1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos
2 // SPDX-FileCopyrightText: 2022 UGent
3 // SPDX-License-Identifier: AGPL-3.0-or-later
4
5 #include <linux/bitops.h>
6 #include <linux/dmapool.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/of_address.h>
10 #include <linux/of_platform.h>
11 #include <linux/of_irq.h>
12 #include <linux/slab.h>
13 #include <linux/clk.h>
14 #include <linux/io-64-nonatomic-lo-hi.h>
15
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18
19 #include <linux/dmaengine.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23
24 #include <linux/init.h>
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/of_dma.h>
28 #include <linux/platform_device.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/wait.h>
32 #include <linux/sched/task.h>
33 #include <linux/dma/xilinx_dma.h>
34 #include <linux/spi/spi.h>
35 #include <net/mac80211.h>
36
37 #include <linux/clk.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk-provider.h>
40
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43
44 #include <linux/gpio.h>
45 #include <linux/leds.h>
46
47 // #include <linux/time.h>
48
49 #define IIO_AD9361_USE_PRIVATE_H_
50 #include <../../drivers/iio/adc/ad9361_regs.h>
51 #include <../../drivers/iio/adc/ad9361.h>
52 #include <../../drivers/iio/adc/ad9361_private.h>
53
54 #include <../../drivers/iio/frequency/cf_axi_dds.h>
55 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num);
56 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb,
57 bool tx1, bool tx2, bool immed);
58 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy,
59 struct ctrl_outs_control *ctrl);
60 extern int ad9361_do_calib_run(struct ad9361_rf_phy *phy, u32 cal, int arg);
61
62 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
63 #include "hw_def.h"
64 #include "sdr.h"
65 #include "git_rev.h"
66
67 // driver API of component driver
68 extern struct tx_intf_driver_api *tx_intf_api;
69 extern struct rx_intf_driver_api *rx_intf_api;
70 extern struct openofdm_tx_driver_api *openofdm_tx_api;
71 extern struct openofdm_rx_driver_api *openofdm_rx_api;
72 extern struct xpu_driver_api *xpu_api;
73
74 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes);
75 u8 gen_mpdu_delim_crc(u16 m);
76 u32 reverse32(u32 d);
77 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant);
78 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant);
79 int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction);
80 int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction);
81 int rssi_correction_lookup_table(u32 freq_MHz);
82 void ad9361_tx_calibration(struct openwifi_priv *priv, u32 actual_tx_lo);
83 void openwifi_rf_rx_update_after_tuning(struct openwifi_priv *priv, u32 actual_rx_lo);
84
85 #include "sdrctl_intf.c"
86 #include "sysfs_intf.c"
87
88 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1)
89 // Internal indication variables after parsing test_mode
90 static bool AGGR_ENABLE = false;
91 static bool TX_OFFSET_TUNING_ENABLE = false;
92
93 static int init_tx_att = 0;
94
95 MODULE_AUTHOR("Xianjun Jiao");
96 MODULE_DESCRIPTION("SDR driver");
97 MODULE_LICENSE("GPL v2");
98
99 module_param(test_mode, int, 0);
100 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)");
101
102 module_param(init_tx_att, int, 0);
103 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000 example: set to 3000 for 3dB attenuation");
104
105 // ---------------rfkill---------------------------------------
openwifi_is_radio_enabled(struct openwifi_priv * priv)106 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
107 {
108 int reg;
109
110 if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH)
111 reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
112 else
113 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
114
115 // if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]))
116 if (reg < AD9361_RADIO_OFF_TX_ATT)
117 return true;// 0 off, 1 on
118 return false;
119 }
120
openwifi_rfkill_init(struct ieee80211_hw * hw)121 void openwifi_rfkill_init(struct ieee80211_hw *hw)
122 {
123 struct openwifi_priv *priv = hw->priv;
124
125 priv->rfkill_off = openwifi_is_radio_enabled(priv);
126 printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
127 wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
128 wiphy_rfkill_start_polling(hw->wiphy);
129 }
130
openwifi_rfkill_poll(struct ieee80211_hw * hw)131 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
132 {
133 bool enabled;
134 struct openwifi_priv *priv = hw->priv;
135
136 enabled = openwifi_is_radio_enabled(priv);
137 // printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
138 if (unlikely(enabled != priv->rfkill_off)) {
139 priv->rfkill_off = enabled;
140 printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
141 wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
142 }
143 }
144
openwifi_rfkill_exit(struct ieee80211_hw * hw)145 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
146 {
147 printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
148 wiphy_rfkill_stop_polling(hw->wiphy);
149 }
150 //----------------rfkill end-----------------------------------
151
rssi_dbm_to_rssi_half_db(int rssi_dbm,int rssi_correction)152 inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction)
153 {
154 return ((rssi_correction+rssi_dbm)<<1);
155 }
156
rssi_correction_lookup_table(u32 freq_MHz)157 inline int rssi_correction_lookup_table(u32 freq_MHz)
158 {
159 int rssi_correction;
160
161 if (freq_MHz<2412) {
162 rssi_correction = 153;
163 } else if (freq_MHz<=2484) {
164 rssi_correction = 153;
165 } else if (freq_MHz<5160) {
166 rssi_correction = 153;
167 } else if (freq_MHz<=5240) {
168 rssi_correction = 145;
169 } else if (freq_MHz<=5320) {
170 rssi_correction = 145;
171 } else {
172 rssi_correction = 145;
173 }
174
175 return rssi_correction;
176 }
177
ad9361_tx_calibration(struct openwifi_priv * priv,u32 actual_tx_lo)178 inline void ad9361_tx_calibration(struct openwifi_priv *priv, u32 actual_tx_lo)
179 {
180 // struct timespec64 tv;
181 // unsigned long time_before = 0;
182 // unsigned long time_after = 0;
183 u32 spi_disable;
184
185 priv->last_tx_quad_cal_lo = actual_tx_lo;
186 // do_gettimeofday(&tv);
187 // time_before = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec );
188 spi_disable = xpu_api->XPU_REG_SPI_DISABLE_read(); // backup current fpga spi disable state
189 xpu_api->XPU_REG_SPI_DISABLE_write(1); // disable FPGA SPI module
190 ad9361_do_calib_run(priv->ad9361_phy, TX_QUAD_CAL, (int)priv->ad9361_phy->state->last_tx_quad_cal_phase);
191 xpu_api->XPU_REG_SPI_DISABLE_write(spi_disable); // restore original SPI disable state
192 // do_gettimeofday(&tv);
193 // time_after = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec );
194
195 // printk("%s ad9361_tx_calibration %dMHz tx_quad_cal duration %lu us\n", sdr_compatible_str, actual_tx_lo, time_after-time_before);
196 printk("%s ad9361_tx_calibration %dMHz tx_quad_cal duration unknown us\n", sdr_compatible_str, actual_tx_lo);
197 }
198
openwifi_rf_rx_update_after_tuning(struct openwifi_priv * priv,u32 actual_rx_lo)199 inline void openwifi_rf_rx_update_after_tuning(struct openwifi_priv *priv, u32 actual_rx_lo)
200 {
201 int static_lbt_th, auto_lbt_th, fpga_lbt_th, receiver_rssi_dbm_th, receiver_rssi_th;
202
203 // get rssi correction value from lookup table
204 priv->rssi_correction = rssi_correction_lookup_table(actual_rx_lo);
205
206 // set appropriate lbt threshold
207 auto_lbt_th = rssi_dbm_to_rssi_half_db(-62, priv->rssi_correction); // -62dBm
208 static_lbt_th = rssi_dbm_to_rssi_half_db(-(priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]), priv->rssi_correction);
209 fpga_lbt_th = (priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]==0?auto_lbt_th:static_lbt_th);
210 xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th);
211 priv->last_auto_fpga_lbt_th = auto_lbt_th;
212
213 // Set rssi_half_db threshold (-85dBm equivalent) to receiver. Receiver will not react to signal lower than this rssi. See test records (OPENOFDM_RX_POWER_THRES_INIT in hw_def.h)
214 receiver_rssi_dbm_th = (priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]==0?OPENOFDM_RX_RSSI_DBM_TH_DEFAULT:(-priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]));
215 receiver_rssi_th = rssi_dbm_to_rssi_half_db(receiver_rssi_dbm_th, priv->rssi_correction);
216 openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write((OPENOFDM_RX_DC_RUNNING_SUM_TH_INIT<<16)|receiver_rssi_th);
217
218 if (actual_rx_lo < 2500) {
219 if (priv->band != BAND_2_4GHZ) {
220 priv->band = BAND_2_4GHZ;
221 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
222 }
223 } else {
224 if (priv->band != BAND_5_8GHZ) {
225 priv->band = BAND_5_8GHZ;
226 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
227 }
228 }
229 printk("%s openwifi_rf_rx_update_after_tuning %dMHz rssi_correction %d fpga_lbt_th %d(%ddBm) auto %d static %d receiver th %d(%ddBm)\n", sdr_compatible_str,
230 actual_rx_lo, priv->rssi_correction, fpga_lbt_th, rssi_half_db_to_rssi_dbm(fpga_lbt_th, priv->rssi_correction), auto_lbt_th, static_lbt_th, receiver_rssi_th, receiver_rssi_dbm_th);
231 }
232
ad9361_rf_set_channel(struct ieee80211_hw * dev,struct ieee80211_conf * conf)233 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
234 struct ieee80211_conf *conf)
235 {
236 struct openwifi_priv *priv = dev->priv;
237 u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz;
238 u32 actual_tx_lo;
239 u32 diff_tx_lo;
240 bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
241
242 if (change_flag && priv->rf_reg_val[RF_TX_REG_IDX_FREQ_MHZ]==0 && priv->rf_reg_val[RF_RX_REG_IDX_FREQ_MHZ]==0) {
243 actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
244 diff_tx_lo = priv->last_tx_quad_cal_lo > actual_tx_lo ? priv->last_tx_quad_cal_lo - actual_tx_lo : actual_tx_lo - priv->last_tx_quad_cal_lo;
245
246 // -------------------Tx Lo tuning-------------------
247 clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo) )>>1);
248 priv->actual_tx_lo = actual_tx_lo;
249
250 // -------------------Rx Lo tuning-------------------
251 clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo) )>>1);
252 priv->actual_rx_lo = actual_rx_lo;
253
254 // call Tx Quadrature calibration if frequency change is more than 100MHz
255 if (diff_tx_lo > 100)
256 ad9361_tx_calibration(priv, actual_tx_lo);
257
258 openwifi_rf_rx_update_after_tuning(priv, actual_rx_lo);
259 printk("%s ad9361_rf_set_channel %dMHz done\n", sdr_compatible_str,conf->chandef.chan->center_freq);
260 }
261 }
262
263 const struct openwifi_rf_ops ad9361_rf_ops = {
264 .name = "ad9361",
265 // .init = ad9361_rf_init,
266 // .stop = ad9361_rf_stop,
267 .set_chan = ad9361_rf_set_channel,
268 // .calc_rssi = ad9361_rf_calc_rssi,
269 };
270
reverse16(u16 d)271 u16 reverse16(u16 d) {
272 union u16_byte2 tmp0, tmp1;
273 tmp0.a = d;
274 tmp1.c[0] = tmp0.c[1];
275 tmp1.c[1] = tmp0.c[0];
276 return(tmp1.a);
277 }
278
reverse32(u32 d)279 u32 reverse32(u32 d) {
280 union u32_byte4 tmp0, tmp1;
281 tmp0.a = d;
282 tmp1.c[0] = tmp0.c[3];
283 tmp1.c[1] = tmp0.c[2];
284 tmp1.c[2] = tmp0.c[1];
285 tmp1.c[3] = tmp0.c[0];
286 return(tmp1.a);
287 }
288
openwifi_init_tx_ring(struct openwifi_priv * priv,int ring_idx)289 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
290 {
291 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
292 int i;
293
294 ring->stop_flag = -1;
295 ring->bd_wr_idx = 0;
296 ring->bd_rd_idx = 0;
297 ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
298 if (ring->bds==NULL) {
299 printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
300 return -ENOMEM;
301 }
302
303 for (i = 0; i < NUM_TX_BD; i++) {
304 ring->bds[i].skb_linked=NULL; // for tx, skb is from upper layer
305 //at first right after skb allocated, head, data, tail are the same.
306 ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine
307 ring->bds[i].seq_no = 0xffff; // invalid value
308 ring->bds[i].prio = 0xff; // invalid value
309 ring->bds[i].len_mpdu = 0; // invalid value
310 }
311
312 return 0;
313 }
314
openwifi_free_tx_ring(struct openwifi_priv * priv,int ring_idx)315 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
316 {
317 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
318 int i;
319
320 ring->stop_flag = -1;
321 ring->bd_wr_idx = 0;
322 ring->bd_rd_idx = 0;
323 for (i = 0; i < NUM_TX_BD; i++) {
324 if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
325 continue;
326 if (ring->bds[i].dma_mapping_addr != 0)
327 dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
328 // if (ring->bds[i].skb_linked!=NULL)
329 // dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
330 if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
331 (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
332 printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str,
333 ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr));
334
335 ring->bds[i].skb_linked=NULL;
336 ring->bds[i].dma_mapping_addr = 0;
337 ring->bds[i].seq_no = 0xffff; // invalid value
338 ring->bds[i].prio = 0xff; // invalid value
339 ring->bds[i].len_mpdu = 0; // invalid value
340 }
341 if (ring->bds)
342 kfree(ring->bds);
343 ring->bds = NULL;
344 }
345
openwifi_init_rx_ring(struct openwifi_priv * priv)346 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
347 {
348 int i;
349 u8 *pdata_tmp;
350
351 priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
352 if (!priv->rx_cyclic_buf) {
353 printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
354 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
355 return(-1);
356 }
357
358 // Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
359 for (i=0; i<NUM_RX_BD; i++) {
360 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning
361 (*((u16*)(pdata_tmp+10))) = 0;
362 }
363 printk("%s openwifi_init_rx_ring: NUM_RX_BD %d RX_BD_BUF_SIZE %d pkt existing flag are cleared!\n", sdr_compatible_str,
364 NUM_RX_BD, RX_BD_BUF_SIZE);
365
366 return 0;
367 }
368
openwifi_free_rx_ring(struct openwifi_priv * priv)369 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
370 {
371 if (priv->rx_cyclic_buf)
372 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
373
374 priv->rx_cyclic_buf_dma_mapping_addr = 0;
375 priv->rx_cyclic_buf = 0;
376 }
377
rx_dma_setup(struct ieee80211_hw * dev)378 static int rx_dma_setup(struct ieee80211_hw *dev){
379 struct openwifi_priv *priv = dev->priv;
380 struct dma_device *rx_dev = priv->rx_chan->device;
381
382 priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
383 if (!(priv->rxd)) {
384 openwifi_free_rx_ring(priv);
385 printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
386 return(-1);
387 }
388 priv->rxd->callback = 0;
389 priv->rxd->callback_param = 0;
390
391 priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
392
393 if (dma_submit_error(priv->rx_cookie)) {
394 printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
395 return(-1);
396 }
397
398 dma_async_issue_pending(priv->rx_chan);
399 return(0);
400 }
401
rssi_half_db_to_rssi_dbm(int rssi_half_db,int rssi_correction)402 inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction)
403 {
404 int rssi_db, rssi_dbm;
405
406 rssi_db = (rssi_half_db>>1);
407
408 rssi_dbm = rssi_db - rssi_correction;
409
410 rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm);
411
412 return rssi_dbm;
413 }
414
openwifi_rx_interrupt(int irq,void * dev_id)415 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
416 {
417 struct ieee80211_hw *dev = dev_id;
418 struct openwifi_priv *priv = dev->priv;
419 struct ieee80211_rx_status rx_status = {0};
420 struct sk_buff *skb;
421 struct ieee80211_hdr *hdr;
422 u32 addr1_low32, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di;
423 bool ht_flag, short_gi, ht_aggr, ht_aggr_last;
424 // u32 dma_driver_buf_idx_mod;
425 u8 *pdata_tmp;
426 u8 fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw;
427 s8 signal;
428 u16 agc_status_and_pkt_exist_flag, rssi_half_db, addr1_high16, addr2_high16=0, addr3_high16=0, seq_no=0;
429 bool content_ok, len_overflow, is_unicast;
430
431 #ifdef USE_NEW_RX_INTERRUPT
432 int i;
433 spin_lock(&priv->lock);
434 for (i=0; i<NUM_RX_BD; i++) {
435 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE;
436 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid
437 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
438 continue;
439 #else
440 static u8 target_buf_idx_old = 0;
441 spin_lock(&priv->lock);
442 while(1) { // loop all rx buffers that have new rx packets
443 pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
444 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10)));
445 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
446 break;
447 #endif
448
449 tsft_low = (*((u32*)(pdata_tmp+0 )));
450 tsft_high = (*((u32*)(pdata_tmp+4 )));
451 rssi_half_db = (*((u16*)(pdata_tmp+8 )));
452 len = (*((u16*)(pdata_tmp+12)));
453
454 len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
455
456 rate_idx = (*((u16*)(pdata_tmp+14)));
457 ht_flag = ((rate_idx&0x10)!=0);
458 short_gi = ((rate_idx&0x20)!=0);
459 ht_aggr = (ht_flag & ((rate_idx&0x40)!=0));
460 ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0));
461 rate_idx = (rate_idx&0x1F);
462
463 fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
464
465 //phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
466 // phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
467 // dma_driver_buf_idx_mod = (state.residue&0x7f);
468 fcs_ok = ((fcs_ok&0x80)!=0);
469
470 if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
471 // if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
472 // printk("%s openwifi_rx: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
473 // }
474 content_ok = true;
475 } else {
476 printk("%s openwifi_rx: WARNING content! len%d overflow%d rate_idx%d\n", sdr_compatible_str,
477 len, len_overflow, rate_idx);
478 content_ok = false;
479 }
480
481 signal = rssi_half_db_to_rssi_dbm(rssi_half_db, priv->rssi_correction);
482
483 hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
484 if (len>=20) {
485 addr2_low32 = *((u32*)(hdr->addr2+2));
486 addr2_high16 = *((u16*)(hdr->addr2));
487 }
488
489 addr1_low32 = *((u32*)(hdr->addr1+2));
490 addr1_high16 = *((u16*)(hdr->addr1));
491
492 if ( priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ANY ) {
493 if (len>=26) {
494 addr3_low32 = *((u32*)(hdr->addr3+2));
495 addr3_high16 = *((u16*)(hdr->addr3));
496 }
497 if (len>=28)
498 seq_no = ( (hdr->seq_ctrl&IEEE80211_SCTL_SEQ)>>4 );
499
500 is_unicast = (addr1_low32!=0xffffffff || addr1_high16!=0xffff);
501
502 if ( (( is_unicast)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST)) ||
503 ((!is_unicast)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST)) ||
504 (( fcs_ok==0)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ERROR)) )
505 printk("%s openwifi_rx: %dB ht%daggr%d/%d sgi%d %dM FC%04x DI%04x ADDR%04x%08x/%04x%08x/%04x%08x SC%d fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
506 len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
507 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
508 #ifdef USE_NEW_RX_INTERRUPT
509 seq_no, fcs_ok, i, signal);
510 #else
511 seq_no, fcs_ok, target_buf_idx_old, signal);
512 #endif
513 }
514
515 // priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
516 if (content_ok) {
517 skb = dev_alloc_skb(len);
518 if (skb) {
519 skb_put_data(skb,pdata_tmp+16,len);
520
521 rx_status.antenna = priv->runtime_rx_ant_cfg;
522 // def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
523 rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
524 rx_status.signal = signal;
525
526 // rx_status.freq = dev->conf.chandef.chan->center_freq;
527 rx_status.freq = priv->actual_rx_lo;
528 // rx_status.band = dev->conf.chandef.chan->band;
529 rx_status.band = (rx_status.freq<2500?NL80211_BAND_2GHZ:NL80211_BAND_5GHZ);
530
531 rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
532 rx_status.flag |= RX_FLAG_MACTIME_START;
533 if (!fcs_ok)
534 rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
535 if (rate_idx <= 15)
536 rx_status.encoding = RX_ENC_LEGACY;
537 else
538 rx_status.encoding = RX_ENC_HT;
539 rx_status.bw = RATE_INFO_BW_20;
540 if (short_gi)
541 rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
542 if(ht_aggr)
543 {
544 rx_status.ampdu_reference = priv->ampdu_reference;
545 rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
546 if (ht_aggr_last)
547 rx_status.flag |= RX_FLAG_AMPDU_IS_LAST;
548 }
549
550 memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
551 ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
552
553 // printk("%s openwifi_rx: addr1_low32 %08x self addr %08x\n", sdr_compatible_str, addr1_low32, ( *( (u32*)(priv->mac_addr+2) ) ));
554 if (addr1_low32 == ( *( (u32*)(priv->mac_addr+2) ) ) && priv->stat.stat_enable) {
555 agc_status_and_pkt_exist_flag = (agc_status_and_pkt_exist_flag&0x7f);
556 if (len>=20) {// rx stat
557 if (addr2_low32 == priv->stat.rx_target_sender_mac_addr || priv->stat.rx_target_sender_mac_addr==0) {
558 if ( ieee80211_is_data(hdr->frame_control) ) {
559 priv->stat.rx_data_pkt_mcs_realtime = rate_idx;
560 priv->stat.rx_data_pkt_num_total++;
561 if (!fcs_ok) {
562 priv->stat.rx_data_pkt_num_fail++;
563 priv->stat.rx_data_pkt_fail_mcs_realtime = rate_idx;
564 priv->stat.rx_data_fail_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
565 } else {
566 priv->stat.rx_data_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
567 }
568 } else if ( ieee80211_is_mgmt(hdr->frame_control) ) {
569 priv->stat.rx_mgmt_pkt_mcs_realtime = rate_idx;
570 priv->stat.rx_mgmt_pkt_num_total++;
571 if (!fcs_ok) {
572 priv->stat.rx_mgmt_pkt_num_fail++;
573 priv->stat.rx_mgmt_pkt_fail_mcs_realtime = rate_idx;
574 priv->stat.rx_mgmt_fail_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
575 } else {
576 priv->stat.rx_mgmt_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
577 }
578 }
579 }
580 } else if ( ieee80211_is_ack(hdr->frame_control) ) {
581 priv->stat.rx_ack_pkt_mcs_realtime = rate_idx;
582 priv->stat.rx_ack_pkt_num_total++;
583 if (!fcs_ok) {
584 priv->stat.rx_ack_pkt_num_fail++;
585 } else {
586 priv->stat.rx_ack_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
587 }
588 }
589 }
590 } else
591 printk("%s openwifi_rx: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
592
593 if(ht_aggr_last)
594 priv->ampdu_reference++;
595 }
596 (*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed
597 loop_count++;
598 #ifndef USE_NEW_RX_INTERRUPT
599 target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
600 #endif
601 }
602
603 if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ERROR) )
604 printk("%s openwifi_rx: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
605
606 // openwifi_rx_out:
607 spin_unlock(&priv->lock);
608 return IRQ_HANDLED;
609 }
610
611 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
612 {
613 struct ieee80211_hw *dev = dev_id;
614 struct openwifi_priv *priv = dev->priv;
615 struct openwifi_ring *ring, *drv_ring_tmp;
616 struct sk_buff *skb;
617 struct ieee80211_tx_info *info;
618 struct ieee80211_hdr *hdr;
619 u32 reg_val1, hw_queue_len, reg_val2, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0, addr1_low32, mcs_for_sysfs;
620 u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx;
621 u8 nof_retx=-1, last_bd_rd_idx, i, prio, queue_idx, nof_retx_stat;
622 u64 blk_ack_bitmap;
623 // u16 prio_rd_idx_store[64]={0};
624 bool tx_fail=false, fpga_queue_has_room=false;
625 bool use_ht_aggr, pkt_need_ack, use_ht_rate, prio_wake_up_flag = false;
626
627 spin_lock(&priv->lock);
628
629 while(1) { // loop all packets that have been sent by FPGA
630 reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read();
631 reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read();
632 blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32);
633
634 if (reg_val1!=0xFFFFFFFF) {
635 nof_retx = (reg_val1&0xF);
636 last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1));
637 prio = ((reg_val1>>17)&0x3);
638 num_slot_random = ((reg_val1>>19)&0x1FF);
639 //num_slot_random = ((0xFF80000 ®_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
640 cw = ((reg_val1>>28)&0xF);
641 //cw = ((0xF0000000 & reg_val1) >> 28);
642 if(cw > 10) {
643 cw = 10 ;
644 num_slot_random += 512 ;
645 }
646 pkt_cnt = (reg_val2&0x3F);
647 blk_ack_ssn = ((reg_val2>>6)&0xFFF);
648
649 queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1));
650 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
651 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
652 // check which linux prio is stopped by this queue (queue_idx)
653 for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
654 drv_ring_tmp = &(priv->tx_ring[i]);
655 if ( drv_ring_tmp->stop_flag == prio ) {
656
657 if ( ((dma_fifo_no_room_flag>>i)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(i*8))&0xFF))>=RING_ROOM_THRESHOLD )
658 fpga_queue_has_room=true;
659 else
660 fpga_queue_has_room=false;
661
662 // Wake up Linux queue due to the current fpga queue releases some room
663 if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP )
664 printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio%d i%d queue%d no room flag%x hwq len%08x wr%d rd%d\n", sdr_compatible_str,
665 prio, i, queue_idx, dma_fifo_no_room_flag, hw_queue_len, drv_ring_tmp->bd_wr_idx, last_bd_rd_idx);
666
667 if (fpga_queue_has_room) {
668 prio_wake_up_flag = true;
669 drv_ring_tmp->stop_flag = -1;
670
671 if (priv->stat.stat_enable) {
672 priv->stat.tx_prio_wakeup_num[prio]++;
673 priv->stat.tx_queue_wakeup_num[i]++;
674 }
675 } else {
676 if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP )
677 printk("%s openwifi_tx_interrupt: WARNING no room! prio_wake_up_flag%d\n", sdr_compatible_str, prio_wake_up_flag);
678 }
679 }
680 }
681 if (prio_wake_up_flag)
682 ieee80211_wake_queue(dev, prio);
683
684 if (priv->stat.stat_enable) {
685 priv->stat.tx_prio_interrupt_num[prio] = priv->stat.tx_prio_interrupt_num[prio] + pkt_cnt;
686 priv->stat.tx_queue_interrupt_num[queue_idx] = priv->stat.tx_queue_interrupt_num[queue_idx] + pkt_cnt;
687 }
688
689 ring = &(priv->tx_ring[queue_idx]);
690 for(i = 1; i <= pkt_cnt; i++)
691 {
692 ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64;
693 seq_no = ring->bds[ring->bd_rd_idx].seq_no;
694
695 if (seq_no == 0xffff) {// it has been forced cleared by the openwifi_tx (due to out-of-order Tx of different queues to the air?)
696 printk("%s openwifi_tx_interrupt: WARNING wr%d rd%d last_bd_rd_idx%d i%d pkt_cnt%d prio%d fpga q%d hwq len%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%u\n", sdr_compatible_str,
697 ring->bd_wr_idx, ring->bd_rd_idx, last_bd_rd_idx, i, pkt_cnt, prio, queue_idx, hw_queue_len, ring->bds[ring->bd_rd_idx].prio, ring->bds[ring->bd_rd_idx].len_mpdu, seq_no, ring->bds[ring->bd_rd_idx].skb_linked, ring->bds[ring->bd_rd_idx].dma_mapping_addr);
698 continue;
699 }
700
701 skb = ring->bds[ring->bd_rd_idx].skb_linked;
702
703 dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
704 skb->len, DMA_MEM_TO_DEV);
705
706 info = IEEE80211_SKB_CB(skb);
707 use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0);
708 ieee80211_tx_info_clear_status(info);
709
710 // Aggregation packet
711 if (use_ht_aggr)
712 {
713 start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF));
714 tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0);
715 info->flags |= IEEE80211_TX_STAT_AMPDU;
716 info->status.ampdu_len = 1;
717 info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1;
718
719 skb_pull(skb, LEN_MPDU_DELIM);
720 //skb_trim(skb, num_byte_pad_skb);
721 }
722 // Normal packet
723 else
724 {
725 tx_fail = ((blk_ack_bitmap&0x1)==0);
726 info->flags &= (~IEEE80211_TX_CTL_AMPDU);
727 }
728
729 pkt_need_ack = (!(info->flags & IEEE80211_TX_CTL_NO_ACK));
730 // do statistics for data packet that needs ack
731 hdr = (struct ieee80211_hdr *)skb->data;
732 addr1_low32 = *((u32*)(hdr->addr1+2));
733 if ( priv->stat.stat_enable && pkt_need_ack && (addr1_low32 == priv->stat.rx_target_sender_mac_addr || priv->stat.rx_target_sender_mac_addr==0) ) {
734 use_ht_rate = (((info->control.rates[0].flags)&IEEE80211_TX_RC_MCS)!=0);
735 mcs_for_sysfs = ieee80211_get_tx_rate(dev, info)->hw_value;
736 if (use_ht_rate)
737 mcs_for_sysfs = (mcs_for_sysfs | 0x80000000);
738
739 if ( ieee80211_is_data(hdr->frame_control) ) {
740 nof_retx_stat = (nof_retx<=5?nof_retx:5);
741
742 priv->stat.tx_data_pkt_need_ack_num_total++;
743 priv->stat.tx_data_pkt_mcs_realtime = mcs_for_sysfs;
744 priv->stat.tx_data_pkt_need_ack_num_retx[nof_retx_stat]++;
745 if (tx_fail) {
746 priv->stat.tx_data_pkt_need_ack_num_total_fail++;
747 priv->stat.tx_data_pkt_fail_mcs_realtime = mcs_for_sysfs;
748 priv->stat.tx_data_pkt_need_ack_num_retx_fail[nof_retx_stat]++;
749 }
750 } else if ( ieee80211_is_mgmt(hdr->frame_control) ) {
751 nof_retx_stat = (nof_retx<=2?nof_retx:2);
752
753 priv->stat.tx_mgmt_pkt_need_ack_num_total++;
754 priv->stat.tx_mgmt_pkt_mcs_realtime = mcs_for_sysfs;
755 priv->stat.tx_mgmt_pkt_need_ack_num_retx[nof_retx_stat]++;
756 if (tx_fail) {
757 priv->stat.tx_mgmt_pkt_need_ack_num_total_fail++;
758 priv->stat.tx_mgmt_pkt_fail_mcs_realtime = mcs_for_sysfs;
759 priv->stat.tx_mgmt_pkt_need_ack_num_retx_fail[nof_retx_stat]++;
760 }
761 }
762 }
763
764 if ( tx_fail == false )
765 info->flags |= IEEE80211_TX_STAT_ACK;
766
767 info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
768 info->status.rates[1].idx = -1;
769 // info->status.rates[2].idx = -1;
770 // info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES 4
771 info->status.antenna = priv->runtime_tx_ant_cfg;
772
773 if ( ( (!pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST) ) || ( (pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST) ) ){
774 printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] SC%d prio%d q%d wr%d rd%d num_slot%d cw%d hwq len%08x no_room_flag%x\n", sdr_compatible_str,
775 nof_retx+1, !tx_fail, seq_no, prio, queue_idx, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw, hw_queue_len, dma_fifo_no_room_flag);
776 }
777
778 ieee80211_tx_status_irqsafe(dev, skb);
779
780 ring->bds[ring->bd_rd_idx].prio = 0xff; // invalid value
781 ring->bds[ring->bd_rd_idx].len_mpdu = 0; // invalid value
782 ring->bds[ring->bd_rd_idx].seq_no = 0xffff;
783 ring->bds[ring->bd_rd_idx].skb_linked = NULL;
784 ring->bds[ring->bd_rd_idx].dma_mapping_addr = 0;
785 }
786
787 loop_count++;
788
789 // printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
790
791 } else
792 break;
793 }
794 if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&DMESG_LOG_ERROR) )
795 printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
796
797 spin_unlock(&priv->lock);
798 return IRQ_HANDLED;
799 }
800
801 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000};
802 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes)
803 {
804 u32 i, crc = 0;
805 u8 idx;
806 for( i = 0; i < num_bytes; i++)
807 {
808 idx = (crc & 0x0F) ^ (data_in[i] & 0x0F);
809 crc = (crc >> 4) ^ crc_table[idx];
810
811 idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F);
812 crc = (crc >> 4) ^ crc_table[idx];
813 }
814
815 return crc;
816 }
817
818 u8 gen_mpdu_delim_crc(u16 m)
819 {
820 u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc;
821
822 for (i = 0; i < 16; i++)
823 {
824 temp = c[7] ^ ((m >> i) & 0x01);
825
826 c[7] = c[6];
827 c[6] = c[5];
828 c[5] = c[4];
829 c[4] = c[3];
830 c[3] = c[2];
831 c[2] = c[1] ^ temp;
832 c[1] = c[0] ^ temp;
833 c[0] = temp;
834 }
835 mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
836
837 return mpdu_delim_crc;
838 }
839
840 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
841 cdev_to_gpio_led_data(struct led_classdev *led_cdev)
842 {
843 return container_of(led_cdev, struct gpio_led_data, cdev);
844 }
845
846 inline int calc_n_ofdm(int num_octet, int n_dbps)
847 {
848 int num_bit, num_ofdm_sym;
849
850 num_bit = 22+num_octet*8;
851 num_ofdm_sym = (num_bit/n_dbps) + ((num_bit%n_dbps)!=0);
852
853 return (num_ofdm_sym);
854 }
855
856 inline __le16 gen_ht_duration_id(__le16 frame_control, __le16 aid, u8 qos_hdr, bool use_ht_aggr, u16 rate_hw_value, u16 sifs)
857 {
858 // COTS wifi ht QoS data duration field analysis (lots of capture):
859
860 // ht non-aggr QoS data: 44, type 2 (data frame) sub-type 8 (1000) 21.7/52/57.8/58.5/65Mbps
861 // ack ht 36 + 4*[(22+14*8)/78] = 36 + 4*2 = 44
862 // ack legacy 20 + 4*[(22+14*8)/72] = 20 + 4*2 = 28
863
864 // ht non-aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 6.5Mbps
865 // ack ht 36 + 4*[(22+14*8)/26] = 36 + 4*6 = 60
866 // ack legacy 20 + 4*[(22+14*8)/24] = 20 + 4*6 = 44
867
868 // ht aggr QoS data: 52, type 2 (data frame) sub-type 8 (1000) 19.5/28.9/39/57.8/65/72.2Mbps
869 // ack ht 36 + 4*[(22+32*8)/78] = 36 + 4*4 = 52
870 // ack legacy 20 + 4*[(22+32*8)/72] = 20 + 4*4 = 36
871
872 // ht aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 13/14.4Mbps
873 // ack ht 36 + 4*[(22+32*8)/52] = 36 + 4*6 = 60
874 // ack legacy 20 + 4*[(22+32*8)/48] = 20 + 4*6 = 44
875
876 // ht and legacy rate mapping is ont one on one, instead it is modulation combined with coding rate
877 // modulate coding ht-mcs ht-n_dbps legacy-mcs legacy-n_dbps
878 // BPSK 1/2 0 26 4 24
879 // QPSK 1/2 1 52 6 48
880 // QPSK 3/4 2 78 7 72
881 // 16QAM 1/2 3 104 8 96
882 // 16QAM 3/4 4 156 9 144
883 // 64QAM 2/3 5 208 10 192
884 // 64QAM 3/4 6 234 11 216
885
886 // conclusion: duration is: assume ack/blk-ack uses legacy, plus SIFS
887
888 // other observation: ht always use QoS data, not data (sub-type)
889 // other observation: management/control frame always in non-ht
890
891 __le16 dur = 0;
892 u16 n_dbps;
893 int num_octet, num_ofdm_sym;
894
895 if (ieee80211_is_pspoll(frame_control)) {
896 dur = (aid|0xc000);
897 } else if (ieee80211_is_data_qos(frame_control) && (~(qos_hdr&IEEE80211_QOS_CTL_ACK_POLICY_NOACK))) {
898 rate_hw_value = (rate_hw_value>6?6:rate_hw_value);
899 n_dbps = (rate_hw_value==0?wifi_n_dbps_table[4]:wifi_n_dbps_table[rate_hw_value+5]);
900 num_octet = (use_ht_aggr?32:14); //32 bytes for compressed block ack; 14 bytes for normal ack
901 num_ofdm_sym = calc_n_ofdm(num_octet, n_dbps);
902 dur = sifs + 20 + 4*num_ofdm_sym; // 20us legacy preamble
903 // printk("%s gen_ht_duration_id: num_octet %d n_dbps %d num_ofdm_sym %d dur %d\n", sdr_compatible_str,
904 // num_octet, n_dbps, num_ofdm_sym, dur);
905 } else {
906 printk("%s openwifi_tx: WARNING gen_ht_duration_id wrong pkt type!\n", sdr_compatible_str);
907 }
908
909 return dur;
910 }
911
912 inline void report_pkt_loss_due_to_driver_drop(struct ieee80211_hw *dev, struct sk_buff *skb)
913 {
914 struct openwifi_priv *priv = dev->priv;
915 struct ieee80211_tx_info *info;
916
917 info = IEEE80211_SKB_CB(skb);
918 ieee80211_tx_info_clear_status(info);
919 info->status.rates[0].count = 1;
920 info->status.rates[1].idx = -1;
921 info->status.antenna = priv->runtime_tx_ant_cfg;
922 ieee80211_tx_status_irqsafe(dev, skb);
923 }
924
925 static void openwifi_tx(struct ieee80211_hw *dev,
926 struct ieee80211_tx_control *control,
927 struct sk_buff *skb)
928 {
929 struct openwifi_priv *priv = dev->priv;
930 unsigned long flags;
931 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
932 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
933 struct openwifi_ring *ring = NULL;
934 struct sk_buff *skb_new; // temp skb for internal use
935 struct ieee80211_tx_info *info_skipped;
936 dma_addr_t dma_mapping_addr;
937 unsigned int i, j, empty_bd_idx = 0;
938 u16 rate_signal_value, rate_hw_value, len_mpdu, len_psdu, num_dma_symbol, len_mpdu_delim_pad=0, num_byte_pad;
939 u32 num_dma_byte, addr1_low32, addr2_low32=0, addr3_low32=0, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history;
940 u16 addr1_high16, addr2_high16=0, addr3_high16=0, sc, seq_no=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration, n_dbps;
941 u8 pkt_need_ack, retry_limit_raw,use_short_gi,*dma_buf,retry_limit_hw_value,rc_flags,qos_hdr,prio,queue_idx,drv_ring_idx;
942 bool drv_seqno=false, use_rts_cts, use_cts_protect, ht_aggr_start=false, use_ht_rate, use_ht_aggr, cts_use_traffic_rate=false, force_use_cts_protect=false;
943 __le16 frame_control,duration_id;
944 u32 dma_fifo_no_room_flag, hw_queue_len, delay_count=0;
945 enum dma_status status;
946
947 static u32 addr1_low32_prev = -1;
948 static u16 rate_hw_value_prev = -1;
949 static u8 pkt_need_ack_prev = -1;
950 static u16 addr1_high16_prev = -1;
951 static __le16 duration_id_prev = -1;
952 static u8 prio_prev = -1;
953 static u8 retry_limit_raw_prev = -1;
954 static u8 use_short_gi_prev = -1;
955
956 // static bool led_status=0;
957 // struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
958
959 // if ( (priv->phy_tx_sn&7) ==0 ) {
960 // openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
961 // if (openofdm_state_history!=openofdm_state_history_old){
962 // led_status = (~led_status);
963 // openofdm_state_history_old = openofdm_state_history;
964 // gpiod_set_value(led_dat->gpiod, led_status);
965 // }
966 // }
967
968 if (skb->data_len>0) {// more data are not in linear data area skb->data
969 printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
970 goto openwifi_tx_early_out;
971 }
972
973 len_mpdu = skb->len;
974
975 // get Linux priority/queue setting info and target mac address
976 prio = skb_get_queue_mapping(skb);
977 if (prio >= MAX_NUM_HW_QUEUE) {
978 printk("%s openwifi_tx: WARNING prio%d\n", sdr_compatible_str, prio);
979 goto openwifi_tx_early_out;
980 }
981
982 addr1_low32 = *((u32*)(hdr->addr1+2));
983
984 // ---- DO your idea here! Map Linux/SW "prio" to driver "drv_ring_idx" (then 1on1 to FPGA queue_idx) ---
985 if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
986 drv_ring_idx = prio;
987 } else {// customized prio to drv_ring_idx mapping
988 // check current packet belonging to which slice/hw-queue
989 for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
990 if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
991 break;
992 }
993 }
994 drv_ring_idx = (i>=MAX_NUM_HW_QUEUE?prio:i); // if no address is hit
995 }
996
997 ring = &(priv->tx_ring[drv_ring_idx]);
998
999 spin_lock_irqsave(&priv->lock, flags);
1000 if (ring->bds[ring->bd_wr_idx].seq_no != 0xffff) { // not cleared yet by interrupt
1001 for (i=1; i<NUM_TX_BD; i++) {
1002 if (ring->bds[(ring->bd_wr_idx+i)&(NUM_TX_BD-1)].seq_no == 0xffff) {
1003 empty_bd_idx = i;
1004 break;
1005 }
1006 }
1007 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
1008 if (empty_bd_idx) { // clear all bds before the empty bd and report failure to Linux
1009 if (priv->stat.stat_enable) {
1010 priv->stat.tx_prio_stop0_fake_num[prio]++;
1011 priv->stat.tx_queue_stop0_fake_num[drv_ring_idx]++;
1012 }
1013 for (i=0; i<empty_bd_idx; i++) {
1014 j = ( (ring->bd_wr_idx+i)&(NUM_TX_BD-1) );
1015 printk("%s openwifi_tx: WARNING fake stop queue empty_bd_idx%d i%d lnx prio%d map to q%d stop%d hwq len%d wr%d rd%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%u\n", sdr_compatible_str,
1016 empty_bd_idx, i, prio, drv_ring_idx, ring->stop_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, ring->bds[j].prio, ring->bds[j].len_mpdu, ring->bds[j].seq_no, ring->bds[j].skb_linked, ring->bds[j].dma_mapping_addr);
1017 // tell Linux this skb failed
1018 skb_new = ring->bds[j].skb_linked;
1019 dma_unmap_single(priv->tx_chan->device->dev,ring->bds[j].dma_mapping_addr,
1020 skb_new->len, DMA_MEM_TO_DEV);
1021 info_skipped = IEEE80211_SKB_CB(skb_new);
1022 ieee80211_tx_info_clear_status(info_skipped);
1023 info_skipped->status.rates[0].count = 1;
1024 info_skipped->status.rates[1].idx = -1;
1025 info_skipped->status.antenna = priv->runtime_tx_ant_cfg;
1026 ieee80211_tx_status_irqsafe(dev, skb_new);
1027
1028 ring->bds[j].prio = 0xff; // invalid value
1029 ring->bds[j].len_mpdu = 0; // invalid value
1030 ring->bds[j].seq_no = 0xffff;
1031 ring->bds[j].skb_linked = NULL;
1032 ring->bds[j].dma_mapping_addr = 0;
1033
1034 }
1035 if (ring->stop_flag != -1) { //the interrupt seems will never come, we need to wake up the queue in case the interrupt will never wake it up
1036 ieee80211_wake_queue(dev, ring->stop_flag);
1037 ring->stop_flag = -1;
1038 }
1039 } else {
1040 j = ring->bd_wr_idx;
1041 printk("%s openwifi_tx: WARNING real stop queue lnx prio%d map to q%d stop%d hwq len%d wr%d rd%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%u\n", sdr_compatible_str,
1042 prio, drv_ring_idx, ring->stop_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, ring->bds[j].prio, ring->bds[j].len_mpdu, ring->bds[j].seq_no, ring->bds[j].skb_linked, ring->bds[j].dma_mapping_addr);
1043
1044 ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
1045 ring->stop_flag = prio;
1046 if (priv->stat.stat_enable) {
1047 priv->stat.tx_prio_stop0_real_num[prio]++;
1048 priv->stat.tx_queue_stop0_real_num[drv_ring_idx]++;
1049 }
1050
1051 spin_unlock_irqrestore(&priv->lock, flags);
1052 goto openwifi_tx_early_out;
1053 }
1054 }
1055 spin_unlock_irqrestore(&priv->lock, flags);
1056 // -------------------- end of Map Linux/SW "prio" to driver "drv_ring_idx" ------------------
1057
1058 // get other info from packet header
1059 addr1_high16 = *((u16*)(hdr->addr1));
1060 if (len_mpdu>=20) {
1061 addr2_low32 = *((u32*)(hdr->addr2+2));
1062 addr2_high16 = *((u16*)(hdr->addr2));
1063 }
1064 if (len_mpdu>=26) {
1065 addr3_low32 = *((u32*)(hdr->addr3+2));
1066 addr3_high16 = *((u16*)(hdr->addr3));
1067 }
1068
1069 frame_control=hdr->frame_control;
1070 pkt_need_ack = (!(info->flags&IEEE80211_TX_CTL_NO_ACK));
1071
1072 retry_limit_raw = info->control.rates[0].count;
1073
1074 rc_flags = info->control.rates[0].flags;
1075 use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
1076 use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
1077 use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
1078 use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
1079 use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0);
1080 qos_hdr = (*(ieee80211_get_qos_ctl(hdr)));
1081
1082 // get Linux rate (MCS) setting
1083 rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
1084 // drv_tx_reg_val[DRV_TX_REG_IDX_RATE]
1085 // override rate legacy: 4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
1086 // drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]
1087 // override rate ht: 4:6.5M, 5:13M, 6:19.5M,7:26M, 8:39M, 9:52M, 10:58.5M, 11:65M
1088 if ( ieee80211_is_data(hdr->frame_control) ) {//rate override command
1089 if (use_ht_rate && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]>0) {
1090 rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0xF)-4;
1091 use_short_gi = ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0x10)==0x10);
1092 } else if ((!use_ht_rate) && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0)
1093 rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]&0xF);
1094 // TODO: need to map rate_hw_value back to info->control.rates[0].idx!!!
1095 }
1096
1097 // Workaround for a FPGA bug: if aggr happens on ht mcs 0, the tx core will never end, running eneless and stuck the low MAC!
1098 if (use_ht_aggr && rate_hw_value==0)
1099 rate_hw_value = 1;
1100
1101 // sifs = (priv->actual_rx_lo<2500?10:16);
1102 sifs = 16; // for ofdm, sifs is always 16
1103
1104 if (use_ht_rate) {
1105 // printk("%s openwifi_tx: rate_hw_value %d aggr %d sifs %d\n", sdr_compatible_str, rate_hw_value, use_ht_aggr, sifs);
1106 hdr->duration_id = gen_ht_duration_id(frame_control, control->sta->aid, qos_hdr, use_ht_aggr, rate_hw_value, sifs); //linux only do it for 11a/g, not for 11n and later
1107 }
1108 duration_id = hdr->duration_id;
1109
1110 if (use_rts_cts)
1111 printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
1112
1113 if (use_cts_protect) {
1114 cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
1115 cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info));
1116 } else if (force_use_cts_protect) { // could override mac80211 setting here.
1117 cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
1118 if (pkt_need_ack)
1119 ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
1120
1121 n_dbps = (use_ht_rate?wifi_n_dbps_ht_table[rate_hw_value+4]:wifi_n_dbps_table[rate_hw_value]);
1122 traffic_pkt_duration = (use_ht_rate?36:20) + 4*calc_n_ofdm(len_mpdu, n_dbps);
1123 cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
1124 }
1125
1126 // this is 11b stuff
1127 // if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1128 // printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
1129
1130 if (len_mpdu>=28) {
1131 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1132 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
1133 priv->seqno += 0x10;
1134 drv_seqno = true;
1135 }
1136 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1137 hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
1138 }
1139 sc = hdr->seq_ctrl;
1140 seq_no = (sc&IEEE80211_SCTL_SEQ)>>4;
1141 }
1142
1143 // printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
1144 // info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
1145 // info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
1146 // info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
1147 // info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
1148
1149 // -----------end of preprocess some info from header and skb----------------
1150
1151 // /* HW will perform RTS-CTS when only RTS flags is set.
1152 // * HW will perform CTS-to-self when both RTS and CTS flags are set.
1153 // * RTS rate and RTS duration will be used also for CTS-to-self.
1154 // */
1155 // if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1156 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
1157 // rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
1158 // len_mpdu, info);
1159 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
1160 // } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1161 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
1162 // rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
1163 // len_mpdu, info);
1164 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
1165 // }
1166
1167 if(use_ht_aggr)
1168 {
1169 if(ieee80211_is_data_qos(frame_control) == false)
1170 {
1171 printk("%s openwifi_tx: WARNING packet is not QoS packet!\n", sdr_compatible_str);
1172 goto openwifi_tx_early_out;
1173 }
1174
1175 // psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ]
1176 len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4);
1177 len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad;
1178
1179 if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) ||
1180 (rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) ||
1181 (prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) )
1182 {
1183 addr1_low32_prev = addr1_low32;
1184 addr1_high16_prev = addr1_high16;
1185 duration_id_prev = duration_id;
1186 rate_hw_value_prev = rate_hw_value;
1187 use_short_gi_prev = use_short_gi;
1188 prio_prev = prio;
1189 retry_limit_raw_prev = retry_limit_raw;
1190 pkt_need_ack_prev = pkt_need_ack;
1191
1192 ht_aggr_start = true;
1193 }
1194 }
1195 else
1196 {
1197 // psdu = [ MPDU ]
1198 len_psdu = len_mpdu;
1199
1200 // // Don't need to reset _prev variables every time when it is not ht aggr qos data. Reason:
1201 // // 1. In 99.9999% cases, the ht always use qos data and goes to prio/queue_idx 2. By not resetting the variable to -1, we can have continuous aggregation packet operation in FPGA queue 2.
1202 // // 2. In other words, the aggregation operation for queue 2 in FPGA won't be interrupted by other non aggregation packets (control/management/beacon/etc.) that go to queue 0 (or other queues than 2).
1203 // // 3. From wired domain and upper level ( DSCP, AC (0~3), WMM management, 802.11D service classes and user priority (UP) ) to chip/FPGA queue index, thre should be some (complicated) mapping relationship.
1204 // // 4. More decent design is setting these aggregation flags (ht_aggr_start) per queue/prio here in driver. But since now only queue 2 and 0 are used (data goes to queue 2, others go to queue 0) in normal (most) cases, let's not go to the decent (complicated) solution immediately.
1205 // addr1_low32_prev = -1;
1206 // addr1_high16_prev = -1;
1207 // duration_id_prev = -1;
1208 // use_short_gi_prev = -1;
1209 // rate_hw_value_prev = -1;
1210 // prio_prev = -1;
1211 // retry_limit_raw_prev = -1;
1212 // pkt_need_ack_prev = -1;
1213 }
1214 num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
1215
1216 if ( ( (!pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST) ) || ( (pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST) ) )
1217 printk("%s openwifi_tx: %dB RC%x %dM FC%04x DI%04x ADDR%04x%08x/%04x%08x/%04x%08x flag%08x QoS%02x SC%d_%d retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
1218 len_mpdu, rc_flags, (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
1219 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
1220 info->flags, qos_hdr, seq_no, drv_seqno, retry_limit_raw, pkt_need_ack, prio, drv_ring_idx,
1221 // use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
1222 ring->bd_wr_idx,ring->bd_rd_idx);
1223
1224 // check whether the packet is bigger than DMA buffer size
1225 num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
1226 if (num_dma_byte > TX_BD_BUF_SIZE) {
1227 printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
1228 goto openwifi_tx_early_out;
1229 }
1230
1231 // Copy MPDU delimiter and padding into sk_buff
1232 if(use_ht_aggr)
1233 {
1234 // when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
1235 if (skb_headroom(skb)<LEN_MPDU_DELIM) {// in case original skb headroom is not enough to host MPDU delimiter
1236 printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_headroom(skb) %d < LEN_MPDU_DELIM %d\n", sdr_compatible_str, ring->bd_wr_idx, skb_headroom(skb), LEN_MPDU_DELIM);
1237 if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) {
1238 printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1239 goto openwifi_tx_early_out;
1240 }
1241 if (skb->sk != NULL)
1242 skb_set_owner_w(skb_new, skb->sk);
1243 dev_kfree_skb(skb);
1244 skb = skb_new;
1245 }
1246 skb_push( skb, LEN_MPDU_DELIM );
1247 dma_buf = skb->data;
1248
1249 // fill in MPDU delimiter
1250 *((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0;
1251 *((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf));
1252 *((u8 *)(dma_buf+3)) = 0x4e;
1253
1254 // Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter
1255 num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu);
1256 if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad
1257 printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad);
1258 if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) {
1259 printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1260 goto openwifi_tx_early_out;
1261 }
1262 if (skb->sk != NULL)
1263 skb_set_owner_w(skb_new, skb->sk);
1264 dev_kfree_skb(skb);
1265 skb = skb_new;
1266 }
1267 skb_put( skb, num_byte_pad );
1268
1269 // fill in MPDU CRC
1270 *((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu);
1271
1272 // fill in MPDU delimiter padding
1273 memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad);
1274
1275 // num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary.
1276 // If they have different lengths, add "empty MPDU delimiter" for alignment
1277 if(num_dma_byte == len_psdu + 4)
1278 {
1279 *((u32*)(dma_buf+len_psdu)) = 0x4e140000;
1280 len_psdu = num_dma_byte;
1281 }
1282 }
1283 else
1284 {
1285 // Extend sk_buff to hold padding
1286 num_byte_pad = num_dma_byte - len_mpdu;
1287 if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad
1288 printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad);
1289 if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) {
1290 printk("%s openwifi_tx: WARNING sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1291 goto openwifi_tx_early_out;
1292 }
1293 if (skb->sk != NULL)
1294 skb_set_owner_w(skb_new, skb->sk);
1295 dev_kfree_skb(skb);
1296 skb = skb_new;
1297 }
1298 skb_put( skb, num_byte_pad );
1299
1300 dma_buf = skb->data;
1301 }
1302 // for(i = 0; i <= num_dma_symbol; i++)
1303 // printk("%16llx\n", (*(u64*)(&(dma_buf[i*8]))));
1304
1305 rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]);
1306
1307 retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) );
1308
1309 queue_idx = drv_ring_idx; // from driver ring idx to FPGA queue_idx mapping
1310
1311 cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
1312 cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value);
1313 tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | num_dma_symbol );
1314 phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu );
1315
1316 /* We must be sure that tx_flags is written last because the HW
1317 * looks at it to check if the rest of data is valid or not
1318 */
1319 //wmb();
1320 // entry->flags = cpu_to_le32(tx_flags);
1321 /* We must be sure this has been written before following HW
1322 * register write, because this write will make the HW attempts
1323 * to DMA the just-written data
1324 */
1325 //wmb();
1326
1327 spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
1328
1329 // -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
1330 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
1331 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
1332 if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<=RING_ROOM_THRESHOLD) || ring->stop_flag>=0 ) {
1333 if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP )
1334 printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio%d queue%d no room flag%x hwq len%08x request%d wr%d rd%d\n", sdr_compatible_str,
1335 prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
1336
1337 ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
1338 ring->stop_flag = prio;
1339 if (priv->stat.stat_enable) {
1340 priv->stat.tx_prio_stop1_num[prio]++;
1341 priv->stat.tx_queue_stop1_num[queue_idx]++;
1342 }
1343 // goto openwifi_tx_early_out_after_lock;
1344 }
1345 // --------end of check whether FPGA fifo (queue_idx) has enough room------------
1346
1347 status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
1348 while(delay_count<100 && status!=DMA_COMPLETE) {
1349 status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
1350 delay_count++;
1351 udelay(4);
1352 // udelay(priv->stat.dbg_ch1);
1353 }
1354 if (status!=DMA_COMPLETE) {
1355 printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
1356 goto openwifi_tx_early_out_after_lock;
1357 }
1358
1359 //-------------------------fire skb DMA to hardware----------------------------------
1360 dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
1361 num_dma_byte, DMA_MEM_TO_DEV);
1362
1363 if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
1364 // dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
1365 printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
1366 goto openwifi_tx_early_out_after_lock;
1367 }
1368
1369 sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
1370 sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
1371 sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
1372
1373 tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
1374 tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config);
1375 tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config);
1376 priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
1377 if (!(priv->txd)) {
1378 printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
1379 goto openwifi_tx_after_dma_mapping;
1380 }
1381
1382 priv->tx_cookie = priv->txd->tx_submit(priv->txd);
1383
1384 if (dma_submit_error(priv->tx_cookie)) {
1385 printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
1386 goto openwifi_tx_after_dma_mapping;
1387 }
1388
1389 // seems everything is ok. let's mark this pkt in bd descriptor ring
1390 ring->bds[ring->bd_wr_idx].prio = prio;
1391 ring->bds[ring->bd_wr_idx].len_mpdu = len_mpdu;
1392 ring->bds[ring->bd_wr_idx].seq_no = seq_no;
1393 ring->bds[ring->bd_wr_idx].skb_linked = skb;
1394 ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
1395
1396 ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
1397
1398 dma_async_issue_pending(priv->tx_chan);
1399
1400 spin_unlock_irqrestore(&priv->lock, flags);
1401
1402 if (priv->stat.stat_enable) {
1403 priv->stat.tx_prio_num[prio]++;
1404 priv->stat.tx_queue_num[queue_idx]++;
1405 }
1406
1407 return;
1408
1409 openwifi_tx_after_dma_mapping:
1410 dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
1411
1412 openwifi_tx_early_out_after_lock:
1413 spin_unlock_irqrestore(&priv->lock, flags);
1414 report_pkt_loss_due_to_driver_drop(dev, skb);
1415 // dev_kfree_skb(skb);
1416 // printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1417 return;
1418
1419 openwifi_tx_early_out:
1420 report_pkt_loss_due_to_driver_drop(dev, skb);
1421 // dev_kfree_skb(skb);
1422 // printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1423 }
1424
1425 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant)
1426 {
1427 struct openwifi_priv *priv = dev->priv;
1428 u8 fpga_tx_ant_setting, target_rx_ant;
1429 u32 atten_mdb_tx0, atten_mdb_tx1;
1430 struct ctrl_outs_control ctrl_out;
1431 int ret;
1432
1433 printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant);
1434
1435 if (tx_ant >= 4 || tx_ant == 0) {
1436 return -EINVAL;
1437 } else if (rx_ant >= 3 || rx_ant == 0) {
1438 return -EINVAL;
1439 }
1440
1441 fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16));
1442 target_rx_ant = ((rx_ant&1)?0:1);
1443
1444 // try rf chip setting firstly, only update internal state variable when rf chip succeed
1445 atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1446 atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1447 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true);
1448 if (ret < 0) {
1449 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0);
1450 return -EINVAL;
1451 } else {
1452 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0);
1453 }
1454 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true);
1455 if (ret < 0) {
1456 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1);
1457 return -EINVAL;
1458 } else {
1459 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1);
1460 }
1461
1462 ctrl_out.en_mask = priv->ctrl_out.en_mask;
1463 ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
1464 ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out));
1465 if (ret < 0) {
1466 printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1467 return -EINVAL;
1468 } else {
1469 printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1470 }
1471
1472 tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting);
1473 ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read();
1474 if (ret != fpga_tx_ant_setting) {
1475 printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret);
1476 return -EINVAL;
1477 } else {
1478 printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1479 }
1480
1481 rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant);
1482 ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read();
1483 if (ret != target_rx_ant) {
1484 printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret);
1485 return -EINVAL;
1486 } else {
1487 printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1488 }
1489
1490 // update internal state variable
1491 priv->runtime_tx_ant_cfg = tx_ant;
1492 priv->runtime_rx_ant_cfg = rx_ant;
1493
1494 if (TX_OFFSET_TUNING_ENABLE)
1495 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE
1496 else {
1497 if (tx_ant == 3)
1498 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH;
1499 else
1500 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1501 }
1502
1503 priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1504 priv->ctrl_out.index=ctrl_out.index;
1505
1506 priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1507 priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1508
1509 return 0;
1510 }
1511 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant)
1512 {
1513 struct openwifi_priv *priv = dev->priv;
1514
1515 *tx_ant = priv->runtime_tx_ant_cfg;
1516 *rx_ant = priv->runtime_rx_ant_cfg;
1517
1518 printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant);
1519
1520 printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str,
1521 priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index);
1522
1523 printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str,
1524 tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read());
1525
1526 printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str,
1527 ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER));
1528
1529 return 0;
1530 }
1531
1532 static int openwifi_start(struct ieee80211_hw *dev)
1533 {
1534 struct openwifi_priv *priv = dev->priv;
1535 int ret, i;
1536 u32 reg;
1537
1538 for (i=0; i<MAX_NUM_VIF; i++) {
1539 priv->vif[i] = NULL;
1540 }
1541
1542 // //keep software registers persistent between NIC down and up for multiple times
1543 /*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
1544 memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
1545 memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
1546 memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
1547 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/
1548
1549 //turn on radio
1550 openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
1551 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
1552 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
1553 priv->rfkill_off = 1;// 0 off, 1 on
1554 printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
1555 }
1556 else
1557 printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
1558
1559 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1560 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1561 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1562 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1563 xpu_api->hw_init(priv->xpu_cfg);
1564
1565 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1566
1567 printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1568 printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1569
1570 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1571 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1572 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1573
1574 // priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1575 priv->rx_chan = dma_request_chan(&(priv->pdev->dev), "rx_dma_s2mm");
1576 if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) {
1577 ret = PTR_ERR(priv->rx_chan);
1578 if (ret != -EPROBE_DEFER) {
1579 pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan);
1580 goto err_dma;
1581 }
1582 }
1583
1584 // priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1585 priv->tx_chan = dma_request_chan(&(priv->pdev->dev), "tx_dma_mm2s");
1586 if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) {
1587 ret = PTR_ERR(priv->tx_chan);
1588 if (ret != -EPROBE_DEFER) {
1589 pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan);
1590 goto err_dma;
1591 }
1592 }
1593 printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan);
1594
1595 ret = openwifi_init_rx_ring(priv);
1596 if (ret) {
1597 printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1598 goto err_free_rings;
1599 }
1600
1601 priv->seqno=0;
1602 for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1603 if ((ret = openwifi_init_tx_ring(priv, i))) {
1604 printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1605 goto err_free_rings;
1606 }
1607 }
1608
1609 if ( (ret = rx_dma_setup(dev)) ) {
1610 printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1611 goto err_free_rings;
1612 }
1613
1614 priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1615 ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1616 IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1617 if (ret) {
1618 wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1619 goto err_free_rings;
1620 } else {
1621 printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1622 }
1623
1624 priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1625 ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1626 IRQF_SHARED, "sdr,tx_itrpt", dev);
1627 if (ret) {
1628 wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1629 goto err_free_rings;
1630 } else {
1631 printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1632 }
1633
1634 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1635 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1636 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1637 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1638
1639 priv->stat.csma_cfg0 = xpu_api->XPU_REG_FORCE_IDLE_MISC_read();
1640
1641 // disable ad9361 auto calibration and enable openwifi fpga spi control
1642 priv->ad9361_phy->state->auto_cal_en = false; // turn off auto Tx quadrature calib.
1643 priv->ad9361_phy->state->manual_tx_quad_cal_en = true; // turn on manual Tx quadrature calib.
1644 xpu_api->XPU_REG_SPI_DISABLE_write(0);
1645
1646 // normal_out:
1647 printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1648 return 0;
1649
1650 err_free_rings:
1651 openwifi_free_rx_ring(priv);
1652 for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1653 openwifi_free_tx_ring(priv, i);
1654
1655 err_dma:
1656 ret = -1;
1657 printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1658 return ret;
1659 }
1660
1661 static void openwifi_stop(struct ieee80211_hw *dev)
1662 {
1663 struct openwifi_priv *priv = dev->priv;
1664 u32 reg, reg1;
1665 int i;
1666
1667 // enable ad9361 auto calibration and disable openwifi fpga spi control
1668 priv->ad9361_phy->state->auto_cal_en = true; // turn on auto Tx quadrature calib.
1669 priv->ad9361_phy->state->manual_tx_quad_cal_en = false; // turn off manual Tx quadrature calib.
1670 xpu_api->XPU_REG_SPI_DISABLE_write(1);
1671
1672 //turn off radio
1673 #if 1
1674 ad9361_tx_mute(priv->ad9361_phy, 1);
1675 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1676 reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1677 if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1678 priv->rfkill_off = 0;// 0 off, 1 on
1679 printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1680 }
1681 else
1682 printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1683 #endif
1684
1685 //ieee80211_stop_queue(dev, 0);
1686 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1687 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1688 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1689
1690 for (i=0; i<MAX_NUM_VIF; i++) {
1691 priv->vif[i] = NULL;
1692 }
1693
1694 openwifi_free_rx_ring(priv);
1695 for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1696 openwifi_free_tx_ring(priv, i);
1697
1698 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1699 dmaengine_terminate_all(priv->rx_chan);
1700 dma_release_channel(priv->rx_chan);
1701 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1702 dmaengine_terminate_all(priv->tx_chan);
1703 dma_release_channel(priv->tx_chan);
1704
1705 //priv->rf->stop(dev);
1706
1707 free_irq(priv->irq_rx, dev);
1708 free_irq(priv->irq_tx, dev);
1709
1710 // normal_out:
1711 printk("%s openwifi_stop\n", sdr_compatible_str);
1712 }
1713
1714 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1715 struct ieee80211_vif *vif)
1716 {
1717 u32 tsft_low, tsft_high;
1718
1719 tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1720 tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1721 //printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1722 return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1723 }
1724
1725 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1726 {
1727 u32 tsft_high = ((tsf >> 32)&0xffffffff);
1728 u32 tsft_low = (tsf&0xffffffff);
1729 xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1730 printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1731 }
1732
1733 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1734 {
1735 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1736 printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1737 }
1738
1739 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1740 {
1741 printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1742 return(0);
1743 }
1744
1745 static void openwifi_beacon_work(struct work_struct *work)
1746 {
1747 struct openwifi_vif *vif_priv =
1748 container_of(work, struct openwifi_vif, beacon_work.work);
1749 struct ieee80211_vif *vif =
1750 container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1751 struct ieee80211_hw *dev = vif_priv->dev;
1752 struct ieee80211_mgmt *mgmt;
1753 struct sk_buff *skb;
1754
1755 /* don't overflow the tx ring */
1756 if (ieee80211_queue_stopped(dev, 0))
1757 goto resched;
1758
1759 /* grab a fresh beacon */
1760 skb = ieee80211_beacon_get(dev, vif);
1761 if (!skb)
1762 goto resched;
1763
1764 /*
1765 * update beacon timestamp w/ TSF value
1766 * TODO: make hardware update beacon timestamp
1767 */
1768 mgmt = (struct ieee80211_mgmt *)skb->data;
1769 mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1770
1771 /* TODO: use actual beacon queue */
1772 skb_set_queue_mapping(skb, 0);
1773 openwifi_tx(dev, NULL, skb);
1774
1775 resched:
1776 /*
1777 * schedule next beacon
1778 * TODO: use hardware support for beacon timing
1779 */
1780 schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1781 // printk("%s openwifi_beacon_work beacon_int %d\n", sdr_compatible_str, vif->bss_conf.beacon_int);
1782 }
1783
1784 static int openwifi_add_interface(struct ieee80211_hw *dev,
1785 struct ieee80211_vif *vif)
1786 {
1787 int i;
1788 struct openwifi_priv *priv = dev->priv;
1789 struct openwifi_vif *vif_priv;
1790
1791 switch (vif->type) {
1792 case NL80211_IFTYPE_AP:
1793 case NL80211_IFTYPE_STATION:
1794 case NL80211_IFTYPE_ADHOC:
1795 case NL80211_IFTYPE_MONITOR:
1796 case NL80211_IFTYPE_MESH_POINT:
1797 break;
1798 default:
1799 return -EOPNOTSUPP;
1800 }
1801 // let's support more than 1 interface
1802 for (i=0; i<MAX_NUM_VIF; i++) {
1803 if (priv->vif[i] == NULL)
1804 break;
1805 }
1806
1807 printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1808
1809 if (i==MAX_NUM_VIF)
1810 return -EBUSY;
1811
1812 priv->vif[i] = vif;
1813
1814 /* Initialize driver private area */
1815 vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1816 vif_priv->idx = i;
1817
1818 vif_priv->dev = dev;
1819 INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1820 vif_priv->enable_beacon = false;
1821
1822 priv->mac_addr[0] = vif->addr[0];
1823 priv->mac_addr[1] = vif->addr[1];
1824 priv->mac_addr[2] = vif->addr[2];
1825 priv->mac_addr[3] = vif->addr[3];
1826 priv->mac_addr[4] = vif->addr[4];
1827 priv->mac_addr[5] = vif->addr[5];
1828 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); // set mac addr in fpga
1829
1830 printk("%s openwifi_add_interface end with vif idx %d addr %02x:%02x:%02x:%02x:%02x:%02x\n", sdr_compatible_str,vif_priv->idx,
1831 vif->addr[0],vif->addr[1],vif->addr[2],vif->addr[3],vif->addr[4],vif->addr[5]);
1832
1833 return 0;
1834 }
1835
1836 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1837 struct ieee80211_vif *vif)
1838 {
1839 struct openwifi_vif *vif_priv;
1840 struct openwifi_priv *priv = dev->priv;
1841
1842 vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1843 priv->vif[vif_priv->idx] = NULL;
1844 printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1845 }
1846
1847 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1848 {
1849 struct openwifi_priv *priv = dev->priv;
1850 struct ieee80211_conf *conf = &dev->conf;
1851
1852 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
1853 if ( priv->stat.restrict_freq_mhz>0 && (conf->chandef.chan->center_freq != priv->stat.restrict_freq_mhz) ) {
1854 printk("%s openwifi_config avoid Linux requested freq %dMHz (restrict freq %dMHz)\n", sdr_compatible_str,
1855 conf->chandef.chan->center_freq, priv->stat.restrict_freq_mhz);
1856 return -EINVAL;
1857 }
1858 priv->rf->set_chan(dev, conf);
1859 } else
1860 printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1861
1862 return 0;
1863 }
1864
1865 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1866 struct ieee80211_vif *vif,
1867 struct ieee80211_bss_conf *info,
1868 u32 changed)
1869 {
1870 struct openwifi_priv *priv = dev->priv;
1871 struct openwifi_vif *vif_priv;
1872 u32 bssid_low, bssid_high;
1873
1874 vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1875
1876 //be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1877 //printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1878 if (changed & BSS_CHANGED_BSSID) {
1879 printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1880 // write new bssid to our HW, and do not change bssid filter
1881 //u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1882 bssid_low = ( *( (u32*)(info->bssid) ) );
1883 bssid_high = ( *( (u16*)(info->bssid+4) ) );
1884
1885 //bssid_filter_high = (bssid_filter_high&0x80000000);
1886 //bssid_high = (bssid_high|bssid_filter_high);
1887 xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1888 xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1889 }
1890
1891 if (changed & BSS_CHANGED_BEACON_INT) {
1892 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1893 }
1894
1895 if (changed & BSS_CHANGED_TXPOWER)
1896 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1897
1898 if (changed & BSS_CHANGED_ERP_CTS_PROT)
1899 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1900
1901 if (changed & BSS_CHANGED_BASIC_RATES)
1902 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1903
1904 if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1905 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1906 changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1907 if (info->use_short_slot && priv->use_short_slot==false) {
1908 priv->use_short_slot=true;
1909 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1910 } else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1911 priv->use_short_slot=false;
1912 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1913 }
1914 }
1915
1916 if (changed & BSS_CHANGED_BEACON_ENABLED) {
1917 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1918 vif_priv->enable_beacon = info->enable_beacon;
1919 }
1920
1921 if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1922 cancel_delayed_work_sync(&vif_priv->beacon_work);
1923 if (vif_priv->enable_beacon) {
1924 schedule_work(&vif_priv->beacon_work.work);
1925 printk("%s openwifi_bss_info_changed WARNING enable_beacon\n",sdr_compatible_str);
1926 }
1927 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1928 changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1929 }
1930 }
1931 // helper function
1932 u32 log2val(u32 val){
1933 u32 ret_val = 0 ;
1934 while(val>1){
1935 val = val >> 1 ;
1936 ret_val ++ ;
1937 }
1938 return ret_val ;
1939 }
1940
1941 static int openwifi_conf_tx(struct ieee80211_hw *dev, struct ieee80211_vif *vif, u16 queue,
1942 const struct ieee80211_tx_queue_params *params)
1943 {
1944 struct openwifi_priv *priv = dev->priv;
1945 u32 reg_val, cw_min_exp, cw_max_exp;
1946
1947 if (priv->stat.cw_max_min_cfg == 0) {
1948 printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
1949 sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1950
1951 reg_val=xpu_api->XPU_REG_CSMA_CFG_read();
1952 cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
1953 cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
1954 switch(queue){
1955 case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) ); break;
1956 case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) ); break;
1957 case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break;
1958 case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break;
1959 default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
1960 }
1961 } else {
1962 reg_val = priv->stat.cw_max_min_cfg;
1963 printk("%s openwifi_conf_tx: override cw max min for q3 to q0: %d %d; %d %d; %d %d; %d %d\n",
1964 sdr_compatible_str,
1965 (1<<((reg_val>>28)&0xF))-1,
1966 (1<<((reg_val>>24)&0xF))-1,
1967 (1<<((reg_val>>20)&0xF))-1,
1968 (1<<((reg_val>>16)&0xF))-1,
1969 (1<<((reg_val>>12)&0xF))-1,
1970 (1<<((reg_val>> 8)&0xF))-1,
1971 (1<<((reg_val>> 4)&0xF))-1,
1972 (1<<((reg_val>> 0)&0xF))-1);
1973 }
1974 xpu_api->XPU_REG_CSMA_CFG_write(reg_val);
1975 return(0);
1976 }
1977
1978 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1979 struct netdev_hw_addr_list *mc_list)
1980 {
1981 printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1982 return netdev_hw_addr_list_count(mc_list);
1983 }
1984
1985 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1986 unsigned int changed_flags,
1987 unsigned int *total_flags,
1988 u64 multicast)
1989 {
1990 struct openwifi_priv *priv = dev->priv;
1991 u32 filter_flag;
1992
1993 (*total_flags) &= SDR_SUPPORTED_FILTERS;
1994 (*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1995
1996 filter_flag = (*total_flags);
1997
1998 filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1999 //filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
2000
2001 //if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
2002 if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
2003 filter_flag = (filter_flag|MONITOR_ALL);
2004 else
2005 filter_flag = (filter_flag&(~MONITOR_ALL));
2006
2007 if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
2008 filter_flag = (filter_flag|MY_BEACON);
2009
2010 filter_flag = (filter_flag|FIF_PSPOLL);
2011
2012 if (priv->stat.rx_monitor_all)
2013 filter_flag = (filter_flag|MONITOR_ALL);
2014
2015 xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
2016 //xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
2017
2018 printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
2019 (filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
2020 }
2021
2022 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params)
2023 {
2024 struct ieee80211_sta *sta = params->sta;
2025 enum ieee80211_ampdu_mlme_action action = params->action;
2026 // struct openwifi_priv *priv = hw->priv;
2027 u16 max_tx_bytes, buf_size;
2028 u32 ampdu_action_config;
2029
2030 if (!AGGR_ENABLE) {
2031 return -EOPNOTSUPP;
2032 }
2033
2034 switch (action)
2035 {
2036 case IEEE80211_AMPDU_TX_START:
2037 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
2038 printk("%s openwifi_ampdu_action: start TX aggregation. tid %d\n", sdr_compatible_str, params->tid);
2039 break;
2040 case IEEE80211_AMPDU_TX_STOP_CONT:
2041 case IEEE80211_AMPDU_TX_STOP_FLUSH:
2042 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
2043 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
2044 printk("%s openwifi_ampdu_action: stop TX aggregation. tid %d\n", sdr_compatible_str, params->tid);
2045 break;
2046 case IEEE80211_AMPDU_TX_OPERATIONAL:
2047 buf_size = 4;
2048 // buf_size = (params->buf_size) - 1;
2049 max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1;
2050 ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes );
2051 tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config);
2052 printk("%s openwifi_ampdu_action: TX operational. tid %d max_tx_bytes %d ampdu_density %d buf_size %d\n",
2053 sdr_compatible_str, params->tid, max_tx_bytes, sta->ht_cap.ampdu_density, buf_size);
2054 break;
2055 case IEEE80211_AMPDU_RX_START:
2056 printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
2057 break;
2058 case IEEE80211_AMPDU_RX_STOP:
2059 printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
2060 break;
2061 default:
2062 return -EOPNOTSUPP;
2063 }
2064
2065 return 0;
2066 }
2067
2068 static const struct ieee80211_ops openwifi_ops = {
2069 .tx = openwifi_tx,
2070 .start = openwifi_start,
2071 .stop = openwifi_stop,
2072 .add_interface = openwifi_add_interface,
2073 .remove_interface = openwifi_remove_interface,
2074 .config = openwifi_config,
2075 .set_antenna = openwifi_set_antenna,
2076 .get_antenna = openwifi_get_antenna,
2077 .bss_info_changed = openwifi_bss_info_changed,
2078 .conf_tx = openwifi_conf_tx,
2079 .prepare_multicast = openwifi_prepare_multicast,
2080 .configure_filter = openwifi_configure_filter,
2081 .rfkill_poll = openwifi_rfkill_poll,
2082 .get_tsf = openwifi_get_tsf,
2083 .set_tsf = openwifi_set_tsf,
2084 .reset_tsf = openwifi_reset_tsf,
2085 .set_rts_threshold = openwifi_set_rts_threshold,
2086 .ampdu_action = openwifi_ampdu_action,
2087 .testmode_cmd = openwifi_testmode_cmd,
2088 };
2089
2090 static const struct of_device_id openwifi_dev_of_ids[] = {
2091 { .compatible = "sdr,sdr", },
2092 {}
2093 };
2094 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
2095
2096 static int custom_match_spi_dev(struct device *dev, const void *data)
2097 {
2098 const char *name = data;
2099
2100 bool ret = sysfs_streq(name, dev->of_node->name);
2101 printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
2102 return ret;
2103 }
2104
2105 static int custom_match_platform_dev(struct device *dev, const void *data)
2106 {
2107 struct platform_device *plat_dev = to_platform_device(dev);
2108 const char *name = data;
2109 char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
2110 bool match_flag = (name_in_sys_bus_platform_devices != NULL);
2111
2112 if (match_flag) {
2113 printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
2114 }
2115 return(match_flag);
2116 }
2117
2118 static int openwifi_dev_probe(struct platform_device *pdev)
2119 {
2120 struct ieee80211_hw *dev;
2121 struct openwifi_priv *priv;
2122 int err=1, rand_val;
2123 const char *chip_name, *fpga_model;
2124 u32 reg, i;//, reg1;
2125
2126 struct device_node *np = pdev->dev.of_node;
2127
2128 struct device *tmp_dev;
2129 struct platform_device *tmp_pdev;
2130 struct iio_dev *tmp_indio_dev;
2131 // struct gpio_leds_priv *tmp_led_priv;
2132
2133 printk("\n");
2134
2135 if (np) {
2136 const struct of_device_id *match;
2137
2138 match = of_match_node(openwifi_dev_of_ids, np);
2139 if (match) {
2140 printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
2141 err = 0;
2142 }
2143 }
2144
2145 if (err)
2146 return err;
2147
2148 dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
2149 if (!dev) {
2150 printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
2151 err = -ENOMEM;
2152 goto err_free_dev;
2153 }
2154
2155 priv = dev->priv;
2156 priv->pdev = pdev;
2157
2158 err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
2159 if(err < 0) {
2160 printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
2161 priv->fpga_type = SMALL_FPGA;
2162 } else {
2163 // LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
2164 if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
2165 priv->fpga_type = LARGE_FPGA;
2166 // SMALL FPGA: (i.e. ZED, ZC702, Z7020)
2167 else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
2168 priv->fpga_type = SMALL_FPGA;
2169 }
2170
2171 // //-------------find ad9361-phy driver for lo/channel control---------------
2172 priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
2173 priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
2174 priv->last_tx_quad_cal_lo = 1000;
2175 tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
2176 if (tmp_dev == NULL) {
2177 printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
2178 err = -ENODEV;
2179 goto err_free_dev;
2180 }
2181 printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
2182 if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
2183 printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
2184 err = -ENODEV;
2185 goto err_free_dev;
2186 }
2187
2188 priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
2189 if (!(priv->ad9361_phy)) {
2190 printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
2191 err = -ENODEV;
2192 goto err_free_dev;
2193 }
2194 printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
2195
2196 // //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
2197 tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
2198 if (!tmp_dev) {
2199 printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
2200 err = -ENODEV;
2201 goto err_free_dev;
2202 }
2203
2204 tmp_pdev = to_platform_device(tmp_dev);
2205 if (!tmp_pdev) {
2206 printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
2207 err = -ENODEV;
2208 goto err_free_dev;
2209 }
2210
2211 tmp_indio_dev = platform_get_drvdata(tmp_pdev);
2212 if (!tmp_indio_dev) {
2213 printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
2214 err = -ENODEV;
2215 goto err_free_dev;
2216 }
2217
2218 priv->dds_st = iio_priv(tmp_indio_dev);
2219 if (!(priv->dds_st)) {
2220 printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
2221 err = -ENODEV;
2222 goto err_free_dev;
2223 }
2224 printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
2225 cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
2226 printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
2227
2228 // //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
2229 // turn off radio by muting tx
2230 // ad9361_tx_mute(priv->ad9361_phy, 1);
2231 // reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
2232 // reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2233 // if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
2234 // priv->rfkill_off = 0;// 0 off, 1 on
2235 // printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
2236 // }
2237 // else
2238 // printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
2239
2240 // //-----------------------------parse the test_mode input--------------------------------
2241 if (test_mode&1)
2242 AGGR_ENABLE = true;
2243
2244 // if (test_mode&2)
2245 // TX_OFFSET_TUNING_ENABLE = false;
2246
2247 priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel()
2248 priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized
2249
2250 //priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2251 priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2252
2253 priv->xpu_cfg = XPU_NORMAL;
2254
2255 priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
2256 priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
2257
2258 printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
2259 if (priv->rf_bw == 20000000) { //DO NOT USE. Not used for long time.
2260 priv->rx_intf_cfg = RX_INTF_BYPASS;
2261 priv->tx_intf_cfg = TX_INTF_BYPASS;
2262 //priv->rx_freq_offset_to_lo_MHz = 0;
2263 //priv->tx_freq_offset_to_lo_MHz = 0;
2264 } else if (priv->rf_bw == 40000000) {
2265 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
2266 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
2267
2268 // // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
2269 priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2270 if (TX_OFFSET_TUNING_ENABLE)
2271 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
2272 else
2273 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2274 // // try another antenna option
2275 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
2276 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
2277
2278 #if 0
2279 if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
2280 priv->rx_freq_offset_to_lo_MHz = -10;
2281 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
2282 priv->rx_freq_offset_to_lo_MHz = 10;
2283 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
2284 priv->rx_freq_offset_to_lo_MHz = 0;
2285 } else {
2286 printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
2287 }
2288 #endif
2289 } else {
2290 printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
2291 err = -EBADRQC;
2292 goto err_free_dev;
2293 }
2294
2295 printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att);
2296
2297 priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2));
2298 priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2);
2299
2300 priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK;
2301 priv->ctrl_out.index =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
2302
2303 memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
2304 memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
2305 memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
2306 memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
2307
2308 priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att;
2309
2310 //let's by default turn radio on when probing
2311 err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
2312 if (err) {
2313 printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err);
2314 err = -EIO;
2315 goto err_free_dev;
2316 }
2317 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
2318 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
2319 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
2320 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
2321
2322 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
2323 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
2324 priv->rfkill_off = 1;// 0 off, 1 on
2325 printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
2326 } else
2327 printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
2328
2329 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
2330
2331 // //set ad9361 in certain mode
2332 #if 0
2333 err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
2334 printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2335 err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
2336 printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2337
2338 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
2339 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
2340 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
2341 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
2342 printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
2343 printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
2344 #endif
2345
2346 dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
2347
2348 SET_IEEE80211_DEV(dev, &pdev->dev);
2349 platform_set_drvdata(pdev, dev);
2350
2351 BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
2352 BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
2353 BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
2354 BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
2355
2356 memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
2357 memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
2358 memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
2359 memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
2360
2361 priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
2362 priv->channel = 44; //currently useless. this can be changed by band _rf_set_channel()
2363 priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
2364 priv->ampdu_reference = 0;
2365
2366 priv->band_2GHz.band = NL80211_BAND_2GHZ;
2367 priv->band_2GHz.channels = priv->channels_2GHz;
2368 priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
2369 priv->band_2GHz.bitrates = priv->rates_2GHz;
2370 priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
2371 priv->band_2GHz.ht_cap.ht_supported = true;
2372 // priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
2373 if (AGGR_ENABLE) {
2374 priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2375 priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2376 }
2377 memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
2378 priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2379 priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2380 dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
2381
2382 priv->band_5GHz.band = NL80211_BAND_5GHZ;
2383 priv->band_5GHz.channels = priv->channels_5GHz;
2384 priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
2385 priv->band_5GHz.bitrates = priv->rates_5GHz;
2386 priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
2387 priv->band_5GHz.ht_cap.ht_supported = true;
2388 // priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
2389 if (AGGR_ENABLE) {
2390 priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2391 priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2392 }
2393 memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
2394 priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2395 priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2396 dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2397
2398 printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2399 priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2400
2401 // ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); // remove this because we don't want: mac80211.h: host buffers frame for PS and we fetch them via ieee80211_get_buffered_bc()
2402 ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2403 ieee80211_hw_set(dev, BEACON_TX_STATUS);//mac80211.h: The device/driver provides TX status for sent beacons.
2404
2405 ieee80211_hw_set(dev, REPORTS_TX_ACK_STATUS);//mac80211.h: Hardware can provide ack status reports of Tx frames to the stack
2406
2407 // * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device
2408 // * autonomously manages the PS status of connected stations. When
2409 // * this flag is set mac80211 will not trigger PS mode for connected
2410 // * stations based on the PM bit of incoming frames.
2411 // * Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure
2412 // * the PS mode of connected stations.
2413 ieee80211_hw_set(dev, AP_LINK_PS);
2414
2415 if (AGGR_ENABLE) {
2416 ieee80211_hw_set(dev, AMPDU_AGGREGATION);
2417 }
2418
2419 dev->extra_tx_headroom = LEN_MPDU_DELIM;
2420
2421 dev->vif_data_size = sizeof(struct openwifi_vif);
2422 dev->wiphy->interface_modes =
2423 BIT(NL80211_IFTYPE_MONITOR)|
2424 BIT(NL80211_IFTYPE_P2P_GO) |
2425 BIT(NL80211_IFTYPE_P2P_CLIENT) |
2426 BIT(NL80211_IFTYPE_AP) |
2427 BIT(NL80211_IFTYPE_STATION) |
2428 BIT(NL80211_IFTYPE_ADHOC) |
2429 BIT(NL80211_IFTYPE_MESH_POINT) |
2430 BIT(NL80211_IFTYPE_OCB);
2431 dev->wiphy->iface_combinations = &openwifi_if_comb;
2432 dev->wiphy->n_iface_combinations = 1;
2433
2434 dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK;
2435 dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK;
2436
2437 dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2438 //dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2439 wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2440
2441 chip_name = "ZYNQ";
2442
2443 /* we declare to MAC80211 all the queues except for beacon queue
2444 * that will be eventually handled by DRV.
2445 * TX rings are arranged in such a way that lower is the IDX,
2446 * higher is the priority, in order to achieve direct mapping
2447 * with mac80211, however the beacon queue is an exception and it
2448 * is mapped on the highst tx ring IDX.
2449 */
2450 dev->queues = MAX_NUM_HW_QUEUE;
2451
2452 ieee80211_hw_set(dev, SIGNAL_DBM);
2453
2454 wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2455
2456 priv->rf = &ad9361_rf_ops;
2457
2458 memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2459 priv->slice_idx = 0xFFFFFFFF;
2460
2461 sg_init_table(&(priv->tx_sg), 1);
2462
2463 get_random_bytes(&rand_val, sizeof(rand_val));
2464 rand_val%=250;
2465 priv->mac_addr[0]=0x66; priv->mac_addr[1]=0x55; priv->mac_addr[2]=0x44; priv->mac_addr[3]=0x33; priv->mac_addr[4]=0x22;
2466 priv->mac_addr[5]=rand_val+1;
2467 //priv->mac_addr[5]=0x11;
2468 if (!is_valid_ether_addr(priv->mac_addr)) {
2469 printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2470 eth_random_addr(priv->mac_addr);
2471 }
2472 printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2473 SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2474
2475 spin_lock_init(&priv->lock);
2476
2477 err = ieee80211_register_hw(dev);
2478 if (err) {
2479 pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2480 err = -EIO;
2481 goto err_free_dev;
2482 } else {
2483 printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2484 }
2485
2486 // create sysfs for arbitrary iq setting
2487 sysfs_bin_attr_init(&priv->bin_iq);
2488 priv->bin_iq.attr.name = "tx_intf_iq_data";
2489 priv->bin_iq.attr.mode = S_IWUSR | S_IRUGO;
2490 priv->bin_iq.write = openwifi_tx_intf_bin_iq_write;
2491 priv->bin_iq.read = openwifi_tx_intf_bin_iq_read;
2492 priv->bin_iq.size = 4096;
2493 err = sysfs_create_bin_file(&pdev->dev.kobj, &priv->bin_iq);
2494 printk("%s openwifi_dev_probe: sysfs_create_bin_file %d\n",sdr_compatible_str, err);
2495 if (err < 0)
2496 goto err_free_dev;
2497
2498 priv->tx_intf_arbitrary_iq_num = 0;
2499 // priv->tx_intf_arbitrary_iq[0] = 1;
2500 // priv->tx_intf_arbitrary_iq[1] = 2;
2501
2502 err = sysfs_create_group(&pdev->dev.kobj, &tx_intf_attribute_group);
2503 printk("%s openwifi_dev_probe: sysfs_create_group tx_intf_attribute_group %d\n",sdr_compatible_str, err);
2504 if (err < 0)
2505 goto err_free_dev;
2506 priv->tx_intf_iq_ctl = 0;
2507
2508 // create sysfs for stat
2509 err = sysfs_create_group(&pdev->dev.kobj, &stat_attribute_group);
2510 printk("%s openwifi_dev_probe: sysfs_create_group stat_attribute_group %d\n",sdr_compatible_str, err);
2511 if (err < 0)
2512 goto err_free_dev;
2513
2514 priv->stat.stat_enable = 0; // by default disable
2515
2516 for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
2517 priv->stat.tx_prio_num[i] = 0;
2518 priv->stat.tx_prio_interrupt_num[i] = 0;
2519 priv->stat.tx_prio_stop0_fake_num[i] = 0;
2520 priv->stat.tx_prio_stop0_real_num[i] = 0;
2521 priv->stat.tx_prio_stop1_num[i] = 0;
2522 priv->stat.tx_prio_wakeup_num[i] = 0;
2523 }
2524 for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
2525 priv->stat.tx_queue_num[i] = 0;
2526 priv->stat.tx_queue_interrupt_num[i] = 0;
2527 priv->stat.tx_queue_stop0_fake_num[i] = 0;
2528 priv->stat.tx_queue_stop0_real_num[i] = 0;
2529 priv->stat.tx_queue_stop1_num[i] = 0;
2530 priv->stat.tx_queue_wakeup_num[i] = 0;
2531 }
2532
2533 priv->stat.tx_data_pkt_need_ack_num_total = 0;
2534 priv->stat.tx_data_pkt_need_ack_num_total_fail = 0;
2535 for (i=0; i<6; i++) {
2536 priv->stat.tx_data_pkt_need_ack_num_retx[i] = 0;
2537 priv->stat.tx_data_pkt_need_ack_num_retx_fail[i] = 0;
2538 }
2539 priv->stat.tx_data_pkt_mcs_realtime = 0;
2540 priv->stat.tx_data_pkt_fail_mcs_realtime = 0;
2541
2542 priv->stat.tx_mgmt_pkt_need_ack_num_total = 0;
2543 priv->stat.tx_mgmt_pkt_need_ack_num_total_fail = 0;
2544 for (i=0; i<3; i++) {
2545 priv->stat.tx_mgmt_pkt_need_ack_num_retx[i] = 0;
2546 priv->stat.tx_mgmt_pkt_need_ack_num_retx_fail[i] = 0;
2547 }
2548 priv->stat.tx_mgmt_pkt_mcs_realtime = 0;
2549 priv->stat.tx_mgmt_pkt_fail_mcs_realtime = 0;
2550
2551 priv->stat.rx_monitor_all = 0;
2552 priv->stat.rx_target_sender_mac_addr = 0;
2553 priv->stat.rx_data_ok_agc_gain_value_realtime = 0;
2554 priv->stat.rx_data_fail_agc_gain_value_realtime = 0;
2555 priv->stat.rx_mgmt_ok_agc_gain_value_realtime = 0;
2556 priv->stat.rx_mgmt_fail_agc_gain_value_realtime = 0;
2557 priv->stat.rx_ack_ok_agc_gain_value_realtime = 0;
2558
2559 priv->stat.rx_monitor_all = 0;
2560 priv->stat.rx_data_pkt_num_total = 0;
2561 priv->stat.rx_data_pkt_num_fail = 0;
2562 priv->stat.rx_mgmt_pkt_num_total = 0;
2563 priv->stat.rx_mgmt_pkt_num_fail = 0;
2564 priv->stat.rx_ack_pkt_num_total = 0;
2565 priv->stat.rx_ack_pkt_num_fail = 0;
2566
2567 priv->stat.rx_data_pkt_mcs_realtime = 0;
2568 priv->stat.rx_data_pkt_fail_mcs_realtime = 0;
2569 priv->stat.rx_mgmt_pkt_mcs_realtime = 0;
2570 priv->stat.rx_mgmt_pkt_fail_mcs_realtime = 0;
2571 priv->stat.rx_ack_pkt_mcs_realtime = 0;
2572
2573 priv->stat.restrict_freq_mhz = 0;
2574
2575 priv->stat.csma_cfg0 = 0;
2576 priv->stat.cw_max_min_cfg = 0;
2577
2578 priv->stat.dbg_ch0 = 0;
2579 priv->stat.dbg_ch1 = 0;
2580 priv->stat.dbg_ch2 = 0;
2581
2582 // // //--------------------hook leds (not complete yet)--------------------------------
2583 // tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
2584 // if (!tmp_dev) {
2585 // printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2586 // err = -ENOMEM;
2587 // goto err_free_dev;
2588 // }
2589
2590 // tmp_pdev = to_platform_device(tmp_dev);
2591 // if (!tmp_pdev) {
2592 // printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2593 // err = -ENOMEM;
2594 // goto err_free_dev;
2595 // }
2596
2597 // tmp_led_priv = platform_get_drvdata(tmp_pdev);
2598 // if (!tmp_led_priv) {
2599 // printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2600 // err = -ENOMEM;
2601 // goto err_free_dev;
2602 // }
2603 // printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2604 // if (tmp_led_priv->num_leds!=4){
2605 // printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2606 // err = -ENOMEM;
2607 // goto err_free_dev;
2608 // }
2609 // gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2610 // gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2611 // priv->num_led = tmp_led_priv->num_leds;
2612 // priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2613 // priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2614 // priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2615 // priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2616
2617 // snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2618 // snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2619 // snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2620 // snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2621
2622 wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2623 priv->mac_addr, chip_name, priv->rf->name);
2624
2625 openwifi_rfkill_init(dev);
2626 return 0;
2627
2628 err_free_dev:
2629 ieee80211_free_hw(dev);
2630
2631 return err;
2632 }
2633
2634 static int openwifi_dev_remove(struct platform_device *pdev)
2635 {
2636 struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2637 struct openwifi_priv *priv = dev->priv;
2638
2639 if (!dev) {
2640 pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2641 return(-1);
2642 }
2643
2644 sysfs_remove_bin_file(&pdev->dev.kobj, &priv->bin_iq);
2645 sysfs_remove_group(&pdev->dev.kobj, &tx_intf_attribute_group);
2646 sysfs_remove_group(&pdev->dev.kobj, &stat_attribute_group);
2647
2648 openwifi_rfkill_exit(dev);
2649 ieee80211_unregister_hw(dev);
2650 ieee80211_free_hw(dev);
2651 return(0);
2652 }
2653
2654 static struct platform_driver openwifi_dev_driver = {
2655 .driver = {
2656 .name = "sdr,sdr",
2657 .owner = THIS_MODULE,
2658 .of_match_table = openwifi_dev_of_ids,
2659 },
2660 .probe = openwifi_dev_probe,
2661 .remove = openwifi_dev_remove,
2662 };
2663
2664 module_platform_driver(openwifi_dev_driver);
2665