1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos 2 // SPDX-FileCopyrightText: 2022 UGent 3 // SPDX-License-Identifier: AGPL-3.0-or-later 4 5 #include <linux/bitops.h> 6 #include <linux/dmapool.h> 7 #include <linux/io.h> 8 #include <linux/iopoll.h> 9 #include <linux/of_address.h> 10 #include <linux/of_platform.h> 11 #include <linux/of_irq.h> 12 #include <linux/slab.h> 13 #include <linux/clk.h> 14 #include <linux/io-64-nonatomic-lo-hi.h> 15 16 #include <linux/delay.h> 17 #include <linux/interrupt.h> 18 19 #include <linux/dmaengine.h> 20 #include <linux/slab.h> 21 #include <linux/delay.h> 22 #include <linux/etherdevice.h> 23 24 #include <linux/init.h> 25 #include <linux/kthread.h> 26 #include <linux/module.h> 27 #include <linux/of_dma.h> 28 #include <linux/platform_device.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/wait.h> 32 #include <linux/sched/task.h> 33 #include <linux/dma/xilinx_dma.h> 34 #include <linux/spi/spi.h> 35 #include <net/mac80211.h> 36 37 #include <linux/clk.h> 38 #include <linux/clkdev.h> 39 #include <linux/clk-provider.h> 40 41 #include <linux/iio/iio.h> 42 #include <linux/iio/sysfs.h> 43 44 #include <linux/gpio.h> 45 #include <linux/leds.h> 46 47 #define IIO_AD9361_USE_PRIVATE_H_ 48 #include <../../drivers/iio/adc/ad9361_regs.h> 49 #include <../../drivers/iio/adc/ad9361.h> 50 #include <../../drivers/iio/adc/ad9361_private.h> 51 52 #include <../../drivers/iio/frequency/cf_axi_dds.h> 53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num); 54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb, 55 bool tx1, bool tx2, bool immed); 56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy, 57 struct ctrl_outs_control *ctrl); 58 extern int ad9361_do_calib_run(struct ad9361_rf_phy *phy, u32 cal, int arg); 59 60 #include "../user_space/sdrctl_src/nl80211_testmode_def.h" 61 #include "hw_def.h" 62 #include "sdr.h" 63 #include "git_rev.h" 64 65 // driver API of component driver 66 extern struct tx_intf_driver_api *tx_intf_api; 67 extern struct rx_intf_driver_api *rx_intf_api; 68 extern struct openofdm_tx_driver_api *openofdm_tx_api; 69 extern struct openofdm_rx_driver_api *openofdm_rx_api; 70 extern struct xpu_driver_api *xpu_api; 71 72 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes); 73 u8 gen_mpdu_delim_crc(u16 m); 74 u32 reverse32(u32 d); 75 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant); 76 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant); 77 int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction); 78 int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction); 79 int rssi_correction_lookup_table(u32 freq_MHz); 80 81 #include "sdrctl_intf.c" 82 #include "sysfs_intf.c" 83 84 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1) 85 // Internal indication variables after parsing test_mode 86 static bool AGGR_ENABLE = false; 87 static bool TX_OFFSET_TUNING_ENABLE = false; 88 89 static int init_tx_att = 0; 90 91 MODULE_AUTHOR("Xianjun Jiao"); 92 MODULE_DESCRIPTION("SDR driver"); 93 MODULE_LICENSE("GPL v2"); 94 95 module_param(test_mode, int, 0); 96 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)"); 97 98 module_param(init_tx_att, int, 0); 99 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000 example: set to 3000 for 3dB attenuation"); 100 101 // ---------------rfkill--------------------------------------- 102 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv) 103 { 104 int reg; 105 106 if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH) 107 reg = ad9361_get_tx_atten(priv->ad9361_phy, 1); 108 else 109 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 110 111 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) 112 return true;// 0 off, 1 on 113 return false; 114 } 115 116 void openwifi_rfkill_init(struct ieee80211_hw *hw) 117 { 118 struct openwifi_priv *priv = hw->priv; 119 120 priv->rfkill_off = openwifi_is_radio_enabled(priv); 121 printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off"); 122 wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off); 123 wiphy_rfkill_start_polling(hw->wiphy); 124 } 125 126 void openwifi_rfkill_poll(struct ieee80211_hw *hw) 127 { 128 bool enabled; 129 struct openwifi_priv *priv = hw->priv; 130 131 enabled = openwifi_is_radio_enabled(priv); 132 // printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); 133 if (unlikely(enabled != priv->rfkill_off)) { 134 priv->rfkill_off = enabled; 135 printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); 136 wiphy_rfkill_set_hw_state(hw->wiphy, !enabled); 137 } 138 } 139 140 void openwifi_rfkill_exit(struct ieee80211_hw *hw) 141 { 142 printk("%s openwifi_rfkill_exit\n", sdr_compatible_str); 143 wiphy_rfkill_stop_polling(hw->wiphy); 144 } 145 //----------------rfkill end----------------------------------- 146 147 inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction) 148 { 149 return ((rssi_correction+rssi_dbm)<<1); 150 } 151 152 inline int rssi_correction_lookup_table(u32 freq_MHz) 153 { 154 int rssi_correction; 155 156 if (freq_MHz<2412) { 157 rssi_correction = 153; 158 } else if (freq_MHz<=2484) { 159 rssi_correction = 153; 160 } else if (freq_MHz<5160) { 161 rssi_correction = 153; 162 } else if (freq_MHz<=5240) { 163 rssi_correction = 145; 164 } else if (freq_MHz<=5320) { 165 rssi_correction = 148; 166 } else { 167 rssi_correction = 148; 168 } 169 170 return rssi_correction; 171 } 172 173 static void ad9361_rf_set_channel(struct ieee80211_hw *dev, 174 struct ieee80211_conf *conf) 175 { 176 struct openwifi_priv *priv = dev->priv; 177 u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz; 178 u32 actual_tx_lo; 179 u32 spi_disable; 180 u32 diff_tx_lo; 181 bool change_flag = (actual_rx_lo != priv->actual_rx_lo); 182 int static_lbt_th, auto_lbt_th, fpga_lbt_th, receiver_rssi_dbm_th; 183 struct timeval tv; 184 unsigned long time_before = 0; 185 unsigned long time_after = 0; 186 187 if (change_flag) { 188 actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz; 189 diff_tx_lo = priv->last_tx_quad_cal_lo > actual_tx_lo ? priv->last_tx_quad_cal_lo - actual_tx_lo : actual_tx_lo - priv->last_tx_quad_cal_lo; 190 191 // -------------------Tx Lo tuning------------------- 192 clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_tx_lo ) + priv->rf_reg_val[RF_TX_REG_IDX_FO] )>>1) ); 193 priv->actual_tx_lo = actual_tx_lo; 194 195 // -------------------Rx Lo tuning------------------- 196 clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_rx_lo ) + priv->rf_reg_val[RF_RX_REG_IDX_FO] )>>1) ); 197 priv->actual_rx_lo = actual_rx_lo; 198 199 // call Tx Quadrature calibration if frequency change is more than 100MHz 200 if (diff_tx_lo > 100) { 201 priv->last_tx_quad_cal_lo = actual_tx_lo; 202 do_gettimeofday(&tv); 203 time_before = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec ); 204 spi_disable = xpu_api->XPU_REG_SPI_DISABLE_read(); // disable FPGA SPI module 205 xpu_api->XPU_REG_SPI_DISABLE_write(1); 206 ad9361_do_calib_run(priv->ad9361_phy, TX_QUAD_CAL, (int)priv->ad9361_phy->state->last_tx_quad_cal_phase); 207 // restore original SPI disable state 208 xpu_api->XPU_REG_SPI_DISABLE_write(spi_disable); 209 do_gettimeofday(&tv); 210 time_after = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec ); 211 } 212 213 // get rssi correction value from lookup table 214 priv->rssi_correction = rssi_correction_lookup_table(actual_rx_lo); 215 216 // set appropriate lbt threshold 217 // xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm 218 // xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44 219 // auto_lbt_th = ((priv->rssi_correction-62-16)<<1); 220 auto_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction); // -78dBm, the same as above ((priv->rssi_correction-62-16)<<1) 221 static_lbt_th = rssi_dbm_to_rssi_half_db(-(priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]), priv->rssi_correction); 222 fpga_lbt_th = (priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]==0?auto_lbt_th:static_lbt_th); 223 xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th); 224 priv->last_auto_fpga_lbt_th = auto_lbt_th; 225 226 // Set rssi_half_db threshold (-85dBm equivalent) to receiver. Receiver will not react to signal lower than this rssi. See test records (OPENOFDM_RX_POWER_THRES_INIT in hw_def.h) 227 receiver_rssi_dbm_th = (priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]==0?OPENOFDM_RX_RSSI_DBM_TH_DEFAULT:(-priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH])); 228 openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write((OPENOFDM_RX_DC_RUNNING_SUM_TH_INIT<<16)|rssi_dbm_to_rssi_half_db(receiver_rssi_dbm_th, priv->rssi_correction)); 229 230 if (actual_rx_lo < 2500) { 231 if (priv->band != BAND_2_4GHZ) { 232 priv->band = BAND_2_4GHZ; 233 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 234 } 235 } else { 236 if (priv->band != BAND_5_8GHZ) { 237 priv->band = BAND_5_8GHZ; 238 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 239 } 240 } 241 printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d(%ddBm) (auto %d static %d) tx_quad_cal duration %lu us\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,rssi_half_db_to_rssi_dbm(fpga_lbt_th, priv->rssi_correction),auto_lbt_th,static_lbt_th, time_after-time_before); 242 } 243 } 244 245 const struct openwifi_rf_ops ad9361_rf_ops = { 246 .name = "ad9361", 247 // .init = ad9361_rf_init, 248 // .stop = ad9361_rf_stop, 249 .set_chan = ad9361_rf_set_channel, 250 // .calc_rssi = ad9361_rf_calc_rssi, 251 }; 252 253 u16 reverse16(u16 d) { 254 union u16_byte2 tmp0, tmp1; 255 tmp0.a = d; 256 tmp1.c[0] = tmp0.c[1]; 257 tmp1.c[1] = tmp0.c[0]; 258 return(tmp1.a); 259 } 260 261 u32 reverse32(u32 d) { 262 union u32_byte4 tmp0, tmp1; 263 tmp0.a = d; 264 tmp1.c[0] = tmp0.c[3]; 265 tmp1.c[1] = tmp0.c[2]; 266 tmp1.c[2] = tmp0.c[1]; 267 tmp1.c[3] = tmp0.c[0]; 268 return(tmp1.a); 269 } 270 271 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx) 272 { 273 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); 274 int i; 275 276 ring->stop_flag = -1; 277 ring->bd_wr_idx = 0; 278 ring->bd_rd_idx = 0; 279 ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL); 280 if (ring->bds==NULL) { 281 printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str); 282 return -ENOMEM; 283 } 284 285 for (i = 0; i < NUM_TX_BD; i++) { 286 ring->bds[i].skb_linked=NULL; // for tx, skb is from upper layer 287 //at first right after skb allocated, head, data, tail are the same. 288 ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine 289 ring->bds[i].seq_no = 0xffff; // invalid value 290 ring->bds[i].prio = 0xff; // invalid value 291 ring->bds[i].len_mpdu = 0; // invalid value 292 } 293 294 return 0; 295 } 296 297 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx) 298 { 299 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); 300 int i; 301 302 ring->stop_flag = -1; 303 ring->bd_wr_idx = 0; 304 ring->bd_rd_idx = 0; 305 for (i = 0; i < NUM_TX_BD; i++) { 306 if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0) 307 continue; 308 if (ring->bds[i].dma_mapping_addr != 0) 309 dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV); 310 // if (ring->bds[i].skb_linked!=NULL) 311 // dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception 312 if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) || 313 (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0)) 314 printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str, 315 ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr)); 316 317 ring->bds[i].skb_linked=NULL; 318 ring->bds[i].dma_mapping_addr = 0; 319 ring->bds[i].seq_no = 0xffff; // invalid value 320 ring->bds[i].prio = 0xff; // invalid value 321 ring->bds[i].len_mpdu = 0; // invalid value 322 } 323 if (ring->bds) 324 kfree(ring->bds); 325 ring->bds = NULL; 326 } 327 328 static int openwifi_init_rx_ring(struct openwifi_priv *priv) 329 { 330 int i; 331 u8 *pdata_tmp; 332 333 priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL); 334 if (!priv->rx_cyclic_buf) { 335 printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str); 336 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); 337 return(-1); 338 } 339 340 // Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA 341 for (i=0; i<NUM_RX_BD; i++) { 342 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning 343 (*((u16*)(pdata_tmp+10))) = 0; 344 } 345 printk("%s openwifi_init_rx_ring: NUM_RX_BD %d RX_BD_BUF_SIZE %d pkt existing flag are cleared!\n", sdr_compatible_str, 346 NUM_RX_BD, RX_BD_BUF_SIZE); 347 348 return 0; 349 } 350 351 static void openwifi_free_rx_ring(struct openwifi_priv *priv) 352 { 353 if (priv->rx_cyclic_buf) 354 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); 355 356 priv->rx_cyclic_buf_dma_mapping_addr = 0; 357 priv->rx_cyclic_buf = 0; 358 } 359 360 static int rx_dma_setup(struct ieee80211_hw *dev){ 361 struct openwifi_priv *priv = dev->priv; 362 struct dma_device *rx_dev = priv->rx_chan->device; 363 364 priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT); 365 if (!(priv->rxd)) { 366 openwifi_free_rx_ring(priv); 367 printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd)); 368 return(-1); 369 } 370 priv->rxd->callback = 0; 371 priv->rxd->callback_param = 0; 372 373 priv->rx_cookie = priv->rxd->tx_submit(priv->rxd); 374 375 if (dma_submit_error(priv->rx_cookie)) { 376 printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie)); 377 return(-1); 378 } 379 380 dma_async_issue_pending(priv->rx_chan); 381 return(0); 382 } 383 384 inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction) 385 { 386 int rssi_db, rssi_dbm; 387 388 rssi_db = (rssi_half_db>>1); 389 390 rssi_dbm = rssi_db - rssi_correction; 391 392 rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm); 393 394 return rssi_dbm; 395 } 396 397 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id) 398 { 399 struct ieee80211_hw *dev = dev_id; 400 struct openwifi_priv *priv = dev->priv; 401 struct ieee80211_rx_status rx_status = {0}; 402 struct sk_buff *skb; 403 struct ieee80211_hdr *hdr; 404 u32 addr1_low32, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di; 405 bool ht_flag, short_gi, ht_aggr, ht_aggr_last; 406 // u32 dma_driver_buf_idx_mod; 407 u8 *pdata_tmp; 408 u8 fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw; 409 s8 signal; 410 u16 agc_status_and_pkt_exist_flag, rssi_half_db, addr1_high16, addr2_high16=0, addr3_high16=0, seq_no=0; 411 bool content_ok, len_overflow, is_unicast; 412 413 #ifdef USE_NEW_RX_INTERRUPT 414 int i; 415 spin_lock(&priv->lock); 416 for (i=0; i<NUM_RX_BD; i++) { 417 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; 418 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid 419 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer 420 continue; 421 #else 422 static u8 target_buf_idx_old = 0; 423 spin_lock(&priv->lock); 424 while(1) { // loop all rx buffers that have new rx packets 425 pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning 426 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); 427 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer 428 break; 429 #endif 430 431 tsft_low = (*((u32*)(pdata_tmp+0 ))); 432 tsft_high = (*((u32*)(pdata_tmp+4 ))); 433 rssi_half_db = (*((u16*)(pdata_tmp+8 ))); 434 len = (*((u16*)(pdata_tmp+12))); 435 436 len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false); 437 438 rate_idx = (*((u16*)(pdata_tmp+14))); 439 ht_flag = ((rate_idx&0x10)!=0); 440 short_gi = ((rate_idx&0x20)!=0); 441 ht_aggr = (ht_flag & ((rate_idx&0x40)!=0)); 442 ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0)); 443 rate_idx = (rate_idx&0x1F); 444 445 fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) ); 446 447 //phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1)); 448 // phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation 449 // dma_driver_buf_idx_mod = (state.residue&0x7f); 450 fcs_ok = ((fcs_ok&0x80)!=0); 451 452 if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) { 453 // if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) { 454 // printk("%s openwifi_rx: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod); 455 // } 456 content_ok = true; 457 } else { 458 printk("%s openwifi_rx: WARNING content! len%d overflow%d rate_idx%d\n", sdr_compatible_str, 459 len, len_overflow, rate_idx); 460 content_ok = false; 461 } 462 463 signal = rssi_half_db_to_rssi_dbm(rssi_half_db, priv->rssi_correction); 464 465 hdr = (struct ieee80211_hdr *)(pdata_tmp+16); 466 if (len>=20) { 467 addr2_low32 = *((u32*)(hdr->addr2+2)); 468 addr2_high16 = *((u16*)(hdr->addr2)); 469 } 470 471 addr1_low32 = *((u32*)(hdr->addr1+2)); 472 addr1_high16 = *((u16*)(hdr->addr1)); 473 474 if ( priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ANY ) { 475 if (len>=26) { 476 addr3_low32 = *((u32*)(hdr->addr3+2)); 477 addr3_high16 = *((u16*)(hdr->addr3)); 478 } 479 if (len>=28) 480 seq_no = ( (hdr->seq_ctrl&IEEE80211_SCTL_SEQ)>>4 ); 481 482 is_unicast = (addr1_low32!=0xffffffff || addr1_high16!=0xffff); 483 484 if ( (( is_unicast)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST)) || 485 ((!is_unicast)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST)) || 486 (( fcs_ok==0)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ERROR)) ) 487 printk("%s openwifi_rx: %dB ht%daggr%d/%d sgi%d %dM FC%04x DI%04x ADDR%04x%08x/%04x%08x/%04x%08x SC%d fcs%d buf_idx%d %ddBm\n", sdr_compatible_str, 488 len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id, 489 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), 490 #ifdef USE_NEW_RX_INTERRUPT 491 seq_no, fcs_ok, i, signal); 492 #else 493 seq_no, fcs_ok, target_buf_idx_old, signal); 494 #endif 495 } 496 497 // priv->phy_rx_sn_hw_old = phy_rx_sn_hw; 498 if (content_ok) { 499 skb = dev_alloc_skb(len); 500 if (skb) { 501 skb_put_data(skb,pdata_tmp+16,len); 502 503 rx_status.antenna = priv->runtime_rx_ant_cfg; 504 // def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M) 505 rx_status.rate_idx = wifi_rate_table_mapping[rate_idx]; 506 rx_status.signal = signal; 507 508 // rx_status.freq = dev->conf.chandef.chan->center_freq; 509 rx_status.freq = priv->actual_rx_lo; 510 // rx_status.band = dev->conf.chandef.chan->band; 511 rx_status.band = (rx_status.freq<2500?NL80211_BAND_2GHZ:NL80211_BAND_5GHZ); 512 513 rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); 514 rx_status.flag |= RX_FLAG_MACTIME_START; 515 if (!fcs_ok) 516 rx_status.flag |= RX_FLAG_FAILED_FCS_CRC; 517 if (rate_idx <= 15) 518 rx_status.encoding = RX_ENC_LEGACY; 519 else 520 rx_status.encoding = RX_ENC_HT; 521 rx_status.bw = RATE_INFO_BW_20; 522 if (short_gi) 523 rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI; 524 if(ht_aggr) 525 { 526 rx_status.ampdu_reference = priv->ampdu_reference; 527 rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 528 if (ht_aggr_last) 529 rx_status.flag |= RX_FLAG_AMPDU_IS_LAST; 530 } 531 532 memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more. 533 ieee80211_rx_irqsafe(dev, skb); // call mac80211 function 534 535 // printk("%s openwifi_rx: addr1_low32 %08x self addr %08x\n", sdr_compatible_str, addr1_low32, ( *( (u32*)(priv->mac_addr+2) ) )); 536 if (addr1_low32 == ( *( (u32*)(priv->mac_addr+2) ) ) && priv->stat.stat_enable) { 537 agc_status_and_pkt_exist_flag = (agc_status_and_pkt_exist_flag&0x7f); 538 if (len>=20) {// rx stat 539 if (addr2_low32 == priv->stat.rx_target_sender_mac_addr || priv->stat.rx_target_sender_mac_addr==0) { 540 if ( ieee80211_is_data(hdr->frame_control) ) { 541 priv->stat.rx_data_pkt_mcs_realtime = rate_idx; 542 priv->stat.rx_data_pkt_num_total++; 543 if (!fcs_ok) { 544 priv->stat.rx_data_pkt_num_fail++; 545 priv->stat.rx_data_pkt_fail_mcs_realtime = rate_idx; 546 priv->stat.rx_data_fail_agc_gain_value_realtime = agc_status_and_pkt_exist_flag; 547 } else { 548 priv->stat.rx_data_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag; 549 } 550 } else if ( ieee80211_is_mgmt(hdr->frame_control) ) { 551 priv->stat.rx_mgmt_pkt_mcs_realtime = rate_idx; 552 priv->stat.rx_mgmt_pkt_num_total++; 553 if (!fcs_ok) { 554 priv->stat.rx_mgmt_pkt_num_fail++; 555 priv->stat.rx_mgmt_pkt_fail_mcs_realtime = rate_idx; 556 priv->stat.rx_mgmt_fail_agc_gain_value_realtime = agc_status_and_pkt_exist_flag; 557 } else { 558 priv->stat.rx_mgmt_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag; 559 } 560 } 561 } 562 } else if ( ieee80211_is_ack(hdr->frame_control) ) { 563 priv->stat.rx_ack_pkt_mcs_realtime = rate_idx; 564 priv->stat.rx_ack_pkt_num_total++; 565 if (!fcs_ok) { 566 priv->stat.rx_ack_pkt_num_fail++; 567 } else { 568 priv->stat.rx_ack_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag; 569 } 570 } 571 } 572 } else 573 printk("%s openwifi_rx: WARNING dev_alloc_skb failed!\n", sdr_compatible_str); 574 575 if(ht_aggr_last) 576 priv->ampdu_reference++; 577 } 578 (*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed 579 loop_count++; 580 #ifndef USE_NEW_RX_INTERRUPT 581 target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1)); 582 #endif 583 } 584 585 if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ERROR) ) 586 printk("%s openwifi_rx: WARNING loop_count %d\n", sdr_compatible_str,loop_count); 587 588 // openwifi_rx_out: 589 spin_unlock(&priv->lock); 590 return IRQ_HANDLED; 591 } 592 593 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id) 594 { 595 struct ieee80211_hw *dev = dev_id; 596 struct openwifi_priv *priv = dev->priv; 597 struct openwifi_ring *ring, *drv_ring_tmp; 598 struct sk_buff *skb; 599 struct ieee80211_tx_info *info; 600 struct ieee80211_hdr *hdr; 601 u32 reg_val1, hw_queue_len, reg_val2, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0, addr1_low32, mcs_for_sysfs; 602 u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx; 603 u8 nof_retx=-1, last_bd_rd_idx, i, prio, queue_idx, nof_retx_stat; 604 u64 blk_ack_bitmap; 605 // u16 prio_rd_idx_store[64]={0}; 606 bool tx_fail=false, fpga_queue_has_room=false; 607 bool use_ht_aggr, pkt_need_ack, use_ht_rate, prio_wake_up_flag = false; 608 609 spin_lock(&priv->lock); 610 611 while(1) { // loop all packets that have been sent by FPGA 612 reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read(); 613 reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read(); 614 blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32); 615 616 if (reg_val1!=0xFFFFFFFF) { 617 nof_retx = (reg_val1&0xF); 618 last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1)); 619 prio = ((reg_val1>>17)&0x3); 620 num_slot_random = ((reg_val1>>19)&0x1FF); 621 //num_slot_random = ((0xFF80000 ®_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE)); 622 cw = ((reg_val1>>28)&0xF); 623 //cw = ((0xF0000000 & reg_val1) >> 28); 624 if(cw > 10) { 625 cw = 10 ; 626 num_slot_random += 512 ; 627 } 628 pkt_cnt = (reg_val2&0x3F); 629 blk_ack_ssn = ((reg_val2>>6)&0xFFF); 630 631 queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1)); 632 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); 633 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 634 // check which linux prio is stopped by this queue (queue_idx) 635 for (i=0; i<MAX_NUM_SW_QUEUE; i++) { 636 drv_ring_tmp = &(priv->tx_ring[i]); 637 if ( drv_ring_tmp->stop_flag == prio ) { 638 639 if ( ((dma_fifo_no_room_flag>>i)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(i*8))&0xFF))>=RING_ROOM_THRESHOLD ) 640 fpga_queue_has_room=true; 641 else 642 fpga_queue_has_room=false; 643 644 // Wake up Linux queue due to the current fpga queue releases some room 645 if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP ) 646 printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio%d i%d queue%d no room flag%x hwq len%08x wr%d rd%d\n", sdr_compatible_str, 647 prio, i, queue_idx, dma_fifo_no_room_flag, hw_queue_len, drv_ring_tmp->bd_wr_idx, last_bd_rd_idx); 648 649 if (fpga_queue_has_room) { 650 prio_wake_up_flag = true; 651 drv_ring_tmp->stop_flag = -1; 652 653 if (priv->stat.stat_enable) { 654 priv->stat.tx_prio_wakeup_num[prio]++; 655 priv->stat.tx_queue_wakeup_num[i]++; 656 } 657 } else { 658 if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP ) 659 printk("%s openwifi_tx_interrupt: WARNING no room! prio_wake_up_flag%d\n", sdr_compatible_str, prio_wake_up_flag); 660 } 661 } 662 } 663 if (prio_wake_up_flag) 664 ieee80211_wake_queue(dev, prio); 665 666 if (priv->stat.stat_enable) { 667 priv->stat.tx_prio_interrupt_num[prio] = priv->stat.tx_prio_interrupt_num[prio] + pkt_cnt; 668 priv->stat.tx_queue_interrupt_num[queue_idx] = priv->stat.tx_queue_interrupt_num[queue_idx] + pkt_cnt; 669 } 670 671 ring = &(priv->tx_ring[queue_idx]); 672 for(i = 1; i <= pkt_cnt; i++) 673 { 674 ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64; 675 seq_no = ring->bds[ring->bd_rd_idx].seq_no; 676 677 if (seq_no == 0xffff) {// it has been forced cleared by the openwifi_tx (due to out-of-order Tx of different queues to the air?) 678 printk("%s openwifi_tx_interrupt: WARNING wr%d rd%d last_bd_rd_idx%d i%d pkt_cnt%d prio%d fpga q%d hwq len%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str, 679 ring->bd_wr_idx, ring->bd_rd_idx, last_bd_rd_idx, i, pkt_cnt, prio, queue_idx, hw_queue_len, ring->bds[ring->bd_rd_idx].prio, ring->bds[ring->bd_rd_idx].len_mpdu, seq_no, ring->bds[ring->bd_rd_idx].skb_linked, ring->bds[ring->bd_rd_idx].dma_mapping_addr); 680 continue; 681 } 682 683 skb = ring->bds[ring->bd_rd_idx].skb_linked; 684 685 dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr, 686 skb->len, DMA_MEM_TO_DEV); 687 688 info = IEEE80211_SKB_CB(skb); 689 use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0); 690 ieee80211_tx_info_clear_status(info); 691 692 // Aggregation packet 693 if (use_ht_aggr) 694 { 695 start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF)); 696 tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0); 697 info->flags |= IEEE80211_TX_STAT_AMPDU; 698 info->status.ampdu_len = 1; 699 info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1; 700 701 skb_pull(skb, LEN_MPDU_DELIM); 702 //skb_trim(skb, num_byte_pad_skb); 703 } 704 // Normal packet 705 else 706 { 707 tx_fail = ((blk_ack_bitmap&0x1)==0); 708 info->flags &= (~IEEE80211_TX_CTL_AMPDU); 709 } 710 711 pkt_need_ack = (!(info->flags & IEEE80211_TX_CTL_NO_ACK)); 712 // do statistics for data packet that needs ack 713 hdr = (struct ieee80211_hdr *)skb->data; 714 addr1_low32 = *((u32*)(hdr->addr1+2)); 715 if ( priv->stat.stat_enable && pkt_need_ack && (addr1_low32 == priv->stat.rx_target_sender_mac_addr || priv->stat.rx_target_sender_mac_addr==0) ) { 716 use_ht_rate = (((info->control.rates[0].flags)&IEEE80211_TX_RC_MCS)!=0); 717 mcs_for_sysfs = ieee80211_get_tx_rate(dev, info)->hw_value; 718 if (use_ht_rate) 719 mcs_for_sysfs = (mcs_for_sysfs | 0x80000000); 720 721 if ( ieee80211_is_data(hdr->frame_control) ) { 722 nof_retx_stat = (nof_retx<=5?nof_retx:5); 723 724 priv->stat.tx_data_pkt_need_ack_num_total++; 725 priv->stat.tx_data_pkt_mcs_realtime = mcs_for_sysfs; 726 priv->stat.tx_data_pkt_need_ack_num_retx[nof_retx_stat]++; 727 if (tx_fail) { 728 priv->stat.tx_data_pkt_need_ack_num_total_fail++; 729 priv->stat.tx_data_pkt_fail_mcs_realtime = mcs_for_sysfs; 730 priv->stat.tx_data_pkt_need_ack_num_retx_fail[nof_retx_stat]++; 731 } 732 } else if ( ieee80211_is_mgmt(hdr->frame_control) ) { 733 nof_retx_stat = (nof_retx<=2?nof_retx:2); 734 735 priv->stat.tx_mgmt_pkt_need_ack_num_total++; 736 priv->stat.tx_mgmt_pkt_mcs_realtime = mcs_for_sysfs; 737 priv->stat.tx_mgmt_pkt_need_ack_num_retx[nof_retx_stat]++; 738 if (tx_fail) { 739 priv->stat.tx_mgmt_pkt_need_ack_num_total_fail++; 740 priv->stat.tx_mgmt_pkt_fail_mcs_realtime = mcs_for_sysfs; 741 priv->stat.tx_mgmt_pkt_need_ack_num_retx_fail[nof_retx_stat]++; 742 } 743 } 744 } 745 746 if ( tx_fail == false ) 747 info->flags |= IEEE80211_TX_STAT_ACK; 748 749 info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate 750 info->status.rates[1].idx = -1; 751 // info->status.rates[2].idx = -1; 752 // info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES 4 753 info->status.antenna = priv->runtime_tx_ant_cfg; 754 755 if ( ( (!pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST) ) || ( (pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST) ) ){ 756 printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] SC%d prio%d q%d wr%d rd%d num_slot%d cw%d hwq len%08x no_room_flag%x\n", sdr_compatible_str, 757 nof_retx+1, !tx_fail, seq_no, prio, queue_idx, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw, hw_queue_len, dma_fifo_no_room_flag); 758 } 759 760 ieee80211_tx_status_irqsafe(dev, skb); 761 762 ring->bds[ring->bd_rd_idx].prio = 0xff; // invalid value 763 ring->bds[ring->bd_rd_idx].len_mpdu = 0; // invalid value 764 ring->bds[ring->bd_rd_idx].seq_no = 0xffff; 765 ring->bds[ring->bd_rd_idx].skb_linked = NULL; 766 ring->bds[ring->bd_rd_idx].dma_mapping_addr = 0; 767 } 768 769 loop_count++; 770 771 // printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx); 772 773 } else 774 break; 775 } 776 if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&DMESG_LOG_ERROR) ) 777 printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count); 778 779 spin_unlock(&priv->lock); 780 return IRQ_HANDLED; 781 } 782 783 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000}; 784 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes) 785 { 786 u32 i, crc = 0; 787 u8 idx; 788 for( i = 0; i < num_bytes; i++) 789 { 790 idx = (crc & 0x0F) ^ (data_in[i] & 0x0F); 791 crc = (crc >> 4) ^ crc_table[idx]; 792 793 idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F); 794 crc = (crc >> 4) ^ crc_table[idx]; 795 } 796 797 return crc; 798 } 799 800 u8 gen_mpdu_delim_crc(u16 m) 801 { 802 u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc; 803 804 for (i = 0; i < 16; i++) 805 { 806 temp = c[7] ^ ((m >> i) & 0x01); 807 808 c[7] = c[6]; 809 c[6] = c[5]; 810 c[5] = c[4]; 811 c[4] = c[3]; 812 c[3] = c[2]; 813 c[2] = c[1] ^ temp; 814 c[1] = c[0] ^ temp; 815 c[0] = temp; 816 } 817 mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7); 818 819 return mpdu_delim_crc; 820 } 821 822 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c 823 cdev_to_gpio_led_data(struct led_classdev *led_cdev) 824 { 825 return container_of(led_cdev, struct gpio_led_data, cdev); 826 } 827 828 inline int calc_n_ofdm(int num_octet, int n_dbps) 829 { 830 int num_bit, num_ofdm_sym; 831 832 num_bit = 22+num_octet*8; 833 num_ofdm_sym = (num_bit/n_dbps) + ((num_bit%n_dbps)!=0); 834 835 return (num_ofdm_sym); 836 } 837 838 inline __le16 gen_ht_duration_id(__le16 frame_control, __le16 aid, u8 qos_hdr, bool use_ht_aggr, u16 rate_hw_value, u16 sifs) 839 { 840 // COTS wifi ht QoS data duration field analysis (lots of capture): 841 842 // ht non-aggr QoS data: 44, type 2 (data frame) sub-type 8 (1000) 21.7/52/57.8/58.5/65Mbps 843 // ack ht 36 + 4*[(22+14*8)/78] = 36 + 4*2 = 44 844 // ack legacy 20 + 4*[(22+14*8)/72] = 20 + 4*2 = 28 845 846 // ht non-aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 6.5Mbps 847 // ack ht 36 + 4*[(22+14*8)/26] = 36 + 4*6 = 60 848 // ack legacy 20 + 4*[(22+14*8)/24] = 20 + 4*6 = 44 849 850 // ht aggr QoS data: 52, type 2 (data frame) sub-type 8 (1000) 19.5/28.9/39/57.8/65/72.2Mbps 851 // ack ht 36 + 4*[(22+32*8)/78] = 36 + 4*4 = 52 852 // ack legacy 20 + 4*[(22+32*8)/72] = 20 + 4*4 = 36 853 854 // ht aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 13/14.4Mbps 855 // ack ht 36 + 4*[(22+32*8)/52] = 36 + 4*6 = 60 856 // ack legacy 20 + 4*[(22+32*8)/48] = 20 + 4*6 = 44 857 858 // ht and legacy rate mapping is ont one on one, instead it is modulation combined with coding rate 859 // modulate coding ht-mcs ht-n_dbps legacy-mcs legacy-n_dbps 860 // BPSK 1/2 0 26 4 24 861 // QPSK 1/2 1 52 6 48 862 // QPSK 3/4 2 78 7 72 863 // 16QAM 1/2 3 104 8 96 864 // 16QAM 3/4 4 156 9 144 865 // 64QAM 2/3 5 208 10 192 866 // 64QAM 3/4 6 234 11 216 867 868 // conclusion: duration is: assume ack/blk-ack uses legacy, plus SIFS 869 870 // other observation: ht always use QoS data, not data (sub-type) 871 // other observation: management/control frame always in non-ht 872 873 __le16 dur = 0; 874 u16 n_dbps; 875 int num_octet, num_ofdm_sym; 876 877 if (ieee80211_is_pspoll(frame_control)) { 878 dur = (aid|0xc000); 879 } else if (ieee80211_is_data_qos(frame_control) && (~(qos_hdr&IEEE80211_QOS_CTL_ACK_POLICY_NOACK))) { 880 rate_hw_value = (rate_hw_value>6?6:rate_hw_value); 881 n_dbps = (rate_hw_value==0?wifi_n_dbps_table[4]:wifi_n_dbps_table[rate_hw_value+5]); 882 num_octet = (use_ht_aggr?32:14); //32 bytes for compressed block ack; 14 bytes for normal ack 883 num_ofdm_sym = calc_n_ofdm(num_octet, n_dbps); 884 dur = sifs + 20 + 4*num_ofdm_sym; // 20us legacy preamble 885 // printk("%s gen_ht_duration_id: num_octet %d n_dbps %d num_ofdm_sym %d dur %d\n", sdr_compatible_str, 886 // num_octet, n_dbps, num_ofdm_sym, dur); 887 } else { 888 printk("%s openwifi_tx: WARNING gen_ht_duration_id wrong pkt type!\n", sdr_compatible_str); 889 } 890 891 return dur; 892 } 893 894 inline void report_pkt_loss_due_to_driver_drop(struct ieee80211_hw *dev, struct sk_buff *skb) 895 { 896 struct openwifi_priv *priv = dev->priv; 897 struct ieee80211_tx_info *info; 898 899 info = IEEE80211_SKB_CB(skb); 900 ieee80211_tx_info_clear_status(info); 901 info->status.rates[0].count = 1; 902 info->status.rates[1].idx = -1; 903 info->status.antenna = priv->runtime_tx_ant_cfg; 904 ieee80211_tx_status_irqsafe(dev, skb); 905 } 906 907 static void openwifi_tx(struct ieee80211_hw *dev, 908 struct ieee80211_tx_control *control, 909 struct sk_buff *skb) 910 { 911 struct openwifi_priv *priv = dev->priv; 912 unsigned long flags; 913 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 914 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 915 struct openwifi_ring *ring = NULL; 916 struct sk_buff *skb_new; // temp skb for internal use 917 struct ieee80211_tx_info *info_skipped; 918 dma_addr_t dma_mapping_addr; 919 unsigned int i, j, empty_bd_idx = 0; 920 u16 rate_signal_value, rate_hw_value, len_mpdu, len_psdu, num_dma_symbol, len_mpdu_delim_pad=0, num_byte_pad; 921 u32 num_dma_byte, addr1_low32, addr2_low32=0, addr3_low32=0, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history; 922 u16 addr1_high16, addr2_high16=0, addr3_high16=0, sc, seq_no=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration, n_dbps; 923 u8 pkt_need_ack, retry_limit_raw,use_short_gi,*dma_buf,retry_limit_hw_value,rc_flags,qos_hdr,prio,queue_idx,drv_ring_idx; 924 bool drv_seqno=false, use_rts_cts, use_cts_protect, ht_aggr_start=false, use_ht_rate, use_ht_aggr, cts_use_traffic_rate=false, force_use_cts_protect=false; 925 __le16 frame_control,duration_id; 926 u32 dma_fifo_no_room_flag, hw_queue_len, delay_count=0; 927 enum dma_status status; 928 929 static u32 addr1_low32_prev = -1; 930 static u16 rate_hw_value_prev = -1; 931 static u8 pkt_need_ack_prev = -1; 932 static u16 addr1_high16_prev = -1; 933 static __le16 duration_id_prev = -1; 934 static u8 prio_prev = -1; 935 static u8 retry_limit_raw_prev = -1; 936 static u8 use_short_gi_prev = -1; 937 938 // static bool led_status=0; 939 // struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]); 940 941 // if ( (priv->phy_tx_sn&7) ==0 ) { 942 // openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read(); 943 // if (openofdm_state_history!=openofdm_state_history_old){ 944 // led_status = (~led_status); 945 // openofdm_state_history_old = openofdm_state_history; 946 // gpiod_set_value(led_dat->gpiod, led_status); 947 // } 948 // } 949 950 if (skb->data_len>0) {// more data are not in linear data area skb->data 951 printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str); 952 goto openwifi_tx_early_out; 953 } 954 955 len_mpdu = skb->len; 956 957 // get Linux priority/queue setting info and target mac address 958 prio = skb_get_queue_mapping(skb); 959 if (prio >= MAX_NUM_HW_QUEUE) { 960 printk("%s openwifi_tx: WARNING prio%d\n", sdr_compatible_str, prio); 961 goto openwifi_tx_early_out; 962 } 963 964 addr1_low32 = *((u32*)(hdr->addr1+2)); 965 966 // ---- DO your idea here! Map Linux/SW "prio" to driver "drv_ring_idx" (then 1on1 to FPGA queue_idx) --- 967 if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config 968 drv_ring_idx = prio; 969 } else {// customized prio to drv_ring_idx mapping 970 // check current packet belonging to which slice/hw-queue 971 for (i=0; i<MAX_NUM_HW_QUEUE; i++) { 972 if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) { 973 break; 974 } 975 } 976 drv_ring_idx = (i>=MAX_NUM_HW_QUEUE?prio:i); // if no address is hit 977 } 978 979 ring = &(priv->tx_ring[drv_ring_idx]); 980 981 spin_lock_irqsave(&priv->lock, flags); 982 if (ring->bds[ring->bd_wr_idx].seq_no != 0xffff) { // not cleared yet by interrupt 983 for (i=1; i<NUM_TX_BD; i++) { 984 if (ring->bds[(ring->bd_wr_idx+i)&(NUM_TX_BD-1)].seq_no == 0xffff) { 985 empty_bd_idx = i; 986 break; 987 } 988 } 989 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 990 if (empty_bd_idx) { // clear all bds before the empty bd and report failure to Linux 991 if (priv->stat.stat_enable) { 992 priv->stat.tx_prio_stop0_fake_num[prio]++; 993 priv->stat.tx_queue_stop0_fake_num[drv_ring_idx]++; 994 } 995 for (i=0; i<empty_bd_idx; i++) { 996 j = ( (ring->bd_wr_idx+i)&(NUM_TX_BD-1) ); 997 printk("%s openwifi_tx: WARNING fake stop queue empty_bd_idx%d i%d lnx prio%d map to q%d stop%d hwq len%d wr%d rd%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str, 998 empty_bd_idx, i, prio, drv_ring_idx, ring->stop_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, ring->bds[j].prio, ring->bds[j].len_mpdu, ring->bds[j].seq_no, ring->bds[j].skb_linked, ring->bds[j].dma_mapping_addr); 999 // tell Linux this skb failed 1000 skb_new = ring->bds[j].skb_linked; 1001 dma_unmap_single(priv->tx_chan->device->dev,ring->bds[j].dma_mapping_addr, 1002 skb_new->len, DMA_MEM_TO_DEV); 1003 info_skipped = IEEE80211_SKB_CB(skb_new); 1004 ieee80211_tx_info_clear_status(info_skipped); 1005 info_skipped->status.rates[0].count = 1; 1006 info_skipped->status.rates[1].idx = -1; 1007 info_skipped->status.antenna = priv->runtime_tx_ant_cfg; 1008 ieee80211_tx_status_irqsafe(dev, skb_new); 1009 1010 ring->bds[j].prio = 0xff; // invalid value 1011 ring->bds[j].len_mpdu = 0; // invalid value 1012 ring->bds[j].seq_no = 0xffff; 1013 ring->bds[j].skb_linked = NULL; 1014 ring->bds[j].dma_mapping_addr = 0; 1015 1016 } 1017 if (ring->stop_flag != -1) { //the interrupt seems will never come, we need to wake up the queue in case the interrupt will never wake it up 1018 ieee80211_wake_queue(dev, ring->stop_flag); 1019 ring->stop_flag = -1; 1020 } 1021 } else { 1022 j = ring->bd_wr_idx; 1023 printk("%s openwifi_tx: WARNING real stop queue lnx prio%d map to q%d stop%d hwq len%d wr%d rd%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str, 1024 prio, drv_ring_idx, ring->stop_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, ring->bds[j].prio, ring->bds[j].len_mpdu, ring->bds[j].seq_no, ring->bds[j].skb_linked, ring->bds[j].dma_mapping_addr); 1025 1026 ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read 1027 ring->stop_flag = prio; 1028 if (priv->stat.stat_enable) { 1029 priv->stat.tx_prio_stop0_real_num[prio]++; 1030 priv->stat.tx_queue_stop0_real_num[drv_ring_idx]++; 1031 } 1032 1033 spin_unlock_irqrestore(&priv->lock, flags); 1034 goto openwifi_tx_early_out; 1035 } 1036 } 1037 spin_unlock_irqrestore(&priv->lock, flags); 1038 // -------------------- end of Map Linux/SW "prio" to driver "drv_ring_idx" ------------------ 1039 1040 // get other info from packet header 1041 addr1_high16 = *((u16*)(hdr->addr1)); 1042 if (len_mpdu>=20) { 1043 addr2_low32 = *((u32*)(hdr->addr2+2)); 1044 addr2_high16 = *((u16*)(hdr->addr2)); 1045 } 1046 if (len_mpdu>=26) { 1047 addr3_low32 = *((u32*)(hdr->addr3+2)); 1048 addr3_high16 = *((u16*)(hdr->addr3)); 1049 } 1050 1051 frame_control=hdr->frame_control; 1052 pkt_need_ack = (!(info->flags&IEEE80211_TX_CTL_NO_ACK)); 1053 1054 retry_limit_raw = info->control.rates[0].count; 1055 1056 rc_flags = info->control.rates[0].flags; 1057 use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0); 1058 use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0); 1059 use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0); 1060 use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0); 1061 use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0); 1062 qos_hdr = (*(ieee80211_get_qos_ctl(hdr))); 1063 1064 // get Linux rate (MCS) setting 1065 rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value; 1066 // drv_tx_reg_val[DRV_TX_REG_IDX_RATE] 1067 // override rate legacy: 4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M 1068 // drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT] 1069 // override rate ht: 4:6.5M, 5:13M, 6:19.5M,7:26M, 8:39M, 9:52M, 10:58.5M, 11:65M 1070 if ( ieee80211_is_data(hdr->frame_control) ) {//rate override command 1071 if (use_ht_rate && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]>0) { 1072 rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0xF)-4; 1073 use_short_gi = ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0x10)==0x10); 1074 } else if ((!use_ht_rate) && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0) 1075 rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]&0xF); 1076 // TODO: need to map rate_hw_value back to info->control.rates[0].idx!!! 1077 } 1078 1079 // Workaround for a FPGA bug: if aggr happens on ht mcs 0, the tx core will never end, running eneless and stuck the low MAC! 1080 if (use_ht_aggr && rate_hw_value==0) 1081 rate_hw_value = 1; 1082 1083 sifs = (priv->actual_rx_lo<2500?10:16); 1084 1085 if (use_ht_rate) { 1086 // printk("%s openwifi_tx: rate_hw_value %d aggr %d sifs %d\n", sdr_compatible_str, rate_hw_value, use_ht_aggr, sifs); 1087 hdr->duration_id = gen_ht_duration_id(frame_control, control->sta->aid, qos_hdr, use_ht_aggr, rate_hw_value, sifs); //linux only do it for 11a/g, not for 11n and later 1088 } 1089 duration_id = hdr->duration_id; 1090 1091 if (use_rts_cts) 1092 printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx); 1093 1094 if (use_cts_protect) { 1095 cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value; 1096 cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info)); 1097 } else if (force_use_cts_protect) { // could override mac80211 setting here. 1098 cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M) 1099 if (pkt_need_ack) 1100 ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL) 1101 1102 n_dbps = (use_ht_rate?wifi_n_dbps_ht_table[rate_hw_value+4]:wifi_n_dbps_table[rate_hw_value]); 1103 traffic_pkt_duration = (use_ht_rate?36:20) + 4*calc_n_ofdm(len_mpdu, n_dbps); 1104 cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration); 1105 } 1106 1107 // this is 11b stuff 1108 // if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1109 // printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str); 1110 1111 if (len_mpdu>=28) { 1112 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 1113 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) { 1114 priv->seqno += 0x10; 1115 drv_seqno = true; 1116 } 1117 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 1118 hdr->seq_ctrl |= cpu_to_le16(priv->seqno); 1119 } 1120 sc = hdr->seq_ctrl; 1121 seq_no = (sc&IEEE80211_SCTL_SEQ)>>4; 1122 } 1123 1124 // printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str, 1125 // info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags, 1126 // info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags, 1127 // info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags, 1128 // info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags); 1129 1130 // -----------end of preprocess some info from header and skb---------------- 1131 1132 // /* HW will perform RTS-CTS when only RTS flags is set. 1133 // * HW will perform CTS-to-self when both RTS and CTS flags are set. 1134 // * RTS rate and RTS duration will be used also for CTS-to-self. 1135 // */ 1136 // if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1137 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; 1138 // rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config 1139 // len_mpdu, info); 1140 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str); 1141 // } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1142 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; 1143 // rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config 1144 // len_mpdu, info); 1145 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str); 1146 // } 1147 1148 if(use_ht_aggr) 1149 { 1150 if(ieee80211_is_data_qos(frame_control) == false) 1151 { 1152 printk("%s openwifi_tx: WARNING packet is not QoS packet!\n", sdr_compatible_str); 1153 goto openwifi_tx_early_out; 1154 } 1155 1156 // psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ] 1157 len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4); 1158 len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad; 1159 1160 if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) || 1161 (rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) || 1162 (prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) ) 1163 { 1164 addr1_low32_prev = addr1_low32; 1165 addr1_high16_prev = addr1_high16; 1166 duration_id_prev = duration_id; 1167 rate_hw_value_prev = rate_hw_value; 1168 use_short_gi_prev = use_short_gi; 1169 prio_prev = prio; 1170 retry_limit_raw_prev = retry_limit_raw; 1171 pkt_need_ack_prev = pkt_need_ack; 1172 1173 ht_aggr_start = true; 1174 } 1175 } 1176 else 1177 { 1178 // psdu = [ MPDU ] 1179 len_psdu = len_mpdu; 1180 1181 // // Don't need to reset _prev variables every time when it is not ht aggr qos data. Reason: 1182 // // 1. In 99.9999% cases, the ht always use qos data and goes to prio/queue_idx 2. By not resetting the variable to -1, we can have continuous aggregation packet operation in FPGA queue 2. 1183 // // 2. In other words, the aggregation operation for queue 2 in FPGA won't be interrupted by other non aggregation packets (control/management/beacon/etc.) that go to queue 0 (or other queues than 2). 1184 // // 3. From wired domain and upper level ( DSCP, AC (0~3), WMM management, 802.11D service classes and user priority (UP) ) to chip/FPGA queue index, thre should be some (complicated) mapping relationship. 1185 // // 4. More decent design is setting these aggregation flags (ht_aggr_start) per queue/prio here in driver. But since now only queue 2 and 0 are used (data goes to queue 2, others go to queue 0) in normal (most) cases, let's not go to the decent (complicated) solution immediately. 1186 // addr1_low32_prev = -1; 1187 // addr1_high16_prev = -1; 1188 // duration_id_prev = -1; 1189 // use_short_gi_prev = -1; 1190 // rate_hw_value_prev = -1; 1191 // prio_prev = -1; 1192 // retry_limit_raw_prev = -1; 1193 // pkt_need_ack_prev = -1; 1194 } 1195 num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0); 1196 1197 if ( ( (!pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST) ) || ( (pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST) ) ) 1198 printk("%s openwifi_tx: %dB RC%x %dM FC%04x DI%04x ADDR%04x%08x/%04x%08x/%04x%08x flag%08x QoS%02x SC%d_%d retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str, 1199 len_mpdu, rc_flags, (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id, 1200 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), 1201 info->flags, qos_hdr, seq_no, drv_seqno, retry_limit_raw, pkt_need_ack, prio, drv_ring_idx, 1202 // use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration, 1203 ring->bd_wr_idx,ring->bd_rd_idx); 1204 1205 // check whether the packet is bigger than DMA buffer size 1206 num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS); 1207 if (num_dma_byte > TX_BD_BUF_SIZE) { 1208 printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx); 1209 goto openwifi_tx_early_out; 1210 } 1211 1212 // Copy MPDU delimiter and padding into sk_buff 1213 if(use_ht_aggr) 1214 { 1215 // when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary 1216 if (skb_headroom(skb)<LEN_MPDU_DELIM) {// in case original skb headroom is not enough to host MPDU delimiter 1217 printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_headroom(skb) %d < LEN_MPDU_DELIM %d\n", sdr_compatible_str, ring->bd_wr_idx, skb_headroom(skb), LEN_MPDU_DELIM); 1218 if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) { 1219 printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx); 1220 goto openwifi_tx_early_out; 1221 } 1222 if (skb->sk != NULL) 1223 skb_set_owner_w(skb_new, skb->sk); 1224 dev_kfree_skb(skb); 1225 skb = skb_new; 1226 } 1227 skb_push( skb, LEN_MPDU_DELIM ); 1228 dma_buf = skb->data; 1229 1230 // fill in MPDU delimiter 1231 *((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0; 1232 *((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf)); 1233 *((u8 *)(dma_buf+3)) = 0x4e; 1234 1235 // Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter 1236 num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu); 1237 if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad 1238 printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad); 1239 if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) { 1240 printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx); 1241 goto openwifi_tx_early_out; 1242 } 1243 if (skb->sk != NULL) 1244 skb_set_owner_w(skb_new, skb->sk); 1245 dev_kfree_skb(skb); 1246 skb = skb_new; 1247 } 1248 skb_put( skb, num_byte_pad ); 1249 1250 // fill in MPDU CRC 1251 *((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu); 1252 1253 // fill in MPDU delimiter padding 1254 memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad); 1255 1256 // num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary. 1257 // If they have different lengths, add "empty MPDU delimiter" for alignment 1258 if(num_dma_byte == len_psdu + 4) 1259 { 1260 *((u32*)(dma_buf+len_psdu)) = 0x4e140000; 1261 len_psdu = num_dma_byte; 1262 } 1263 } 1264 else 1265 { 1266 // Extend sk_buff to hold padding 1267 num_byte_pad = num_dma_byte - len_mpdu; 1268 if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad 1269 printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad); 1270 if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) { 1271 printk("%s openwifi_tx: WARNING sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx); 1272 goto openwifi_tx_early_out; 1273 } 1274 if (skb->sk != NULL) 1275 skb_set_owner_w(skb_new, skb->sk); 1276 dev_kfree_skb(skb); 1277 skb = skb_new; 1278 } 1279 skb_put( skb, num_byte_pad ); 1280 1281 dma_buf = skb->data; 1282 } 1283 // for(i = 0; i <= num_dma_symbol; i++) 1284 // printk("%16llx\n", (*(u64*)(&(dma_buf[i*8])))); 1285 1286 rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]); 1287 1288 retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) ); 1289 1290 queue_idx = drv_ring_idx; // from driver ring idx to FPGA queue_idx mapping 1291 1292 cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value]; 1293 cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value); 1294 tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | num_dma_symbol ); 1295 phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu ); 1296 1297 /* We must be sure that tx_flags is written last because the HW 1298 * looks at it to check if the rest of data is valid or not 1299 */ 1300 //wmb(); 1301 // entry->flags = cpu_to_le32(tx_flags); 1302 /* We must be sure this has been written before following HW 1303 * register write, because this write will make the HW attempts 1304 * to DMA the just-written data 1305 */ 1306 //wmb(); 1307 1308 spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt 1309 1310 // -------------check whether FPGA dma fifo and queue (queue_idx) has enough room------------- 1311 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); 1312 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 1313 if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<=RING_ROOM_THRESHOLD) || ring->stop_flag>=0 ) { 1314 if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP ) 1315 printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio%d queue%d no room flag%x hwq len%08x request%d wr%d rd%d\n", sdr_compatible_str, 1316 prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx); 1317 1318 ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read 1319 ring->stop_flag = prio; 1320 if (priv->stat.stat_enable) { 1321 priv->stat.tx_prio_stop1_num[prio]++; 1322 priv->stat.tx_queue_stop1_num[queue_idx]++; 1323 } 1324 // goto openwifi_tx_early_out_after_lock; 1325 } 1326 // --------end of check whether FPGA fifo (queue_idx) has enough room------------ 1327 1328 status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL); 1329 while(delay_count<100 && status!=DMA_COMPLETE) { 1330 status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL); 1331 delay_count++; 1332 udelay(4); 1333 } 1334 if (status!=DMA_COMPLETE) { 1335 printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str); 1336 goto openwifi_tx_early_out_after_lock; 1337 } 1338 1339 //-------------------------fire skb DMA to hardware---------------------------------- 1340 dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf, 1341 num_dma_byte, DMA_MEM_TO_DEV); 1342 1343 if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) { 1344 // dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n"); 1345 printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx); 1346 goto openwifi_tx_early_out_after_lock; 1347 } 1348 1349 sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start 1350 sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr; 1351 sg_dma_len( &(priv->tx_sg) ) = num_dma_byte; 1352 1353 tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg); 1354 tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config); 1355 tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config); 1356 priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL); 1357 if (!(priv->txd)) { 1358 printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd)); 1359 goto openwifi_tx_after_dma_mapping; 1360 } 1361 1362 priv->tx_cookie = priv->txd->tx_submit(priv->txd); 1363 1364 if (dma_submit_error(priv->tx_cookie)) { 1365 printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie)); 1366 goto openwifi_tx_after_dma_mapping; 1367 } 1368 1369 // seems everything is ok. let's mark this pkt in bd descriptor ring 1370 ring->bds[ring->bd_wr_idx].prio = prio; 1371 ring->bds[ring->bd_wr_idx].len_mpdu = len_mpdu; 1372 ring->bds[ring->bd_wr_idx].seq_no = seq_no; 1373 ring->bds[ring->bd_wr_idx].skb_linked = skb; 1374 ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr; 1375 1376 ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1)); 1377 1378 dma_async_issue_pending(priv->tx_chan); 1379 1380 spin_unlock_irqrestore(&priv->lock, flags); 1381 1382 if (priv->stat.stat_enable) { 1383 priv->stat.tx_prio_num[prio]++; 1384 priv->stat.tx_queue_num[queue_idx]++; 1385 } 1386 1387 return; 1388 1389 openwifi_tx_after_dma_mapping: 1390 dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV); 1391 1392 openwifi_tx_early_out_after_lock: 1393 spin_unlock_irqrestore(&priv->lock, flags); 1394 report_pkt_loss_due_to_driver_drop(dev, skb); 1395 // dev_kfree_skb(skb); 1396 // printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); 1397 return; 1398 1399 openwifi_tx_early_out: 1400 report_pkt_loss_due_to_driver_drop(dev, skb); 1401 // dev_kfree_skb(skb); 1402 // printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); 1403 } 1404 1405 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant) 1406 { 1407 struct openwifi_priv *priv = dev->priv; 1408 u8 fpga_tx_ant_setting, target_rx_ant; 1409 u32 atten_mdb_tx0, atten_mdb_tx1; 1410 struct ctrl_outs_control ctrl_out; 1411 int ret; 1412 1413 printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant); 1414 1415 if (tx_ant >= 4 || tx_ant == 0) { 1416 return -EINVAL; 1417 } else if (rx_ant >= 3 || rx_ant == 0) { 1418 return -EINVAL; 1419 } 1420 1421 fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16)); 1422 target_rx_ant = ((rx_ant&1)?0:1); 1423 1424 // try rf chip setting firstly, only update internal state variable when rf chip succeed 1425 atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); 1426 atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); 1427 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true); 1428 if (ret < 0) { 1429 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0); 1430 return -EINVAL; 1431 } else { 1432 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0); 1433 } 1434 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true); 1435 if (ret < 0) { 1436 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1); 1437 return -EINVAL; 1438 } else { 1439 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1); 1440 } 1441 1442 ctrl_out.en_mask = priv->ctrl_out.en_mask; 1443 ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); 1444 ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out)); 1445 if (ret < 0) { 1446 printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); 1447 return -EINVAL; 1448 } else { 1449 printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); 1450 } 1451 1452 tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting); 1453 ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read(); 1454 if (ret != fpga_tx_ant_setting) { 1455 printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret); 1456 return -EINVAL; 1457 } else { 1458 printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); 1459 } 1460 1461 rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant); 1462 ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read(); 1463 if (ret != target_rx_ant) { 1464 printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret); 1465 return -EINVAL; 1466 } else { 1467 printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); 1468 } 1469 1470 // update internal state variable 1471 priv->runtime_tx_ant_cfg = tx_ant; 1472 priv->runtime_rx_ant_cfg = rx_ant; 1473 1474 if (TX_OFFSET_TUNING_ENABLE) 1475 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE 1476 else { 1477 if (tx_ant == 3) 1478 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH; 1479 else 1480 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1); 1481 } 1482 1483 priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1); 1484 priv->ctrl_out.index=ctrl_out.index; 1485 1486 priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg]; 1487 priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg]; 1488 1489 return 0; 1490 } 1491 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant) 1492 { 1493 struct openwifi_priv *priv = dev->priv; 1494 1495 *tx_ant = priv->runtime_tx_ant_cfg; 1496 *rx_ant = priv->runtime_rx_ant_cfg; 1497 1498 printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant); 1499 1500 printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str, 1501 priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index); 1502 1503 printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str, 1504 tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read()); 1505 1506 printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str, 1507 ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER)); 1508 1509 return 0; 1510 } 1511 1512 static int openwifi_start(struct ieee80211_hw *dev) 1513 { 1514 struct openwifi_priv *priv = dev->priv; 1515 int ret, i; 1516 u32 reg; 1517 1518 for (i=0; i<MAX_NUM_VIF; i++) { 1519 priv->vif[i] = NULL; 1520 } 1521 1522 // //keep software registers persistent between NIC down and up for multiple times 1523 /*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val)); 1524 memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val)); 1525 memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val)); 1526 memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val)); 1527 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/ 1528 1529 //turn on radio 1530 openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); 1531 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); 1532 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { 1533 priv->rfkill_off = 1;// 0 off, 1 on 1534 printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str); 1535 } 1536 else 1537 printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); 1538 1539 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); 1540 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); 1541 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); 1542 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); 1543 xpu_api->hw_init(priv->xpu_cfg); 1544 1545 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); 1546 1547 printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); 1548 printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); 1549 1550 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt 1551 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode 1552 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status 1553 1554 priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm"); 1555 if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) { 1556 ret = PTR_ERR(priv->rx_chan); 1557 pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan); 1558 goto err_dma; 1559 } 1560 1561 priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s"); 1562 if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) { 1563 ret = PTR_ERR(priv->tx_chan); 1564 pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan); 1565 goto err_dma; 1566 } 1567 printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan); 1568 1569 ret = openwifi_init_rx_ring(priv); 1570 if (ret) { 1571 printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret); 1572 goto err_free_rings; 1573 } 1574 1575 priv->seqno=0; 1576 for (i=0; i<MAX_NUM_SW_QUEUE; i++) { 1577 if ((ret = openwifi_init_tx_ring(priv, i))) { 1578 printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret); 1579 goto err_free_rings; 1580 } 1581 } 1582 1583 if ( (ret = rx_dma_setup(dev)) ) { 1584 printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret); 1585 goto err_free_rings; 1586 } 1587 1588 priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1); 1589 ret = request_irq(priv->irq_rx, openwifi_rx_interrupt, 1590 IRQF_SHARED, "sdr,rx_pkt_intr", dev); 1591 if (ret) { 1592 wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n"); 1593 goto err_free_rings; 1594 } else { 1595 printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx); 1596 } 1597 1598 priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3); 1599 ret = request_irq(priv->irq_tx, openwifi_tx_interrupt, 1600 IRQF_SHARED, "sdr,tx_itrpt", dev); 1601 if (ret) { 1602 wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n"); 1603 goto err_free_rings; 1604 } else { 1605 printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx); 1606 } 1607 1608 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM 1609 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt 1610 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS 1611 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer 1612 1613 priv->stat.csma_cfg0 = xpu_api->XPU_REG_FORCE_IDLE_MISC_read(); 1614 1615 // disable ad9361 auto calibration and enable openwifi fpga spi control 1616 priv->ad9361_phy->state->auto_cal_en = false; // turn off auto Tx quadrature calib. 1617 priv->ad9361_phy->state->manual_tx_quad_cal_en = true; // turn on manual Tx quadrature calib. 1618 xpu_api->XPU_REG_SPI_DISABLE_write(0); 1619 1620 // normal_out: 1621 printk("%s openwifi_start: normal end\n", sdr_compatible_str); 1622 return 0; 1623 1624 err_free_rings: 1625 openwifi_free_rx_ring(priv); 1626 for (i=0; i<MAX_NUM_SW_QUEUE; i++) 1627 openwifi_free_tx_ring(priv, i); 1628 1629 err_dma: 1630 ret = -1; 1631 printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret); 1632 return ret; 1633 } 1634 1635 static void openwifi_stop(struct ieee80211_hw *dev) 1636 { 1637 struct openwifi_priv *priv = dev->priv; 1638 u32 reg, reg1; 1639 int i; 1640 1641 // enable ad9361 auto calibration and disable openwifi fpga spi control 1642 priv->ad9361_phy->state->auto_cal_en = true; // turn on auto Tx quadrature calib. 1643 priv->ad9361_phy->state->manual_tx_quad_cal_en = false; // turn off manual Tx quadrature calib. 1644 xpu_api->XPU_REG_SPI_DISABLE_write(1); 1645 1646 //turn off radio 1647 #if 1 1648 ad9361_tx_mute(priv->ad9361_phy, 1); 1649 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 1650 reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); 1651 if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { 1652 priv->rfkill_off = 0;// 0 off, 1 on 1653 printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str); 1654 } 1655 else 1656 printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); 1657 #endif 1658 1659 //ieee80211_stop_queue(dev, 0); 1660 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt 1661 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode 1662 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status 1663 1664 for (i=0; i<MAX_NUM_VIF; i++) { 1665 priv->vif[i] = NULL; 1666 } 1667 1668 openwifi_free_rx_ring(priv); 1669 for (i=0; i<MAX_NUM_SW_QUEUE; i++) 1670 openwifi_free_tx_ring(priv, i); 1671 1672 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan)); 1673 dmaengine_terminate_all(priv->rx_chan); 1674 dma_release_channel(priv->rx_chan); 1675 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan)); 1676 dmaengine_terminate_all(priv->tx_chan); 1677 dma_release_channel(priv->tx_chan); 1678 1679 //priv->rf->stop(dev); 1680 1681 free_irq(priv->irq_rx, dev); 1682 free_irq(priv->irq_tx, dev); 1683 1684 // normal_out: 1685 printk("%s openwifi_stop\n", sdr_compatible_str); 1686 } 1687 1688 static u64 openwifi_get_tsf(struct ieee80211_hw *dev, 1689 struct ieee80211_vif *vif) 1690 { 1691 u32 tsft_low, tsft_high; 1692 1693 tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read(); 1694 tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read(); 1695 //printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); 1696 return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); 1697 } 1698 1699 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf) 1700 { 1701 u32 tsft_high = ((tsf >> 32)&0xffffffff); 1702 u32 tsft_low = (tsf&0xffffffff); 1703 xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low); 1704 printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); 1705 } 1706 1707 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 1708 { 1709 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); 1710 printk("%s openwifi_reset_tsf\n", sdr_compatible_str); 1711 } 1712 1713 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value) 1714 { 1715 printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value); 1716 return(0); 1717 } 1718 1719 static void openwifi_beacon_work(struct work_struct *work) 1720 { 1721 struct openwifi_vif *vif_priv = 1722 container_of(work, struct openwifi_vif, beacon_work.work); 1723 struct ieee80211_vif *vif = 1724 container_of((void *)vif_priv, struct ieee80211_vif, drv_priv); 1725 struct ieee80211_hw *dev = vif_priv->dev; 1726 struct ieee80211_mgmt *mgmt; 1727 struct sk_buff *skb; 1728 1729 /* don't overflow the tx ring */ 1730 if (ieee80211_queue_stopped(dev, 0)) 1731 goto resched; 1732 1733 /* grab a fresh beacon */ 1734 skb = ieee80211_beacon_get(dev, vif); 1735 if (!skb) 1736 goto resched; 1737 1738 /* 1739 * update beacon timestamp w/ TSF value 1740 * TODO: make hardware update beacon timestamp 1741 */ 1742 mgmt = (struct ieee80211_mgmt *)skb->data; 1743 mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif)); 1744 1745 /* TODO: use actual beacon queue */ 1746 skb_set_queue_mapping(skb, 0); 1747 openwifi_tx(dev, NULL, skb); 1748 1749 resched: 1750 /* 1751 * schedule next beacon 1752 * TODO: use hardware support for beacon timing 1753 */ 1754 schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int)); 1755 // printk("%s openwifi_beacon_work beacon_int %d\n", sdr_compatible_str, vif->bss_conf.beacon_int); 1756 } 1757 1758 static int openwifi_add_interface(struct ieee80211_hw *dev, 1759 struct ieee80211_vif *vif) 1760 { 1761 int i; 1762 struct openwifi_priv *priv = dev->priv; 1763 struct openwifi_vif *vif_priv; 1764 1765 switch (vif->type) { 1766 case NL80211_IFTYPE_AP: 1767 case NL80211_IFTYPE_STATION: 1768 case NL80211_IFTYPE_ADHOC: 1769 case NL80211_IFTYPE_MONITOR: 1770 case NL80211_IFTYPE_MESH_POINT: 1771 break; 1772 default: 1773 return -EOPNOTSUPP; 1774 } 1775 // let's support more than 1 interface 1776 for (i=0; i<MAX_NUM_VIF; i++) { 1777 if (priv->vif[i] == NULL) 1778 break; 1779 } 1780 1781 printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i); 1782 1783 if (i==MAX_NUM_VIF) 1784 return -EBUSY; 1785 1786 priv->vif[i] = vif; 1787 1788 /* Initialize driver private area */ 1789 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1790 vif_priv->idx = i; 1791 1792 vif_priv->dev = dev; 1793 INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work); 1794 vif_priv->enable_beacon = false; 1795 1796 priv->mac_addr[0] = vif->addr[0]; 1797 priv->mac_addr[1] = vif->addr[1]; 1798 priv->mac_addr[2] = vif->addr[2]; 1799 priv->mac_addr[3] = vif->addr[3]; 1800 priv->mac_addr[4] = vif->addr[4]; 1801 priv->mac_addr[5] = vif->addr[5]; 1802 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); // set mac addr in fpga 1803 1804 printk("%s openwifi_add_interface end with vif idx %d addr %02x:%02x:%02x:%02x:%02x:%02x\n", sdr_compatible_str,vif_priv->idx, 1805 vif->addr[0],vif->addr[1],vif->addr[2],vif->addr[3],vif->addr[4],vif->addr[5]); 1806 1807 return 0; 1808 } 1809 1810 static void openwifi_remove_interface(struct ieee80211_hw *dev, 1811 struct ieee80211_vif *vif) 1812 { 1813 struct openwifi_vif *vif_priv; 1814 struct openwifi_priv *priv = dev->priv; 1815 1816 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1817 priv->vif[vif_priv->idx] = NULL; 1818 printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx); 1819 } 1820 1821 static int openwifi_config(struct ieee80211_hw *dev, u32 changed) 1822 { 1823 struct openwifi_priv *priv = dev->priv; 1824 struct ieee80211_conf *conf = &dev->conf; 1825 1826 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { 1827 if ( priv->stat.restrict_freq_mhz>0 && (conf->chandef.chan->center_freq != priv->stat.restrict_freq_mhz) ) { 1828 printk("%s openwifi_config avoid Linux requested freq %dMHz (restrict freq %dMHz)\n", sdr_compatible_str, 1829 conf->chandef.chan->center_freq, priv->stat.restrict_freq_mhz); 1830 return -EINVAL; 1831 } 1832 priv->rf->set_chan(dev, conf); 1833 } else 1834 printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed); 1835 1836 return 0; 1837 } 1838 1839 static void openwifi_bss_info_changed(struct ieee80211_hw *dev, 1840 struct ieee80211_vif *vif, 1841 struct ieee80211_bss_conf *info, 1842 u32 changed) 1843 { 1844 struct openwifi_priv *priv = dev->priv; 1845 struct openwifi_vif *vif_priv; 1846 u32 bssid_low, bssid_high; 1847 1848 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1849 1850 //be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it! 1851 //printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]); 1852 if (changed & BSS_CHANGED_BSSID) { 1853 printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]); 1854 // write new bssid to our HW, and do not change bssid filter 1855 //u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read(); 1856 bssid_low = ( *( (u32*)(info->bssid) ) ); 1857 bssid_high = ( *( (u16*)(info->bssid+4) ) ); 1858 1859 //bssid_filter_high = (bssid_filter_high&0x80000000); 1860 //bssid_high = (bssid_high|bssid_filter_high); 1861 xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low); 1862 xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high); 1863 } 1864 1865 if (changed & BSS_CHANGED_BEACON_INT) { 1866 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int); 1867 } 1868 1869 if (changed & BSS_CHANGED_TXPOWER) 1870 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower); 1871 1872 if (changed & BSS_CHANGED_ERP_CTS_PROT) 1873 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot); 1874 1875 if (changed & BSS_CHANGED_BASIC_RATES) 1876 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates); 1877 1878 if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) { 1879 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str, 1880 changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot); 1881 if (info->use_short_slot && priv->use_short_slot==false) { 1882 priv->use_short_slot=true; 1883 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 1884 } else if ((!info->use_short_slot) && priv->use_short_slot==true) { 1885 priv->use_short_slot=false; 1886 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 1887 } 1888 } 1889 1890 if (changed & BSS_CHANGED_BEACON_ENABLED) { 1891 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str); 1892 vif_priv->enable_beacon = info->enable_beacon; 1893 } 1894 1895 if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) { 1896 cancel_delayed_work_sync(&vif_priv->beacon_work); 1897 if (vif_priv->enable_beacon) { 1898 schedule_work(&vif_priv->beacon_work.work); 1899 printk("%s openwifi_bss_info_changed WARNING enable_beacon\n",sdr_compatible_str); 1900 } 1901 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str, 1902 changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON); 1903 } 1904 } 1905 // helper function 1906 u32 log2val(u32 val){ 1907 u32 ret_val = 0 ; 1908 while(val>1){ 1909 val = val >> 1 ; 1910 ret_val ++ ; 1911 } 1912 return ret_val ; 1913 } 1914 1915 static int openwifi_conf_tx(struct ieee80211_hw *dev, struct ieee80211_vif *vif, u16 queue, 1916 const struct ieee80211_tx_queue_params *params) 1917 { 1918 struct openwifi_priv *priv = dev->priv; 1919 u32 reg_val, cw_min_exp, cw_max_exp; 1920 1921 if (priv->stat.cw_max_min_cfg == 0) { 1922 printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n", 1923 sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop); 1924 1925 reg_val=xpu_api->XPU_REG_CSMA_CFG_read(); 1926 cw_min_exp = (log2val(params->cw_min + 1) & 0x0F); 1927 cw_max_exp = (log2val(params->cw_max + 1) & 0x0F); 1928 switch(queue){ 1929 case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) ); break; 1930 case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) ); break; 1931 case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break; 1932 case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break; 1933 default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0); 1934 } 1935 } else { 1936 reg_val = priv->stat.cw_max_min_cfg; 1937 printk("%s openwifi_conf_tx: override cw max min for q3 to q0: %d %d; %d %d; %d %d; %d %d\n", 1938 sdr_compatible_str, 1939 (1<<((reg_val>>28)&0xF))-1, 1940 (1<<((reg_val>>24)&0xF))-1, 1941 (1<<((reg_val>>20)&0xF))-1, 1942 (1<<((reg_val>>16)&0xF))-1, 1943 (1<<((reg_val>>12)&0xF))-1, 1944 (1<<((reg_val>> 8)&0xF))-1, 1945 (1<<((reg_val>> 4)&0xF))-1, 1946 (1<<((reg_val>> 0)&0xF))-1); 1947 } 1948 xpu_api->XPU_REG_CSMA_CFG_write(reg_val); 1949 return(0); 1950 } 1951 1952 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev, 1953 struct netdev_hw_addr_list *mc_list) 1954 { 1955 printk("%s openwifi_prepare_multicast\n", sdr_compatible_str); 1956 return netdev_hw_addr_list_count(mc_list); 1957 } 1958 1959 static void openwifi_configure_filter(struct ieee80211_hw *dev, 1960 unsigned int changed_flags, 1961 unsigned int *total_flags, 1962 u64 multicast) 1963 { 1964 struct openwifi_priv *priv = dev->priv; 1965 u32 filter_flag; 1966 1967 (*total_flags) &= SDR_SUPPORTED_FILTERS; 1968 (*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer 1969 1970 filter_flag = (*total_flags); 1971 1972 filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO); 1973 //filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm 1974 1975 //if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR) 1976 if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode 1977 filter_flag = (filter_flag|MONITOR_ALL); 1978 else 1979 filter_flag = (filter_flag&(~MONITOR_ALL)); 1980 1981 if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) ) 1982 filter_flag = (filter_flag|MY_BEACON); 1983 1984 filter_flag = (filter_flag|FIF_PSPOLL); 1985 1986 if (priv->stat.rx_monitor_all) 1987 filter_flag = (filter_flag|MONITOR_ALL); 1988 1989 xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG); 1990 //xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt 1991 1992 printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str, 1993 (filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1); 1994 } 1995 1996 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) 1997 { 1998 struct ieee80211_sta *sta = params->sta; 1999 enum ieee80211_ampdu_mlme_action action = params->action; 2000 // struct openwifi_priv *priv = hw->priv; 2001 u16 max_tx_bytes, buf_size; 2002 u32 ampdu_action_config; 2003 2004 if (!AGGR_ENABLE) { 2005 return -EOPNOTSUPP; 2006 } 2007 2008 switch (action) 2009 { 2010 case IEEE80211_AMPDU_TX_START: 2011 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); 2012 printk("%s openwifi_ampdu_action: start TX aggregation. tid %d\n", sdr_compatible_str, params->tid); 2013 break; 2014 case IEEE80211_AMPDU_TX_STOP_CONT: 2015 case IEEE80211_AMPDU_TX_STOP_FLUSH: 2016 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: 2017 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); 2018 printk("%s openwifi_ampdu_action: stop TX aggregation. tid %d\n", sdr_compatible_str, params->tid); 2019 break; 2020 case IEEE80211_AMPDU_TX_OPERATIONAL: 2021 buf_size = 4; 2022 // buf_size = (params->buf_size) - 1; 2023 max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1; 2024 ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes ); 2025 tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config); 2026 printk("%s openwifi_ampdu_action: TX operational. tid %d max_tx_bytes %d ampdu_density %d buf_size %d\n", 2027 sdr_compatible_str, params->tid, max_tx_bytes, sta->ht_cap.ampdu_density, buf_size); 2028 break; 2029 case IEEE80211_AMPDU_RX_START: 2030 printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid); 2031 break; 2032 case IEEE80211_AMPDU_RX_STOP: 2033 printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid); 2034 break; 2035 default: 2036 return -EOPNOTSUPP; 2037 } 2038 2039 return 0; 2040 } 2041 2042 static const struct ieee80211_ops openwifi_ops = { 2043 .tx = openwifi_tx, 2044 .start = openwifi_start, 2045 .stop = openwifi_stop, 2046 .add_interface = openwifi_add_interface, 2047 .remove_interface = openwifi_remove_interface, 2048 .config = openwifi_config, 2049 .set_antenna = openwifi_set_antenna, 2050 .get_antenna = openwifi_get_antenna, 2051 .bss_info_changed = openwifi_bss_info_changed, 2052 .conf_tx = openwifi_conf_tx, 2053 .prepare_multicast = openwifi_prepare_multicast, 2054 .configure_filter = openwifi_configure_filter, 2055 .rfkill_poll = openwifi_rfkill_poll, 2056 .get_tsf = openwifi_get_tsf, 2057 .set_tsf = openwifi_set_tsf, 2058 .reset_tsf = openwifi_reset_tsf, 2059 .set_rts_threshold = openwifi_set_rts_threshold, 2060 .ampdu_action = openwifi_ampdu_action, 2061 .testmode_cmd = openwifi_testmode_cmd, 2062 }; 2063 2064 static const struct of_device_id openwifi_dev_of_ids[] = { 2065 { .compatible = "sdr,sdr", }, 2066 {} 2067 }; 2068 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids); 2069 2070 static int custom_match_spi_dev(struct device *dev, void *data) 2071 { 2072 const char *name = data; 2073 2074 bool ret = sysfs_streq(name, dev->of_node->name); 2075 printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret); 2076 return ret; 2077 } 2078 2079 static int custom_match_platform_dev(struct device *dev, void *data) 2080 { 2081 struct platform_device *plat_dev = to_platform_device(dev); 2082 const char *name = data; 2083 char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name); 2084 bool match_flag = (name_in_sys_bus_platform_devices != NULL); 2085 2086 if (match_flag) { 2087 printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name); 2088 } 2089 return(match_flag); 2090 } 2091 2092 static int openwifi_dev_probe(struct platform_device *pdev) 2093 { 2094 struct ieee80211_hw *dev; 2095 struct openwifi_priv *priv; 2096 int err=1, rand_val; 2097 const char *chip_name, *fpga_model; 2098 u32 reg, i;//, reg1; 2099 2100 struct device_node *np = pdev->dev.of_node; 2101 2102 struct device *tmp_dev; 2103 struct platform_device *tmp_pdev; 2104 struct iio_dev *tmp_indio_dev; 2105 // struct gpio_leds_priv *tmp_led_priv; 2106 2107 printk("\n"); 2108 2109 if (np) { 2110 const struct of_device_id *match; 2111 2112 match = of_match_node(openwifi_dev_of_ids, np); 2113 if (match) { 2114 printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str); 2115 err = 0; 2116 } 2117 } 2118 2119 if (err) 2120 return err; 2121 2122 dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops); 2123 if (!dev) { 2124 printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str); 2125 err = -ENOMEM; 2126 goto err_free_dev; 2127 } 2128 2129 priv = dev->priv; 2130 priv->pdev = pdev; 2131 2132 err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model); 2133 if(err < 0) { 2134 printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err); 2135 priv->fpga_type = SMALL_FPGA; 2136 } else { 2137 // LARGE FPGAs (i.e. ZCU102, Z7035, ZC706) 2138 if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL) 2139 priv->fpga_type = LARGE_FPGA; 2140 // SMALL FPGA: (i.e. ZED, ZC702, Z7020) 2141 else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL) 2142 priv->fpga_type = SMALL_FPGA; 2143 } 2144 2145 // //-------------find ad9361-phy driver for lo/channel control--------------- 2146 priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux 2147 priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux 2148 priv->last_tx_quad_cal_lo = 1000; 2149 tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev ); 2150 if (tmp_dev == NULL) { 2151 printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str); 2152 err = -ENODEV; 2153 goto err_free_dev; 2154 } 2155 printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data)); 2156 if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) { 2157 printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str); 2158 err = -ENODEV; 2159 goto err_free_dev; 2160 } 2161 2162 priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev); 2163 if (!(priv->ad9361_phy)) { 2164 printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str); 2165 err = -ENODEV; 2166 goto err_free_dev; 2167 } 2168 printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias); 2169 2170 // //-------------find driver: axi_ad9361 hdl ref design module, dac channel--------------- 2171 tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev ); 2172 if (!tmp_dev) { 2173 printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str); 2174 err = -ENODEV; 2175 goto err_free_dev; 2176 } 2177 2178 tmp_pdev = to_platform_device(tmp_dev); 2179 if (!tmp_pdev) { 2180 printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str); 2181 err = -ENODEV; 2182 goto err_free_dev; 2183 } 2184 2185 tmp_indio_dev = platform_get_drvdata(tmp_pdev); 2186 if (!tmp_indio_dev) { 2187 printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str); 2188 err = -ENODEV; 2189 goto err_free_dev; 2190 } 2191 2192 priv->dds_st = iio_priv(tmp_indio_dev); 2193 if (!(priv->dds_st)) { 2194 printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str); 2195 err = -ENODEV; 2196 goto err_free_dev; 2197 } 2198 printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name); 2199 cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA); 2200 printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str); 2201 2202 // //-------------find driver: axi_ad9361 hdl ref design module, adc channel--------------- 2203 // turn off radio by muting tx 2204 // ad9361_tx_mute(priv->ad9361_phy, 1); 2205 // reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 2206 // reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); 2207 // if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { 2208 // priv->rfkill_off = 0;// 0 off, 1 on 2209 // printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str); 2210 // } 2211 // else 2212 // printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); 2213 2214 // //-----------------------------parse the test_mode input-------------------------------- 2215 if (test_mode&1) 2216 AGGR_ENABLE = true; 2217 2218 // if (test_mode&2) 2219 // TX_OFFSET_TUNING_ENABLE = false; 2220 2221 priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel() 2222 priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized 2223 2224 //priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode 2225 priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode 2226 2227 priv->xpu_cfg = XPU_NORMAL; 2228 2229 priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL; 2230 priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL; 2231 2232 printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) ); 2233 if (priv->rf_bw == 20000000) { //DO NOT USE. Not used for long time. 2234 priv->rx_intf_cfg = RX_INTF_BYPASS; 2235 priv->tx_intf_cfg = TX_INTF_BYPASS; 2236 //priv->rx_freq_offset_to_lo_MHz = 0; 2237 //priv->tx_freq_offset_to_lo_MHz = 0; 2238 } else if (priv->rf_bw == 40000000) { 2239 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work 2240 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work 2241 2242 // // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps 2243 priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0; 2244 if (TX_OFFSET_TUNING_ENABLE) 2245 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364 2246 else 2247 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT0; 2248 // // try another antenna option 2249 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1; 2250 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; 2251 2252 #if 0 2253 if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) { 2254 priv->rx_freq_offset_to_lo_MHz = -10; 2255 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) { 2256 priv->rx_freq_offset_to_lo_MHz = 10; 2257 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) { 2258 priv->rx_freq_offset_to_lo_MHz = 0; 2259 } else { 2260 printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg); 2261 } 2262 #endif 2263 } else { 2264 printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw); 2265 err = -EBADRQC; 2266 goto err_free_dev; 2267 } 2268 2269 printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att); 2270 2271 priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2)); 2272 priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2); 2273 2274 priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK; 2275 priv->ctrl_out.index =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); 2276 2277 memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val)); 2278 memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val)); 2279 memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val)); 2280 memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val)); 2281 2282 priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att; 2283 2284 //let's by default turn radio on when probing 2285 err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); 2286 if (err) { 2287 printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err); 2288 err = -EIO; 2289 goto err_free_dev; 2290 } 2291 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER); 2292 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg); 2293 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE); 2294 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg); 2295 2296 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); 2297 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { 2298 priv->rfkill_off = 1;// 0 off, 1 on 2299 printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str); 2300 } else 2301 printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); 2302 2303 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV; 2304 2305 // //set ad9361 in certain mode 2306 #if 0 2307 err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw); 2308 printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); 2309 err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw); 2310 printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); 2311 2312 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); 2313 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); 2314 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); 2315 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); 2316 printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); 2317 printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); 2318 #endif 2319 2320 dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle. 2321 2322 SET_IEEE80211_DEV(dev, &pdev->dev); 2323 platform_set_drvdata(pdev, dev); 2324 2325 BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates)); 2326 BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates)); 2327 BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels)); 2328 BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels)); 2329 2330 memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates)); 2331 memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates)); 2332 memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels)); 2333 memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels)); 2334 2335 priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM) 2336 priv->channel = 44; //currently useless. this can be changed by band _rf_set_channel() 2337 priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT 2338 priv->ampdu_reference = 0; 2339 2340 priv->band_2GHz.band = NL80211_BAND_2GHZ; 2341 priv->band_2GHz.channels = priv->channels_2GHz; 2342 priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz); 2343 priv->band_2GHz.bitrates = priv->rates_2GHz; 2344 priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz); 2345 priv->band_2GHz.ht_cap.ht_supported = true; 2346 // priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue 2347 if (AGGR_ENABLE) { 2348 priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; 2349 priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; 2350 } 2351 memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs)); 2352 priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff; 2353 priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 2354 dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz); 2355 2356 priv->band_5GHz.band = NL80211_BAND_5GHZ; 2357 priv->band_5GHz.channels = priv->channels_5GHz; 2358 priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz); 2359 priv->band_5GHz.bitrates = priv->rates_5GHz; 2360 priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz); 2361 priv->band_5GHz.ht_cap.ht_supported = true; 2362 // priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue 2363 if (AGGR_ENABLE) { 2364 priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; 2365 priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; 2366 } 2367 memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs)); 2368 priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff; 2369 priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 2370 dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz); 2371 2372 printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str, 2373 priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates); 2374 2375 // ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); // remove this because we don't want: mac80211.h: host buffers frame for PS and we fetch them via ieee80211_get_buffered_bc() 2376 ieee80211_hw_set(dev, RX_INCLUDES_FCS); 2377 ieee80211_hw_set(dev, BEACON_TX_STATUS);//mac80211.h: The device/driver provides TX status for sent beacons. 2378 2379 ieee80211_hw_set(dev, REPORTS_TX_ACK_STATUS);//mac80211.h: Hardware can provide ack status reports of Tx frames to the stack 2380 2381 // * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device 2382 // * autonomously manages the PS status of connected stations. When 2383 // * this flag is set mac80211 will not trigger PS mode for connected 2384 // * stations based on the PM bit of incoming frames. 2385 // * Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure 2386 // * the PS mode of connected stations. 2387 ieee80211_hw_set(dev, AP_LINK_PS); 2388 2389 if (AGGR_ENABLE) { 2390 ieee80211_hw_set(dev, AMPDU_AGGREGATION); 2391 } 2392 2393 dev->extra_tx_headroom = LEN_MPDU_DELIM; 2394 2395 dev->vif_data_size = sizeof(struct openwifi_vif); 2396 dev->wiphy->interface_modes = 2397 BIT(NL80211_IFTYPE_MONITOR)| 2398 BIT(NL80211_IFTYPE_P2P_GO) | 2399 BIT(NL80211_IFTYPE_P2P_CLIENT) | 2400 BIT(NL80211_IFTYPE_AP) | 2401 BIT(NL80211_IFTYPE_STATION) | 2402 BIT(NL80211_IFTYPE_ADHOC) | 2403 BIT(NL80211_IFTYPE_MESH_POINT) | 2404 BIT(NL80211_IFTYPE_OCB); 2405 dev->wiphy->iface_combinations = &openwifi_if_comb; 2406 dev->wiphy->n_iface_combinations = 1; 2407 2408 dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK; 2409 dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK; 2410 2411 dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation 2412 //dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config 2413 wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd); 2414 2415 chip_name = "ZYNQ"; 2416 2417 /* we declare to MAC80211 all the queues except for beacon queue 2418 * that will be eventually handled by DRV. 2419 * TX rings are arranged in such a way that lower is the IDX, 2420 * higher is the priority, in order to achieve direct mapping 2421 * with mac80211, however the beacon queue is an exception and it 2422 * is mapped on the highst tx ring IDX. 2423 */ 2424 dev->queues = MAX_NUM_HW_QUEUE; 2425 //dev->queues = 1; 2426 2427 ieee80211_hw_set(dev, SIGNAL_DBM); 2428 2429 wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 2430 2431 priv->rf = &ad9361_rf_ops; 2432 2433 memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map)); 2434 priv->slice_idx = 0xFFFFFFFF; 2435 2436 sg_init_table(&(priv->tx_sg), 1); 2437 2438 get_random_bytes(&rand_val, sizeof(rand_val)); 2439 rand_val%=250; 2440 priv->mac_addr[0]=0x66; priv->mac_addr[1]=0x55; priv->mac_addr[2]=0x44; priv->mac_addr[3]=0x33; priv->mac_addr[4]=0x22; 2441 priv->mac_addr[5]=rand_val+1; 2442 //priv->mac_addr[5]=0x11; 2443 if (!is_valid_ether_addr(priv->mac_addr)) { 2444 printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str); 2445 eth_random_addr(priv->mac_addr); 2446 } 2447 printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]); 2448 SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr); 2449 2450 spin_lock_init(&priv->lock); 2451 2452 err = ieee80211_register_hw(dev); 2453 if (err) { 2454 pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str); 2455 err = -EIO; 2456 goto err_free_dev; 2457 } else { 2458 printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err); 2459 } 2460 2461 // create sysfs for arbitrary iq setting 2462 sysfs_bin_attr_init(&priv->bin_iq); 2463 priv->bin_iq.attr.name = "tx_intf_iq_data"; 2464 priv->bin_iq.attr.mode = S_IWUSR | S_IRUGO; 2465 priv->bin_iq.write = openwifi_tx_intf_bin_iq_write; 2466 priv->bin_iq.read = openwifi_tx_intf_bin_iq_read; 2467 priv->bin_iq.size = 4096; 2468 err = sysfs_create_bin_file(&pdev->dev.kobj, &priv->bin_iq); 2469 printk("%s openwifi_dev_probe: sysfs_create_bin_file %d\n",sdr_compatible_str, err); 2470 if (err < 0) 2471 goto err_free_dev; 2472 2473 priv->tx_intf_arbitrary_iq_num = 0; 2474 // priv->tx_intf_arbitrary_iq[0] = 1; 2475 // priv->tx_intf_arbitrary_iq[1] = 2; 2476 2477 err = sysfs_create_group(&pdev->dev.kobj, &tx_intf_attribute_group); 2478 printk("%s openwifi_dev_probe: sysfs_create_group tx_intf_attribute_group %d\n",sdr_compatible_str, err); 2479 if (err < 0) 2480 goto err_free_dev; 2481 priv->tx_intf_iq_ctl = 0; 2482 2483 // create sysfs for stat 2484 err = sysfs_create_group(&pdev->dev.kobj, &stat_attribute_group); 2485 printk("%s openwifi_dev_probe: sysfs_create_group stat_attribute_group %d\n",sdr_compatible_str, err); 2486 if (err < 0) 2487 goto err_free_dev; 2488 2489 priv->stat.stat_enable = 0; // by default disable 2490 2491 for (i=0; i<MAX_NUM_SW_QUEUE; i++) { 2492 priv->stat.tx_prio_num[i] = 0; 2493 priv->stat.tx_prio_interrupt_num[i] = 0; 2494 priv->stat.tx_prio_stop0_fake_num[i] = 0; 2495 priv->stat.tx_prio_stop0_real_num[i] = 0; 2496 priv->stat.tx_prio_stop1_num[i] = 0; 2497 priv->stat.tx_prio_wakeup_num[i] = 0; 2498 } 2499 for (i=0; i<MAX_NUM_HW_QUEUE; i++) { 2500 priv->stat.tx_queue_num[i] = 0; 2501 priv->stat.tx_queue_interrupt_num[i] = 0; 2502 priv->stat.tx_queue_stop0_fake_num[i] = 0; 2503 priv->stat.tx_queue_stop0_real_num[i] = 0; 2504 priv->stat.tx_queue_stop1_num[i] = 0; 2505 priv->stat.tx_queue_wakeup_num[i] = 0; 2506 } 2507 2508 priv->stat.tx_data_pkt_need_ack_num_total = 0; 2509 priv->stat.tx_data_pkt_need_ack_num_total_fail = 0; 2510 for (i=0; i<6; i++) { 2511 priv->stat.tx_data_pkt_need_ack_num_retx[i] = 0; 2512 priv->stat.tx_data_pkt_need_ack_num_retx_fail[i] = 0; 2513 } 2514 priv->stat.tx_data_pkt_mcs_realtime = 0; 2515 priv->stat.tx_data_pkt_fail_mcs_realtime = 0; 2516 2517 priv->stat.tx_mgmt_pkt_need_ack_num_total = 0; 2518 priv->stat.tx_mgmt_pkt_need_ack_num_total_fail = 0; 2519 for (i=0; i<3; i++) { 2520 priv->stat.tx_mgmt_pkt_need_ack_num_retx[i] = 0; 2521 priv->stat.tx_mgmt_pkt_need_ack_num_retx_fail[i] = 0; 2522 } 2523 priv->stat.tx_mgmt_pkt_mcs_realtime = 0; 2524 priv->stat.tx_mgmt_pkt_fail_mcs_realtime = 0; 2525 2526 priv->stat.rx_monitor_all = 0; 2527 priv->stat.rx_target_sender_mac_addr = 0; 2528 priv->stat.rx_data_ok_agc_gain_value_realtime = 0; 2529 priv->stat.rx_data_fail_agc_gain_value_realtime = 0; 2530 priv->stat.rx_mgmt_ok_agc_gain_value_realtime = 0; 2531 priv->stat.rx_mgmt_fail_agc_gain_value_realtime = 0; 2532 priv->stat.rx_ack_ok_agc_gain_value_realtime = 0; 2533 2534 priv->stat.rx_monitor_all = 0; 2535 priv->stat.rx_data_pkt_num_total = 0; 2536 priv->stat.rx_data_pkt_num_fail = 0; 2537 priv->stat.rx_mgmt_pkt_num_total = 0; 2538 priv->stat.rx_mgmt_pkt_num_fail = 0; 2539 priv->stat.rx_ack_pkt_num_total = 0; 2540 priv->stat.rx_ack_pkt_num_fail = 0; 2541 2542 priv->stat.rx_data_pkt_mcs_realtime = 0; 2543 priv->stat.rx_data_pkt_fail_mcs_realtime = 0; 2544 priv->stat.rx_mgmt_pkt_mcs_realtime = 0; 2545 priv->stat.rx_mgmt_pkt_fail_mcs_realtime = 0; 2546 priv->stat.rx_ack_pkt_mcs_realtime = 0; 2547 2548 priv->stat.restrict_freq_mhz = 0; 2549 2550 priv->stat.csma_cfg0 = 0; 2551 priv->stat.cw_max_min_cfg = 0; 2552 2553 2554 // // //--------------------hook leds (not complete yet)-------------------------------- 2555 // tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field 2556 // if (!tmp_dev) { 2557 // printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str); 2558 // err = -ENOMEM; 2559 // goto err_free_dev; 2560 // } 2561 2562 // tmp_pdev = to_platform_device(tmp_dev); 2563 // if (!tmp_pdev) { 2564 // printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str); 2565 // err = -ENOMEM; 2566 // goto err_free_dev; 2567 // } 2568 2569 // tmp_led_priv = platform_get_drvdata(tmp_pdev); 2570 // if (!tmp_led_priv) { 2571 // printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str); 2572 // err = -ENOMEM; 2573 // goto err_free_dev; 2574 // } 2575 // printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds); 2576 // if (tmp_led_priv->num_leds!=4){ 2577 // printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds); 2578 // err = -ENOMEM; 2579 // goto err_free_dev; 2580 // } 2581 // gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it 2582 // gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it 2583 // priv->num_led = tmp_led_priv->num_leds; 2584 // priv->led[0] = &(tmp_led_priv->leds[0].cdev); 2585 // priv->led[1] = &(tmp_led_priv->leds[1].cdev); 2586 // priv->led[2] = &(tmp_led_priv->leds[2].cdev); 2587 // priv->led[3] = &(tmp_led_priv->leds[3].cdev); 2588 2589 // snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy)); 2590 // snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy)); 2591 // snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy)); 2592 // snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy)); 2593 2594 wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n", 2595 priv->mac_addr, chip_name, priv->rf->name); 2596 2597 openwifi_rfkill_init(dev); 2598 return 0; 2599 2600 err_free_dev: 2601 ieee80211_free_hw(dev); 2602 2603 return err; 2604 } 2605 2606 static int openwifi_dev_remove(struct platform_device *pdev) 2607 { 2608 struct ieee80211_hw *dev = platform_get_drvdata(pdev); 2609 struct openwifi_priv *priv = dev->priv; 2610 2611 if (!dev) { 2612 pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev); 2613 return(-1); 2614 } 2615 2616 sysfs_remove_bin_file(&pdev->dev.kobj, &priv->bin_iq); 2617 sysfs_remove_group(&pdev->dev.kobj, &tx_intf_attribute_group); 2618 sysfs_remove_group(&pdev->dev.kobj, &stat_attribute_group); 2619 2620 openwifi_rfkill_exit(dev); 2621 ieee80211_unregister_hw(dev); 2622 ieee80211_free_hw(dev); 2623 return(0); 2624 } 2625 2626 static struct platform_driver openwifi_dev_driver = { 2627 .driver = { 2628 .name = "sdr,sdr", 2629 .owner = THIS_MODULE, 2630 .of_match_table = openwifi_dev_of_ids, 2631 }, 2632 .probe = openwifi_dev_probe, 2633 .remove = openwifi_dev_remove, 2634 }; 2635 2636 module_platform_driver(openwifi_dev_driver); 2637