int i = 0; i < size; ++i) {
318         VERIFY((numext::isnan)(v(i)));
319       }
320     };
321 
322     auto verify_all_zero = [&](const Tensor<Scalar, 1>& v) {
323       for (int i = 0; i < size; ++i) {
324         VERIFY_IS_EQUAL(v(i), Scalar(0));
325       }
326     };
327 
328     // Test NaN propagating max.
329     // max(nan, nan) = nan
330     // max(nan, 0) = nan
331     // max(0, nan) = nan
332     // max(0, 0) = 0
333     verify_all_nan(vec_all_nan.template cwiseMax<PropagateNaN>(kNaN));
334     verify_all_nan(vec_all_nan.template cwiseMax<PropagateNaN>(vec_all_nan));
335     verify_all_nan(vec_all_nan.template cwiseMax<PropagateNaN>(kZero));
336     verify_all_nan(vec_all_nan.template cwiseMax<PropagateNaN>(vec_zero));
337     verify_all_nan(vec_zero.template cwiseMax<PropagateNaN>(kNaN));
338     verify_all_nan(vec_zero.template cwiseMax<PropagateNaN>(vec_all_nan));
339     verify_all_zero(vec_zero.template cwiseMax<PropagateNaN>(kZero));
340     verify_all_zero(vec_zero.template cwiseMax<PropagateNaN>(vec_zero));
341 
342     // Test number propagating max.
343     // max(nan, nan) = nan
344     // max(nan, 0) = 0
345     // max(0, nan) = 0
346     // max(0, 0) = 0
347     verify_all_nan(vec_all_nan.template cwiseMax<PropagateNumbers>(kNaN));
348     verify_all_nan(vec_all_nan.template cwiseMax<PropagateNumbers>(vec_all_nan));
349     verify_all_zero(vec_all_nan.template cwiseMax<PropagateNumbers>(kZero));
350     verify_all_zero(vec_all_nan.template cwiseMax<PropagateNumbers>(vec_zero));
351     verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(kNaN));
352     verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(vec_all_nan));
353     verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(kZero));
354     verify_all_zero(vec_zero.template cwiseMax<PropagateNumbers>(vec_zero));
355 
356     // Test NaN propagating min.
357     // min(nan, nan) = nan
358     // min(nan, 0) = nan
359     // min(0, nan) = nan
360     // min(0, 0) = 0
361     verify_all_nan(vec_all_nan.template cwiseMin<PropagateNaN>(kNaN));
362     verify_all_nan(vec_all_nan.template cwiseMin<PropagateNaN>(vec_all_nan));
363     verify_all_nan(vec_all_nan.template cwiseMin<PropagateNaN>(kZero));
364     verify_all_nan(vec_all_nan.template cwiseMin<PropagateNaN>(vec_zero));
365     verify_all_nan(vec_zero.template cwiseMin<PropagateNaN>(kNaN));
366     verify_all_nan(vec_zero.template cwiseMin<PropagateNaN>(vec_all_nan));
367     verify_all_zero(vec_zero.template cwiseMin<PropagateNaN>(kZero));
368     verify_all_zero(vec_zero.template cwiseMin<PropagateNaN>(vec_zero));
369 
370     // Test number propagating min.
371     // min(nan, nan) = nan
372     // min(nan, 0) = 0
373     // min(0, nan) = 0
374     // min(0, 0) = 0
375     verify_all_nan(vec_all_nan.template cwiseMin<PropagateNumbers>(kNaN));
376     verify_all_nan(vec_all_nan.template cwiseMin<PropagateNumbers>(vec_all_nan));
377     verify_all_zero(vec_all_nan.template cwiseMin<PropagateNumbers>(kZero));
378     verify_all_zero(vec_all_nan.template cwiseMin<PropagateNumbers>(vec_zero));
379     verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(kNaN));
380     verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(vec_all_nan));
381     verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(kZero));
382     verify_all_zero(vec_zero.template cwiseMin<PropagateNumbers>(vec_zero));
383 
384     // Test min and max reduction
385     Tensor<Scalar, 0> val;
386     val = vec_zero.minimum();
387     VERIFY_IS_EQUAL(val(), kZero);
388     val = vec_zero.template minimum<PropagateNaN>();
389     VERIFY_IS_EQUAL(val(), kZero);
390     val = vec_zero.template minimum<PropagateNumbers>();
391     VERIFY_IS_EQUAL(val(), kZero);
392     val = vec_zero.maximum();
393     VERIFY_IS_EQUAL(val(), kZero);
394     val = vec_zero.template maximum<PropagateNaN>();
395     VERIFY_IS_EQUAL(val(), kZero);
396     val = vec_zero.template maximum<PropagateNumbers>();
397     VERIFY_IS_EQUAL(val(), kZero);
398 
399     // Test NaN propagation for tensor of all NaNs.
400     val = vec_all_nan.template minimum<PropagateNaN>();
401     VERIFY((numext::isnan)(val()));
402     val = vec_all_nan.template minimum<PropagateNumbers>();
403     VERIFY_IS_EQUAL(val(), kInf);
404     val = vec_all_nan.template maximum<PropagateNaN>();
405     VERIFY((numext::isnan)(val()));
406     val = vec_all_nan.template maximum<PropagateNumbers>();
407     VERIFY_IS_EQUAL(val(), -kInf);
408 
409     // Test NaN propagation for tensor with a single NaN.
410     val = vec_one_nan.template minimum<PropagateNaN>();
411     VERIFY((numext::isnan)(val()));
412     val = vec_one_nan.template minimum<PropagateNumbers>();
413     VERIFY_IS_EQUAL(val(), (size == 1 ? kInf : kZero));
414     val = vec_one_nan.template maximum<PropagateNaN>();
415     VERIFY((numext::isnan)(val()));
416     val = vec_one_nan.template maximum<PropagateNumbers>();
417     VERIFY_IS_EQUAL(val(), (size == 1 ? -kInf : kZero));
418   }
419 }
420 
test_clip()421 static void test_clip()
422 {
423   Tensor<float, 1> vec(6);
424   vec(0) = 4.0;
425   vec(1) = 8.0;
426   vec(2) = 15.0;
427   vec(3) = 16.0;
428   vec(4) = 23.0;
429   vec(5) = 42.0;
430 
431   float kMin = 20;
432   float kMax = 30;
433 
434   Tensor<float, 1> vec_clipped(6);
435   vec_clipped = vec.clip(kMin, kMax);
436   for (int i = 0; i < 6; ++i) {
437     VERIFY_IS_EQUAL(vec_clipped(i), numext::mini(numext::maxi(vec(i), kMin), kMax));
438   }
439 }
440 
test_minmax_nan_propagation()441 static void test_minmax_nan_propagation()
442 {
443   test_minmax_nan_propagation_templ<float>();
444   test_minmax_nan_propagation_templ<double>();
445 }
446 
EIGEN_DECLARE_TEST(cxx11_tensor_expr)447 EIGEN_DECLARE_TEST(cxx11_tensor_expr)
448 {
449   CALL_SUBTEST(test_1d());
450   CALL_SUBTEST(test_2d());
451   CALL_SUBTEST(test_3d());
452   CALL_SUBTEST(test_constants());
453   CALL_SUBTEST(test_boolean());
454   CALL_SUBTEST(test_functors());
455   CALL_SUBTEST(test_type_casting());
456   CALL_SUBTEST(test_select());
457   CALL_SUBTEST(test_clip());
458 
459 // Nan propagation does currently not work like one would expect from std::max/std::min,
460 // so we disable it for now
461 #if !EIGEN_ARCH_ARM_OR_ARM64
462   CALL_SUBTEST(test_minmax_nan_propagation());
463 #endif
464 }
465