xref: /openwifi/driver/sdr.c (revision fc4a13a9ca2630c623cc500e80f7ed6800bb5eb9)
1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos
2 // SPDX-FileCopyrightText: 2022 UGent
3 // SPDX-License-Identifier: AGPL-3.0-or-later
4 
5 #include <linux/bitops.h>
6 #include <linux/dmapool.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/of_address.h>
10 #include <linux/of_platform.h>
11 #include <linux/of_irq.h>
12 #include <linux/slab.h>
13 #include <linux/clk.h>
14 #include <linux/io-64-nonatomic-lo-hi.h>
15 
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 
24 #include <linux/init.h>
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/of_dma.h>
28 #include <linux/platform_device.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/wait.h>
32 #include <linux/sched/task.h>
33 #include <linux/dma/xilinx_dma.h>
34 #include <linux/spi/spi.h>
35 #include <net/mac80211.h>
36 
37 #include <linux/clk.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk-provider.h>
40 
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43 
44 #include <linux/gpio.h>
45 #include <linux/leds.h>
46 
47 // #include <linux/time.h>
48 
49 #define IIO_AD9361_USE_PRIVATE_H_
50 #include <../../drivers/iio/adc/ad9361_regs.h>
51 #include <../../drivers/iio/adc/ad9361.h>
52 #include <../../drivers/iio/adc/ad9361_private.h>
53 
54 #include <../../drivers/iio/frequency/cf_axi_dds.h>
55 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num);
56 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb,
57 			       bool tx1, bool tx2, bool immed);
58 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy,
59 				  struct ctrl_outs_control *ctrl);
60 extern int ad9361_do_calib_run(struct ad9361_rf_phy *phy, u32 cal, int arg);
61 
62 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
63 #include "hw_def.h"
64 #include "sdr.h"
65 #include "git_rev.h"
66 
67 // driver API of component driver
68 extern struct tx_intf_driver_api *tx_intf_api;
69 extern struct rx_intf_driver_api *rx_intf_api;
70 extern struct openofdm_tx_driver_api *openofdm_tx_api;
71 extern struct openofdm_rx_driver_api *openofdm_rx_api;
72 extern struct xpu_driver_api *xpu_api;
73 
74 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes);
75 u8 gen_mpdu_delim_crc(u16 m);
76 u32 reverse32(u32 d);
77 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant);
78 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant);
79 int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction);
80 int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction);
81 int rssi_correction_lookup_table(u32 freq_MHz);
82 void ad9361_tx_calibration(struct openwifi_priv *priv, u32 actual_tx_lo);
83 void openwifi_rf_rx_update_after_tuning(struct openwifi_priv *priv, u32 actual_rx_lo);
84 
85 #include "sdrctl_intf.c"
86 #include "sysfs_intf.c"
87 
88 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1)
89 // Internal indication variables after parsing test_mode
90 static bool AGGR_ENABLE = false;
91 static bool TX_OFFSET_TUNING_ENABLE = false;
92 
93 static int init_tx_att = 0;
94 
95 MODULE_AUTHOR("Xianjun Jiao");
96 MODULE_DESCRIPTION("SDR driver");
97 MODULE_LICENSE("GPL v2");
98 
99 module_param(test_mode, int, 0);
100 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)");
101 
102 module_param(init_tx_att, int, 0);
103 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000	example: set to 3000 for 3dB attenuation");
104 
105 // ---------------rfkill---------------------------------------
106 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
107 {
108 	int reg;
109 
110 	if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH)
111 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
112 	else
113 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
114 
115 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]))
116 		return true;// 0 off, 1 on
117 	return false;
118 }
119 
120 void openwifi_rfkill_init(struct ieee80211_hw *hw)
121 {
122 	struct openwifi_priv *priv = hw->priv;
123 
124 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
125 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
126 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
127 	wiphy_rfkill_start_polling(hw->wiphy);
128 }
129 
130 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
131 {
132 	bool enabled;
133 	struct openwifi_priv *priv = hw->priv;
134 
135 	enabled = openwifi_is_radio_enabled(priv);
136 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
137 	if (unlikely(enabled != priv->rfkill_off)) {
138 		priv->rfkill_off = enabled;
139 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
140 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
141 	}
142 }
143 
144 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
145 {
146 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
147 	wiphy_rfkill_stop_polling(hw->wiphy);
148 }
149 //----------------rfkill end-----------------------------------
150 
151 inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction)
152 {
153 	return ((rssi_correction+rssi_dbm)<<1);
154 }
155 
156 inline int rssi_correction_lookup_table(u32 freq_MHz)
157 {
158 	int rssi_correction;
159 
160 	if (freq_MHz<2412) {
161 		rssi_correction = 153;
162 	} else if (freq_MHz<=2484) {
163 		rssi_correction = 153;
164 	} else if (freq_MHz<5160) {
165 		rssi_correction = 153;
166 	} else if (freq_MHz<=5240) {
167 		rssi_correction = 145;
168 	} else if (freq_MHz<=5320) {
169 		rssi_correction = 145;
170 	} else {
171 		rssi_correction = 145;
172 	}
173 
174 	return rssi_correction;
175 }
176 
177 inline void ad9361_tx_calibration(struct openwifi_priv *priv, u32 actual_tx_lo)
178 {
179 	// struct timespec64 tv;
180 	// unsigned long time_before = 0;
181 	// unsigned long time_after = 0;
182 	u32 spi_disable;
183 
184 	priv->last_tx_quad_cal_lo = actual_tx_lo;
185 	// do_gettimeofday(&tv);
186 	// time_before = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec );
187 	spi_disable = xpu_api->XPU_REG_SPI_DISABLE_read(); // backup current fpga spi disable state
188 	xpu_api->XPU_REG_SPI_DISABLE_write(1); // disable FPGA SPI module
189 	ad9361_do_calib_run(priv->ad9361_phy, TX_QUAD_CAL, (int)priv->ad9361_phy->state->last_tx_quad_cal_phase);
190 	xpu_api->XPU_REG_SPI_DISABLE_write(spi_disable); // restore original SPI disable state
191 	// do_gettimeofday(&tv);
192 	// time_after = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec );
193 
194 	// printk("%s ad9361_tx_calibration %dMHz tx_quad_cal duration %lu us\n", sdr_compatible_str, actual_tx_lo, time_after-time_before);
195 	printk("%s ad9361_tx_calibration %dMHz tx_quad_cal duration unknown us\n", sdr_compatible_str, actual_tx_lo);
196 }
197 
198 inline void openwifi_rf_rx_update_after_tuning(struct openwifi_priv *priv, u32 actual_rx_lo)
199 {
200 	int static_lbt_th, auto_lbt_th, fpga_lbt_th, receiver_rssi_dbm_th, receiver_rssi_th;
201 
202 	// get rssi correction value from lookup table
203 	priv->rssi_correction = rssi_correction_lookup_table(actual_rx_lo);
204 
205 	// set appropriate lbt threshold
206 	auto_lbt_th = rssi_dbm_to_rssi_half_db(-62, priv->rssi_correction); // -62dBm
207 	static_lbt_th = rssi_dbm_to_rssi_half_db(-(priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]), priv->rssi_correction);
208 	fpga_lbt_th = (priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]==0?auto_lbt_th:static_lbt_th);
209 	xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th);
210 	priv->last_auto_fpga_lbt_th = auto_lbt_th;
211 
212 	// Set rssi_half_db threshold (-85dBm equivalent) to receiver. Receiver will not react to signal lower than this rssi. See test records (OPENOFDM_RX_POWER_THRES_INIT in hw_def.h)
213 	receiver_rssi_dbm_th = (priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]==0?OPENOFDM_RX_RSSI_DBM_TH_DEFAULT:(-priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]));
214 	receiver_rssi_th = rssi_dbm_to_rssi_half_db(receiver_rssi_dbm_th, priv->rssi_correction);
215 	openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write((OPENOFDM_RX_DC_RUNNING_SUM_TH_INIT<<16)|receiver_rssi_th);
216 
217 	if (actual_rx_lo < 2500) {
218 		if (priv->band != BAND_2_4GHZ) {
219 			priv->band = BAND_2_4GHZ;
220 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
221 		}
222 	} else {
223 		if (priv->band != BAND_5_8GHZ) {
224 			priv->band = BAND_5_8GHZ;
225 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
226 		}
227 	}
228 	printk("%s openwifi_rf_rx_update_after_tuning %dMHz rssi_correction %d fpga_lbt_th %d(%ddBm) auto %d static %d receiver th %d(%ddBm)\n", sdr_compatible_str,
229 	actual_rx_lo, priv->rssi_correction, fpga_lbt_th, rssi_half_db_to_rssi_dbm(fpga_lbt_th, priv->rssi_correction), auto_lbt_th, static_lbt_th, receiver_rssi_th, receiver_rssi_dbm_th);
230 }
231 
232 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
233 				  struct ieee80211_conf *conf)
234 {
235 	struct openwifi_priv *priv = dev->priv;
236 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz;
237 	u32 actual_tx_lo;
238 	u32 diff_tx_lo;
239 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
240 
241 	if (change_flag && priv->rf_reg_val[RF_TX_REG_IDX_FREQ_MHZ]==0 && priv->rf_reg_val[RF_RX_REG_IDX_FREQ_MHZ]==0) {
242 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
243 		diff_tx_lo = priv->last_tx_quad_cal_lo > actual_tx_lo ? priv->last_tx_quad_cal_lo - actual_tx_lo : actual_tx_lo - priv->last_tx_quad_cal_lo;
244 
245 		// -------------------Tx Lo tuning-------------------
246 		clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo) )>>1);
247 		priv->actual_tx_lo = actual_tx_lo;
248 
249 		// -------------------Rx Lo tuning-------------------
250 		clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo) )>>1);
251 		priv->actual_rx_lo = actual_rx_lo;
252 
253 		// call Tx Quadrature calibration if frequency change is more than 100MHz
254 		if (diff_tx_lo > 100)
255 			ad9361_tx_calibration(priv, actual_tx_lo);
256 
257 		openwifi_rf_rx_update_after_tuning(priv, actual_rx_lo);
258 		printk("%s ad9361_rf_set_channel %dMHz done\n", sdr_compatible_str,conf->chandef.chan->center_freq);
259 	}
260 }
261 
262 const struct openwifi_rf_ops ad9361_rf_ops = {
263 	.name		= "ad9361",
264 //	.init		= ad9361_rf_init,
265 //	.stop		= ad9361_rf_stop,
266 	.set_chan	= ad9361_rf_set_channel,
267 //	.calc_rssi	= ad9361_rf_calc_rssi,
268 };
269 
270 u16 reverse16(u16 d) {
271 	union u16_byte2 tmp0, tmp1;
272 	tmp0.a = d;
273 	tmp1.c[0] = tmp0.c[1];
274 	tmp1.c[1] = tmp0.c[0];
275 	return(tmp1.a);
276 }
277 
278 u32 reverse32(u32 d) {
279 	union u32_byte4 tmp0, tmp1;
280 	tmp0.a = d;
281 	tmp1.c[0] = tmp0.c[3];
282 	tmp1.c[1] = tmp0.c[2];
283 	tmp1.c[2] = tmp0.c[1];
284 	tmp1.c[3] = tmp0.c[0];
285 	return(tmp1.a);
286 }
287 
288 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
289 {
290 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
291 	int i;
292 
293 	ring->stop_flag = -1;
294 	ring->bd_wr_idx = 0;
295 	ring->bd_rd_idx = 0;
296 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
297 	if (ring->bds==NULL) {
298 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
299 		return -ENOMEM;
300 	}
301 
302 	for (i = 0; i < NUM_TX_BD; i++) {
303 		ring->bds[i].skb_linked=NULL; // for tx, skb is from upper layer
304 		//at first right after skb allocated, head, data, tail are the same.
305 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine
306 		ring->bds[i].seq_no = 0xffff; // invalid value
307 		ring->bds[i].prio = 0xff; // invalid value
308 		ring->bds[i].len_mpdu = 0; // invalid value
309 	}
310 
311 	return 0;
312 }
313 
314 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
315 {
316 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
317 	int i;
318 
319 	ring->stop_flag = -1;
320 	ring->bd_wr_idx = 0;
321 	ring->bd_rd_idx = 0;
322 	for (i = 0; i < NUM_TX_BD; i++) {
323 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
324 			continue;
325 		if (ring->bds[i].dma_mapping_addr != 0)
326 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
327 //		if (ring->bds[i].skb_linked!=NULL)
328 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
329 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
330 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
331 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str,
332 			ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr));
333 
334 		ring->bds[i].skb_linked=NULL;
335 		ring->bds[i].dma_mapping_addr = 0;
336 		ring->bds[i].seq_no = 0xffff; // invalid value
337 		ring->bds[i].prio = 0xff; // invalid value
338 		ring->bds[i].len_mpdu = 0; // invalid value
339 	}
340 	if (ring->bds)
341 		kfree(ring->bds);
342 	ring->bds = NULL;
343 }
344 
345 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
346 {
347 	int i;
348 	u8 *pdata_tmp;
349 
350 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
351 	if (!priv->rx_cyclic_buf) {
352 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
353 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
354 		return(-1);
355 	}
356 
357 	// Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
358 	for (i=0; i<NUM_RX_BD; i++) {
359 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning
360 		(*((u16*)(pdata_tmp+10))) = 0;
361 	}
362 	printk("%s openwifi_init_rx_ring: NUM_RX_BD %d RX_BD_BUF_SIZE %d pkt existing flag are cleared!\n", sdr_compatible_str,
363 	NUM_RX_BD, RX_BD_BUF_SIZE);
364 
365 	return 0;
366 }
367 
368 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
369 {
370 	if (priv->rx_cyclic_buf)
371 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
372 
373 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
374 	priv->rx_cyclic_buf = 0;
375 }
376 
377 static int rx_dma_setup(struct ieee80211_hw *dev){
378 	struct openwifi_priv *priv = dev->priv;
379 	struct dma_device *rx_dev = priv->rx_chan->device;
380 
381 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
382 	if (!(priv->rxd)) {
383 		openwifi_free_rx_ring(priv);
384 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
385 		return(-1);
386 	}
387 	priv->rxd->callback = 0;
388 	priv->rxd->callback_param = 0;
389 
390 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
391 
392 	if (dma_submit_error(priv->rx_cookie)) {
393 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
394 		return(-1);
395 	}
396 
397 	dma_async_issue_pending(priv->rx_chan);
398 	return(0);
399 }
400 
401 inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction)
402 {
403 	int rssi_db, rssi_dbm;
404 
405 	rssi_db = (rssi_half_db>>1);
406 
407 	rssi_dbm = rssi_db - rssi_correction;
408 
409 	rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm);
410 
411 	return rssi_dbm;
412 }
413 
414 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
415 {
416 	struct ieee80211_hw *dev = dev_id;
417 	struct openwifi_priv *priv = dev->priv;
418 	struct ieee80211_rx_status rx_status = {0};
419 	struct sk_buff *skb;
420 	struct ieee80211_hdr *hdr;
421 	u32 addr1_low32, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di;
422 	bool ht_flag, short_gi, ht_aggr, ht_aggr_last;
423 	// u32 dma_driver_buf_idx_mod;
424 	u8 *pdata_tmp;
425 	u8 fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw;
426 	s8 signal;
427 	u16 agc_status_and_pkt_exist_flag, rssi_half_db, addr1_high16, addr2_high16=0, addr3_high16=0, seq_no=0;
428 	bool content_ok, len_overflow, is_unicast;
429 
430 #ifdef USE_NEW_RX_INTERRUPT
431 	int i;
432 	spin_lock(&priv->lock);
433 	for (i=0; i<NUM_RX_BD; i++) {
434 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE;
435 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid
436 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
437 			continue;
438 #else
439 	static u8 target_buf_idx_old = 0;
440 	spin_lock(&priv->lock);
441 	while(1) { // loop all rx buffers that have new rx packets
442 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
443 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10)));
444 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
445 			break;
446 #endif
447 
448 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
449 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
450 		rssi_half_db = (*((u16*)(pdata_tmp+8 )));
451 		len =          (*((u16*)(pdata_tmp+12)));
452 
453 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
454 
455 		rate_idx =     (*((u16*)(pdata_tmp+14)));
456 		ht_flag  =     ((rate_idx&0x10)!=0);
457 		short_gi =     ((rate_idx&0x20)!=0);
458 		ht_aggr  =     (ht_flag & ((rate_idx&0x40)!=0));
459 		ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0));
460 		rate_idx =     (rate_idx&0x1F);
461 
462 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
463 
464 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
465 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
466 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
467 		fcs_ok = ((fcs_ok&0x80)!=0);
468 
469 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
470 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
471 			// 	printk("%s openwifi_rx: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
472 			// }
473 			content_ok = true;
474 		} else {
475 			printk("%s openwifi_rx: WARNING content! len%d overflow%d rate_idx%d\n", sdr_compatible_str,
476 			len, len_overflow, rate_idx);
477 			content_ok = false;
478 		}
479 
480 		signal = rssi_half_db_to_rssi_dbm(rssi_half_db, priv->rssi_correction);
481 
482 		hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
483 		if (len>=20) {
484 			addr2_low32  = *((u32*)(hdr->addr2+2));
485 			addr2_high16 = *((u16*)(hdr->addr2));
486 		}
487 
488 		addr1_low32  = *((u32*)(hdr->addr1+2));
489 		addr1_high16 = *((u16*)(hdr->addr1));
490 
491 		if ( priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ANY ) {
492 			if (len>=26) {
493 				addr3_low32  = *((u32*)(hdr->addr3+2));
494 				addr3_high16 = *((u16*)(hdr->addr3));
495 			}
496 			if (len>=28)
497 				seq_no = ( (hdr->seq_ctrl&IEEE80211_SCTL_SEQ)>>4 );
498 
499 			is_unicast = (addr1_low32!=0xffffffff || addr1_high16!=0xffff);
500 
501 			if ( (( is_unicast)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST))   ||
502 			     ((!is_unicast)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST)) ||
503 				 ((  fcs_ok==0)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ERROR)) )
504 				printk("%s openwifi_rx: %dB ht%daggr%d/%d sgi%d %dM FC%04x DI%04x ADDR%04x%08x/%04x%08x/%04x%08x SC%d fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
505 					len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
506 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
507 #ifdef USE_NEW_RX_INTERRUPT
508 					seq_no, fcs_ok, i, signal);
509 #else
510 					seq_no, fcs_ok, target_buf_idx_old, signal);
511 #endif
512 		}
513 
514 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
515 		if (content_ok) {
516 			skb = dev_alloc_skb(len);
517 			if (skb) {
518 				skb_put_data(skb,pdata_tmp+16,len);
519 
520 				rx_status.antenna = priv->runtime_rx_ant_cfg;
521 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
522 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
523 				rx_status.signal = signal;
524 
525 				// rx_status.freq = dev->conf.chandef.chan->center_freq;
526 				rx_status.freq = priv->actual_rx_lo;
527 				// rx_status.band = dev->conf.chandef.chan->band;
528 				rx_status.band = (rx_status.freq<2500?NL80211_BAND_2GHZ:NL80211_BAND_5GHZ);
529 
530 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
531 				rx_status.flag |= RX_FLAG_MACTIME_START;
532 				if (!fcs_ok)
533 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
534 				if (rate_idx <= 15)
535 					rx_status.encoding = RX_ENC_LEGACY;
536 				else
537 					rx_status.encoding = RX_ENC_HT;
538 				rx_status.bw = RATE_INFO_BW_20;
539 				if (short_gi)
540 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
541 				if(ht_aggr)
542 				{
543 					rx_status.ampdu_reference = priv->ampdu_reference;
544 					rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
545 					if (ht_aggr_last)
546 						rx_status.flag |= RX_FLAG_AMPDU_IS_LAST;
547 				}
548 
549 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
550 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
551 
552 				// printk("%s openwifi_rx: addr1_low32 %08x self addr %08x\n", sdr_compatible_str, addr1_low32, ( *( (u32*)(priv->mac_addr+2) ) ));
553 				if (addr1_low32 == ( *( (u32*)(priv->mac_addr+2) ) ) && priv->stat.stat_enable) {
554 					agc_status_and_pkt_exist_flag = (agc_status_and_pkt_exist_flag&0x7f);
555 					if (len>=20) {// rx stat
556 						if (addr2_low32 == priv->stat.rx_target_sender_mac_addr || priv->stat.rx_target_sender_mac_addr==0) {
557 							if ( ieee80211_is_data(hdr->frame_control) ) {
558 								priv->stat.rx_data_pkt_mcs_realtime = rate_idx;
559 								priv->stat.rx_data_pkt_num_total++;
560 								if (!fcs_ok) {
561 									priv->stat.rx_data_pkt_num_fail++;
562 									priv->stat.rx_data_pkt_fail_mcs_realtime = rate_idx;
563 									priv->stat.rx_data_fail_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
564 								} else {
565 									priv->stat.rx_data_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
566 								}
567 							} else if ( ieee80211_is_mgmt(hdr->frame_control) ) {
568 								priv->stat.rx_mgmt_pkt_mcs_realtime = rate_idx;
569 								priv->stat.rx_mgmt_pkt_num_total++;
570 								if (!fcs_ok) {
571 									priv->stat.rx_mgmt_pkt_num_fail++;
572 									priv->stat.rx_mgmt_pkt_fail_mcs_realtime = rate_idx;
573 									priv->stat.rx_mgmt_fail_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
574 								} else {
575 									priv->stat.rx_mgmt_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
576 								}
577 							}
578 						}
579 					} else if ( ieee80211_is_ack(hdr->frame_control) ) {
580 						priv->stat.rx_ack_pkt_mcs_realtime = rate_idx;
581 						priv->stat.rx_ack_pkt_num_total++;
582 						if (!fcs_ok) {
583 							priv->stat.rx_ack_pkt_num_fail++;
584 						} else {
585 							priv->stat.rx_ack_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
586 						}
587 					}
588 				}
589 			} else
590 				printk("%s openwifi_rx: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
591 
592 			if(ht_aggr_last)
593 				priv->ampdu_reference++;
594 		}
595 		(*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed
596 		loop_count++;
597 #ifndef USE_NEW_RX_INTERRUPT
598 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
599 #endif
600 	}
601 
602 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ERROR) )
603 		printk("%s openwifi_rx: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
604 
605 // openwifi_rx_out:
606 	spin_unlock(&priv->lock);
607 	return IRQ_HANDLED;
608 }
609 
610 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
611 {
612 	struct ieee80211_hw *dev = dev_id;
613 	struct openwifi_priv *priv = dev->priv;
614 	struct openwifi_ring *ring, *drv_ring_tmp;
615 	struct sk_buff *skb;
616 	struct ieee80211_tx_info *info;
617 	struct ieee80211_hdr *hdr;
618 	u32 reg_val1, hw_queue_len, reg_val2, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0, addr1_low32, mcs_for_sysfs;
619 	u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx;
620 	u8 nof_retx=-1, last_bd_rd_idx, i, prio, queue_idx, nof_retx_stat;
621 	u64 blk_ack_bitmap;
622 	// u16 prio_rd_idx_store[64]={0};
623 	bool tx_fail=false, fpga_queue_has_room=false;
624 	bool use_ht_aggr, pkt_need_ack, use_ht_rate, prio_wake_up_flag = false;
625 
626 	spin_lock(&priv->lock);
627 
628 	while(1) { // loop all packets that have been sent by FPGA
629 		reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read();
630         reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read();
631 		blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32);
632 
633 		if (reg_val1!=0xFFFFFFFF) {
634 			nof_retx = (reg_val1&0xF);
635 			last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1));
636 			prio = ((reg_val1>>17)&0x3);
637 			num_slot_random = ((reg_val1>>19)&0x1FF);
638 			//num_slot_random = ((0xFF80000 &reg_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
639 			cw = ((reg_val1>>28)&0xF);
640 			//cw = ((0xF0000000 & reg_val1) >> 28);
641 			if(cw > 10) {
642 				cw = 10 ;
643 				num_slot_random += 512 ;
644 			}
645 			pkt_cnt = (reg_val2&0x3F);
646 			blk_ack_ssn = ((reg_val2>>6)&0xFFF);
647 
648 			queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1));
649 			dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
650 			hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
651 			// check which linux prio is stopped by this queue (queue_idx)
652 			for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
653 				drv_ring_tmp = &(priv->tx_ring[i]);
654 				if ( drv_ring_tmp->stop_flag == prio ) {
655 
656 					if ( ((dma_fifo_no_room_flag>>i)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(i*8))&0xFF))>=RING_ROOM_THRESHOLD )
657 						fpga_queue_has_room=true;
658 					else
659 						fpga_queue_has_room=false;
660 
661 					// Wake up Linux queue due to the current fpga queue releases some room
662 					if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP )
663 						printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio%d i%d queue%d no room flag%x hwq len%08x wr%d rd%d\n", sdr_compatible_str,
664 						        prio, i, queue_idx, dma_fifo_no_room_flag, hw_queue_len, drv_ring_tmp->bd_wr_idx, last_bd_rd_idx);
665 
666 					if (fpga_queue_has_room) {
667 						prio_wake_up_flag = true;
668 						drv_ring_tmp->stop_flag = -1;
669 
670 						if (priv->stat.stat_enable) {
671 							priv->stat.tx_prio_wakeup_num[prio]++;
672 							priv->stat.tx_queue_wakeup_num[i]++;
673 						}
674 					} else {
675 						if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP )
676 							printk("%s openwifi_tx_interrupt: WARNING no room! prio_wake_up_flag%d\n", sdr_compatible_str, prio_wake_up_flag);
677 					}
678 				}
679 			}
680 			if (prio_wake_up_flag)
681 				ieee80211_wake_queue(dev, prio);
682 
683 			if (priv->stat.stat_enable) {
684 				priv->stat.tx_prio_interrupt_num[prio] = priv->stat.tx_prio_interrupt_num[prio] + pkt_cnt;
685 				priv->stat.tx_queue_interrupt_num[queue_idx] = priv->stat.tx_queue_interrupt_num[queue_idx] + pkt_cnt;
686 			}
687 
688 			ring = &(priv->tx_ring[queue_idx]);
689 			for(i = 1; i <= pkt_cnt; i++)
690 			{
691 				ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64;
692 				seq_no = ring->bds[ring->bd_rd_idx].seq_no;
693 
694 				if (seq_no == 0xffff) {// it has been forced cleared by the openwifi_tx (due to out-of-order Tx of different queues to the air?)
695 					printk("%s openwifi_tx_interrupt: WARNING wr%d rd%d last_bd_rd_idx%d i%d pkt_cnt%d prio%d fpga q%d hwq len%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str,
696 					ring->bd_wr_idx, ring->bd_rd_idx, last_bd_rd_idx, i, pkt_cnt, prio, queue_idx, hw_queue_len, ring->bds[ring->bd_rd_idx].prio, ring->bds[ring->bd_rd_idx].len_mpdu, seq_no, ring->bds[ring->bd_rd_idx].skb_linked, ring->bds[ring->bd_rd_idx].dma_mapping_addr);
697 					continue;
698 				}
699 
700 				skb = ring->bds[ring->bd_rd_idx].skb_linked;
701 
702 				dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
703 						skb->len, DMA_MEM_TO_DEV);
704 
705 				info = IEEE80211_SKB_CB(skb);
706 				use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0);
707 				ieee80211_tx_info_clear_status(info);
708 
709 				// Aggregation packet
710 				if (use_ht_aggr)
711 				{
712 					start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF));
713 					tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0);
714 					info->flags |= IEEE80211_TX_STAT_AMPDU;
715 					info->status.ampdu_len = 1;
716 					info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1;
717 
718 					skb_pull(skb, LEN_MPDU_DELIM);
719 					//skb_trim(skb, num_byte_pad_skb);
720 				}
721 				// Normal packet
722 				else
723 				{
724 					tx_fail = ((blk_ack_bitmap&0x1)==0);
725 					info->flags &= (~IEEE80211_TX_CTL_AMPDU);
726 				}
727 
728 				pkt_need_ack = (!(info->flags & IEEE80211_TX_CTL_NO_ACK));
729 				// do statistics for data packet that needs ack
730 				hdr = (struct ieee80211_hdr *)skb->data;
731 				addr1_low32  = *((u32*)(hdr->addr1+2));
732 				if ( priv->stat.stat_enable && pkt_need_ack && (addr1_low32 == priv->stat.rx_target_sender_mac_addr || priv->stat.rx_target_sender_mac_addr==0) ) {
733 					use_ht_rate = (((info->control.rates[0].flags)&IEEE80211_TX_RC_MCS)!=0);
734 					mcs_for_sysfs = ieee80211_get_tx_rate(dev, info)->hw_value;
735 					if (use_ht_rate)
736 						mcs_for_sysfs = (mcs_for_sysfs | 0x80000000);
737 
738 					if ( ieee80211_is_data(hdr->frame_control) ) {
739 						nof_retx_stat = (nof_retx<=5?nof_retx:5);
740 
741 						priv->stat.tx_data_pkt_need_ack_num_total++;
742 						priv->stat.tx_data_pkt_mcs_realtime = mcs_for_sysfs;
743 						priv->stat.tx_data_pkt_need_ack_num_retx[nof_retx_stat]++;
744 						if (tx_fail) {
745 							priv->stat.tx_data_pkt_need_ack_num_total_fail++;
746 							priv->stat.tx_data_pkt_fail_mcs_realtime = mcs_for_sysfs;
747 							priv->stat.tx_data_pkt_need_ack_num_retx_fail[nof_retx_stat]++;
748 						}
749 					} else if ( ieee80211_is_mgmt(hdr->frame_control) ) {
750 						nof_retx_stat = (nof_retx<=2?nof_retx:2);
751 
752 						priv->stat.tx_mgmt_pkt_need_ack_num_total++;
753 						priv->stat.tx_mgmt_pkt_mcs_realtime = mcs_for_sysfs;
754 						priv->stat.tx_mgmt_pkt_need_ack_num_retx[nof_retx_stat]++;
755 						if (tx_fail) {
756 							priv->stat.tx_mgmt_pkt_need_ack_num_total_fail++;
757 							priv->stat.tx_mgmt_pkt_fail_mcs_realtime = mcs_for_sysfs;
758 							priv->stat.tx_mgmt_pkt_need_ack_num_retx_fail[nof_retx_stat]++;
759 						}
760 					}
761 				}
762 
763 				if ( tx_fail == false )
764 					info->flags |= IEEE80211_TX_STAT_ACK;
765 
766 				info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
767 				info->status.rates[1].idx = -1;
768 				// info->status.rates[2].idx = -1;
769 				// info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
770 				info->status.antenna = priv->runtime_tx_ant_cfg;
771 
772 				if ( ( (!pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST) ) || ( (pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST) ) ){
773 					printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] SC%d prio%d q%d wr%d rd%d num_slot%d cw%d hwq len%08x no_room_flag%x\n", sdr_compatible_str,
774 					nof_retx+1, !tx_fail, seq_no, prio, queue_idx, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw, hw_queue_len, dma_fifo_no_room_flag);
775 				}
776 
777 				ieee80211_tx_status_irqsafe(dev, skb);
778 
779 				ring->bds[ring->bd_rd_idx].prio = 0xff; // invalid value
780 				ring->bds[ring->bd_rd_idx].len_mpdu = 0; // invalid value
781 				ring->bds[ring->bd_rd_idx].seq_no = 0xffff;
782 				ring->bds[ring->bd_rd_idx].skb_linked = NULL;
783 				ring->bds[ring->bd_rd_idx].dma_mapping_addr = 0;
784 			}
785 
786 			loop_count++;
787 
788 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
789 
790 		} else
791 			break;
792 	}
793 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&DMESG_LOG_ERROR) )
794 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
795 
796 	spin_unlock(&priv->lock);
797 	return IRQ_HANDLED;
798 }
799 
800 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000};
801 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes)
802 {
803 	u32 i, crc = 0;
804 	u8 idx;
805 	for( i = 0; i < num_bytes; i++)
806 	{
807 		idx = (crc & 0x0F) ^ (data_in[i] & 0x0F);
808 		crc = (crc >> 4) ^ crc_table[idx];
809 
810 		idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F);
811 		crc = (crc >> 4) ^ crc_table[idx];
812 	}
813 
814 	return crc;
815 }
816 
817 u8 gen_mpdu_delim_crc(u16 m)
818 {
819 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc;
820 
821 	for (i = 0; i < 16; i++)
822 	{
823 		temp = c[7] ^ ((m >> i) & 0x01);
824 
825 		c[7] = c[6];
826 		c[6] = c[5];
827 		c[5] = c[4];
828 		c[4] = c[3];
829 		c[3] = c[2];
830 		c[2] = c[1] ^ temp;
831 		c[1] = c[0] ^ temp;
832 		c[0] = temp;
833 	}
834 	mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
835 
836 	return mpdu_delim_crc;
837 }
838 
839 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
840 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
841 {
842 	return container_of(led_cdev, struct gpio_led_data, cdev);
843 }
844 
845 inline int calc_n_ofdm(int num_octet, int n_dbps)
846 {
847 	int num_bit, num_ofdm_sym;
848 
849 	num_bit      = 22+num_octet*8;
850 	num_ofdm_sym = (num_bit/n_dbps) + ((num_bit%n_dbps)!=0);
851 
852 	return (num_ofdm_sym);
853 }
854 
855 inline __le16 gen_ht_duration_id(__le16 frame_control, __le16 aid, u8 qos_hdr, bool use_ht_aggr, u16 rate_hw_value, u16 sifs)
856 {
857 // COTS wifi ht QoS data duration field analysis (lots of capture):
858 
859 // ht non-aggr QoS data: 44, type 2 (data frame) sub-type 8 (1000) 21.7/52/57.8/58.5/65Mbps
860 // ack     ht 36 + 4*[(22+14*8)/78] = 36 + 4*2 = 44
861 // ack legacy 20 + 4*[(22+14*8)/72] = 20 + 4*2 = 28
862 
863 // ht non-aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 6.5Mbps
864 // ack     ht 36 + 4*[(22+14*8)/26] = 36 + 4*6 = 60
865 // ack legacy 20 + 4*[(22+14*8)/24] = 20 + 4*6 = 44
866 
867 // ht     aggr QoS data: 52, type 2 (data frame) sub-type 8 (1000) 19.5/28.9/39/57.8/65/72.2Mbps
868 // ack     ht 36 + 4*[(22+32*8)/78] = 36 + 4*4 = 52
869 // ack legacy 20 + 4*[(22+32*8)/72] = 20 + 4*4 = 36
870 
871 // ht     aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 13/14.4Mbps
872 // ack     ht 36 + 4*[(22+32*8)/52] = 36 + 4*6 = 60
873 // ack legacy 20 + 4*[(22+32*8)/48] = 20 + 4*6 = 44
874 
875 // ht and legacy rate mapping is ont one on one, instead it is modulation combined with coding rate
876 // modulate  coding  ht-mcs ht-n_dbps legacy-mcs legacy-n_dbps
877 // BPSK      1/2     0      26        4          24
878 // QPSK      1/2     1      52        6          48
879 // QPSK      3/4     2      78        7          72
880 // 16QAM     1/2     3      104       8          96
881 // 16QAM     3/4     4      156       9          144
882 // 64QAM     2/3     5      208       10         192
883 // 64QAM     3/4     6      234       11         216
884 
885 // conclusion: duration is: assume ack/blk-ack uses legacy, plus SIFS
886 
887 // other observation: ht always use QoS data, not data (sub-type)
888 // other observation: management/control frame always in non-ht
889 
890 	__le16 dur = 0;
891 	u16 n_dbps;
892 	int num_octet, num_ofdm_sym;
893 
894 	if (ieee80211_is_pspoll(frame_control)) {
895 		dur = (aid|0xc000);
896 	} else if (ieee80211_is_data_qos(frame_control) && (~(qos_hdr&IEEE80211_QOS_CTL_ACK_POLICY_NOACK))) {
897 		rate_hw_value = (rate_hw_value>6?6:rate_hw_value);
898 		n_dbps = (rate_hw_value==0?wifi_n_dbps_table[4]:wifi_n_dbps_table[rate_hw_value+5]);
899 		num_octet = (use_ht_aggr?32:14); //32 bytes for compressed block ack; 14 bytes for normal ack
900 		num_ofdm_sym = calc_n_ofdm(num_octet, n_dbps);
901 		dur = sifs + 20 + 4*num_ofdm_sym; // 20us legacy preamble
902 		// printk("%s gen_ht_duration_id: num_octet %d n_dbps %d num_ofdm_sym %d dur %d\n", sdr_compatible_str,
903 		// num_octet, n_dbps, num_ofdm_sym, dur);
904 	} else {
905 		printk("%s openwifi_tx: WARNING gen_ht_duration_id wrong pkt type!\n", sdr_compatible_str);
906 	}
907 
908 	return dur;
909 }
910 
911 inline void report_pkt_loss_due_to_driver_drop(struct ieee80211_hw *dev, struct sk_buff *skb)
912 {
913 	struct openwifi_priv *priv = dev->priv;
914 	struct ieee80211_tx_info *info;
915 
916 	info = IEEE80211_SKB_CB(skb);
917 	ieee80211_tx_info_clear_status(info);
918 	info->status.rates[0].count = 1;
919 	info->status.rates[1].idx = -1;
920 	info->status.antenna = priv->runtime_tx_ant_cfg;
921 	ieee80211_tx_status_irqsafe(dev, skb);
922 }
923 
924 static void openwifi_tx(struct ieee80211_hw *dev,
925 		       struct ieee80211_tx_control *control,
926 		       struct sk_buff *skb)
927 {
928 	struct openwifi_priv *priv = dev->priv;
929 	unsigned long flags;
930 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
931 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
932 	struct openwifi_ring *ring = NULL;
933 	struct sk_buff *skb_new; // temp skb for internal use
934 	struct ieee80211_tx_info *info_skipped;
935 	dma_addr_t dma_mapping_addr;
936 	unsigned int i, j, empty_bd_idx = 0;
937 	u16 rate_signal_value, rate_hw_value, len_mpdu, len_psdu, num_dma_symbol, len_mpdu_delim_pad=0, num_byte_pad;
938 	u32 num_dma_byte, addr1_low32, addr2_low32=0, addr3_low32=0, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history;
939 	u16 addr1_high16, addr2_high16=0, addr3_high16=0, sc, seq_no=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration, n_dbps;
940 	u8 pkt_need_ack, retry_limit_raw,use_short_gi,*dma_buf,retry_limit_hw_value,rc_flags,qos_hdr,prio,queue_idx,drv_ring_idx;
941 	bool drv_seqno=false, use_rts_cts, use_cts_protect, ht_aggr_start=false, use_ht_rate, use_ht_aggr, cts_use_traffic_rate=false, force_use_cts_protect=false;
942 	__le16 frame_control,duration_id;
943 	u32 dma_fifo_no_room_flag, hw_queue_len, delay_count=0;
944 	enum dma_status status;
945 
946 	static u32 addr1_low32_prev = -1;
947 	static u16 rate_hw_value_prev = -1;
948 	static u8 pkt_need_ack_prev = -1;
949 	static u16 addr1_high16_prev = -1;
950 	static __le16 duration_id_prev = -1;
951 	static u8 prio_prev = -1;
952 	static u8 retry_limit_raw_prev = -1;
953 	static u8 use_short_gi_prev = -1;
954 
955 	// static bool led_status=0;
956 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
957 
958 	// if ( (priv->phy_tx_sn&7) ==0 ) {
959 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
960 	// 	if (openofdm_state_history!=openofdm_state_history_old){
961 	// 		led_status = (~led_status);
962 	// 		openofdm_state_history_old = openofdm_state_history;
963 	// 		gpiod_set_value(led_dat->gpiod, led_status);
964 	// 	}
965 	// }
966 
967 	if (skb->data_len>0) {// more data are not in linear data area skb->data
968 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
969 		goto openwifi_tx_early_out;
970 	}
971 
972 	len_mpdu = skb->len;
973 
974 	// get Linux priority/queue setting info and target mac address
975 	prio = skb_get_queue_mapping(skb);
976 	if (prio >= MAX_NUM_HW_QUEUE) {
977 		printk("%s openwifi_tx: WARNING prio%d\n", sdr_compatible_str, prio);
978 		goto openwifi_tx_early_out;
979 	}
980 
981 	addr1_low32  = *((u32*)(hdr->addr1+2));
982 
983 	// ---- DO your idea here! Map Linux/SW "prio" to driver "drv_ring_idx" (then 1on1 to FPGA queue_idx) ---
984 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
985 		drv_ring_idx = prio;
986 	} else {// customized prio to drv_ring_idx mapping
987 		// check current packet belonging to which slice/hw-queue
988 		for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
989 			if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
990 				break;
991 			}
992 		}
993 		drv_ring_idx = (i>=MAX_NUM_HW_QUEUE?prio:i); // if no address is hit
994 	}
995 
996 	ring = &(priv->tx_ring[drv_ring_idx]);
997 
998 	spin_lock_irqsave(&priv->lock, flags);
999 	if (ring->bds[ring->bd_wr_idx].seq_no != 0xffff) { // not cleared yet by interrupt
1000 		for (i=1; i<NUM_TX_BD; i++) {
1001 			if (ring->bds[(ring->bd_wr_idx+i)&(NUM_TX_BD-1)].seq_no == 0xffff) {
1002 				empty_bd_idx = i;
1003 				break;
1004 			}
1005 		}
1006 		hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
1007 		if (empty_bd_idx) { // clear all bds before the empty bd and report failure to Linux
1008 			if (priv->stat.stat_enable) {
1009 				priv->stat.tx_prio_stop0_fake_num[prio]++;
1010 				priv->stat.tx_queue_stop0_fake_num[drv_ring_idx]++;
1011 			}
1012 			for (i=0; i<empty_bd_idx; i++) {
1013 				j = ( (ring->bd_wr_idx+i)&(NUM_TX_BD-1) );
1014 				printk("%s openwifi_tx: WARNING fake stop queue empty_bd_idx%d i%d lnx prio%d map to q%d stop%d hwq len%d wr%d rd%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str,
1015 				empty_bd_idx, i, prio, drv_ring_idx, ring->stop_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, ring->bds[j].prio, ring->bds[j].len_mpdu, ring->bds[j].seq_no, ring->bds[j].skb_linked, ring->bds[j].dma_mapping_addr);
1016 				// tell Linux this skb failed
1017 				skb_new = ring->bds[j].skb_linked;
1018 				dma_unmap_single(priv->tx_chan->device->dev,ring->bds[j].dma_mapping_addr,
1019 							skb_new->len, DMA_MEM_TO_DEV);
1020 				info_skipped = IEEE80211_SKB_CB(skb_new);
1021 				ieee80211_tx_info_clear_status(info_skipped);
1022 				info_skipped->status.rates[0].count = 1;
1023 				info_skipped->status.rates[1].idx = -1;
1024 				info_skipped->status.antenna = priv->runtime_tx_ant_cfg;
1025 				ieee80211_tx_status_irqsafe(dev, skb_new);
1026 
1027 				ring->bds[j].prio = 0xff; // invalid value
1028 				ring->bds[j].len_mpdu = 0; // invalid value
1029 				ring->bds[j].seq_no = 0xffff;
1030 				ring->bds[j].skb_linked = NULL;
1031 				ring->bds[j].dma_mapping_addr = 0;
1032 
1033 			}
1034 			if (ring->stop_flag != -1) { //the interrupt seems will never come, we need to wake up the queue in case the interrupt will never wake it up
1035 				ieee80211_wake_queue(dev, ring->stop_flag);
1036 				ring->stop_flag = -1;
1037 			}
1038 		} else {
1039 			j = ring->bd_wr_idx;
1040 			printk("%s openwifi_tx: WARNING real stop queue lnx prio%d map to q%d stop%d hwq len%d wr%d rd%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str,
1041 			prio, drv_ring_idx, ring->stop_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, ring->bds[j].prio, ring->bds[j].len_mpdu, ring->bds[j].seq_no, ring->bds[j].skb_linked, ring->bds[j].dma_mapping_addr);
1042 
1043 			ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
1044 			ring->stop_flag = prio;
1045 			if (priv->stat.stat_enable) {
1046 				priv->stat.tx_prio_stop0_real_num[prio]++;
1047 				priv->stat.tx_queue_stop0_real_num[drv_ring_idx]++;
1048 			}
1049 
1050 			spin_unlock_irqrestore(&priv->lock, flags);
1051 			goto openwifi_tx_early_out;
1052 		}
1053 	}
1054 	spin_unlock_irqrestore(&priv->lock, flags);
1055 	// -------------------- end of Map Linux/SW "prio" to driver "drv_ring_idx" ------------------
1056 
1057 	// get other info from packet header
1058 	addr1_high16 = *((u16*)(hdr->addr1));
1059 	if (len_mpdu>=20) {
1060 		addr2_low32  = *((u32*)(hdr->addr2+2));
1061 		addr2_high16 = *((u16*)(hdr->addr2));
1062 	}
1063 	if (len_mpdu>=26) {
1064 		addr3_low32  = *((u32*)(hdr->addr3+2));
1065 		addr3_high16 = *((u16*)(hdr->addr3));
1066 	}
1067 
1068 	frame_control=hdr->frame_control;
1069 	pkt_need_ack = (!(info->flags&IEEE80211_TX_CTL_NO_ACK));
1070 
1071 	retry_limit_raw = info->control.rates[0].count;
1072 
1073 	rc_flags = info->control.rates[0].flags;
1074 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
1075 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
1076 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
1077 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
1078 	use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0);
1079 	qos_hdr = (*(ieee80211_get_qos_ctl(hdr)));
1080 
1081 	// get Linux rate (MCS) setting
1082 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
1083 	// drv_tx_reg_val[DRV_TX_REG_IDX_RATE]
1084 	// override rate legacy: 4:6M,   5:9M,  6:12M,  7:18M, 8:24M, 9:36M, 10:48M,   11:54M
1085 	// drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]
1086 	// override rate     ht: 4:6.5M, 5:13M, 6:19.5M,7:26M, 8:39M, 9:52M, 10:58.5M, 11:65M
1087 	if ( ieee80211_is_data(hdr->frame_control) ) {//rate override command
1088 		if (use_ht_rate && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]>0) {
1089 			rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0xF)-4;
1090 			use_short_gi  = ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0x10)==0x10);
1091 		} else if ((!use_ht_rate) && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0)
1092 			rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]&0xF);
1093 		// TODO: need to map rate_hw_value back to info->control.rates[0].idx!!!
1094 	}
1095 
1096 	// Workaround for a FPGA bug: if aggr happens on ht mcs 0, the tx core will never end, running eneless and stuck the low MAC!
1097 	if (use_ht_aggr && rate_hw_value==0)
1098 		rate_hw_value = 1;
1099 
1100 	// sifs = (priv->actual_rx_lo<2500?10:16);
1101 	sifs = 16; // for ofdm, sifs is always 16
1102 
1103 	if (use_ht_rate) {
1104 		// printk("%s openwifi_tx: rate_hw_value %d aggr %d sifs %d\n", sdr_compatible_str, rate_hw_value, use_ht_aggr, sifs);
1105 		hdr->duration_id = gen_ht_duration_id(frame_control, control->sta->aid, qos_hdr, use_ht_aggr, rate_hw_value, sifs); //linux only do it for 11a/g, not for 11n and later
1106 	}
1107 	duration_id = hdr->duration_id;
1108 
1109 	if (use_rts_cts)
1110 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
1111 
1112 	if (use_cts_protect) {
1113 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
1114 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info));
1115 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
1116 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
1117 		if (pkt_need_ack)
1118 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
1119 
1120 		n_dbps = (use_ht_rate?wifi_n_dbps_ht_table[rate_hw_value+4]:wifi_n_dbps_table[rate_hw_value]);
1121 		traffic_pkt_duration = (use_ht_rate?36:20) + 4*calc_n_ofdm(len_mpdu, n_dbps);
1122 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
1123 	}
1124 
1125 // this is 11b stuff
1126 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1127 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
1128 
1129 	if (len_mpdu>=28) {
1130 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1131 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
1132 				priv->seqno += 0x10;
1133 				drv_seqno = true;
1134 			}
1135 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1136 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
1137 		}
1138 		sc = hdr->seq_ctrl;
1139 		seq_no = (sc&IEEE80211_SCTL_SEQ)>>4;
1140 	}
1141 
1142 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
1143 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
1144 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
1145 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
1146 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
1147 
1148 	// -----------end of preprocess some info from header and skb----------------
1149 
1150 	// /* HW will perform RTS-CTS when only RTS flags is set.
1151 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
1152 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
1153 	//  */
1154 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1155 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
1156 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
1157 	// 					len_mpdu, info);
1158 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
1159 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1160 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
1161 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
1162 	// 					len_mpdu, info);
1163 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
1164 	// }
1165 
1166 	if(use_ht_aggr)
1167 	{
1168 		if(ieee80211_is_data_qos(frame_control) == false)
1169 		{
1170 			printk("%s openwifi_tx: WARNING packet is not QoS packet!\n", sdr_compatible_str);
1171 			goto openwifi_tx_early_out;
1172 		}
1173 
1174 		// psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ]
1175 		len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4);
1176 		len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad;
1177 
1178 		if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) ||
1179 			(rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) ||
1180 			(prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) )
1181 		{
1182 			addr1_low32_prev = addr1_low32;
1183 			addr1_high16_prev = addr1_high16;
1184 			duration_id_prev = duration_id;
1185 			rate_hw_value_prev = rate_hw_value;
1186 			use_short_gi_prev = use_short_gi;
1187 			prio_prev = prio;
1188 			retry_limit_raw_prev = retry_limit_raw;
1189 			pkt_need_ack_prev = pkt_need_ack;
1190 
1191 			ht_aggr_start = true;
1192 		}
1193 	}
1194 	else
1195 	{
1196 		// psdu = [ MPDU ]
1197 		len_psdu = len_mpdu;
1198 
1199 		// // Don't need to reset _prev variables every time when it is not ht aggr qos data. Reason:
1200 		// // 1. In 99.9999% cases, the ht always use qos data and goes to prio/queue_idx 2. By not resetting the variable to -1, we can have continuous aggregation packet operation in FPGA queue 2.
1201 		// // 2. In other words, the aggregation operation for queue 2 in FPGA won't be interrupted by other non aggregation packets (control/management/beacon/etc.) that go to queue 0 (or other queues than 2).
1202 		// // 3. From wired domain and upper level ( DSCP, AC (0~3), WMM management, 802.11D service classes and user priority (UP) ) to chip/FPGA queue index, thre should be some (complicated) mapping relationship.
1203 		// // 4. More decent design is setting these aggregation flags (ht_aggr_start) per queue/prio here in driver. But since now only queue 2 and 0 are used (data goes to queue 2, others go to queue 0) in normal (most) cases, let's not go to the decent (complicated) solution immediately.
1204 		// addr1_low32_prev = -1;
1205 		// addr1_high16_prev = -1;
1206 		// duration_id_prev = -1;
1207 		// use_short_gi_prev = -1;
1208 		// rate_hw_value_prev = -1;
1209 		// prio_prev = -1;
1210 		// retry_limit_raw_prev = -1;
1211 		// pkt_need_ack_prev = -1;
1212 	}
1213 	num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
1214 
1215 	if ( ( (!pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST) ) || ( (pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST) ) )
1216 		printk("%s openwifi_tx: %dB RC%x %dM FC%04x DI%04x ADDR%04x%08x/%04x%08x/%04x%08x flag%08x QoS%02x SC%d_%d retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
1217 			len_mpdu, rc_flags, (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
1218 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
1219 			info->flags, qos_hdr, seq_no, drv_seqno, retry_limit_raw, pkt_need_ack, prio, drv_ring_idx,
1220 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
1221 			ring->bd_wr_idx,ring->bd_rd_idx);
1222 
1223 	// check whether the packet is bigger than DMA buffer size
1224 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
1225 	if (num_dma_byte > TX_BD_BUF_SIZE) {
1226 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
1227 		goto openwifi_tx_early_out;
1228 	}
1229 
1230 	// Copy MPDU delimiter and padding into sk_buff
1231 	if(use_ht_aggr)
1232 	{
1233 		// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
1234 		if (skb_headroom(skb)<LEN_MPDU_DELIM) {// in case original skb headroom is not enough to host MPDU delimiter
1235 			printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_headroom(skb) %d < LEN_MPDU_DELIM %d\n", sdr_compatible_str, ring->bd_wr_idx, skb_headroom(skb), LEN_MPDU_DELIM);
1236 			if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) {
1237 				printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1238 				goto openwifi_tx_early_out;
1239 			}
1240 			if (skb->sk != NULL)
1241 				skb_set_owner_w(skb_new, skb->sk);
1242 			dev_kfree_skb(skb);
1243 			skb = skb_new;
1244 		}
1245 		skb_push( skb, LEN_MPDU_DELIM );
1246 		dma_buf = skb->data;
1247 
1248 		// fill in MPDU delimiter
1249 		*((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0;
1250 		*((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf));
1251 		*((u8 *)(dma_buf+3)) = 0x4e;
1252 
1253 		// Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter
1254 		num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu);
1255 		if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad
1256 			printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad);
1257 			if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) {
1258 				printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1259 				goto openwifi_tx_early_out;
1260 			}
1261 			if (skb->sk != NULL)
1262 				skb_set_owner_w(skb_new, skb->sk);
1263 			dev_kfree_skb(skb);
1264 			skb = skb_new;
1265 		}
1266 		skb_put( skb, num_byte_pad );
1267 
1268 		// fill in MPDU CRC
1269 		*((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu);
1270 
1271 		// fill in MPDU delimiter padding
1272 		memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad);
1273 
1274 		// num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary.
1275 		// If they have different lengths, add "empty MPDU delimiter" for alignment
1276 		if(num_dma_byte == len_psdu + 4)
1277 		{
1278 			*((u32*)(dma_buf+len_psdu)) = 0x4e140000;
1279 			len_psdu = num_dma_byte;
1280 		}
1281 	}
1282 	else
1283 	{
1284 		// Extend sk_buff to hold padding
1285 		num_byte_pad = num_dma_byte - len_mpdu;
1286 		if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad
1287 			printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad);
1288 			if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) {
1289 				printk("%s openwifi_tx: WARNING sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1290 				goto openwifi_tx_early_out;
1291 			}
1292 			if (skb->sk != NULL)
1293 				skb_set_owner_w(skb_new, skb->sk);
1294 			dev_kfree_skb(skb);
1295 			skb = skb_new;
1296 		}
1297 		skb_put( skb, num_byte_pad );
1298 
1299 		dma_buf = skb->data;
1300 	}
1301 //	for(i = 0; i <= num_dma_symbol; i++)
1302 //		printk("%16llx\n", (*(u64*)(&(dma_buf[i*8]))));
1303 
1304 	rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]);
1305 
1306 	retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) );
1307 
1308 	queue_idx = drv_ring_idx; // from driver ring idx to FPGA queue_idx mapping
1309 
1310 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
1311 	cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value);
1312 	tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | num_dma_symbol );
1313 	phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu );
1314 
1315 	/* We must be sure that tx_flags is written last because the HW
1316 	 * looks at it to check if the rest of data is valid or not
1317 	 */
1318 	//wmb();
1319 	// entry->flags = cpu_to_le32(tx_flags);
1320 	/* We must be sure this has been written before following HW
1321 	 * register write, because this write will make the HW attempts
1322 	 * to DMA the just-written data
1323 	 */
1324 	//wmb();
1325 
1326 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
1327 
1328 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
1329 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
1330 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
1331 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<=RING_ROOM_THRESHOLD)  || ring->stop_flag>=0 ) {
1332 		if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP )
1333 			printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio%d queue%d no room flag%x hwq len%08x request%d wr%d rd%d\n", sdr_compatible_str,
1334 			        prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
1335 
1336 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
1337 		ring->stop_flag = prio;
1338 		if (priv->stat.stat_enable) {
1339 			priv->stat.tx_prio_stop1_num[prio]++;
1340 			priv->stat.tx_queue_stop1_num[queue_idx]++;
1341 		}
1342 		// goto openwifi_tx_early_out_after_lock;
1343 	}
1344 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
1345 
1346 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
1347 	while(delay_count<100 && status!=DMA_COMPLETE) {
1348 		status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
1349 		delay_count++;
1350 		udelay(4);
1351 		// udelay(priv->stat.dbg_ch1);
1352 	}
1353 	if (status!=DMA_COMPLETE) {
1354 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
1355 		goto openwifi_tx_early_out_after_lock;
1356 	}
1357 
1358 //-------------------------fire skb DMA to hardware----------------------------------
1359 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
1360 				 num_dma_byte, DMA_MEM_TO_DEV);
1361 
1362 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
1363 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
1364 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
1365 		goto openwifi_tx_early_out_after_lock;
1366 	}
1367 
1368 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
1369 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
1370 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
1371 
1372 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
1373 	tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config);
1374 	tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config);
1375 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
1376 	if (!(priv->txd)) {
1377 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
1378 		goto openwifi_tx_after_dma_mapping;
1379 	}
1380 
1381 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
1382 
1383 	if (dma_submit_error(priv->tx_cookie)) {
1384 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
1385 		goto openwifi_tx_after_dma_mapping;
1386 	}
1387 
1388 	// seems everything is ok. let's mark this pkt in bd descriptor ring
1389 	ring->bds[ring->bd_wr_idx].prio = prio;
1390 	ring->bds[ring->bd_wr_idx].len_mpdu = len_mpdu;
1391 	ring->bds[ring->bd_wr_idx].seq_no = seq_no;
1392 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
1393 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
1394 
1395 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
1396 
1397 	dma_async_issue_pending(priv->tx_chan);
1398 
1399 	spin_unlock_irqrestore(&priv->lock, flags);
1400 
1401 	if (priv->stat.stat_enable) {
1402 		priv->stat.tx_prio_num[prio]++;
1403 		priv->stat.tx_queue_num[queue_idx]++;
1404 	}
1405 
1406 	return;
1407 
1408 openwifi_tx_after_dma_mapping:
1409 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
1410 
1411 openwifi_tx_early_out_after_lock:
1412 	spin_unlock_irqrestore(&priv->lock, flags);
1413 	report_pkt_loss_due_to_driver_drop(dev, skb);
1414 	// dev_kfree_skb(skb);
1415 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1416 	return;
1417 
1418 openwifi_tx_early_out:
1419 	report_pkt_loss_due_to_driver_drop(dev, skb);
1420 	// dev_kfree_skb(skb);
1421 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1422 }
1423 
1424 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant)
1425 {
1426 	struct openwifi_priv *priv = dev->priv;
1427 	u8 fpga_tx_ant_setting, target_rx_ant;
1428 	u32 atten_mdb_tx0, atten_mdb_tx1;
1429 	struct ctrl_outs_control ctrl_out;
1430 	int ret;
1431 
1432 	printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant);
1433 
1434 	if (tx_ant >= 4 || tx_ant == 0) {
1435 		return -EINVAL;
1436 	} else if (rx_ant >= 3 || rx_ant == 0) {
1437 		return -EINVAL;
1438 	}
1439 
1440 	fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16));
1441 	target_rx_ant = ((rx_ant&1)?0:1);
1442 
1443 	// try rf chip setting firstly, only update internal state variable when rf chip succeed
1444 	atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1445 	atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1446 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true);
1447 	if (ret < 0) {
1448 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0);
1449 		return -EINVAL;
1450 	} else {
1451 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0);
1452 	}
1453 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true);
1454 	if (ret < 0) {
1455 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1);
1456 		return -EINVAL;
1457 	} else {
1458 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1);
1459 	}
1460 
1461 	ctrl_out.en_mask = priv->ctrl_out.en_mask;
1462 	ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
1463 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out));
1464 	if (ret < 0) {
1465 		printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1466 		return -EINVAL;
1467 	} else {
1468 		printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1469 	}
1470 
1471 	tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting);
1472 	ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read();
1473 	if (ret != fpga_tx_ant_setting) {
1474 		printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret);
1475 		return -EINVAL;
1476 	} else {
1477 		printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1478 	}
1479 
1480 	rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant);
1481 	ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read();
1482 	if (ret != target_rx_ant) {
1483 		printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret);
1484 		return -EINVAL;
1485 	} else {
1486 		printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1487 	}
1488 
1489 	// update internal state variable
1490 	priv->runtime_tx_ant_cfg = tx_ant;
1491 	priv->runtime_rx_ant_cfg = rx_ant;
1492 
1493 	if (TX_OFFSET_TUNING_ENABLE)
1494 		priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE
1495 	else {
1496 		if (tx_ant == 3)
1497 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH;
1498 		else
1499 			priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1500 	}
1501 
1502 	priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1503 	priv->ctrl_out.index=ctrl_out.index;
1504 
1505 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1506 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1507 
1508 	return 0;
1509 }
1510 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant)
1511 {
1512 	struct openwifi_priv *priv = dev->priv;
1513 
1514 	*tx_ant = priv->runtime_tx_ant_cfg;
1515 	*rx_ant = priv->runtime_rx_ant_cfg;
1516 
1517 	printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant);
1518 
1519 	printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str,
1520 	priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index);
1521 
1522 	printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str,
1523 	tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read());
1524 
1525 	printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str,
1526 	ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER));
1527 
1528 	return 0;
1529 }
1530 
1531 static int openwifi_start(struct ieee80211_hw *dev)
1532 {
1533 	struct openwifi_priv *priv = dev->priv;
1534 	int ret, i;
1535 	u32 reg;
1536 
1537 	for (i=0; i<MAX_NUM_VIF; i++) {
1538 		priv->vif[i] = NULL;
1539 	}
1540 
1541 	// //keep software registers persistent between NIC down and up for multiple times
1542 	/*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
1543 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
1544 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
1545 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
1546 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/
1547 
1548 	//turn on radio
1549 	openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
1550 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
1551 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
1552 		priv->rfkill_off = 1;// 0 off, 1 on
1553 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
1554 	}
1555 	else
1556 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
1557 
1558 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1559 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1560 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1561 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1562 	xpu_api->hw_init(priv->xpu_cfg);
1563 
1564 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1565 
1566 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1567 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1568 
1569 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1570 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1571 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1572 
1573 	// priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1574 	priv->rx_chan = dma_request_chan(&(priv->pdev->dev), "rx_dma_s2mm");
1575 	if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) {
1576 		ret = PTR_ERR(priv->rx_chan);
1577 		if (ret != -EPROBE_DEFER) {
1578 			pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan);
1579 			goto err_dma;
1580 		}
1581 	}
1582 
1583 	// priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1584 	priv->tx_chan = dma_request_chan(&(priv->pdev->dev), "tx_dma_mm2s");
1585 	if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) {
1586 		ret = PTR_ERR(priv->tx_chan);
1587 		if (ret != -EPROBE_DEFER) {
1588 			pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan);
1589 			goto err_dma;
1590 		}
1591 	}
1592 	printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan);
1593 
1594 	ret = openwifi_init_rx_ring(priv);
1595 	if (ret) {
1596 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1597 		goto err_free_rings;
1598 	}
1599 
1600 	priv->seqno=0;
1601 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1602 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1603 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1604 			goto err_free_rings;
1605 		}
1606 	}
1607 
1608 	if ( (ret = rx_dma_setup(dev)) ) {
1609 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1610 		goto err_free_rings;
1611 	}
1612 
1613 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1614 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1615 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1616 	if (ret) {
1617 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1618 		goto err_free_rings;
1619 	} else {
1620 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1621 	}
1622 
1623 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1624 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1625 			IRQF_SHARED, "sdr,tx_itrpt", dev);
1626 	if (ret) {
1627 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1628 		goto err_free_rings;
1629 	} else {
1630 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1631 	}
1632 
1633 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1634 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1635 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1636 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1637 
1638 	priv->stat.csma_cfg0 = xpu_api->XPU_REG_FORCE_IDLE_MISC_read();
1639 
1640 	// disable ad9361 auto calibration and enable openwifi fpga spi control
1641 	priv->ad9361_phy->state->auto_cal_en = false;   // turn off auto Tx quadrature calib.
1642 	priv->ad9361_phy->state->manual_tx_quad_cal_en = true;  // turn on manual Tx quadrature calib.
1643 	xpu_api->XPU_REG_SPI_DISABLE_write(0);
1644 
1645 // normal_out:
1646 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1647 	return 0;
1648 
1649 err_free_rings:
1650 	openwifi_free_rx_ring(priv);
1651 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1652 		openwifi_free_tx_ring(priv, i);
1653 
1654 err_dma:
1655 	ret = -1;
1656 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1657 	return ret;
1658 }
1659 
1660 static void openwifi_stop(struct ieee80211_hw *dev)
1661 {
1662 	struct openwifi_priv *priv = dev->priv;
1663 	u32 reg, reg1;
1664 	int i;
1665 
1666 	// enable ad9361 auto calibration and disable openwifi fpga spi control
1667 	priv->ad9361_phy->state->auto_cal_en = true;   // turn on auto Tx quadrature calib.
1668 	priv->ad9361_phy->state->manual_tx_quad_cal_en = false;  // turn off manual Tx quadrature calib.
1669 	xpu_api->XPU_REG_SPI_DISABLE_write(1);
1670 
1671 	//turn off radio
1672 	#if 1
1673 	ad9361_tx_mute(priv->ad9361_phy, 1);
1674 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1675 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1676 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1677 		priv->rfkill_off = 0;// 0 off, 1 on
1678 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1679 	}
1680 	else
1681 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1682 	#endif
1683 
1684 	//ieee80211_stop_queue(dev, 0);
1685 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1686 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1687 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1688 
1689 	for (i=0; i<MAX_NUM_VIF; i++) {
1690 		priv->vif[i] = NULL;
1691 	}
1692 
1693 	openwifi_free_rx_ring(priv);
1694 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1695 		openwifi_free_tx_ring(priv, i);
1696 
1697 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1698 	dmaengine_terminate_all(priv->rx_chan);
1699 	dma_release_channel(priv->rx_chan);
1700 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1701 	dmaengine_terminate_all(priv->tx_chan);
1702 	dma_release_channel(priv->tx_chan);
1703 
1704 	//priv->rf->stop(dev);
1705 
1706 	free_irq(priv->irq_rx, dev);
1707 	free_irq(priv->irq_tx, dev);
1708 
1709 // normal_out:
1710 	printk("%s openwifi_stop\n", sdr_compatible_str);
1711 }
1712 
1713 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1714 			   struct ieee80211_vif *vif)
1715 {
1716 	u32 tsft_low, tsft_high;
1717 
1718 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1719 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1720 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1721 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1722 }
1723 
1724 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1725 {
1726 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1727 	u32 tsft_low  = (tsf&0xffffffff);
1728 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1729 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1730 }
1731 
1732 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1733 {
1734 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1735 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1736 }
1737 
1738 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1739 {
1740 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1741 	return(0);
1742 }
1743 
1744 static void openwifi_beacon_work(struct work_struct *work)
1745 {
1746 	struct openwifi_vif *vif_priv =
1747 		container_of(work, struct openwifi_vif, beacon_work.work);
1748 	struct ieee80211_vif *vif =
1749 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1750 	struct ieee80211_hw *dev = vif_priv->dev;
1751 	struct ieee80211_mgmt *mgmt;
1752 	struct sk_buff *skb;
1753 
1754 	/* don't overflow the tx ring */
1755 	if (ieee80211_queue_stopped(dev, 0))
1756 		goto resched;
1757 
1758 	/* grab a fresh beacon */
1759 	skb = ieee80211_beacon_get(dev, vif);
1760 	if (!skb)
1761 		goto resched;
1762 
1763 	/*
1764 	 * update beacon timestamp w/ TSF value
1765 	 * TODO: make hardware update beacon timestamp
1766 	 */
1767 	mgmt = (struct ieee80211_mgmt *)skb->data;
1768 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1769 
1770 	/* TODO: use actual beacon queue */
1771 	skb_set_queue_mapping(skb, 0);
1772 	openwifi_tx(dev, NULL, skb);
1773 
1774 resched:
1775 	/*
1776 	 * schedule next beacon
1777 	 * TODO: use hardware support for beacon timing
1778 	 */
1779 	schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1780 	// printk("%s openwifi_beacon_work beacon_int %d\n", sdr_compatible_str, vif->bss_conf.beacon_int);
1781 }
1782 
1783 static int openwifi_add_interface(struct ieee80211_hw *dev,
1784 				 struct ieee80211_vif *vif)
1785 {
1786 	int i;
1787 	struct openwifi_priv *priv = dev->priv;
1788 	struct openwifi_vif *vif_priv;
1789 
1790 	switch (vif->type) {
1791 	case NL80211_IFTYPE_AP:
1792 	case NL80211_IFTYPE_STATION:
1793 	case NL80211_IFTYPE_ADHOC:
1794 	case NL80211_IFTYPE_MONITOR:
1795 	case NL80211_IFTYPE_MESH_POINT:
1796 		break;
1797 	default:
1798 		return -EOPNOTSUPP;
1799 	}
1800 	// let's support more than 1 interface
1801 	for (i=0; i<MAX_NUM_VIF; i++) {
1802 		if (priv->vif[i] == NULL)
1803 			break;
1804 	}
1805 
1806 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1807 
1808 	if (i==MAX_NUM_VIF)
1809 		return -EBUSY;
1810 
1811 	priv->vif[i] = vif;
1812 
1813 	/* Initialize driver private area */
1814 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1815 	vif_priv->idx = i;
1816 
1817 	vif_priv->dev = dev;
1818 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1819 	vif_priv->enable_beacon = false;
1820 
1821 	priv->mac_addr[0] = vif->addr[0];
1822 	priv->mac_addr[1] = vif->addr[1];
1823 	priv->mac_addr[2] = vif->addr[2];
1824 	priv->mac_addr[3] = vif->addr[3];
1825 	priv->mac_addr[4] = vif->addr[4];
1826 	priv->mac_addr[5] = vif->addr[5];
1827 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); // set mac addr in fpga
1828 
1829 	printk("%s openwifi_add_interface end with vif idx %d addr %02x:%02x:%02x:%02x:%02x:%02x\n", sdr_compatible_str,vif_priv->idx,
1830 	vif->addr[0],vif->addr[1],vif->addr[2],vif->addr[3],vif->addr[4],vif->addr[5]);
1831 
1832 	return 0;
1833 }
1834 
1835 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1836 				     struct ieee80211_vif *vif)
1837 {
1838 	struct openwifi_vif *vif_priv;
1839 	struct openwifi_priv *priv = dev->priv;
1840 
1841 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1842 	priv->vif[vif_priv->idx] = NULL;
1843 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1844 }
1845 
1846 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1847 {
1848 	struct openwifi_priv *priv = dev->priv;
1849 	struct ieee80211_conf *conf = &dev->conf;
1850 
1851 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
1852 		if ( priv->stat.restrict_freq_mhz>0 && (conf->chandef.chan->center_freq != priv->stat.restrict_freq_mhz) ) {
1853 			printk("%s openwifi_config avoid Linux requested freq %dMHz (restrict freq %dMHz)\n", sdr_compatible_str,
1854 			conf->chandef.chan->center_freq, priv->stat.restrict_freq_mhz);
1855 			return -EINVAL;
1856 		}
1857 		priv->rf->set_chan(dev, conf);
1858 	} else
1859 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1860 
1861 	return 0;
1862 }
1863 
1864 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1865 				     struct ieee80211_vif *vif,
1866 				     struct ieee80211_bss_conf *info,
1867 				     u32 changed)
1868 {
1869 	struct openwifi_priv *priv = dev->priv;
1870 	struct openwifi_vif *vif_priv;
1871 	u32 bssid_low, bssid_high;
1872 
1873 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1874 
1875 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1876 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1877 	if (changed & BSS_CHANGED_BSSID) {
1878 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1879 		// write new bssid to our HW, and do not change bssid filter
1880 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1881 		bssid_low = ( *( (u32*)(info->bssid) ) );
1882 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1883 
1884 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1885 		//bssid_high = (bssid_high|bssid_filter_high);
1886 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1887 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1888 	}
1889 
1890 	if (changed & BSS_CHANGED_BEACON_INT) {
1891 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1892 	}
1893 
1894 	if (changed & BSS_CHANGED_TXPOWER)
1895 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1896 
1897 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1898 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1899 
1900 	if (changed & BSS_CHANGED_BASIC_RATES)
1901 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1902 
1903 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1904 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1905 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1906 		if (info->use_short_slot && priv->use_short_slot==false) {
1907 			priv->use_short_slot=true;
1908 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1909 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1910 			priv->use_short_slot=false;
1911 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1912 		}
1913 	}
1914 
1915 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1916 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1917 		vif_priv->enable_beacon = info->enable_beacon;
1918 	}
1919 
1920 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1921 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1922 		if (vif_priv->enable_beacon) {
1923 			schedule_work(&vif_priv->beacon_work.work);
1924 			printk("%s openwifi_bss_info_changed WARNING enable_beacon\n",sdr_compatible_str);
1925 		}
1926 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1927 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1928 	}
1929 }
1930 // helper function
1931 u32 log2val(u32 val){
1932 	u32 ret_val = 0 ;
1933 	while(val>1){
1934 		val = val >> 1 ;
1935 		ret_val ++ ;
1936 	}
1937 	return ret_val ;
1938 }
1939 
1940 static int openwifi_conf_tx(struct ieee80211_hw *dev, struct ieee80211_vif *vif, u16 queue,
1941 	      const struct ieee80211_tx_queue_params *params)
1942 {
1943 	struct openwifi_priv *priv = dev->priv;
1944 	u32 reg_val, cw_min_exp, cw_max_exp;
1945 
1946 	if (priv->stat.cw_max_min_cfg == 0) {
1947 		printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
1948 			sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1949 
1950 		reg_val=xpu_api->XPU_REG_CSMA_CFG_read();
1951 		cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
1952 		cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
1953 		switch(queue){
1954 			case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) );  break;
1955 			case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) );  break;
1956 			case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break;
1957 			case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break;
1958 			default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
1959 		}
1960 	} else {
1961 		reg_val = priv->stat.cw_max_min_cfg;
1962 		printk("%s openwifi_conf_tx: override cw max min for q3 to q0: %d %d; %d %d; %d %d; %d %d\n",
1963 			sdr_compatible_str,
1964 			(1<<((reg_val>>28)&0xF))-1,
1965 			(1<<((reg_val>>24)&0xF))-1,
1966 			(1<<((reg_val>>20)&0xF))-1,
1967 			(1<<((reg_val>>16)&0xF))-1,
1968 			(1<<((reg_val>>12)&0xF))-1,
1969 			(1<<((reg_val>> 8)&0xF))-1,
1970 			(1<<((reg_val>> 4)&0xF))-1,
1971 			(1<<((reg_val>> 0)&0xF))-1);
1972 	}
1973 	xpu_api->XPU_REG_CSMA_CFG_write(reg_val);
1974 	return(0);
1975 }
1976 
1977 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1978 				     struct netdev_hw_addr_list *mc_list)
1979 {
1980 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1981 	return netdev_hw_addr_list_count(mc_list);
1982 }
1983 
1984 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1985 				     unsigned int changed_flags,
1986 				     unsigned int *total_flags,
1987 				     u64 multicast)
1988 {
1989 	struct openwifi_priv *priv = dev->priv;
1990 	u32 filter_flag;
1991 
1992 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1993 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1994 
1995 	filter_flag = (*total_flags);
1996 
1997 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1998 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1999 
2000 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
2001 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
2002 		filter_flag = (filter_flag|MONITOR_ALL);
2003 	else
2004 		filter_flag = (filter_flag&(~MONITOR_ALL));
2005 
2006 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
2007 		filter_flag = (filter_flag|MY_BEACON);
2008 
2009 	filter_flag = (filter_flag|FIF_PSPOLL);
2010 
2011 	if (priv->stat.rx_monitor_all)
2012 		filter_flag = (filter_flag|MONITOR_ALL);
2013 
2014 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
2015 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
2016 
2017 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
2018 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
2019 }
2020 
2021 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params)
2022 {
2023 	struct ieee80211_sta *sta = params->sta;
2024 	enum ieee80211_ampdu_mlme_action action = params->action;
2025 	// struct openwifi_priv *priv = hw->priv;
2026 	u16 max_tx_bytes, buf_size;
2027 	u32 ampdu_action_config;
2028 
2029 	if (!AGGR_ENABLE) {
2030 		return -EOPNOTSUPP;
2031 	}
2032 
2033 	switch (action)
2034 	{
2035 		case IEEE80211_AMPDU_TX_START:
2036 			ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
2037 			printk("%s openwifi_ampdu_action: start TX aggregation. tid %d\n", sdr_compatible_str, params->tid);
2038 			break;
2039 		case IEEE80211_AMPDU_TX_STOP_CONT:
2040 		case IEEE80211_AMPDU_TX_STOP_FLUSH:
2041 		case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
2042 			ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
2043 			printk("%s openwifi_ampdu_action: stop TX aggregation. tid %d\n", sdr_compatible_str, params->tid);
2044 			break;
2045 		case IEEE80211_AMPDU_TX_OPERATIONAL:
2046 			buf_size = 4;
2047 //			buf_size = (params->buf_size) - 1;
2048 			max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1;
2049 			ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes );
2050 			tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config);
2051 			printk("%s openwifi_ampdu_action: TX operational. tid %d max_tx_bytes %d ampdu_density %d buf_size %d\n",
2052 			sdr_compatible_str, params->tid, max_tx_bytes, sta->ht_cap.ampdu_density, buf_size);
2053 			break;
2054 		case IEEE80211_AMPDU_RX_START:
2055 			printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
2056 			break;
2057 		case IEEE80211_AMPDU_RX_STOP:
2058 			printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
2059 			break;
2060 		default:
2061 			return -EOPNOTSUPP;
2062 	}
2063 
2064 	return 0;
2065 }
2066 
2067 static const struct ieee80211_ops openwifi_ops = {
2068 	.tx			       = openwifi_tx,
2069 	.start			   = openwifi_start,
2070 	.stop			   = openwifi_stop,
2071 	.add_interface	   = openwifi_add_interface,
2072 	.remove_interface  = openwifi_remove_interface,
2073 	.config			   = openwifi_config,
2074 	.set_antenna       = openwifi_set_antenna,
2075 	.get_antenna       = openwifi_get_antenna,
2076 	.bss_info_changed  = openwifi_bss_info_changed,
2077 	.conf_tx		   = openwifi_conf_tx,
2078 	.prepare_multicast = openwifi_prepare_multicast,
2079 	.configure_filter  = openwifi_configure_filter,
2080 	.rfkill_poll	   = openwifi_rfkill_poll,
2081 	.get_tsf		   = openwifi_get_tsf,
2082 	.set_tsf		   = openwifi_set_tsf,
2083 	.reset_tsf		   = openwifi_reset_tsf,
2084 	.set_rts_threshold = openwifi_set_rts_threshold,
2085 	.ampdu_action      = openwifi_ampdu_action,
2086 	.testmode_cmd	   = openwifi_testmode_cmd,
2087 };
2088 
2089 static const struct of_device_id openwifi_dev_of_ids[] = {
2090 	{ .compatible = "sdr,sdr", },
2091 	{}
2092 };
2093 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
2094 
2095 static int custom_match_spi_dev(struct device *dev, const void *data)
2096 {
2097   const char *name = data;
2098 
2099 	bool ret = sysfs_streq(name, dev->of_node->name);
2100 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
2101 	return ret;
2102 }
2103 
2104 static int custom_match_platform_dev(struct device *dev, const void *data)
2105 {
2106 	struct platform_device *plat_dev = to_platform_device(dev);
2107 	const char *name = data;
2108 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
2109 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
2110 
2111 	if (match_flag) {
2112 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
2113 	}
2114 	return(match_flag);
2115 }
2116 
2117 static int openwifi_dev_probe(struct platform_device *pdev)
2118 {
2119 	struct ieee80211_hw *dev;
2120 	struct openwifi_priv *priv;
2121 	int err=1, rand_val;
2122 	const char *chip_name, *fpga_model;
2123 	u32 reg, i;//, reg1;
2124 
2125 	struct device_node *np = pdev->dev.of_node;
2126 
2127 	struct device *tmp_dev;
2128 	struct platform_device *tmp_pdev;
2129 	struct iio_dev *tmp_indio_dev;
2130 	// struct gpio_leds_priv *tmp_led_priv;
2131 
2132 	printk("\n");
2133 
2134 	if (np) {
2135 		const struct of_device_id *match;
2136 
2137 		match = of_match_node(openwifi_dev_of_ids, np);
2138 		if (match) {
2139 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
2140 			err = 0;
2141 		}
2142 	}
2143 
2144 	if (err)
2145 		return err;
2146 
2147 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
2148 	if (!dev) {
2149 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
2150 		err = -ENOMEM;
2151 		goto err_free_dev;
2152 	}
2153 
2154 	priv = dev->priv;
2155 	priv->pdev = pdev;
2156 
2157 	err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
2158 	if(err < 0) {
2159 		printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
2160 		priv->fpga_type = SMALL_FPGA;
2161 	} else {
2162 		// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
2163 		if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
2164 			priv->fpga_type = LARGE_FPGA;
2165 		// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
2166 		else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
2167 			priv->fpga_type = SMALL_FPGA;
2168 	}
2169 
2170 	// //-------------find ad9361-phy driver for lo/channel control---------------
2171 	priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
2172 	priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
2173 	priv->last_tx_quad_cal_lo = 1000;
2174 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
2175 	if (tmp_dev == NULL) {
2176 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
2177 		err = -ENODEV;
2178 		goto err_free_dev;
2179 	}
2180 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
2181 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
2182 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
2183 		err = -ENODEV;
2184 		goto err_free_dev;
2185 	}
2186 
2187 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
2188 	if (!(priv->ad9361_phy)) {
2189 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
2190 		err = -ENODEV;
2191 		goto err_free_dev;
2192 	}
2193 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
2194 
2195 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
2196 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
2197 	if (!tmp_dev) {
2198 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
2199 		err = -ENODEV;
2200 		goto err_free_dev;
2201 	}
2202 
2203 	tmp_pdev = to_platform_device(tmp_dev);
2204 	if (!tmp_pdev) {
2205 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
2206 		err = -ENODEV;
2207 		goto err_free_dev;
2208 	}
2209 
2210 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
2211 	if (!tmp_indio_dev) {
2212 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
2213 		err = -ENODEV;
2214 		goto err_free_dev;
2215 	}
2216 
2217 	priv->dds_st = iio_priv(tmp_indio_dev);
2218 	if (!(priv->dds_st)) {
2219 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
2220 		err = -ENODEV;
2221 		goto err_free_dev;
2222 	}
2223 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
2224 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
2225 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
2226 
2227 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
2228 	// turn off radio by muting tx
2229 	// ad9361_tx_mute(priv->ad9361_phy, 1);
2230 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
2231 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2232 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
2233 	// 	priv->rfkill_off = 0;// 0 off, 1 on
2234 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
2235 	// }
2236 	// else
2237 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
2238 
2239 	// //-----------------------------parse the test_mode input--------------------------------
2240 	if (test_mode&1)
2241 		AGGR_ENABLE = true;
2242 
2243 	// if (test_mode&2)
2244 	// 	TX_OFFSET_TUNING_ENABLE = false;
2245 
2246 	priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel()
2247 	priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized
2248 
2249 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2250 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2251 
2252 	priv->xpu_cfg = XPU_NORMAL;
2253 
2254 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
2255 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
2256 
2257 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
2258 	if (priv->rf_bw == 20000000) { //DO NOT USE. Not used for long time.
2259 		priv->rx_intf_cfg = RX_INTF_BYPASS;
2260 		priv->tx_intf_cfg = TX_INTF_BYPASS;
2261 		//priv->rx_freq_offset_to_lo_MHz = 0;
2262 		//priv->tx_freq_offset_to_lo_MHz = 0;
2263 	} else if (priv->rf_bw == 40000000) {
2264 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
2265 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
2266 
2267 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
2268 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2269 		if (TX_OFFSET_TUNING_ENABLE)
2270 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
2271 		else
2272 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2273 		// // try another antenna option
2274 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
2275 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
2276 
2277 		#if 0
2278 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
2279 			priv->rx_freq_offset_to_lo_MHz = -10;
2280 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
2281 			priv->rx_freq_offset_to_lo_MHz = 10;
2282 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
2283 			priv->rx_freq_offset_to_lo_MHz = 0;
2284 		} else {
2285 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
2286 		}
2287 		#endif
2288 	} else {
2289 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
2290 		err = -EBADRQC;
2291 		goto err_free_dev;
2292 	}
2293 
2294 	printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att);
2295 
2296 	priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2));
2297 	priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2);
2298 
2299 	priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK;
2300 	priv->ctrl_out.index  =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
2301 
2302 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
2303 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
2304 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
2305 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
2306 
2307 	priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att;
2308 
2309 	//let's by default turn radio on when probing
2310 	err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
2311 	if (err) {
2312 		printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err);
2313 		err = -EIO;
2314 		goto err_free_dev;
2315 	}
2316 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
2317 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
2318 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
2319 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
2320 
2321 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
2322 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
2323 		priv->rfkill_off = 1;// 0 off, 1 on
2324 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
2325 	} else
2326 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
2327 
2328 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
2329 
2330 	// //set ad9361 in certain mode
2331 	#if 0
2332 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
2333 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2334 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
2335 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2336 
2337 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
2338 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
2339 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
2340 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
2341 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
2342 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
2343 	#endif
2344 
2345 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
2346 
2347 	SET_IEEE80211_DEV(dev, &pdev->dev);
2348 	platform_set_drvdata(pdev, dev);
2349 
2350 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
2351 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
2352 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
2353 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
2354 
2355 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
2356 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
2357 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
2358 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
2359 
2360 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
2361 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
2362 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
2363 	priv->ampdu_reference = 0;
2364 
2365 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
2366 	priv->band_2GHz.channels = priv->channels_2GHz;
2367 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
2368 	priv->band_2GHz.bitrates = priv->rates_2GHz;
2369 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
2370 	priv->band_2GHz.ht_cap.ht_supported = true;
2371 	// priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
2372 	if (AGGR_ENABLE) {
2373 		priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2374 		priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2375 	}
2376 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
2377 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2378 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2379 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
2380 
2381 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
2382 	priv->band_5GHz.channels = priv->channels_5GHz;
2383 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
2384 	priv->band_5GHz.bitrates = priv->rates_5GHz;
2385 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
2386 	priv->band_5GHz.ht_cap.ht_supported = true;
2387 	// priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
2388 	if (AGGR_ENABLE) {
2389 		priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2390 		priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2391 	}
2392 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
2393 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2394 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2395 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2396 
2397 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2398 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2399 
2400 	// ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); // remove this because we don't want: mac80211.h: host buffers frame for PS and we fetch them via ieee80211_get_buffered_bc()
2401 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2402 	ieee80211_hw_set(dev, BEACON_TX_STATUS);//mac80211.h: The device/driver provides TX status for sent beacons.
2403 
2404 	ieee80211_hw_set(dev, REPORTS_TX_ACK_STATUS);//mac80211.h: Hardware can provide ack status reports of Tx frames to the stack
2405 
2406 	// * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device
2407 	// *	autonomously manages the PS status of connected stations. When
2408 	// *	this flag is set mac80211 will not trigger PS mode for connected
2409 	// *	stations based on the PM bit of incoming frames.
2410 	// *	Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure
2411 	// *	the PS mode of connected stations.
2412 	ieee80211_hw_set(dev, AP_LINK_PS);
2413 
2414 	if (AGGR_ENABLE) {
2415 		ieee80211_hw_set(dev, AMPDU_AGGREGATION);
2416 	}
2417 
2418 	dev->extra_tx_headroom = LEN_MPDU_DELIM;
2419 
2420 	dev->vif_data_size = sizeof(struct openwifi_vif);
2421 	dev->wiphy->interface_modes =
2422 			BIT(NL80211_IFTYPE_MONITOR)|
2423 			BIT(NL80211_IFTYPE_P2P_GO) |
2424 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
2425 			BIT(NL80211_IFTYPE_AP) |
2426 			BIT(NL80211_IFTYPE_STATION) |
2427 			BIT(NL80211_IFTYPE_ADHOC) |
2428 			BIT(NL80211_IFTYPE_MESH_POINT) |
2429 			BIT(NL80211_IFTYPE_OCB);
2430 	dev->wiphy->iface_combinations = &openwifi_if_comb;
2431 	dev->wiphy->n_iface_combinations = 1;
2432 
2433 	dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK;
2434 	dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK;
2435 
2436 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2437 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2438 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2439 
2440 	chip_name = "ZYNQ";
2441 
2442 	/* we declare to MAC80211 all the queues except for beacon queue
2443 	 * that will be eventually handled by DRV.
2444 	 * TX rings are arranged in such a way that lower is the IDX,
2445 	 * higher is the priority, in order to achieve direct mapping
2446 	 * with mac80211, however the beacon queue is an exception and it
2447 	 * is mapped on the highst tx ring IDX.
2448 	 */
2449 	dev->queues = MAX_NUM_HW_QUEUE;
2450 
2451 	ieee80211_hw_set(dev, SIGNAL_DBM);
2452 
2453 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2454 
2455 	priv->rf = &ad9361_rf_ops;
2456 
2457 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2458 	priv->slice_idx = 0xFFFFFFFF;
2459 
2460 	sg_init_table(&(priv->tx_sg), 1);
2461 
2462 	get_random_bytes(&rand_val, sizeof(rand_val));
2463     rand_val%=250;
2464 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
2465 	priv->mac_addr[5]=rand_val+1;
2466 	//priv->mac_addr[5]=0x11;
2467 	if (!is_valid_ether_addr(priv->mac_addr)) {
2468 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2469 		eth_random_addr(priv->mac_addr);
2470 	}
2471 	printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2472 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2473 
2474 	spin_lock_init(&priv->lock);
2475 
2476 	err = ieee80211_register_hw(dev);
2477 	if (err) {
2478 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2479 		err = -EIO;
2480 		goto err_free_dev;
2481 	} else {
2482 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2483 	}
2484 
2485 	// create sysfs for arbitrary iq setting
2486 	sysfs_bin_attr_init(&priv->bin_iq);
2487 	priv->bin_iq.attr.name = "tx_intf_iq_data";
2488 	priv->bin_iq.attr.mode = S_IWUSR | S_IRUGO;
2489 	priv->bin_iq.write = openwifi_tx_intf_bin_iq_write;
2490 	priv->bin_iq.read = openwifi_tx_intf_bin_iq_read;
2491 	priv->bin_iq.size = 4096;
2492 	err = sysfs_create_bin_file(&pdev->dev.kobj, &priv->bin_iq);
2493 	printk("%s openwifi_dev_probe: sysfs_create_bin_file %d\n",sdr_compatible_str, err);
2494 	if (err < 0)
2495 		goto err_free_dev;
2496 
2497 	priv->tx_intf_arbitrary_iq_num = 0;
2498 	// priv->tx_intf_arbitrary_iq[0] = 1;
2499 	// priv->tx_intf_arbitrary_iq[1] = 2;
2500 
2501 	err = sysfs_create_group(&pdev->dev.kobj, &tx_intf_attribute_group);
2502 	printk("%s openwifi_dev_probe: sysfs_create_group tx_intf_attribute_group %d\n",sdr_compatible_str, err);
2503 	if (err < 0)
2504 		goto err_free_dev;
2505 	priv->tx_intf_iq_ctl = 0;
2506 
2507 	// create sysfs for stat
2508 	err = sysfs_create_group(&pdev->dev.kobj, &stat_attribute_group);
2509 	printk("%s openwifi_dev_probe: sysfs_create_group stat_attribute_group %d\n",sdr_compatible_str, err);
2510 	if (err < 0)
2511 		goto err_free_dev;
2512 
2513 	priv->stat.stat_enable = 0; // by default disable
2514 
2515 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
2516 		priv->stat.tx_prio_num[i] = 0;
2517 		priv->stat.tx_prio_interrupt_num[i] = 0;
2518 		priv->stat.tx_prio_stop0_fake_num[i] = 0;
2519 		priv->stat.tx_prio_stop0_real_num[i] = 0;
2520 		priv->stat.tx_prio_stop1_num[i] = 0;
2521 		priv->stat.tx_prio_wakeup_num[i] = 0;
2522 	}
2523 	for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
2524 		priv->stat.tx_queue_num[i] = 0;
2525 		priv->stat.tx_queue_interrupt_num[i] = 0;
2526 		priv->stat.tx_queue_stop0_fake_num[i] = 0;
2527 		priv->stat.tx_queue_stop0_real_num[i] = 0;
2528 		priv->stat.tx_queue_stop1_num[i] = 0;
2529 		priv->stat.tx_queue_wakeup_num[i] = 0;
2530 	}
2531 
2532 	priv->stat.tx_data_pkt_need_ack_num_total = 0;
2533 	priv->stat.tx_data_pkt_need_ack_num_total_fail = 0;
2534 	for (i=0; i<6; i++) {
2535 		priv->stat.tx_data_pkt_need_ack_num_retx[i] = 0;
2536 		priv->stat.tx_data_pkt_need_ack_num_retx_fail[i] = 0;
2537 	}
2538 	priv->stat.tx_data_pkt_mcs_realtime = 0;
2539 	priv->stat.tx_data_pkt_fail_mcs_realtime = 0;
2540 
2541 	priv->stat.tx_mgmt_pkt_need_ack_num_total = 0;
2542 	priv->stat.tx_mgmt_pkt_need_ack_num_total_fail = 0;
2543 	for (i=0; i<3; i++) {
2544 		priv->stat.tx_mgmt_pkt_need_ack_num_retx[i] = 0;
2545 		priv->stat.tx_mgmt_pkt_need_ack_num_retx_fail[i] = 0;
2546 	}
2547 	priv->stat.tx_mgmt_pkt_mcs_realtime = 0;
2548 	priv->stat.tx_mgmt_pkt_fail_mcs_realtime = 0;
2549 
2550 	priv->stat.rx_monitor_all = 0;
2551 	priv->stat.rx_target_sender_mac_addr = 0;
2552 	priv->stat.rx_data_ok_agc_gain_value_realtime = 0;
2553 	priv->stat.rx_data_fail_agc_gain_value_realtime = 0;
2554 	priv->stat.rx_mgmt_ok_agc_gain_value_realtime = 0;
2555 	priv->stat.rx_mgmt_fail_agc_gain_value_realtime = 0;
2556 	priv->stat.rx_ack_ok_agc_gain_value_realtime = 0;
2557 
2558 	priv->stat.rx_monitor_all = 0;
2559 	priv->stat.rx_data_pkt_num_total = 0;
2560 	priv->stat.rx_data_pkt_num_fail = 0;
2561 	priv->stat.rx_mgmt_pkt_num_total = 0;
2562 	priv->stat.rx_mgmt_pkt_num_fail = 0;
2563 	priv->stat.rx_ack_pkt_num_total = 0;
2564 	priv->stat.rx_ack_pkt_num_fail = 0;
2565 
2566 	priv->stat.rx_data_pkt_mcs_realtime = 0;
2567 	priv->stat.rx_data_pkt_fail_mcs_realtime = 0;
2568 	priv->stat.rx_mgmt_pkt_mcs_realtime = 0;
2569 	priv->stat.rx_mgmt_pkt_fail_mcs_realtime = 0;
2570 	priv->stat.rx_ack_pkt_mcs_realtime = 0;
2571 
2572 	priv->stat.restrict_freq_mhz = 0;
2573 
2574 	priv->stat.csma_cfg0 = 0;
2575 	priv->stat.cw_max_min_cfg = 0;
2576 
2577 	priv->stat.dbg_ch0 = 0;
2578 	priv->stat.dbg_ch1 = 0;
2579 	priv->stat.dbg_ch2 = 0;
2580 
2581 	// // //--------------------hook leds (not complete yet)--------------------------------
2582 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
2583 	// if (!tmp_dev) {
2584 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2585 	// 	err = -ENOMEM;
2586 	// 	goto err_free_dev;
2587 	// }
2588 
2589 	// tmp_pdev = to_platform_device(tmp_dev);
2590 	// if (!tmp_pdev) {
2591 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2592 	// 	err = -ENOMEM;
2593 	// 	goto err_free_dev;
2594 	// }
2595 
2596 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2597 	// if (!tmp_led_priv) {
2598 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2599 	// 	err = -ENOMEM;
2600 	// 	goto err_free_dev;
2601 	// }
2602 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2603 	// if (tmp_led_priv->num_leds!=4){
2604 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2605 	// 	err = -ENOMEM;
2606 	// 	goto err_free_dev;
2607 	// }
2608 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2609 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2610 	// priv->num_led = tmp_led_priv->num_leds;
2611 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2612 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2613 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2614 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2615 
2616 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2617 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2618 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2619 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2620 
2621 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2622 		   priv->mac_addr, chip_name, priv->rf->name);
2623 
2624 	openwifi_rfkill_init(dev);
2625 	return 0;
2626 
2627  err_free_dev:
2628 	ieee80211_free_hw(dev);
2629 
2630 	return err;
2631 }
2632 
2633 static int openwifi_dev_remove(struct platform_device *pdev)
2634 {
2635 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2636 	struct openwifi_priv *priv = dev->priv;
2637 
2638 	if (!dev) {
2639 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2640 		return(-1);
2641 	}
2642 
2643 	sysfs_remove_bin_file(&pdev->dev.kobj, &priv->bin_iq);
2644 	sysfs_remove_group(&pdev->dev.kobj, &tx_intf_attribute_group);
2645 	sysfs_remove_group(&pdev->dev.kobj, &stat_attribute_group);
2646 
2647 	openwifi_rfkill_exit(dev);
2648 	ieee80211_unregister_hw(dev);
2649 	ieee80211_free_hw(dev);
2650 	return(0);
2651 }
2652 
2653 static struct platform_driver openwifi_dev_driver = {
2654 	.driver = {
2655 		.name = "sdr,sdr",
2656 		.owner = THIS_MODULE,
2657 		.of_match_table = openwifi_dev_of_ids,
2658 	},
2659 	.probe = openwifi_dev_probe,
2660 	.remove = openwifi_dev_remove,
2661 };
2662 
2663 module_platform_driver(openwifi_dev_driver);
2664