1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos 2 // SPDX-FileCopyrightText: 2022 UGent 3 // SPDX-License-Identifier: AGPL-3.0-or-later 4 5 #include <linux/bitops.h> 6 #include <linux/dmapool.h> 7 #include <linux/io.h> 8 #include <linux/iopoll.h> 9 #include <linux/of_address.h> 10 #include <linux/of_platform.h> 11 #include <linux/of_irq.h> 12 #include <linux/slab.h> 13 #include <linux/clk.h> 14 #include <linux/io-64-nonatomic-lo-hi.h> 15 16 #include <linux/delay.h> 17 #include <linux/interrupt.h> 18 19 #include <linux/dmaengine.h> 20 #include <linux/slab.h> 21 #include <linux/delay.h> 22 #include <linux/etherdevice.h> 23 24 #include <linux/init.h> 25 #include <linux/kthread.h> 26 #include <linux/module.h> 27 #include <linux/of_dma.h> 28 #include <linux/platform_device.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/wait.h> 32 #include <linux/sched/task.h> 33 #include <linux/dma/xilinx_dma.h> 34 #include <linux/spi/spi.h> 35 #include <net/mac80211.h> 36 37 #include <linux/clk.h> 38 #include <linux/clkdev.h> 39 #include <linux/clk-provider.h> 40 41 #include <linux/iio/iio.h> 42 #include <linux/iio/sysfs.h> 43 44 #include <linux/gpio.h> 45 #include <linux/leds.h> 46 47 // #include <linux/time.h> 48 49 #define IIO_AD9361_USE_PRIVATE_H_ 50 #include <../../drivers/iio/adc/ad9361_regs.h> 51 #include <../../drivers/iio/adc/ad9361.h> 52 #include <../../drivers/iio/adc/ad9361_private.h> 53 54 #include <../../drivers/iio/frequency/cf_axi_dds.h> 55 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num); 56 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb, 57 bool tx1, bool tx2, bool immed); 58 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy, 59 struct ctrl_outs_control *ctrl); 60 extern int ad9361_do_calib_run(struct ad9361_rf_phy *phy, u32 cal, int arg); 61 62 #include "../user_space/sdrctl_src/nl80211_testmode_def.h" 63 #include "hw_def.h" 64 #include "sdr.h" 65 #include "git_rev.h" 66 67 // driver API of component driver 68 extern struct tx_intf_driver_api *tx_intf_api; 69 extern struct rx_intf_driver_api *rx_intf_api; 70 extern struct openofdm_tx_driver_api *openofdm_tx_api; 71 extern struct openofdm_rx_driver_api *openofdm_rx_api; 72 extern struct xpu_driver_api *xpu_api; 73 74 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes); 75 u8 gen_mpdu_delim_crc(u16 m); 76 u32 reverse32(u32 d); 77 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant); 78 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant); 79 int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction); 80 int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction); 81 int rssi_correction_lookup_table(u32 freq_MHz); 82 void ad9361_tx_calibration(struct openwifi_priv *priv, u32 actual_tx_lo); 83 void openwifi_rf_rx_update_after_tuning(struct openwifi_priv *priv, u32 actual_rx_lo); 84 85 #include "sdrctl_intf.c" 86 #include "sysfs_intf.c" 87 88 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1) 89 // Internal indication variables after parsing test_mode 90 static bool AGGR_ENABLE = false; 91 static bool TX_OFFSET_TUNING_ENABLE = false; 92 93 static int init_tx_att = 0; 94 95 MODULE_AUTHOR("Xianjun Jiao"); 96 MODULE_DESCRIPTION("SDR driver"); 97 MODULE_LICENSE("GPL v2"); 98 99 module_param(test_mode, int, 0); 100 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)"); 101 102 module_param(init_tx_att, int, 0); 103 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000 example: set to 3000 for 3dB attenuation"); 104 105 // ---------------rfkill--------------------------------------- 106 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv) 107 { 108 int reg; 109 110 if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH) 111 reg = ad9361_get_tx_atten(priv->ad9361_phy, 1); 112 else 113 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 114 115 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) 116 return true;// 0 off, 1 on 117 return false; 118 } 119 120 void openwifi_rfkill_init(struct ieee80211_hw *hw) 121 { 122 struct openwifi_priv *priv = hw->priv; 123 124 priv->rfkill_off = openwifi_is_radio_enabled(priv); 125 printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off"); 126 wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off); 127 wiphy_rfkill_start_polling(hw->wiphy); 128 } 129 130 void openwifi_rfkill_poll(struct ieee80211_hw *hw) 131 { 132 bool enabled; 133 struct openwifi_priv *priv = hw->priv; 134 135 enabled = openwifi_is_radio_enabled(priv); 136 // printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); 137 if (unlikely(enabled != priv->rfkill_off)) { 138 priv->rfkill_off = enabled; 139 printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); 140 wiphy_rfkill_set_hw_state(hw->wiphy, !enabled); 141 } 142 } 143 144 void openwifi_rfkill_exit(struct ieee80211_hw *hw) 145 { 146 printk("%s openwifi_rfkill_exit\n", sdr_compatible_str); 147 wiphy_rfkill_stop_polling(hw->wiphy); 148 } 149 //----------------rfkill end----------------------------------- 150 151 inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction) 152 { 153 return ((rssi_correction+rssi_dbm)<<1); 154 } 155 156 inline int rssi_correction_lookup_table(u32 freq_MHz) 157 { 158 int rssi_correction; 159 160 if (freq_MHz<2412) { 161 rssi_correction = 153; 162 } else if (freq_MHz<=2484) { 163 rssi_correction = 153; 164 } else if (freq_MHz<5160) { 165 rssi_correction = 153; 166 } else if (freq_MHz<=5240) { 167 rssi_correction = 145; 168 } else if (freq_MHz<=5320) { 169 rssi_correction = 145; 170 } else { 171 rssi_correction = 145; 172 } 173 174 return rssi_correction; 175 } 176 177 inline void ad9361_tx_calibration(struct openwifi_priv *priv, u32 actual_tx_lo) 178 { 179 // struct timespec64 tv; 180 // unsigned long time_before = 0; 181 // unsigned long time_after = 0; 182 u32 spi_disable; 183 184 priv->last_tx_quad_cal_lo = actual_tx_lo; 185 // do_gettimeofday(&tv); 186 // time_before = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec ); 187 spi_disable = xpu_api->XPU_REG_SPI_DISABLE_read(); // backup current fpga spi disable state 188 xpu_api->XPU_REG_SPI_DISABLE_write(1); // disable FPGA SPI module 189 ad9361_do_calib_run(priv->ad9361_phy, TX_QUAD_CAL, (int)priv->ad9361_phy->state->last_tx_quad_cal_phase); 190 xpu_api->XPU_REG_SPI_DISABLE_write(spi_disable); // restore original SPI disable state 191 // do_gettimeofday(&tv); 192 // time_after = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec ); 193 194 // printk("%s ad9361_tx_calibration %dMHz tx_quad_cal duration %lu us\n", sdr_compatible_str, actual_tx_lo, time_after-time_before); 195 printk("%s ad9361_tx_calibration %dMHz tx_quad_cal duration unknown us\n", sdr_compatible_str, actual_tx_lo); 196 } 197 198 inline void openwifi_rf_rx_update_after_tuning(struct openwifi_priv *priv, u32 actual_rx_lo) 199 { 200 int static_lbt_th, auto_lbt_th, fpga_lbt_th, receiver_rssi_dbm_th, receiver_rssi_th; 201 202 // get rssi correction value from lookup table 203 priv->rssi_correction = rssi_correction_lookup_table(actual_rx_lo); 204 205 // set appropriate lbt threshold 206 auto_lbt_th = rssi_dbm_to_rssi_half_db(-62, priv->rssi_correction); // -62dBm 207 static_lbt_th = rssi_dbm_to_rssi_half_db(-(priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]), priv->rssi_correction); 208 fpga_lbt_th = (priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]==0?auto_lbt_th:static_lbt_th); 209 xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th); 210 priv->last_auto_fpga_lbt_th = auto_lbt_th; 211 212 // Set rssi_half_db threshold (-85dBm equivalent) to receiver. Receiver will not react to signal lower than this rssi. See test records (OPENOFDM_RX_POWER_THRES_INIT in hw_def.h) 213 receiver_rssi_dbm_th = (priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]==0?OPENOFDM_RX_RSSI_DBM_TH_DEFAULT:(-priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH])); 214 receiver_rssi_th = rssi_dbm_to_rssi_half_db(receiver_rssi_dbm_th, priv->rssi_correction); 215 openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write((OPENOFDM_RX_DC_RUNNING_SUM_TH_INIT<<16)|receiver_rssi_th); 216 217 if (actual_rx_lo < 2500) { 218 if (priv->band != BAND_2_4GHZ) { 219 priv->band = BAND_2_4GHZ; 220 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 221 } 222 } else { 223 if (priv->band != BAND_5_8GHZ) { 224 priv->band = BAND_5_8GHZ; 225 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 226 } 227 } 228 printk("%s openwifi_rf_rx_update_after_tuning %dMHz rssi_correction %d fpga_lbt_th %d(%ddBm) auto %d static %d receiver th %d(%ddBm)\n", sdr_compatible_str, 229 actual_rx_lo, priv->rssi_correction, fpga_lbt_th, rssi_half_db_to_rssi_dbm(fpga_lbt_th, priv->rssi_correction), auto_lbt_th, static_lbt_th, receiver_rssi_th, receiver_rssi_dbm_th); 230 } 231 232 static void ad9361_rf_set_channel(struct ieee80211_hw *dev, 233 struct ieee80211_conf *conf) 234 { 235 struct openwifi_priv *priv = dev->priv; 236 u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz; 237 u32 actual_tx_lo; 238 u32 diff_tx_lo; 239 bool change_flag = (actual_rx_lo != priv->actual_rx_lo); 240 241 if (change_flag && priv->rf_reg_val[RF_TX_REG_IDX_FREQ_MHZ]==0 && priv->rf_reg_val[RF_RX_REG_IDX_FREQ_MHZ]==0) { 242 actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz; 243 diff_tx_lo = priv->last_tx_quad_cal_lo > actual_tx_lo ? priv->last_tx_quad_cal_lo - actual_tx_lo : actual_tx_lo - priv->last_tx_quad_cal_lo; 244 245 // -------------------Tx Lo tuning------------------- 246 clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo) )>>1); 247 priv->actual_tx_lo = actual_tx_lo; 248 249 // -------------------Rx Lo tuning------------------- 250 clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo) )>>1); 251 priv->actual_rx_lo = actual_rx_lo; 252 253 // call Tx Quadrature calibration if frequency change is more than 100MHz 254 if (diff_tx_lo > 100) 255 ad9361_tx_calibration(priv, actual_tx_lo); 256 257 openwifi_rf_rx_update_after_tuning(priv, actual_rx_lo); 258 printk("%s ad9361_rf_set_channel %dMHz done\n", sdr_compatible_str,conf->chandef.chan->center_freq); 259 } 260 } 261 262 const struct openwifi_rf_ops ad9361_rf_ops = { 263 .name = "ad9361", 264 // .init = ad9361_rf_init, 265 // .stop = ad9361_rf_stop, 266 .set_chan = ad9361_rf_set_channel, 267 // .calc_rssi = ad9361_rf_calc_rssi, 268 }; 269 270 u16 reverse16(u16 d) { 271 union u16_byte2 tmp0, tmp1; 272 tmp0.a = d; 273 tmp1.c[0] = tmp0.c[1]; 274 tmp1.c[1] = tmp0.c[0]; 275 return(tmp1.a); 276 } 277 278 u32 reverse32(u32 d) { 279 union u32_byte4 tmp0, tmp1; 280 tmp0.a = d; 281 tmp1.c[0] = tmp0.c[3]; 282 tmp1.c[1] = tmp0.c[2]; 283 tmp1.c[2] = tmp0.c[1]; 284 tmp1.c[3] = tmp0.c[0]; 285 return(tmp1.a); 286 } 287 288 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx) 289 { 290 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); 291 int i; 292 293 ring->stop_flag = -1; 294 ring->bd_wr_idx = 0; 295 ring->bd_rd_idx = 0; 296 ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL); 297 if (ring->bds==NULL) { 298 printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str); 299 return -ENOMEM; 300 } 301 302 for (i = 0; i < NUM_TX_BD; i++) { 303 ring->bds[i].skb_linked=NULL; // for tx, skb is from upper layer 304 //at first right after skb allocated, head, data, tail are the same. 305 ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine 306 ring->bds[i].seq_no = 0xffff; // invalid value 307 ring->bds[i].prio = 0xff; // invalid value 308 ring->bds[i].len_mpdu = 0; // invalid value 309 } 310 311 return 0; 312 } 313 314 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx) 315 { 316 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); 317 int i; 318 319 ring->stop_flag = -1; 320 ring->bd_wr_idx = 0; 321 ring->bd_rd_idx = 0; 322 for (i = 0; i < NUM_TX_BD; i++) { 323 if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0) 324 continue; 325 if (ring->bds[i].dma_mapping_addr != 0) 326 dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV); 327 // if (ring->bds[i].skb_linked!=NULL) 328 // dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception 329 if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) || 330 (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0)) 331 printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str, 332 ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr)); 333 334 ring->bds[i].skb_linked=NULL; 335 ring->bds[i].dma_mapping_addr = 0; 336 ring->bds[i].seq_no = 0xffff; // invalid value 337 ring->bds[i].prio = 0xff; // invalid value 338 ring->bds[i].len_mpdu = 0; // invalid value 339 } 340 if (ring->bds) 341 kfree(ring->bds); 342 ring->bds = NULL; 343 } 344 345 static int openwifi_init_rx_ring(struct openwifi_priv *priv) 346 { 347 int i; 348 u8 *pdata_tmp; 349 350 priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL); 351 if (!priv->rx_cyclic_buf) { 352 printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str); 353 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); 354 return(-1); 355 } 356 357 // Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA 358 for (i=0; i<NUM_RX_BD; i++) { 359 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning 360 (*((u16*)(pdata_tmp+10))) = 0; 361 } 362 printk("%s openwifi_init_rx_ring: NUM_RX_BD %d RX_BD_BUF_SIZE %d pkt existing flag are cleared!\n", sdr_compatible_str, 363 NUM_RX_BD, RX_BD_BUF_SIZE); 364 365 return 0; 366 } 367 368 static void openwifi_free_rx_ring(struct openwifi_priv *priv) 369 { 370 if (priv->rx_cyclic_buf) 371 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); 372 373 priv->rx_cyclic_buf_dma_mapping_addr = 0; 374 priv->rx_cyclic_buf = 0; 375 } 376 377 static int rx_dma_setup(struct ieee80211_hw *dev){ 378 struct openwifi_priv *priv = dev->priv; 379 struct dma_device *rx_dev = priv->rx_chan->device; 380 381 priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT); 382 if (!(priv->rxd)) { 383 openwifi_free_rx_ring(priv); 384 printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd)); 385 return(-1); 386 } 387 priv->rxd->callback = 0; 388 priv->rxd->callback_param = 0; 389 390 priv->rx_cookie = priv->rxd->tx_submit(priv->rxd); 391 392 if (dma_submit_error(priv->rx_cookie)) { 393 printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie)); 394 return(-1); 395 } 396 397 dma_async_issue_pending(priv->rx_chan); 398 return(0); 399 } 400 401 inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction) 402 { 403 int rssi_db, rssi_dbm; 404 405 rssi_db = (rssi_half_db>>1); 406 407 rssi_dbm = rssi_db - rssi_correction; 408 409 rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm); 410 411 return rssi_dbm; 412 } 413 414 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id) 415 { 416 struct ieee80211_hw *dev = dev_id; 417 struct openwifi_priv *priv = dev->priv; 418 struct ieee80211_rx_status rx_status = {0}; 419 struct sk_buff *skb; 420 struct ieee80211_hdr *hdr; 421 u32 addr1_low32, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di; 422 bool ht_flag, short_gi, ht_aggr, ht_aggr_last; 423 // u32 dma_driver_buf_idx_mod; 424 u8 *pdata_tmp; 425 u8 fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw; 426 s8 signal; 427 u16 agc_status_and_pkt_exist_flag, rssi_half_db, addr1_high16, addr2_high16=0, addr3_high16=0, seq_no=0; 428 bool content_ok, len_overflow, is_unicast; 429 430 #ifdef USE_NEW_RX_INTERRUPT 431 int i; 432 spin_lock(&priv->lock); 433 for (i=0; i<NUM_RX_BD; i++) { 434 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; 435 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid 436 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer 437 continue; 438 #else 439 static u8 target_buf_idx_old = 0; 440 spin_lock(&priv->lock); 441 while(1) { // loop all rx buffers that have new rx packets 442 pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning 443 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); 444 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer 445 break; 446 #endif 447 448 tsft_low = (*((u32*)(pdata_tmp+0 ))); 449 tsft_high = (*((u32*)(pdata_tmp+4 ))); 450 rssi_half_db = (*((u16*)(pdata_tmp+8 ))); 451 len = (*((u16*)(pdata_tmp+12))); 452 453 len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false); 454 455 rate_idx = (*((u16*)(pdata_tmp+14))); 456 ht_flag = ((rate_idx&0x10)!=0); 457 short_gi = ((rate_idx&0x20)!=0); 458 ht_aggr = (ht_flag & ((rate_idx&0x40)!=0)); 459 ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0)); 460 rate_idx = (rate_idx&0x1F); 461 462 fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) ); 463 464 //phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1)); 465 // phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation 466 // dma_driver_buf_idx_mod = (state.residue&0x7f); 467 fcs_ok = ((fcs_ok&0x80)!=0); 468 469 if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) { 470 // if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) { 471 // printk("%s openwifi_rx: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod); 472 // } 473 content_ok = true; 474 } else { 475 printk("%s openwifi_rx: WARNING content! len%d overflow%d rate_idx%d\n", sdr_compatible_str, 476 len, len_overflow, rate_idx); 477 content_ok = false; 478 } 479 480 signal = rssi_half_db_to_rssi_dbm(rssi_half_db, priv->rssi_correction); 481 482 hdr = (struct ieee80211_hdr *)(pdata_tmp+16); 483 if (len>=20) { 484 addr2_low32 = *((u32*)(hdr->addr2+2)); 485 addr2_high16 = *((u16*)(hdr->addr2)); 486 } 487 488 addr1_low32 = *((u32*)(hdr->addr1+2)); 489 addr1_high16 = *((u16*)(hdr->addr1)); 490 491 if ( priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ANY ) { 492 if (len>=26) { 493 addr3_low32 = *((u32*)(hdr->addr3+2)); 494 addr3_high16 = *((u16*)(hdr->addr3)); 495 } 496 if (len>=28) 497 seq_no = ( (hdr->seq_ctrl&IEEE80211_SCTL_SEQ)>>4 ); 498 499 is_unicast = (addr1_low32!=0xffffffff || addr1_high16!=0xffff); 500 501 if ( (( is_unicast)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST)) || 502 ((!is_unicast)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST)) || 503 (( fcs_ok==0)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ERROR)) ) 504 printk("%s openwifi_rx: %dB ht%daggr%d/%d sgi%d %dM FC%04x DI%04x ADDR%04x%08x/%04x%08x/%04x%08x SC%d fcs%d buf_idx%d %ddBm\n", sdr_compatible_str, 505 len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id, 506 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), 507 #ifdef USE_NEW_RX_INTERRUPT 508 seq_no, fcs_ok, i, signal); 509 #else 510 seq_no, fcs_ok, target_buf_idx_old, signal); 511 #endif 512 } 513 514 // priv->phy_rx_sn_hw_old = phy_rx_sn_hw; 515 if (content_ok) { 516 skb = dev_alloc_skb(len); 517 if (skb) { 518 skb_put_data(skb,pdata_tmp+16,len); 519 520 rx_status.antenna = priv->runtime_rx_ant_cfg; 521 // def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M) 522 rx_status.rate_idx = wifi_rate_table_mapping[rate_idx]; 523 rx_status.signal = signal; 524 525 // rx_status.freq = dev->conf.chandef.chan->center_freq; 526 rx_status.freq = priv->actual_rx_lo; 527 // rx_status.band = dev->conf.chandef.chan->band; 528 rx_status.band = (rx_status.freq<2500?NL80211_BAND_2GHZ:NL80211_BAND_5GHZ); 529 530 rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); 531 rx_status.flag |= RX_FLAG_MACTIME_START; 532 if (!fcs_ok) 533 rx_status.flag |= RX_FLAG_FAILED_FCS_CRC; 534 if (rate_idx <= 15) 535 rx_status.encoding = RX_ENC_LEGACY; 536 else 537 rx_status.encoding = RX_ENC_HT; 538 rx_status.bw = RATE_INFO_BW_20; 539 if (short_gi) 540 rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI; 541 if(ht_aggr) 542 { 543 rx_status.ampdu_reference = priv->ampdu_reference; 544 rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 545 if (ht_aggr_last) 546 rx_status.flag |= RX_FLAG_AMPDU_IS_LAST; 547 } 548 549 memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more. 550 ieee80211_rx_irqsafe(dev, skb); // call mac80211 function 551 552 // printk("%s openwifi_rx: addr1_low32 %08x self addr %08x\n", sdr_compatible_str, addr1_low32, ( *( (u32*)(priv->mac_addr+2) ) )); 553 if (addr1_low32 == ( *( (u32*)(priv->mac_addr+2) ) ) && priv->stat.stat_enable) { 554 agc_status_and_pkt_exist_flag = (agc_status_and_pkt_exist_flag&0x7f); 555 if (len>=20) {// rx stat 556 if (addr2_low32 == priv->stat.rx_target_sender_mac_addr || priv->stat.rx_target_sender_mac_addr==0) { 557 if ( ieee80211_is_data(hdr->frame_control) ) { 558 priv->stat.rx_data_pkt_mcs_realtime = rate_idx; 559 priv->stat.rx_data_pkt_num_total++; 560 if (!fcs_ok) { 561 priv->stat.rx_data_pkt_num_fail++; 562 priv->stat.rx_data_pkt_fail_mcs_realtime = rate_idx; 563 priv->stat.rx_data_fail_agc_gain_value_realtime = agc_status_and_pkt_exist_flag; 564 } else { 565 priv->stat.rx_data_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag; 566 } 567 } else if ( ieee80211_is_mgmt(hdr->frame_control) ) { 568 priv->stat.rx_mgmt_pkt_mcs_realtime = rate_idx; 569 priv->stat.rx_mgmt_pkt_num_total++; 570 if (!fcs_ok) { 571 priv->stat.rx_mgmt_pkt_num_fail++; 572 priv->stat.rx_mgmt_pkt_fail_mcs_realtime = rate_idx; 573 priv->stat.rx_mgmt_fail_agc_gain_value_realtime = agc_status_and_pkt_exist_flag; 574 } else { 575 priv->stat.rx_mgmt_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag; 576 } 577 } 578 } 579 } else if ( ieee80211_is_ack(hdr->frame_control) ) { 580 priv->stat.rx_ack_pkt_mcs_realtime = rate_idx; 581 priv->stat.rx_ack_pkt_num_total++; 582 if (!fcs_ok) { 583 priv->stat.rx_ack_pkt_num_fail++; 584 } else { 585 priv->stat.rx_ack_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag; 586 } 587 } 588 } 589 } else 590 printk("%s openwifi_rx: WARNING dev_alloc_skb failed!\n", sdr_compatible_str); 591 592 if(ht_aggr_last) 593 priv->ampdu_reference++; 594 } 595 (*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed 596 loop_count++; 597 #ifndef USE_NEW_RX_INTERRUPT 598 target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1)); 599 #endif 600 } 601 602 if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ERROR) ) 603 printk("%s openwifi_rx: WARNING loop_count %d\n", sdr_compatible_str,loop_count); 604 605 // openwifi_rx_out: 606 spin_unlock(&priv->lock); 607 return IRQ_HANDLED; 608 } 609 610 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id) 611 { 612 struct ieee80211_hw *dev = dev_id; 613 struct openwifi_priv *priv = dev->priv; 614 struct openwifi_ring *ring, *drv_ring_tmp; 615 struct sk_buff *skb; 616 struct ieee80211_tx_info *info; 617 struct ieee80211_hdr *hdr; 618 u32 reg_val1, hw_queue_len, reg_val2, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0, addr1_low32, mcs_for_sysfs; 619 u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx; 620 u8 nof_retx=-1, last_bd_rd_idx, i, prio, queue_idx, nof_retx_stat; 621 u64 blk_ack_bitmap; 622 // u16 prio_rd_idx_store[64]={0}; 623 bool tx_fail=false, fpga_queue_has_room=false; 624 bool use_ht_aggr, pkt_need_ack, use_ht_rate, prio_wake_up_flag = false; 625 626 spin_lock(&priv->lock); 627 628 while(1) { // loop all packets that have been sent by FPGA 629 reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read(); 630 reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read(); 631 blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32); 632 633 if (reg_val1!=0xFFFFFFFF) { 634 nof_retx = (reg_val1&0xF); 635 last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1)); 636 prio = ((reg_val1>>17)&0x3); 637 num_slot_random = ((reg_val1>>19)&0x1FF); 638 //num_slot_random = ((0xFF80000 ®_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE)); 639 cw = ((reg_val1>>28)&0xF); 640 //cw = ((0xF0000000 & reg_val1) >> 28); 641 if(cw > 10) { 642 cw = 10 ; 643 num_slot_random += 512 ; 644 } 645 pkt_cnt = (reg_val2&0x3F); 646 blk_ack_ssn = ((reg_val2>>6)&0xFFF); 647 648 queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1)); 649 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); 650 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 651 // check which linux prio is stopped by this queue (queue_idx) 652 for (i=0; i<MAX_NUM_SW_QUEUE; i++) { 653 drv_ring_tmp = &(priv->tx_ring[i]); 654 if ( drv_ring_tmp->stop_flag == prio ) { 655 656 if ( ((dma_fifo_no_room_flag>>i)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(i*8))&0xFF))>=RING_ROOM_THRESHOLD ) 657 fpga_queue_has_room=true; 658 else 659 fpga_queue_has_room=false; 660 661 // Wake up Linux queue due to the current fpga queue releases some room 662 if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP ) 663 printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio%d i%d queue%d no room flag%x hwq len%08x wr%d rd%d\n", sdr_compatible_str, 664 prio, i, queue_idx, dma_fifo_no_room_flag, hw_queue_len, drv_ring_tmp->bd_wr_idx, last_bd_rd_idx); 665 666 if (fpga_queue_has_room) { 667 prio_wake_up_flag = true; 668 drv_ring_tmp->stop_flag = -1; 669 670 if (priv->stat.stat_enable) { 671 priv->stat.tx_prio_wakeup_num[prio]++; 672 priv->stat.tx_queue_wakeup_num[i]++; 673 } 674 } else { 675 if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP ) 676 printk("%s openwifi_tx_interrupt: WARNING no room! prio_wake_up_flag%d\n", sdr_compatible_str, prio_wake_up_flag); 677 } 678 } 679 } 680 if (prio_wake_up_flag) 681 ieee80211_wake_queue(dev, prio); 682 683 if (priv->stat.stat_enable) { 684 priv->stat.tx_prio_interrupt_num[prio] = priv->stat.tx_prio_interrupt_num[prio] + pkt_cnt; 685 priv->stat.tx_queue_interrupt_num[queue_idx] = priv->stat.tx_queue_interrupt_num[queue_idx] + pkt_cnt; 686 } 687 688 ring = &(priv->tx_ring[queue_idx]); 689 for(i = 1; i <= pkt_cnt; i++) 690 { 691 ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64; 692 seq_no = ring->bds[ring->bd_rd_idx].seq_no; 693 694 if (seq_no == 0xffff) {// it has been forced cleared by the openwifi_tx (due to out-of-order Tx of different queues to the air?) 695 printk("%s openwifi_tx_interrupt: WARNING wr%d rd%d last_bd_rd_idx%d i%d pkt_cnt%d prio%d fpga q%d hwq len%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str, 696 ring->bd_wr_idx, ring->bd_rd_idx, last_bd_rd_idx, i, pkt_cnt, prio, queue_idx, hw_queue_len, ring->bds[ring->bd_rd_idx].prio, ring->bds[ring->bd_rd_idx].len_mpdu, seq_no, ring->bds[ring->bd_rd_idx].skb_linked, ring->bds[ring->bd_rd_idx].dma_mapping_addr); 697 continue; 698 } 699 700 skb = ring->bds[ring->bd_rd_idx].skb_linked; 701 702 dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr, 703 skb->len, DMA_MEM_TO_DEV); 704 705 info = IEEE80211_SKB_CB(skb); 706 use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0); 707 ieee80211_tx_info_clear_status(info); 708 709 // Aggregation packet 710 if (use_ht_aggr) 711 { 712 start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF)); 713 tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0); 714 info->flags |= IEEE80211_TX_STAT_AMPDU; 715 info->status.ampdu_len = 1; 716 info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1; 717 718 skb_pull(skb, LEN_MPDU_DELIM); 719 //skb_trim(skb, num_byte_pad_skb); 720 } 721 // Normal packet 722 else 723 { 724 tx_fail = ((blk_ack_bitmap&0x1)==0); 725 info->flags &= (~IEEE80211_TX_CTL_AMPDU); 726 } 727 728 pkt_need_ack = (!(info->flags & IEEE80211_TX_CTL_NO_ACK)); 729 // do statistics for data packet that needs ack 730 hdr = (struct ieee80211_hdr *)skb->data; 731 addr1_low32 = *((u32*)(hdr->addr1+2)); 732 if ( priv->stat.stat_enable && pkt_need_ack && (addr1_low32 == priv->stat.rx_target_sender_mac_addr || priv->stat.rx_target_sender_mac_addr==0) ) { 733 use_ht_rate = (((info->control.rates[0].flags)&IEEE80211_TX_RC_MCS)!=0); 734 mcs_for_sysfs = ieee80211_get_tx_rate(dev, info)->hw_value; 735 if (use_ht_rate) 736 mcs_for_sysfs = (mcs_for_sysfs | 0x80000000); 737 738 if ( ieee80211_is_data(hdr->frame_control) ) { 739 nof_retx_stat = (nof_retx<=5?nof_retx:5); 740 741 priv->stat.tx_data_pkt_need_ack_num_total++; 742 priv->stat.tx_data_pkt_mcs_realtime = mcs_for_sysfs; 743 priv->stat.tx_data_pkt_need_ack_num_retx[nof_retx_stat]++; 744 if (tx_fail) { 745 priv->stat.tx_data_pkt_need_ack_num_total_fail++; 746 priv->stat.tx_data_pkt_fail_mcs_realtime = mcs_for_sysfs; 747 priv->stat.tx_data_pkt_need_ack_num_retx_fail[nof_retx_stat]++; 748 } 749 } else if ( ieee80211_is_mgmt(hdr->frame_control) ) { 750 nof_retx_stat = (nof_retx<=2?nof_retx:2); 751 752 priv->stat.tx_mgmt_pkt_need_ack_num_total++; 753 priv->stat.tx_mgmt_pkt_mcs_realtime = mcs_for_sysfs; 754 priv->stat.tx_mgmt_pkt_need_ack_num_retx[nof_retx_stat]++; 755 if (tx_fail) { 756 priv->stat.tx_mgmt_pkt_need_ack_num_total_fail++; 757 priv->stat.tx_mgmt_pkt_fail_mcs_realtime = mcs_for_sysfs; 758 priv->stat.tx_mgmt_pkt_need_ack_num_retx_fail[nof_retx_stat]++; 759 } 760 } 761 } 762 763 if ( tx_fail == false ) 764 info->flags |= IEEE80211_TX_STAT_ACK; 765 766 info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate 767 info->status.rates[1].idx = -1; 768 // info->status.rates[2].idx = -1; 769 // info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES 4 770 info->status.antenna = priv->runtime_tx_ant_cfg; 771 772 if ( ( (!pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST) ) || ( (pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST) ) ){ 773 printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] SC%d prio%d q%d wr%d rd%d num_slot%d cw%d hwq len%08x no_room_flag%x\n", sdr_compatible_str, 774 nof_retx+1, !tx_fail, seq_no, prio, queue_idx, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw, hw_queue_len, dma_fifo_no_room_flag); 775 } 776 777 ieee80211_tx_status_irqsafe(dev, skb); 778 779 ring->bds[ring->bd_rd_idx].prio = 0xff; // invalid value 780 ring->bds[ring->bd_rd_idx].len_mpdu = 0; // invalid value 781 ring->bds[ring->bd_rd_idx].seq_no = 0xffff; 782 ring->bds[ring->bd_rd_idx].skb_linked = NULL; 783 ring->bds[ring->bd_rd_idx].dma_mapping_addr = 0; 784 } 785 786 loop_count++; 787 788 // printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx); 789 790 } else 791 break; 792 } 793 if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&DMESG_LOG_ERROR) ) 794 printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count); 795 796 spin_unlock(&priv->lock); 797 return IRQ_HANDLED; 798 } 799 800 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000}; 801 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes) 802 { 803 u32 i, crc = 0; 804 u8 idx; 805 for( i = 0; i < num_bytes; i++) 806 { 807 idx = (crc & 0x0F) ^ (data_in[i] & 0x0F); 808 crc = (crc >> 4) ^ crc_table[idx]; 809 810 idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F); 811 crc = (crc >> 4) ^ crc_table[idx]; 812 } 813 814 return crc; 815 } 816 817 u8 gen_mpdu_delim_crc(u16 m) 818 { 819 u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc; 820 821 for (i = 0; i < 16; i++) 822 { 823 temp = c[7] ^ ((m >> i) & 0x01); 824 825 c[7] = c[6]; 826 c[6] = c[5]; 827 c[5] = c[4]; 828 c[4] = c[3]; 829 c[3] = c[2]; 830 c[2] = c[1] ^ temp; 831 c[1] = c[0] ^ temp; 832 c[0] = temp; 833 } 834 mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7); 835 836 return mpdu_delim_crc; 837 } 838 839 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c 840 cdev_to_gpio_led_data(struct led_classdev *led_cdev) 841 { 842 return container_of(led_cdev, struct gpio_led_data, cdev); 843 } 844 845 inline int calc_n_ofdm(int num_octet, int n_dbps) 846 { 847 int num_bit, num_ofdm_sym; 848 849 num_bit = 22+num_octet*8; 850 num_ofdm_sym = (num_bit/n_dbps) + ((num_bit%n_dbps)!=0); 851 852 return (num_ofdm_sym); 853 } 854 855 inline __le16 gen_ht_duration_id(__le16 frame_control, __le16 aid, u8 qos_hdr, bool use_ht_aggr, u16 rate_hw_value, u16 sifs) 856 { 857 // COTS wifi ht QoS data duration field analysis (lots of capture): 858 859 // ht non-aggr QoS data: 44, type 2 (data frame) sub-type 8 (1000) 21.7/52/57.8/58.5/65Mbps 860 // ack ht 36 + 4*[(22+14*8)/78] = 36 + 4*2 = 44 861 // ack legacy 20 + 4*[(22+14*8)/72] = 20 + 4*2 = 28 862 863 // ht non-aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 6.5Mbps 864 // ack ht 36 + 4*[(22+14*8)/26] = 36 + 4*6 = 60 865 // ack legacy 20 + 4*[(22+14*8)/24] = 20 + 4*6 = 44 866 867 // ht aggr QoS data: 52, type 2 (data frame) sub-type 8 (1000) 19.5/28.9/39/57.8/65/72.2Mbps 868 // ack ht 36 + 4*[(22+32*8)/78] = 36 + 4*4 = 52 869 // ack legacy 20 + 4*[(22+32*8)/72] = 20 + 4*4 = 36 870 871 // ht aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 13/14.4Mbps 872 // ack ht 36 + 4*[(22+32*8)/52] = 36 + 4*6 = 60 873 // ack legacy 20 + 4*[(22+32*8)/48] = 20 + 4*6 = 44 874 875 // ht and legacy rate mapping is ont one on one, instead it is modulation combined with coding rate 876 // modulate coding ht-mcs ht-n_dbps legacy-mcs legacy-n_dbps 877 // BPSK 1/2 0 26 4 24 878 // QPSK 1/2 1 52 6 48 879 // QPSK 3/4 2 78 7 72 880 // 16QAM 1/2 3 104 8 96 881 // 16QAM 3/4 4 156 9 144 882 // 64QAM 2/3 5 208 10 192 883 // 64QAM 3/4 6 234 11 216 884 885 // conclusion: duration is: assume ack/blk-ack uses legacy, plus SIFS 886 887 // other observation: ht always use QoS data, not data (sub-type) 888 // other observation: management/control frame always in non-ht 889 890 __le16 dur = 0; 891 u16 n_dbps; 892 int num_octet, num_ofdm_sym; 893 894 if (ieee80211_is_pspoll(frame_control)) { 895 dur = (aid|0xc000); 896 } else if (ieee80211_is_data_qos(frame_control) && (~(qos_hdr&IEEE80211_QOS_CTL_ACK_POLICY_NOACK))) { 897 rate_hw_value = (rate_hw_value>6?6:rate_hw_value); 898 n_dbps = (rate_hw_value==0?wifi_n_dbps_table[4]:wifi_n_dbps_table[rate_hw_value+5]); 899 num_octet = (use_ht_aggr?32:14); //32 bytes for compressed block ack; 14 bytes for normal ack 900 num_ofdm_sym = calc_n_ofdm(num_octet, n_dbps); 901 dur = sifs + 20 + 4*num_ofdm_sym; // 20us legacy preamble 902 // printk("%s gen_ht_duration_id: num_octet %d n_dbps %d num_ofdm_sym %d dur %d\n", sdr_compatible_str, 903 // num_octet, n_dbps, num_ofdm_sym, dur); 904 } else { 905 printk("%s openwifi_tx: WARNING gen_ht_duration_id wrong pkt type!\n", sdr_compatible_str); 906 } 907 908 return dur; 909 } 910 911 inline void report_pkt_loss_due_to_driver_drop(struct ieee80211_hw *dev, struct sk_buff *skb) 912 { 913 struct openwifi_priv *priv = dev->priv; 914 struct ieee80211_tx_info *info; 915 916 info = IEEE80211_SKB_CB(skb); 917 ieee80211_tx_info_clear_status(info); 918 info->status.rates[0].count = 1; 919 info->status.rates[1].idx = -1; 920 info->status.antenna = priv->runtime_tx_ant_cfg; 921 ieee80211_tx_status_irqsafe(dev, skb); 922 } 923 924 static void openwifi_tx(struct ieee80211_hw *dev, 925 struct ieee80211_tx_control *control, 926 struct sk_buff *skb) 927 { 928 struct openwifi_priv *priv = dev->priv; 929 unsigned long flags; 930 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 931 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 932 struct openwifi_ring *ring = NULL; 933 struct sk_buff *skb_new; // temp skb for internal use 934 struct ieee80211_tx_info *info_skipped; 935 dma_addr_t dma_mapping_addr; 936 unsigned int i, j, empty_bd_idx = 0; 937 u16 rate_signal_value, rate_hw_value, len_mpdu, len_psdu, num_dma_symbol, len_mpdu_delim_pad=0, num_byte_pad; 938 u32 num_dma_byte, addr1_low32, addr2_low32=0, addr3_low32=0, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history; 939 u16 addr1_high16, addr2_high16=0, addr3_high16=0, sc, seq_no=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration, n_dbps; 940 u8 pkt_need_ack, retry_limit_raw,use_short_gi,*dma_buf,retry_limit_hw_value,rc_flags,qos_hdr,prio,queue_idx,drv_ring_idx; 941 bool drv_seqno=false, use_rts_cts, use_cts_protect, ht_aggr_start=false, use_ht_rate, use_ht_aggr, cts_use_traffic_rate=false, force_use_cts_protect=false; 942 __le16 frame_control,duration_id; 943 u32 dma_fifo_no_room_flag, hw_queue_len, delay_count=0; 944 enum dma_status status; 945 946 static u32 addr1_low32_prev = -1; 947 static u16 rate_hw_value_prev = -1; 948 static u8 pkt_need_ack_prev = -1; 949 static u16 addr1_high16_prev = -1; 950 static __le16 duration_id_prev = -1; 951 static u8 prio_prev = -1; 952 static u8 retry_limit_raw_prev = -1; 953 static u8 use_short_gi_prev = -1; 954 955 // static bool led_status=0; 956 // struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]); 957 958 // if ( (priv->phy_tx_sn&7) ==0 ) { 959 // openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read(); 960 // if (openofdm_state_history!=openofdm_state_history_old){ 961 // led_status = (~led_status); 962 // openofdm_state_history_old = openofdm_state_history; 963 // gpiod_set_value(led_dat->gpiod, led_status); 964 // } 965 // } 966 967 if (skb->data_len>0) {// more data are not in linear data area skb->data 968 printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str); 969 goto openwifi_tx_early_out; 970 } 971 972 len_mpdu = skb->len; 973 974 // get Linux priority/queue setting info and target mac address 975 prio = skb_get_queue_mapping(skb); 976 if (prio >= MAX_NUM_HW_QUEUE) { 977 printk("%s openwifi_tx: WARNING prio%d\n", sdr_compatible_str, prio); 978 goto openwifi_tx_early_out; 979 } 980 981 addr1_low32 = *((u32*)(hdr->addr1+2)); 982 983 // ---- DO your idea here! Map Linux/SW "prio" to driver "drv_ring_idx" (then 1on1 to FPGA queue_idx) --- 984 if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config 985 drv_ring_idx = prio; 986 } else {// customized prio to drv_ring_idx mapping 987 // check current packet belonging to which slice/hw-queue 988 for (i=0; i<MAX_NUM_HW_QUEUE; i++) { 989 if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) { 990 break; 991 } 992 } 993 drv_ring_idx = (i>=MAX_NUM_HW_QUEUE?prio:i); // if no address is hit 994 } 995 996 ring = &(priv->tx_ring[drv_ring_idx]); 997 998 spin_lock_irqsave(&priv->lock, flags); 999 if (ring->bds[ring->bd_wr_idx].seq_no != 0xffff) { // not cleared yet by interrupt 1000 for (i=1; i<NUM_TX_BD; i++) { 1001 if (ring->bds[(ring->bd_wr_idx+i)&(NUM_TX_BD-1)].seq_no == 0xffff) { 1002 empty_bd_idx = i; 1003 break; 1004 } 1005 } 1006 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 1007 if (empty_bd_idx) { // clear all bds before the empty bd and report failure to Linux 1008 if (priv->stat.stat_enable) { 1009 priv->stat.tx_prio_stop0_fake_num[prio]++; 1010 priv->stat.tx_queue_stop0_fake_num[drv_ring_idx]++; 1011 } 1012 for (i=0; i<empty_bd_idx; i++) { 1013 j = ( (ring->bd_wr_idx+i)&(NUM_TX_BD-1) ); 1014 printk("%s openwifi_tx: WARNING fake stop queue empty_bd_idx%d i%d lnx prio%d map to q%d stop%d hwq len%d wr%d rd%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str, 1015 empty_bd_idx, i, prio, drv_ring_idx, ring->stop_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, ring->bds[j].prio, ring->bds[j].len_mpdu, ring->bds[j].seq_no, ring->bds[j].skb_linked, ring->bds[j].dma_mapping_addr); 1016 // tell Linux this skb failed 1017 skb_new = ring->bds[j].skb_linked; 1018 dma_unmap_single(priv->tx_chan->device->dev,ring->bds[j].dma_mapping_addr, 1019 skb_new->len, DMA_MEM_TO_DEV); 1020 info_skipped = IEEE80211_SKB_CB(skb_new); 1021 ieee80211_tx_info_clear_status(info_skipped); 1022 info_skipped->status.rates[0].count = 1; 1023 info_skipped->status.rates[1].idx = -1; 1024 info_skipped->status.antenna = priv->runtime_tx_ant_cfg; 1025 ieee80211_tx_status_irqsafe(dev, skb_new); 1026 1027 ring->bds[j].prio = 0xff; // invalid value 1028 ring->bds[j].len_mpdu = 0; // invalid value 1029 ring->bds[j].seq_no = 0xffff; 1030 ring->bds[j].skb_linked = NULL; 1031 ring->bds[j].dma_mapping_addr = 0; 1032 1033 } 1034 if (ring->stop_flag != -1) { //the interrupt seems will never come, we need to wake up the queue in case the interrupt will never wake it up 1035 ieee80211_wake_queue(dev, ring->stop_flag); 1036 ring->stop_flag = -1; 1037 } 1038 } else { 1039 j = ring->bd_wr_idx; 1040 printk("%s openwifi_tx: WARNING real stop queue lnx prio%d map to q%d stop%d hwq len%d wr%d rd%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str, 1041 prio, drv_ring_idx, ring->stop_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, ring->bds[j].prio, ring->bds[j].len_mpdu, ring->bds[j].seq_no, ring->bds[j].skb_linked, ring->bds[j].dma_mapping_addr); 1042 1043 ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read 1044 ring->stop_flag = prio; 1045 if (priv->stat.stat_enable) { 1046 priv->stat.tx_prio_stop0_real_num[prio]++; 1047 priv->stat.tx_queue_stop0_real_num[drv_ring_idx]++; 1048 } 1049 1050 spin_unlock_irqrestore(&priv->lock, flags); 1051 goto openwifi_tx_early_out; 1052 } 1053 } 1054 spin_unlock_irqrestore(&priv->lock, flags); 1055 // -------------------- end of Map Linux/SW "prio" to driver "drv_ring_idx" ------------------ 1056 1057 // get other info from packet header 1058 addr1_high16 = *((u16*)(hdr->addr1)); 1059 if (len_mpdu>=20) { 1060 addr2_low32 = *((u32*)(hdr->addr2+2)); 1061 addr2_high16 = *((u16*)(hdr->addr2)); 1062 } 1063 if (len_mpdu>=26) { 1064 addr3_low32 = *((u32*)(hdr->addr3+2)); 1065 addr3_high16 = *((u16*)(hdr->addr3)); 1066 } 1067 1068 frame_control=hdr->frame_control; 1069 pkt_need_ack = (!(info->flags&IEEE80211_TX_CTL_NO_ACK)); 1070 1071 retry_limit_raw = info->control.rates[0].count; 1072 1073 rc_flags = info->control.rates[0].flags; 1074 use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0); 1075 use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0); 1076 use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0); 1077 use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0); 1078 use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0); 1079 qos_hdr = (*(ieee80211_get_qos_ctl(hdr))); 1080 1081 // get Linux rate (MCS) setting 1082 rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value; 1083 // drv_tx_reg_val[DRV_TX_REG_IDX_RATE] 1084 // override rate legacy: 4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M 1085 // drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT] 1086 // override rate ht: 4:6.5M, 5:13M, 6:19.5M,7:26M, 8:39M, 9:52M, 10:58.5M, 11:65M 1087 if ( ieee80211_is_data(hdr->frame_control) ) {//rate override command 1088 if (use_ht_rate && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]>0) { 1089 rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0xF)-4; 1090 use_short_gi = ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0x10)==0x10); 1091 } else if ((!use_ht_rate) && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0) 1092 rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]&0xF); 1093 // TODO: need to map rate_hw_value back to info->control.rates[0].idx!!! 1094 } 1095 1096 // Workaround for a FPGA bug: if aggr happens on ht mcs 0, the tx core will never end, running eneless and stuck the low MAC! 1097 if (use_ht_aggr && rate_hw_value==0) 1098 rate_hw_value = 1; 1099 1100 // sifs = (priv->actual_rx_lo<2500?10:16); 1101 sifs = 16; // for ofdm, sifs is always 16 1102 1103 if (use_ht_rate) { 1104 // printk("%s openwifi_tx: rate_hw_value %d aggr %d sifs %d\n", sdr_compatible_str, rate_hw_value, use_ht_aggr, sifs); 1105 hdr->duration_id = gen_ht_duration_id(frame_control, control->sta->aid, qos_hdr, use_ht_aggr, rate_hw_value, sifs); //linux only do it for 11a/g, not for 11n and later 1106 } 1107 duration_id = hdr->duration_id; 1108 1109 if (use_rts_cts) 1110 printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx); 1111 1112 if (use_cts_protect) { 1113 cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value; 1114 cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info)); 1115 } else if (force_use_cts_protect) { // could override mac80211 setting here. 1116 cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M) 1117 if (pkt_need_ack) 1118 ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL) 1119 1120 n_dbps = (use_ht_rate?wifi_n_dbps_ht_table[rate_hw_value+4]:wifi_n_dbps_table[rate_hw_value]); 1121 traffic_pkt_duration = (use_ht_rate?36:20) + 4*calc_n_ofdm(len_mpdu, n_dbps); 1122 cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration); 1123 } 1124 1125 // this is 11b stuff 1126 // if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1127 // printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str); 1128 1129 if (len_mpdu>=28) { 1130 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 1131 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) { 1132 priv->seqno += 0x10; 1133 drv_seqno = true; 1134 } 1135 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 1136 hdr->seq_ctrl |= cpu_to_le16(priv->seqno); 1137 } 1138 sc = hdr->seq_ctrl; 1139 seq_no = (sc&IEEE80211_SCTL_SEQ)>>4; 1140 } 1141 1142 // printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str, 1143 // info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags, 1144 // info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags, 1145 // info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags, 1146 // info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags); 1147 1148 // -----------end of preprocess some info from header and skb---------------- 1149 1150 // /* HW will perform RTS-CTS when only RTS flags is set. 1151 // * HW will perform CTS-to-self when both RTS and CTS flags are set. 1152 // * RTS rate and RTS duration will be used also for CTS-to-self. 1153 // */ 1154 // if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1155 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; 1156 // rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config 1157 // len_mpdu, info); 1158 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str); 1159 // } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1160 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; 1161 // rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config 1162 // len_mpdu, info); 1163 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str); 1164 // } 1165 1166 if(use_ht_aggr) 1167 { 1168 if(ieee80211_is_data_qos(frame_control) == false) 1169 { 1170 printk("%s openwifi_tx: WARNING packet is not QoS packet!\n", sdr_compatible_str); 1171 goto openwifi_tx_early_out; 1172 } 1173 1174 // psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ] 1175 len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4); 1176 len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad; 1177 1178 if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) || 1179 (rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) || 1180 (prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) ) 1181 { 1182 addr1_low32_prev = addr1_low32; 1183 addr1_high16_prev = addr1_high16; 1184 duration_id_prev = duration_id; 1185 rate_hw_value_prev = rate_hw_value; 1186 use_short_gi_prev = use_short_gi; 1187 prio_prev = prio; 1188 retry_limit_raw_prev = retry_limit_raw; 1189 pkt_need_ack_prev = pkt_need_ack; 1190 1191 ht_aggr_start = true; 1192 } 1193 } 1194 else 1195 { 1196 // psdu = [ MPDU ] 1197 len_psdu = len_mpdu; 1198 1199 // // Don't need to reset _prev variables every time when it is not ht aggr qos data. Reason: 1200 // // 1. In 99.9999% cases, the ht always use qos data and goes to prio/queue_idx 2. By not resetting the variable to -1, we can have continuous aggregation packet operation in FPGA queue 2. 1201 // // 2. In other words, the aggregation operation for queue 2 in FPGA won't be interrupted by other non aggregation packets (control/management/beacon/etc.) that go to queue 0 (or other queues than 2). 1202 // // 3. From wired domain and upper level ( DSCP, AC (0~3), WMM management, 802.11D service classes and user priority (UP) ) to chip/FPGA queue index, thre should be some (complicated) mapping relationship. 1203 // // 4. More decent design is setting these aggregation flags (ht_aggr_start) per queue/prio here in driver. But since now only queue 2 and 0 are used (data goes to queue 2, others go to queue 0) in normal (most) cases, let's not go to the decent (complicated) solution immediately. 1204 // addr1_low32_prev = -1; 1205 // addr1_high16_prev = -1; 1206 // duration_id_prev = -1; 1207 // use_short_gi_prev = -1; 1208 // rate_hw_value_prev = -1; 1209 // prio_prev = -1; 1210 // retry_limit_raw_prev = -1; 1211 // pkt_need_ack_prev = -1; 1212 } 1213 num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0); 1214 1215 if ( ( (!pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST) ) || ( (pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST) ) ) 1216 printk("%s openwifi_tx: %dB RC%x %dM FC%04x DI%04x ADDR%04x%08x/%04x%08x/%04x%08x flag%08x QoS%02x SC%d_%d retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str, 1217 len_mpdu, rc_flags, (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id, 1218 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), 1219 info->flags, qos_hdr, seq_no, drv_seqno, retry_limit_raw, pkt_need_ack, prio, drv_ring_idx, 1220 // use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration, 1221 ring->bd_wr_idx,ring->bd_rd_idx); 1222 1223 // check whether the packet is bigger than DMA buffer size 1224 num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS); 1225 if (num_dma_byte > TX_BD_BUF_SIZE) { 1226 printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx); 1227 goto openwifi_tx_early_out; 1228 } 1229 1230 // Copy MPDU delimiter and padding into sk_buff 1231 if(use_ht_aggr) 1232 { 1233 // when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary 1234 if (skb_headroom(skb)<LEN_MPDU_DELIM) {// in case original skb headroom is not enough to host MPDU delimiter 1235 printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_headroom(skb) %d < LEN_MPDU_DELIM %d\n", sdr_compatible_str, ring->bd_wr_idx, skb_headroom(skb), LEN_MPDU_DELIM); 1236 if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) { 1237 printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx); 1238 goto openwifi_tx_early_out; 1239 } 1240 if (skb->sk != NULL) 1241 skb_set_owner_w(skb_new, skb->sk); 1242 dev_kfree_skb(skb); 1243 skb = skb_new; 1244 } 1245 skb_push( skb, LEN_MPDU_DELIM ); 1246 dma_buf = skb->data; 1247 1248 // fill in MPDU delimiter 1249 *((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0; 1250 *((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf)); 1251 *((u8 *)(dma_buf+3)) = 0x4e; 1252 1253 // Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter 1254 num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu); 1255 if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad 1256 printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad); 1257 if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) { 1258 printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx); 1259 goto openwifi_tx_early_out; 1260 } 1261 if (skb->sk != NULL) 1262 skb_set_owner_w(skb_new, skb->sk); 1263 dev_kfree_skb(skb); 1264 skb = skb_new; 1265 } 1266 skb_put( skb, num_byte_pad ); 1267 1268 // fill in MPDU CRC 1269 *((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu); 1270 1271 // fill in MPDU delimiter padding 1272 memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad); 1273 1274 // num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary. 1275 // If they have different lengths, add "empty MPDU delimiter" for alignment 1276 if(num_dma_byte == len_psdu + 4) 1277 { 1278 *((u32*)(dma_buf+len_psdu)) = 0x4e140000; 1279 len_psdu = num_dma_byte; 1280 } 1281 } 1282 else 1283 { 1284 // Extend sk_buff to hold padding 1285 num_byte_pad = num_dma_byte - len_mpdu; 1286 if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad 1287 printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad); 1288 if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) { 1289 printk("%s openwifi_tx: WARNING sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx); 1290 goto openwifi_tx_early_out; 1291 } 1292 if (skb->sk != NULL) 1293 skb_set_owner_w(skb_new, skb->sk); 1294 dev_kfree_skb(skb); 1295 skb = skb_new; 1296 } 1297 skb_put( skb, num_byte_pad ); 1298 1299 dma_buf = skb->data; 1300 } 1301 // for(i = 0; i <= num_dma_symbol; i++) 1302 // printk("%16llx\n", (*(u64*)(&(dma_buf[i*8])))); 1303 1304 rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]); 1305 1306 retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) ); 1307 1308 queue_idx = drv_ring_idx; // from driver ring idx to FPGA queue_idx mapping 1309 1310 cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value]; 1311 cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value); 1312 tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | num_dma_symbol ); 1313 phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu ); 1314 1315 /* We must be sure that tx_flags is written last because the HW 1316 * looks at it to check if the rest of data is valid or not 1317 */ 1318 //wmb(); 1319 // entry->flags = cpu_to_le32(tx_flags); 1320 /* We must be sure this has been written before following HW 1321 * register write, because this write will make the HW attempts 1322 * to DMA the just-written data 1323 */ 1324 //wmb(); 1325 1326 spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt 1327 1328 // -------------check whether FPGA dma fifo and queue (queue_idx) has enough room------------- 1329 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); 1330 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 1331 if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<=RING_ROOM_THRESHOLD) || ring->stop_flag>=0 ) { 1332 if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP ) 1333 printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio%d queue%d no room flag%x hwq len%08x request%d wr%d rd%d\n", sdr_compatible_str, 1334 prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx); 1335 1336 ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read 1337 ring->stop_flag = prio; 1338 if (priv->stat.stat_enable) { 1339 priv->stat.tx_prio_stop1_num[prio]++; 1340 priv->stat.tx_queue_stop1_num[queue_idx]++; 1341 } 1342 // goto openwifi_tx_early_out_after_lock; 1343 } 1344 // --------end of check whether FPGA fifo (queue_idx) has enough room------------ 1345 1346 status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL); 1347 while(delay_count<100 && status!=DMA_COMPLETE) { 1348 status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL); 1349 delay_count++; 1350 udelay(4); 1351 // udelay(priv->stat.dbg_ch1); 1352 } 1353 if (status!=DMA_COMPLETE) { 1354 printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str); 1355 goto openwifi_tx_early_out_after_lock; 1356 } 1357 1358 //-------------------------fire skb DMA to hardware---------------------------------- 1359 dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf, 1360 num_dma_byte, DMA_MEM_TO_DEV); 1361 1362 if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) { 1363 // dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n"); 1364 printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx); 1365 goto openwifi_tx_early_out_after_lock; 1366 } 1367 1368 sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start 1369 sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr; 1370 sg_dma_len( &(priv->tx_sg) ) = num_dma_byte; 1371 1372 tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg); 1373 tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config); 1374 tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config); 1375 priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL); 1376 if (!(priv->txd)) { 1377 printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd)); 1378 goto openwifi_tx_after_dma_mapping; 1379 } 1380 1381 priv->tx_cookie = priv->txd->tx_submit(priv->txd); 1382 1383 if (dma_submit_error(priv->tx_cookie)) { 1384 printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie)); 1385 goto openwifi_tx_after_dma_mapping; 1386 } 1387 1388 // seems everything is ok. let's mark this pkt in bd descriptor ring 1389 ring->bds[ring->bd_wr_idx].prio = prio; 1390 ring->bds[ring->bd_wr_idx].len_mpdu = len_mpdu; 1391 ring->bds[ring->bd_wr_idx].seq_no = seq_no; 1392 ring->bds[ring->bd_wr_idx].skb_linked = skb; 1393 ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr; 1394 1395 ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1)); 1396 1397 dma_async_issue_pending(priv->tx_chan); 1398 1399 spin_unlock_irqrestore(&priv->lock, flags); 1400 1401 if (priv->stat.stat_enable) { 1402 priv->stat.tx_prio_num[prio]++; 1403 priv->stat.tx_queue_num[queue_idx]++; 1404 } 1405 1406 return; 1407 1408 openwifi_tx_after_dma_mapping: 1409 dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV); 1410 1411 openwifi_tx_early_out_after_lock: 1412 spin_unlock_irqrestore(&priv->lock, flags); 1413 report_pkt_loss_due_to_driver_drop(dev, skb); 1414 // dev_kfree_skb(skb); 1415 // printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); 1416 return; 1417 1418 openwifi_tx_early_out: 1419 report_pkt_loss_due_to_driver_drop(dev, skb); 1420 // dev_kfree_skb(skb); 1421 // printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); 1422 } 1423 1424 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant) 1425 { 1426 struct openwifi_priv *priv = dev->priv; 1427 u8 fpga_tx_ant_setting, target_rx_ant; 1428 u32 atten_mdb_tx0, atten_mdb_tx1; 1429 struct ctrl_outs_control ctrl_out; 1430 int ret; 1431 1432 printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant); 1433 1434 if (tx_ant >= 4 || tx_ant == 0) { 1435 return -EINVAL; 1436 } else if (rx_ant >= 3 || rx_ant == 0) { 1437 return -EINVAL; 1438 } 1439 1440 fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16)); 1441 target_rx_ant = ((rx_ant&1)?0:1); 1442 1443 // try rf chip setting firstly, only update internal state variable when rf chip succeed 1444 atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); 1445 atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); 1446 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true); 1447 if (ret < 0) { 1448 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0); 1449 return -EINVAL; 1450 } else { 1451 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0); 1452 } 1453 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true); 1454 if (ret < 0) { 1455 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1); 1456 return -EINVAL; 1457 } else { 1458 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1); 1459 } 1460 1461 ctrl_out.en_mask = priv->ctrl_out.en_mask; 1462 ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); 1463 ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out)); 1464 if (ret < 0) { 1465 printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); 1466 return -EINVAL; 1467 } else { 1468 printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); 1469 } 1470 1471 tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting); 1472 ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read(); 1473 if (ret != fpga_tx_ant_setting) { 1474 printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret); 1475 return -EINVAL; 1476 } else { 1477 printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); 1478 } 1479 1480 rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant); 1481 ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read(); 1482 if (ret != target_rx_ant) { 1483 printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret); 1484 return -EINVAL; 1485 } else { 1486 printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); 1487 } 1488 1489 // update internal state variable 1490 priv->runtime_tx_ant_cfg = tx_ant; 1491 priv->runtime_rx_ant_cfg = rx_ant; 1492 1493 if (TX_OFFSET_TUNING_ENABLE) 1494 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE 1495 else { 1496 if (tx_ant == 3) 1497 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH; 1498 else 1499 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1); 1500 } 1501 1502 priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1); 1503 priv->ctrl_out.index=ctrl_out.index; 1504 1505 priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg]; 1506 priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg]; 1507 1508 return 0; 1509 } 1510 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant) 1511 { 1512 struct openwifi_priv *priv = dev->priv; 1513 1514 *tx_ant = priv->runtime_tx_ant_cfg; 1515 *rx_ant = priv->runtime_rx_ant_cfg; 1516 1517 printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant); 1518 1519 printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str, 1520 priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index); 1521 1522 printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str, 1523 tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read()); 1524 1525 printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str, 1526 ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER)); 1527 1528 return 0; 1529 } 1530 1531 static int openwifi_start(struct ieee80211_hw *dev) 1532 { 1533 struct openwifi_priv *priv = dev->priv; 1534 int ret, i; 1535 u32 reg; 1536 1537 for (i=0; i<MAX_NUM_VIF; i++) { 1538 priv->vif[i] = NULL; 1539 } 1540 1541 // //keep software registers persistent between NIC down and up for multiple times 1542 /*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val)); 1543 memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val)); 1544 memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val)); 1545 memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val)); 1546 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/ 1547 1548 //turn on radio 1549 openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); 1550 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); 1551 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { 1552 priv->rfkill_off = 1;// 0 off, 1 on 1553 printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str); 1554 } 1555 else 1556 printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); 1557 1558 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); 1559 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); 1560 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); 1561 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); 1562 xpu_api->hw_init(priv->xpu_cfg); 1563 1564 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); 1565 1566 printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); 1567 printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); 1568 1569 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt 1570 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode 1571 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status 1572 1573 // priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm"); 1574 priv->rx_chan = dma_request_chan(&(priv->pdev->dev), "rx_dma_s2mm"); 1575 if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) { 1576 ret = PTR_ERR(priv->rx_chan); 1577 if (ret != -EPROBE_DEFER) { 1578 pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan); 1579 goto err_dma; 1580 } 1581 } 1582 1583 // priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s"); 1584 priv->tx_chan = dma_request_chan(&(priv->pdev->dev), "tx_dma_mm2s"); 1585 if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) { 1586 ret = PTR_ERR(priv->tx_chan); 1587 if (ret != -EPROBE_DEFER) { 1588 pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan); 1589 goto err_dma; 1590 } 1591 } 1592 printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan); 1593 1594 ret = openwifi_init_rx_ring(priv); 1595 if (ret) { 1596 printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret); 1597 goto err_free_rings; 1598 } 1599 1600 priv->seqno=0; 1601 for (i=0; i<MAX_NUM_SW_QUEUE; i++) { 1602 if ((ret = openwifi_init_tx_ring(priv, i))) { 1603 printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret); 1604 goto err_free_rings; 1605 } 1606 } 1607 1608 if ( (ret = rx_dma_setup(dev)) ) { 1609 printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret); 1610 goto err_free_rings; 1611 } 1612 1613 priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1); 1614 ret = request_irq(priv->irq_rx, openwifi_rx_interrupt, 1615 IRQF_SHARED, "sdr,rx_pkt_intr", dev); 1616 if (ret) { 1617 wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n"); 1618 goto err_free_rings; 1619 } else { 1620 printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx); 1621 } 1622 1623 priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3); 1624 ret = request_irq(priv->irq_tx, openwifi_tx_interrupt, 1625 IRQF_SHARED, "sdr,tx_itrpt", dev); 1626 if (ret) { 1627 wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n"); 1628 goto err_free_rings; 1629 } else { 1630 printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx); 1631 } 1632 1633 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM 1634 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt 1635 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS 1636 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer 1637 1638 priv->stat.csma_cfg0 = xpu_api->XPU_REG_FORCE_IDLE_MISC_read(); 1639 1640 // disable ad9361 auto calibration and enable openwifi fpga spi control 1641 priv->ad9361_phy->state->auto_cal_en = false; // turn off auto Tx quadrature calib. 1642 priv->ad9361_phy->state->manual_tx_quad_cal_en = true; // turn on manual Tx quadrature calib. 1643 xpu_api->XPU_REG_SPI_DISABLE_write(0); 1644 1645 // normal_out: 1646 printk("%s openwifi_start: normal end\n", sdr_compatible_str); 1647 return 0; 1648 1649 err_free_rings: 1650 openwifi_free_rx_ring(priv); 1651 for (i=0; i<MAX_NUM_SW_QUEUE; i++) 1652 openwifi_free_tx_ring(priv, i); 1653 1654 err_dma: 1655 ret = -1; 1656 printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret); 1657 return ret; 1658 } 1659 1660 static void openwifi_stop(struct ieee80211_hw *dev) 1661 { 1662 struct openwifi_priv *priv = dev->priv; 1663 u32 reg, reg1; 1664 int i; 1665 1666 // enable ad9361 auto calibration and disable openwifi fpga spi control 1667 priv->ad9361_phy->state->auto_cal_en = true; // turn on auto Tx quadrature calib. 1668 priv->ad9361_phy->state->manual_tx_quad_cal_en = false; // turn off manual Tx quadrature calib. 1669 xpu_api->XPU_REG_SPI_DISABLE_write(1); 1670 1671 //turn off radio 1672 #if 1 1673 ad9361_tx_mute(priv->ad9361_phy, 1); 1674 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 1675 reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); 1676 if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { 1677 priv->rfkill_off = 0;// 0 off, 1 on 1678 printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str); 1679 } 1680 else 1681 printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); 1682 #endif 1683 1684 //ieee80211_stop_queue(dev, 0); 1685 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt 1686 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode 1687 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status 1688 1689 for (i=0; i<MAX_NUM_VIF; i++) { 1690 priv->vif[i] = NULL; 1691 } 1692 1693 openwifi_free_rx_ring(priv); 1694 for (i=0; i<MAX_NUM_SW_QUEUE; i++) 1695 openwifi_free_tx_ring(priv, i); 1696 1697 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan)); 1698 dmaengine_terminate_all(priv->rx_chan); 1699 dma_release_channel(priv->rx_chan); 1700 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan)); 1701 dmaengine_terminate_all(priv->tx_chan); 1702 dma_release_channel(priv->tx_chan); 1703 1704 //priv->rf->stop(dev); 1705 1706 free_irq(priv->irq_rx, dev); 1707 free_irq(priv->irq_tx, dev); 1708 1709 // normal_out: 1710 printk("%s openwifi_stop\n", sdr_compatible_str); 1711 } 1712 1713 static u64 openwifi_get_tsf(struct ieee80211_hw *dev, 1714 struct ieee80211_vif *vif) 1715 { 1716 u32 tsft_low, tsft_high; 1717 1718 tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read(); 1719 tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read(); 1720 //printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); 1721 return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); 1722 } 1723 1724 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf) 1725 { 1726 u32 tsft_high = ((tsf >> 32)&0xffffffff); 1727 u32 tsft_low = (tsf&0xffffffff); 1728 xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low); 1729 printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); 1730 } 1731 1732 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 1733 { 1734 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); 1735 printk("%s openwifi_reset_tsf\n", sdr_compatible_str); 1736 } 1737 1738 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value) 1739 { 1740 printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value); 1741 return(0); 1742 } 1743 1744 static void openwifi_beacon_work(struct work_struct *work) 1745 { 1746 struct openwifi_vif *vif_priv = 1747 container_of(work, struct openwifi_vif, beacon_work.work); 1748 struct ieee80211_vif *vif = 1749 container_of((void *)vif_priv, struct ieee80211_vif, drv_priv); 1750 struct ieee80211_hw *dev = vif_priv->dev; 1751 struct ieee80211_mgmt *mgmt; 1752 struct sk_buff *skb; 1753 1754 /* don't overflow the tx ring */ 1755 if (ieee80211_queue_stopped(dev, 0)) 1756 goto resched; 1757 1758 /* grab a fresh beacon */ 1759 skb = ieee80211_beacon_get(dev, vif); 1760 if (!skb) 1761 goto resched; 1762 1763 /* 1764 * update beacon timestamp w/ TSF value 1765 * TODO: make hardware update beacon timestamp 1766 */ 1767 mgmt = (struct ieee80211_mgmt *)skb->data; 1768 mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif)); 1769 1770 /* TODO: use actual beacon queue */ 1771 skb_set_queue_mapping(skb, 0); 1772 openwifi_tx(dev, NULL, skb); 1773 1774 resched: 1775 /* 1776 * schedule next beacon 1777 * TODO: use hardware support for beacon timing 1778 */ 1779 schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int)); 1780 // printk("%s openwifi_beacon_work beacon_int %d\n", sdr_compatible_str, vif->bss_conf.beacon_int); 1781 } 1782 1783 static int openwifi_add_interface(struct ieee80211_hw *dev, 1784 struct ieee80211_vif *vif) 1785 { 1786 int i; 1787 struct openwifi_priv *priv = dev->priv; 1788 struct openwifi_vif *vif_priv; 1789 1790 switch (vif->type) { 1791 case NL80211_IFTYPE_AP: 1792 case NL80211_IFTYPE_STATION: 1793 case NL80211_IFTYPE_ADHOC: 1794 case NL80211_IFTYPE_MONITOR: 1795 case NL80211_IFTYPE_MESH_POINT: 1796 break; 1797 default: 1798 return -EOPNOTSUPP; 1799 } 1800 // let's support more than 1 interface 1801 for (i=0; i<MAX_NUM_VIF; i++) { 1802 if (priv->vif[i] == NULL) 1803 break; 1804 } 1805 1806 printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i); 1807 1808 if (i==MAX_NUM_VIF) 1809 return -EBUSY; 1810 1811 priv->vif[i] = vif; 1812 1813 /* Initialize driver private area */ 1814 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1815 vif_priv->idx = i; 1816 1817 vif_priv->dev = dev; 1818 INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work); 1819 vif_priv->enable_beacon = false; 1820 1821 priv->mac_addr[0] = vif->addr[0]; 1822 priv->mac_addr[1] = vif->addr[1]; 1823 priv->mac_addr[2] = vif->addr[2]; 1824 priv->mac_addr[3] = vif->addr[3]; 1825 priv->mac_addr[4] = vif->addr[4]; 1826 priv->mac_addr[5] = vif->addr[5]; 1827 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); // set mac addr in fpga 1828 1829 printk("%s openwifi_add_interface end with vif idx %d addr %02x:%02x:%02x:%02x:%02x:%02x\n", sdr_compatible_str,vif_priv->idx, 1830 vif->addr[0],vif->addr[1],vif->addr[2],vif->addr[3],vif->addr[4],vif->addr[5]); 1831 1832 return 0; 1833 } 1834 1835 static void openwifi_remove_interface(struct ieee80211_hw *dev, 1836 struct ieee80211_vif *vif) 1837 { 1838 struct openwifi_vif *vif_priv; 1839 struct openwifi_priv *priv = dev->priv; 1840 1841 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1842 priv->vif[vif_priv->idx] = NULL; 1843 printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx); 1844 } 1845 1846 static int openwifi_config(struct ieee80211_hw *dev, u32 changed) 1847 { 1848 struct openwifi_priv *priv = dev->priv; 1849 struct ieee80211_conf *conf = &dev->conf; 1850 1851 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { 1852 if ( priv->stat.restrict_freq_mhz>0 && (conf->chandef.chan->center_freq != priv->stat.restrict_freq_mhz) ) { 1853 printk("%s openwifi_config avoid Linux requested freq %dMHz (restrict freq %dMHz)\n", sdr_compatible_str, 1854 conf->chandef.chan->center_freq, priv->stat.restrict_freq_mhz); 1855 return -EINVAL; 1856 } 1857 priv->rf->set_chan(dev, conf); 1858 } else 1859 printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed); 1860 1861 return 0; 1862 } 1863 1864 static void openwifi_bss_info_changed(struct ieee80211_hw *dev, 1865 struct ieee80211_vif *vif, 1866 struct ieee80211_bss_conf *info, 1867 u32 changed) 1868 { 1869 struct openwifi_priv *priv = dev->priv; 1870 struct openwifi_vif *vif_priv; 1871 u32 bssid_low, bssid_high; 1872 1873 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1874 1875 //be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it! 1876 //printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]); 1877 if (changed & BSS_CHANGED_BSSID) { 1878 printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]); 1879 // write new bssid to our HW, and do not change bssid filter 1880 //u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read(); 1881 bssid_low = ( *( (u32*)(info->bssid) ) ); 1882 bssid_high = ( *( (u16*)(info->bssid+4) ) ); 1883 1884 //bssid_filter_high = (bssid_filter_high&0x80000000); 1885 //bssid_high = (bssid_high|bssid_filter_high); 1886 xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low); 1887 xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high); 1888 } 1889 1890 if (changed & BSS_CHANGED_BEACON_INT) { 1891 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int); 1892 } 1893 1894 if (changed & BSS_CHANGED_TXPOWER) 1895 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower); 1896 1897 if (changed & BSS_CHANGED_ERP_CTS_PROT) 1898 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot); 1899 1900 if (changed & BSS_CHANGED_BASIC_RATES) 1901 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates); 1902 1903 if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) { 1904 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str, 1905 changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot); 1906 if (info->use_short_slot && priv->use_short_slot==false) { 1907 priv->use_short_slot=true; 1908 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 1909 } else if ((!info->use_short_slot) && priv->use_short_slot==true) { 1910 priv->use_short_slot=false; 1911 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 1912 } 1913 } 1914 1915 if (changed & BSS_CHANGED_BEACON_ENABLED) { 1916 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str); 1917 vif_priv->enable_beacon = info->enable_beacon; 1918 } 1919 1920 if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) { 1921 cancel_delayed_work_sync(&vif_priv->beacon_work); 1922 if (vif_priv->enable_beacon) { 1923 schedule_work(&vif_priv->beacon_work.work); 1924 printk("%s openwifi_bss_info_changed WARNING enable_beacon\n",sdr_compatible_str); 1925 } 1926 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str, 1927 changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON); 1928 } 1929 } 1930 // helper function 1931 u32 log2val(u32 val){ 1932 u32 ret_val = 0 ; 1933 while(val>1){ 1934 val = val >> 1 ; 1935 ret_val ++ ; 1936 } 1937 return ret_val ; 1938 } 1939 1940 static int openwifi_conf_tx(struct ieee80211_hw *dev, struct ieee80211_vif *vif, u16 queue, 1941 const struct ieee80211_tx_queue_params *params) 1942 { 1943 struct openwifi_priv *priv = dev->priv; 1944 u32 reg_val, cw_min_exp, cw_max_exp; 1945 1946 if (priv->stat.cw_max_min_cfg == 0) { 1947 printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n", 1948 sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop); 1949 1950 reg_val=xpu_api->XPU_REG_CSMA_CFG_read(); 1951 cw_min_exp = (log2val(params->cw_min + 1) & 0x0F); 1952 cw_max_exp = (log2val(params->cw_max + 1) & 0x0F); 1953 switch(queue){ 1954 case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) ); break; 1955 case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) ); break; 1956 case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break; 1957 case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break; 1958 default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0); 1959 } 1960 } else { 1961 reg_val = priv->stat.cw_max_min_cfg; 1962 printk("%s openwifi_conf_tx: override cw max min for q3 to q0: %d %d; %d %d; %d %d; %d %d\n", 1963 sdr_compatible_str, 1964 (1<<((reg_val>>28)&0xF))-1, 1965 (1<<((reg_val>>24)&0xF))-1, 1966 (1<<((reg_val>>20)&0xF))-1, 1967 (1<<((reg_val>>16)&0xF))-1, 1968 (1<<((reg_val>>12)&0xF))-1, 1969 (1<<((reg_val>> 8)&0xF))-1, 1970 (1<<((reg_val>> 4)&0xF))-1, 1971 (1<<((reg_val>> 0)&0xF))-1); 1972 } 1973 xpu_api->XPU_REG_CSMA_CFG_write(reg_val); 1974 return(0); 1975 } 1976 1977 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev, 1978 struct netdev_hw_addr_list *mc_list) 1979 { 1980 printk("%s openwifi_prepare_multicast\n", sdr_compatible_str); 1981 return netdev_hw_addr_list_count(mc_list); 1982 } 1983 1984 static void openwifi_configure_filter(struct ieee80211_hw *dev, 1985 unsigned int changed_flags, 1986 unsigned int *total_flags, 1987 u64 multicast) 1988 { 1989 struct openwifi_priv *priv = dev->priv; 1990 u32 filter_flag; 1991 1992 (*total_flags) &= SDR_SUPPORTED_FILTERS; 1993 (*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer 1994 1995 filter_flag = (*total_flags); 1996 1997 filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO); 1998 //filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm 1999 2000 //if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR) 2001 if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode 2002 filter_flag = (filter_flag|MONITOR_ALL); 2003 else 2004 filter_flag = (filter_flag&(~MONITOR_ALL)); 2005 2006 if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) ) 2007 filter_flag = (filter_flag|MY_BEACON); 2008 2009 filter_flag = (filter_flag|FIF_PSPOLL); 2010 2011 if (priv->stat.rx_monitor_all) 2012 filter_flag = (filter_flag|MONITOR_ALL); 2013 2014 xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG); 2015 //xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt 2016 2017 printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str, 2018 (filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1); 2019 } 2020 2021 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) 2022 { 2023 struct ieee80211_sta *sta = params->sta; 2024 enum ieee80211_ampdu_mlme_action action = params->action; 2025 // struct openwifi_priv *priv = hw->priv; 2026 u16 max_tx_bytes, buf_size; 2027 u32 ampdu_action_config; 2028 2029 if (!AGGR_ENABLE) { 2030 return -EOPNOTSUPP; 2031 } 2032 2033 switch (action) 2034 { 2035 case IEEE80211_AMPDU_TX_START: 2036 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); 2037 printk("%s openwifi_ampdu_action: start TX aggregation. tid %d\n", sdr_compatible_str, params->tid); 2038 break; 2039 case IEEE80211_AMPDU_TX_STOP_CONT: 2040 case IEEE80211_AMPDU_TX_STOP_FLUSH: 2041 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: 2042 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); 2043 printk("%s openwifi_ampdu_action: stop TX aggregation. tid %d\n", sdr_compatible_str, params->tid); 2044 break; 2045 case IEEE80211_AMPDU_TX_OPERATIONAL: 2046 buf_size = 4; 2047 // buf_size = (params->buf_size) - 1; 2048 max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1; 2049 ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes ); 2050 tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config); 2051 printk("%s openwifi_ampdu_action: TX operational. tid %d max_tx_bytes %d ampdu_density %d buf_size %d\n", 2052 sdr_compatible_str, params->tid, max_tx_bytes, sta->ht_cap.ampdu_density, buf_size); 2053 break; 2054 case IEEE80211_AMPDU_RX_START: 2055 printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid); 2056 break; 2057 case IEEE80211_AMPDU_RX_STOP: 2058 printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid); 2059 break; 2060 default: 2061 return -EOPNOTSUPP; 2062 } 2063 2064 return 0; 2065 } 2066 2067 static const struct ieee80211_ops openwifi_ops = { 2068 .tx = openwifi_tx, 2069 .start = openwifi_start, 2070 .stop = openwifi_stop, 2071 .add_interface = openwifi_add_interface, 2072 .remove_interface = openwifi_remove_interface, 2073 .config = openwifi_config, 2074 .set_antenna = openwifi_set_antenna, 2075 .get_antenna = openwifi_get_antenna, 2076 .bss_info_changed = openwifi_bss_info_changed, 2077 .conf_tx = openwifi_conf_tx, 2078 .prepare_multicast = openwifi_prepare_multicast, 2079 .configure_filter = openwifi_configure_filter, 2080 .rfkill_poll = openwifi_rfkill_poll, 2081 .get_tsf = openwifi_get_tsf, 2082 .set_tsf = openwifi_set_tsf, 2083 .reset_tsf = openwifi_reset_tsf, 2084 .set_rts_threshold = openwifi_set_rts_threshold, 2085 .ampdu_action = openwifi_ampdu_action, 2086 .testmode_cmd = openwifi_testmode_cmd, 2087 }; 2088 2089 static const struct of_device_id openwifi_dev_of_ids[] = { 2090 { .compatible = "sdr,sdr", }, 2091 {} 2092 }; 2093 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids); 2094 2095 static int custom_match_spi_dev(struct device *dev, const void *data) 2096 { 2097 const char *name = data; 2098 2099 bool ret = sysfs_streq(name, dev->of_node->name); 2100 printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret); 2101 return ret; 2102 } 2103 2104 static int custom_match_platform_dev(struct device *dev, const void *data) 2105 { 2106 struct platform_device *plat_dev = to_platform_device(dev); 2107 const char *name = data; 2108 char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name); 2109 bool match_flag = (name_in_sys_bus_platform_devices != NULL); 2110 2111 if (match_flag) { 2112 printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name); 2113 } 2114 return(match_flag); 2115 } 2116 2117 static int openwifi_dev_probe(struct platform_device *pdev) 2118 { 2119 struct ieee80211_hw *dev; 2120 struct openwifi_priv *priv; 2121 int err=1, rand_val; 2122 const char *chip_name, *fpga_model; 2123 u32 reg, i;//, reg1; 2124 2125 struct device_node *np = pdev->dev.of_node; 2126 2127 struct device *tmp_dev; 2128 struct platform_device *tmp_pdev; 2129 struct iio_dev *tmp_indio_dev; 2130 // struct gpio_leds_priv *tmp_led_priv; 2131 2132 printk("\n"); 2133 2134 if (np) { 2135 const struct of_device_id *match; 2136 2137 match = of_match_node(openwifi_dev_of_ids, np); 2138 if (match) { 2139 printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str); 2140 err = 0; 2141 } 2142 } 2143 2144 if (err) 2145 return err; 2146 2147 dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops); 2148 if (!dev) { 2149 printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str); 2150 err = -ENOMEM; 2151 goto err_free_dev; 2152 } 2153 2154 priv = dev->priv; 2155 priv->pdev = pdev; 2156 2157 err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model); 2158 if(err < 0) { 2159 printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err); 2160 priv->fpga_type = SMALL_FPGA; 2161 } else { 2162 // LARGE FPGAs (i.e. ZCU102, Z7035, ZC706) 2163 if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL) 2164 priv->fpga_type = LARGE_FPGA; 2165 // SMALL FPGA: (i.e. ZED, ZC702, Z7020) 2166 else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL) 2167 priv->fpga_type = SMALL_FPGA; 2168 } 2169 2170 // //-------------find ad9361-phy driver for lo/channel control--------------- 2171 priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux 2172 priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux 2173 priv->last_tx_quad_cal_lo = 1000; 2174 tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev ); 2175 if (tmp_dev == NULL) { 2176 printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str); 2177 err = -ENODEV; 2178 goto err_free_dev; 2179 } 2180 printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data)); 2181 if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) { 2182 printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str); 2183 err = -ENODEV; 2184 goto err_free_dev; 2185 } 2186 2187 priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev); 2188 if (!(priv->ad9361_phy)) { 2189 printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str); 2190 err = -ENODEV; 2191 goto err_free_dev; 2192 } 2193 printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias); 2194 2195 // //-------------find driver: axi_ad9361 hdl ref design module, dac channel--------------- 2196 tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev ); 2197 if (!tmp_dev) { 2198 printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str); 2199 err = -ENODEV; 2200 goto err_free_dev; 2201 } 2202 2203 tmp_pdev = to_platform_device(tmp_dev); 2204 if (!tmp_pdev) { 2205 printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str); 2206 err = -ENODEV; 2207 goto err_free_dev; 2208 } 2209 2210 tmp_indio_dev = platform_get_drvdata(tmp_pdev); 2211 if (!tmp_indio_dev) { 2212 printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str); 2213 err = -ENODEV; 2214 goto err_free_dev; 2215 } 2216 2217 priv->dds_st = iio_priv(tmp_indio_dev); 2218 if (!(priv->dds_st)) { 2219 printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str); 2220 err = -ENODEV; 2221 goto err_free_dev; 2222 } 2223 printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name); 2224 cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA); 2225 printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str); 2226 2227 // //-------------find driver: axi_ad9361 hdl ref design module, adc channel--------------- 2228 // turn off radio by muting tx 2229 // ad9361_tx_mute(priv->ad9361_phy, 1); 2230 // reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 2231 // reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); 2232 // if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { 2233 // priv->rfkill_off = 0;// 0 off, 1 on 2234 // printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str); 2235 // } 2236 // else 2237 // printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); 2238 2239 // //-----------------------------parse the test_mode input-------------------------------- 2240 if (test_mode&1) 2241 AGGR_ENABLE = true; 2242 2243 // if (test_mode&2) 2244 // TX_OFFSET_TUNING_ENABLE = false; 2245 2246 priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel() 2247 priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized 2248 2249 //priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode 2250 priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode 2251 2252 priv->xpu_cfg = XPU_NORMAL; 2253 2254 priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL; 2255 priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL; 2256 2257 printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) ); 2258 if (priv->rf_bw == 20000000) { //DO NOT USE. Not used for long time. 2259 priv->rx_intf_cfg = RX_INTF_BYPASS; 2260 priv->tx_intf_cfg = TX_INTF_BYPASS; 2261 //priv->rx_freq_offset_to_lo_MHz = 0; 2262 //priv->tx_freq_offset_to_lo_MHz = 0; 2263 } else if (priv->rf_bw == 40000000) { 2264 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work 2265 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work 2266 2267 // // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps 2268 priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0; 2269 if (TX_OFFSET_TUNING_ENABLE) 2270 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364 2271 else 2272 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT0; 2273 // // try another antenna option 2274 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1; 2275 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; 2276 2277 #if 0 2278 if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) { 2279 priv->rx_freq_offset_to_lo_MHz = -10; 2280 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) { 2281 priv->rx_freq_offset_to_lo_MHz = 10; 2282 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) { 2283 priv->rx_freq_offset_to_lo_MHz = 0; 2284 } else { 2285 printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg); 2286 } 2287 #endif 2288 } else { 2289 printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw); 2290 err = -EBADRQC; 2291 goto err_free_dev; 2292 } 2293 2294 printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att); 2295 2296 priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2)); 2297 priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2); 2298 2299 priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK; 2300 priv->ctrl_out.index =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); 2301 2302 memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val)); 2303 memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val)); 2304 memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val)); 2305 memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val)); 2306 2307 priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att; 2308 2309 //let's by default turn radio on when probing 2310 err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); 2311 if (err) { 2312 printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err); 2313 err = -EIO; 2314 goto err_free_dev; 2315 } 2316 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER); 2317 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg); 2318 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE); 2319 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg); 2320 2321 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); 2322 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { 2323 priv->rfkill_off = 1;// 0 off, 1 on 2324 printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str); 2325 } else 2326 printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); 2327 2328 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV; 2329 2330 // //set ad9361 in certain mode 2331 #if 0 2332 err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw); 2333 printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); 2334 err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw); 2335 printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); 2336 2337 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); 2338 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); 2339 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); 2340 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); 2341 printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); 2342 printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); 2343 #endif 2344 2345 dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle. 2346 2347 SET_IEEE80211_DEV(dev, &pdev->dev); 2348 platform_set_drvdata(pdev, dev); 2349 2350 BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates)); 2351 BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates)); 2352 BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels)); 2353 BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels)); 2354 2355 memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates)); 2356 memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates)); 2357 memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels)); 2358 memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels)); 2359 2360 priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM) 2361 priv->channel = 44; //currently useless. this can be changed by band _rf_set_channel() 2362 priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT 2363 priv->ampdu_reference = 0; 2364 2365 priv->band_2GHz.band = NL80211_BAND_2GHZ; 2366 priv->band_2GHz.channels = priv->channels_2GHz; 2367 priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz); 2368 priv->band_2GHz.bitrates = priv->rates_2GHz; 2369 priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz); 2370 priv->band_2GHz.ht_cap.ht_supported = true; 2371 // priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue 2372 if (AGGR_ENABLE) { 2373 priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; 2374 priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; 2375 } 2376 memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs)); 2377 priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff; 2378 priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 2379 dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz); 2380 2381 priv->band_5GHz.band = NL80211_BAND_5GHZ; 2382 priv->band_5GHz.channels = priv->channels_5GHz; 2383 priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz); 2384 priv->band_5GHz.bitrates = priv->rates_5GHz; 2385 priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz); 2386 priv->band_5GHz.ht_cap.ht_supported = true; 2387 // priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue 2388 if (AGGR_ENABLE) { 2389 priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; 2390 priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; 2391 } 2392 memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs)); 2393 priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff; 2394 priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 2395 dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz); 2396 2397 printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str, 2398 priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates); 2399 2400 // ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); // remove this because we don't want: mac80211.h: host buffers frame for PS and we fetch them via ieee80211_get_buffered_bc() 2401 ieee80211_hw_set(dev, RX_INCLUDES_FCS); 2402 ieee80211_hw_set(dev, BEACON_TX_STATUS);//mac80211.h: The device/driver provides TX status for sent beacons. 2403 2404 ieee80211_hw_set(dev, REPORTS_TX_ACK_STATUS);//mac80211.h: Hardware can provide ack status reports of Tx frames to the stack 2405 2406 // * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device 2407 // * autonomously manages the PS status of connected stations. When 2408 // * this flag is set mac80211 will not trigger PS mode for connected 2409 // * stations based on the PM bit of incoming frames. 2410 // * Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure 2411 // * the PS mode of connected stations. 2412 ieee80211_hw_set(dev, AP_LINK_PS); 2413 2414 if (AGGR_ENABLE) { 2415 ieee80211_hw_set(dev, AMPDU_AGGREGATION); 2416 } 2417 2418 dev->extra_tx_headroom = LEN_MPDU_DELIM; 2419 2420 dev->vif_data_size = sizeof(struct openwifi_vif); 2421 dev->wiphy->interface_modes = 2422 BIT(NL80211_IFTYPE_MONITOR)| 2423 BIT(NL80211_IFTYPE_P2P_GO) | 2424 BIT(NL80211_IFTYPE_P2P_CLIENT) | 2425 BIT(NL80211_IFTYPE_AP) | 2426 BIT(NL80211_IFTYPE_STATION) | 2427 BIT(NL80211_IFTYPE_ADHOC) | 2428 BIT(NL80211_IFTYPE_MESH_POINT) | 2429 BIT(NL80211_IFTYPE_OCB); 2430 dev->wiphy->iface_combinations = &openwifi_if_comb; 2431 dev->wiphy->n_iface_combinations = 1; 2432 2433 dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK; 2434 dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK; 2435 2436 dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation 2437 //dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config 2438 wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd); 2439 2440 chip_name = "ZYNQ"; 2441 2442 /* we declare to MAC80211 all the queues except for beacon queue 2443 * that will be eventually handled by DRV. 2444 * TX rings are arranged in such a way that lower is the IDX, 2445 * higher is the priority, in order to achieve direct mapping 2446 * with mac80211, however the beacon queue is an exception and it 2447 * is mapped on the highst tx ring IDX. 2448 */ 2449 dev->queues = MAX_NUM_HW_QUEUE; 2450 2451 ieee80211_hw_set(dev, SIGNAL_DBM); 2452 2453 wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 2454 2455 priv->rf = &ad9361_rf_ops; 2456 2457 memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map)); 2458 priv->slice_idx = 0xFFFFFFFF; 2459 2460 sg_init_table(&(priv->tx_sg), 1); 2461 2462 get_random_bytes(&rand_val, sizeof(rand_val)); 2463 rand_val%=250; 2464 priv->mac_addr[0]=0x66; priv->mac_addr[1]=0x55; priv->mac_addr[2]=0x44; priv->mac_addr[3]=0x33; priv->mac_addr[4]=0x22; 2465 priv->mac_addr[5]=rand_val+1; 2466 //priv->mac_addr[5]=0x11; 2467 if (!is_valid_ether_addr(priv->mac_addr)) { 2468 printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str); 2469 eth_random_addr(priv->mac_addr); 2470 } 2471 printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]); 2472 SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr); 2473 2474 spin_lock_init(&priv->lock); 2475 2476 err = ieee80211_register_hw(dev); 2477 if (err) { 2478 pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str); 2479 err = -EIO; 2480 goto err_free_dev; 2481 } else { 2482 printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err); 2483 } 2484 2485 // create sysfs for arbitrary iq setting 2486 sysfs_bin_attr_init(&priv->bin_iq); 2487 priv->bin_iq.attr.name = "tx_intf_iq_data"; 2488 priv->bin_iq.attr.mode = S_IWUSR | S_IRUGO; 2489 priv->bin_iq.write = openwifi_tx_intf_bin_iq_write; 2490 priv->bin_iq.read = openwifi_tx_intf_bin_iq_read; 2491 priv->bin_iq.size = 4096; 2492 err = sysfs_create_bin_file(&pdev->dev.kobj, &priv->bin_iq); 2493 printk("%s openwifi_dev_probe: sysfs_create_bin_file %d\n",sdr_compatible_str, err); 2494 if (err < 0) 2495 goto err_free_dev; 2496 2497 priv->tx_intf_arbitrary_iq_num = 0; 2498 // priv->tx_intf_arbitrary_iq[0] = 1; 2499 // priv->tx_intf_arbitrary_iq[1] = 2; 2500 2501 err = sysfs_create_group(&pdev->dev.kobj, &tx_intf_attribute_group); 2502 printk("%s openwifi_dev_probe: sysfs_create_group tx_intf_attribute_group %d\n",sdr_compatible_str, err); 2503 if (err < 0) 2504 goto err_free_dev; 2505 priv->tx_intf_iq_ctl = 0; 2506 2507 // create sysfs for stat 2508 err = sysfs_create_group(&pdev->dev.kobj, &stat_attribute_group); 2509 printk("%s openwifi_dev_probe: sysfs_create_group stat_attribute_group %d\n",sdr_compatible_str, err); 2510 if (err < 0) 2511 goto err_free_dev; 2512 2513 priv->stat.stat_enable = 0; // by default disable 2514 2515 for (i=0; i<MAX_NUM_SW_QUEUE; i++) { 2516 priv->stat.tx_prio_num[i] = 0; 2517 priv->stat.tx_prio_interrupt_num[i] = 0; 2518 priv->stat.tx_prio_stop0_fake_num[i] = 0; 2519 priv->stat.tx_prio_stop0_real_num[i] = 0; 2520 priv->stat.tx_prio_stop1_num[i] = 0; 2521 priv->stat.tx_prio_wakeup_num[i] = 0; 2522 } 2523 for (i=0; i<MAX_NUM_HW_QUEUE; i++) { 2524 priv->stat.tx_queue_num[i] = 0; 2525 priv->stat.tx_queue_interrupt_num[i] = 0; 2526 priv->stat.tx_queue_stop0_fake_num[i] = 0; 2527 priv->stat.tx_queue_stop0_real_num[i] = 0; 2528 priv->stat.tx_queue_stop1_num[i] = 0; 2529 priv->stat.tx_queue_wakeup_num[i] = 0; 2530 } 2531 2532 priv->stat.tx_data_pkt_need_ack_num_total = 0; 2533 priv->stat.tx_data_pkt_need_ack_num_total_fail = 0; 2534 for (i=0; i<6; i++) { 2535 priv->stat.tx_data_pkt_need_ack_num_retx[i] = 0; 2536 priv->stat.tx_data_pkt_need_ack_num_retx_fail[i] = 0; 2537 } 2538 priv->stat.tx_data_pkt_mcs_realtime = 0; 2539 priv->stat.tx_data_pkt_fail_mcs_realtime = 0; 2540 2541 priv->stat.tx_mgmt_pkt_need_ack_num_total = 0; 2542 priv->stat.tx_mgmt_pkt_need_ack_num_total_fail = 0; 2543 for (i=0; i<3; i++) { 2544 priv->stat.tx_mgmt_pkt_need_ack_num_retx[i] = 0; 2545 priv->stat.tx_mgmt_pkt_need_ack_num_retx_fail[i] = 0; 2546 } 2547 priv->stat.tx_mgmt_pkt_mcs_realtime = 0; 2548 priv->stat.tx_mgmt_pkt_fail_mcs_realtime = 0; 2549 2550 priv->stat.rx_monitor_all = 0; 2551 priv->stat.rx_target_sender_mac_addr = 0; 2552 priv->stat.rx_data_ok_agc_gain_value_realtime = 0; 2553 priv->stat.rx_data_fail_agc_gain_value_realtime = 0; 2554 priv->stat.rx_mgmt_ok_agc_gain_value_realtime = 0; 2555 priv->stat.rx_mgmt_fail_agc_gain_value_realtime = 0; 2556 priv->stat.rx_ack_ok_agc_gain_value_realtime = 0; 2557 2558 priv->stat.rx_monitor_all = 0; 2559 priv->stat.rx_data_pkt_num_total = 0; 2560 priv->stat.rx_data_pkt_num_fail = 0; 2561 priv->stat.rx_mgmt_pkt_num_total = 0; 2562 priv->stat.rx_mgmt_pkt_num_fail = 0; 2563 priv->stat.rx_ack_pkt_num_total = 0; 2564 priv->stat.rx_ack_pkt_num_fail = 0; 2565 2566 priv->stat.rx_data_pkt_mcs_realtime = 0; 2567 priv->stat.rx_data_pkt_fail_mcs_realtime = 0; 2568 priv->stat.rx_mgmt_pkt_mcs_realtime = 0; 2569 priv->stat.rx_mgmt_pkt_fail_mcs_realtime = 0; 2570 priv->stat.rx_ack_pkt_mcs_realtime = 0; 2571 2572 priv->stat.restrict_freq_mhz = 0; 2573 2574 priv->stat.csma_cfg0 = 0; 2575 priv->stat.cw_max_min_cfg = 0; 2576 2577 priv->stat.dbg_ch0 = 0; 2578 priv->stat.dbg_ch1 = 0; 2579 priv->stat.dbg_ch2 = 0; 2580 2581 // // //--------------------hook leds (not complete yet)-------------------------------- 2582 // tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field 2583 // if (!tmp_dev) { 2584 // printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str); 2585 // err = -ENOMEM; 2586 // goto err_free_dev; 2587 // } 2588 2589 // tmp_pdev = to_platform_device(tmp_dev); 2590 // if (!tmp_pdev) { 2591 // printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str); 2592 // err = -ENOMEM; 2593 // goto err_free_dev; 2594 // } 2595 2596 // tmp_led_priv = platform_get_drvdata(tmp_pdev); 2597 // if (!tmp_led_priv) { 2598 // printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str); 2599 // err = -ENOMEM; 2600 // goto err_free_dev; 2601 // } 2602 // printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds); 2603 // if (tmp_led_priv->num_leds!=4){ 2604 // printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds); 2605 // err = -ENOMEM; 2606 // goto err_free_dev; 2607 // } 2608 // gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it 2609 // gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it 2610 // priv->num_led = tmp_led_priv->num_leds; 2611 // priv->led[0] = &(tmp_led_priv->leds[0].cdev); 2612 // priv->led[1] = &(tmp_led_priv->leds[1].cdev); 2613 // priv->led[2] = &(tmp_led_priv->leds[2].cdev); 2614 // priv->led[3] = &(tmp_led_priv->leds[3].cdev); 2615 2616 // snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy)); 2617 // snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy)); 2618 // snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy)); 2619 // snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy)); 2620 2621 wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n", 2622 priv->mac_addr, chip_name, priv->rf->name); 2623 2624 openwifi_rfkill_init(dev); 2625 return 0; 2626 2627 err_free_dev: 2628 ieee80211_free_hw(dev); 2629 2630 return err; 2631 } 2632 2633 static int openwifi_dev_remove(struct platform_device *pdev) 2634 { 2635 struct ieee80211_hw *dev = platform_get_drvdata(pdev); 2636 struct openwifi_priv *priv = dev->priv; 2637 2638 if (!dev) { 2639 pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev); 2640 return(-1); 2641 } 2642 2643 sysfs_remove_bin_file(&pdev->dev.kobj, &priv->bin_iq); 2644 sysfs_remove_group(&pdev->dev.kobj, &tx_intf_attribute_group); 2645 sysfs_remove_group(&pdev->dev.kobj, &stat_attribute_group); 2646 2647 openwifi_rfkill_exit(dev); 2648 ieee80211_unregister_hw(dev); 2649 ieee80211_free_hw(dev); 2650 return(0); 2651 } 2652 2653 static struct platform_driver openwifi_dev_driver = { 2654 .driver = { 2655 .name = "sdr,sdr", 2656 .owner = THIS_MODULE, 2657 .of_match_table = openwifi_dev_of_ids, 2658 }, 2659 .probe = openwifi_dev_probe, 2660 .remove = openwifi_dev_remove, 2661 }; 2662 2663 module_platform_driver(openwifi_dev_driver); 2664