1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos 2 // SPDX-FileCopyrightText: 2022 UGent 3 // SPDX-License-Identifier: AGPL-3.0-or-later 4 5 #include <linux/bitops.h> 6 #include <linux/dmapool.h> 7 #include <linux/io.h> 8 #include <linux/iopoll.h> 9 #include <linux/of_address.h> 10 #include <linux/of_platform.h> 11 #include <linux/of_irq.h> 12 #include <linux/slab.h> 13 #include <linux/clk.h> 14 #include <linux/io-64-nonatomic-lo-hi.h> 15 16 #include <linux/delay.h> 17 #include <linux/interrupt.h> 18 19 #include <linux/dmaengine.h> 20 #include <linux/slab.h> 21 #include <linux/delay.h> 22 #include <linux/etherdevice.h> 23 24 #include <linux/init.h> 25 #include <linux/kthread.h> 26 #include <linux/module.h> 27 #include <linux/of_dma.h> 28 #include <linux/platform_device.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/wait.h> 32 #include <linux/sched/task.h> 33 #include <linux/dma/xilinx_dma.h> 34 #include <linux/spi/spi.h> 35 #include <net/mac80211.h> 36 37 #include <linux/clk.h> 38 #include <linux/clkdev.h> 39 #include <linux/clk-provider.h> 40 41 #include <linux/iio/iio.h> 42 #include <linux/iio/sysfs.h> 43 44 #include <linux/gpio.h> 45 #include <linux/leds.h> 46 47 #define IIO_AD9361_USE_PRIVATE_H_ 48 #include <../../drivers/iio/adc/ad9361_regs.h> 49 #include <../../drivers/iio/adc/ad9361.h> 50 #include <../../drivers/iio/adc/ad9361_private.h> 51 52 #include <../../drivers/iio/frequency/cf_axi_dds.h> 53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num); 54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb, 55 bool tx1, bool tx2, bool immed); 56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy, 57 struct ctrl_outs_control *ctrl); 58 59 #include "../user_space/sdrctl_src/nl80211_testmode_def.h" 60 #include "hw_def.h" 61 #include "sdr.h" 62 #include "git_rev.h" 63 64 // driver API of component driver 65 extern struct tx_intf_driver_api *tx_intf_api; 66 extern struct rx_intf_driver_api *rx_intf_api; 67 extern struct openofdm_tx_driver_api *openofdm_tx_api; 68 extern struct openofdm_rx_driver_api *openofdm_rx_api; 69 extern struct xpu_driver_api *xpu_api; 70 71 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes); 72 u8 gen_mpdu_delim_crc(u16 m); 73 u32 reverse32(u32 d); 74 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant); 75 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant); 76 int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction); 77 int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction); 78 int rssi_correction_lookup_table(u32 freq_MHz); 79 80 #include "sdrctl_intf.c" 81 #include "sysfs_intf.c" 82 83 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1) 84 // Internal indication variables after parsing test_mode 85 static bool AGGR_ENABLE = false; 86 static bool TX_OFFSET_TUNING_ENABLE = false; 87 88 static int init_tx_att = 0; 89 90 MODULE_AUTHOR("Xianjun Jiao"); 91 MODULE_DESCRIPTION("SDR driver"); 92 MODULE_LICENSE("GPL v2"); 93 94 module_param(test_mode, int, 0); 95 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)"); 96 97 module_param(init_tx_att, int, 0); 98 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000 example: set to 3000 for 3dB attenuation"); 99 100 // ---------------rfkill--------------------------------------- 101 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv) 102 { 103 int reg; 104 105 if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH) 106 reg = ad9361_get_tx_atten(priv->ad9361_phy, 1); 107 else 108 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 109 110 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) 111 return true;// 0 off, 1 on 112 return false; 113 } 114 115 void openwifi_rfkill_init(struct ieee80211_hw *hw) 116 { 117 struct openwifi_priv *priv = hw->priv; 118 119 priv->rfkill_off = openwifi_is_radio_enabled(priv); 120 printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off"); 121 wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off); 122 wiphy_rfkill_start_polling(hw->wiphy); 123 } 124 125 void openwifi_rfkill_poll(struct ieee80211_hw *hw) 126 { 127 bool enabled; 128 struct openwifi_priv *priv = hw->priv; 129 130 enabled = openwifi_is_radio_enabled(priv); 131 // printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); 132 if (unlikely(enabled != priv->rfkill_off)) { 133 priv->rfkill_off = enabled; 134 printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); 135 wiphy_rfkill_set_hw_state(hw->wiphy, !enabled); 136 } 137 } 138 139 void openwifi_rfkill_exit(struct ieee80211_hw *hw) 140 { 141 printk("%s openwifi_rfkill_exit\n", sdr_compatible_str); 142 wiphy_rfkill_stop_polling(hw->wiphy); 143 } 144 //----------------rfkill end----------------------------------- 145 146 inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction) 147 { 148 return ((rssi_correction+rssi_dbm)<<1); 149 } 150 151 inline int rssi_correction_lookup_table(u32 freq_MHz) 152 { 153 int rssi_correction; 154 155 if (freq_MHz<2412) { 156 rssi_correction = 153; 157 } else if (freq_MHz<=2484) { 158 rssi_correction = 153; 159 } else if (freq_MHz<5160) { 160 rssi_correction = 153; 161 } else if (freq_MHz<=5240) { 162 rssi_correction = 145; 163 } else if (freq_MHz<=5320) { 164 rssi_correction = 148; 165 } else { 166 rssi_correction = 148; 167 } 168 169 return rssi_correction; 170 } 171 172 static void ad9361_rf_set_channel(struct ieee80211_hw *dev, 173 struct ieee80211_conf *conf) 174 { 175 struct openwifi_priv *priv = dev->priv; 176 u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz + priv->drv_rx_reg_val[DRV_RX_REG_IDX_EXTRA_FO]; 177 u32 actual_tx_lo; 178 bool change_flag = (actual_rx_lo != priv->actual_rx_lo); 179 int static_lbt_th, auto_lbt_th, fpga_lbt_th; 180 181 if (change_flag) { 182 actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz; 183 184 clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) ); 185 priv->actual_tx_lo = actual_tx_lo; 186 187 clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) ); 188 priv->actual_rx_lo = actual_rx_lo; 189 190 if (actual_rx_lo<2412) { 191 priv->rssi_correction = 153; 192 } else if (actual_rx_lo<=2484) { 193 priv->rssi_correction = 153; 194 } else if (actual_rx_lo<5160) { 195 priv->rssi_correction = 153; 196 } else if (actual_rx_lo<=5240) { 197 priv->rssi_correction = 145; 198 } else if (actual_rx_lo<=5320) { 199 priv->rssi_correction = 148; 200 } else { 201 priv->rssi_correction = 148; 202 } 203 204 // xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm 205 // xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44 206 auto_lbt_th = ((priv->rssi_correction-62-16)<<1); 207 static_lbt_th = priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]; 208 fpga_lbt_th = (static_lbt_th==0?auto_lbt_th:static_lbt_th); 209 xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th); 210 211 priv->last_auto_fpga_lbt_th = auto_lbt_th; 212 213 if (actual_rx_lo < 2500) { 214 if (priv->band != BAND_2_4GHZ) { 215 priv->band = BAND_2_4GHZ; 216 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 217 } 218 } else { 219 if (priv->band != BAND_5_8GHZ) { 220 priv->band = BAND_5_8GHZ; 221 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 222 } 223 } 224 printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d (auto %d static %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,auto_lbt_th,static_lbt_th); 225 } 226 } 227 228 const struct openwifi_rf_ops ad9361_rf_ops = { 229 .name = "ad9361", 230 // .init = ad9361_rf_init, 231 // .stop = ad9361_rf_stop, 232 .set_chan = ad9361_rf_set_channel, 233 // .calc_rssi = ad9361_rf_calc_rssi, 234 }; 235 236 u16 reverse16(u16 d) { 237 union u16_byte2 tmp0, tmp1; 238 tmp0.a = d; 239 tmp1.c[0] = tmp0.c[1]; 240 tmp1.c[1] = tmp0.c[0]; 241 return(tmp1.a); 242 } 243 244 u32 reverse32(u32 d) { 245 union u32_byte4 tmp0, tmp1; 246 tmp0.a = d; 247 tmp1.c[0] = tmp0.c[3]; 248 tmp1.c[1] = tmp0.c[2]; 249 tmp1.c[2] = tmp0.c[1]; 250 tmp1.c[3] = tmp0.c[0]; 251 return(tmp1.a); 252 } 253 254 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx) 255 { 256 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); 257 int i; 258 259 ring->stop_flag = 0; 260 ring->bd_wr_idx = 0; 261 ring->bd_rd_idx = 0; 262 ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL); 263 if (ring->bds==NULL) { 264 printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str); 265 return -ENOMEM; 266 } 267 268 for (i = 0; i < NUM_TX_BD; i++) { 269 ring->bds[i].skb_linked=0; // for tx, skb is from upper layer 270 //at first right after skb allocated, head, data, tail are the same. 271 ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine 272 ring->bds[i].seq_no = 0; 273 } 274 275 return 0; 276 } 277 278 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx) 279 { 280 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); 281 int i; 282 283 ring->stop_flag = 0; 284 ring->bd_wr_idx = 0; 285 ring->bd_rd_idx = 0; 286 for (i = 0; i < NUM_TX_BD; i++) { 287 if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0) 288 continue; 289 if (ring->bds[i].dma_mapping_addr != 0) 290 dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV); 291 // if (ring->bds[i].skb_linked!=NULL) 292 // dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception 293 if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) || 294 (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0)) 295 printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str, 296 ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr)); 297 298 ring->bds[i].skb_linked=0; 299 ring->bds[i].dma_mapping_addr = 0; 300 ring->bds[i].seq_no = 0; 301 } 302 if (ring->bds) 303 kfree(ring->bds); 304 ring->bds = NULL; 305 } 306 307 static int openwifi_init_rx_ring(struct openwifi_priv *priv) 308 { 309 int i; 310 u8 *pdata_tmp; 311 312 priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL); 313 if (!priv->rx_cyclic_buf) { 314 printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str); 315 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); 316 return(-1); 317 } 318 319 // Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA 320 for (i=0; i<NUM_RX_BD; i++) { 321 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning 322 (*((u32*)(pdata_tmp+0 ))) = 0; 323 (*((u32*)(pdata_tmp+4 ))) = 0; 324 } 325 printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str); 326 327 return 0; 328 } 329 330 static void openwifi_free_rx_ring(struct openwifi_priv *priv) 331 { 332 if (priv->rx_cyclic_buf) 333 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); 334 335 priv->rx_cyclic_buf_dma_mapping_addr = 0; 336 priv->rx_cyclic_buf = 0; 337 } 338 339 static int rx_dma_setup(struct ieee80211_hw *dev){ 340 struct openwifi_priv *priv = dev->priv; 341 struct dma_device *rx_dev = priv->rx_chan->device; 342 343 priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT); 344 if (!(priv->rxd)) { 345 openwifi_free_rx_ring(priv); 346 printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd)); 347 return(-1); 348 } 349 priv->rxd->callback = 0; 350 priv->rxd->callback_param = 0; 351 352 priv->rx_cookie = priv->rxd->tx_submit(priv->rxd); 353 354 if (dma_submit_error(priv->rx_cookie)) { 355 printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie)); 356 return(-1); 357 } 358 359 dma_async_issue_pending(priv->rx_chan); 360 return(0); 361 } 362 363 inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction) 364 { 365 int rssi_db, rssi_dbm; 366 367 rssi_db = (rssi_half_db>>1); 368 369 rssi_dbm = rssi_db - rssi_correction; 370 371 rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm); 372 373 return rssi_dbm; 374 } 375 376 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id) 377 { 378 struct ieee80211_hw *dev = dev_id; 379 struct openwifi_priv *priv = dev->priv; 380 struct ieee80211_rx_status rx_status = {0}; 381 struct sk_buff *skb; 382 struct ieee80211_hdr *hdr; 383 u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di; 384 bool ht_flag, short_gi, ht_aggr, ht_aggr_last; 385 // u32 dma_driver_buf_idx_mod; 386 u8 *pdata_tmp, fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw; 387 s8 signal; 388 u16 agc_status_and_pkt_exist_flag, rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0; 389 bool content_ok = false, len_overflow = false; 390 391 #ifdef USE_NEW_RX_INTERRUPT 392 int i; 393 spin_lock(&priv->lock); 394 for (i=0; i<NUM_RX_BD; i++) { 395 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; 396 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid 397 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer 398 continue; 399 #else 400 static u8 target_buf_idx_old = 0; 401 spin_lock(&priv->lock); 402 while(1) { // loop all rx buffers that have new rx packets 403 pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning 404 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); 405 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer 406 break; 407 #endif 408 409 tsft_low = (*((u32*)(pdata_tmp+0 ))); 410 tsft_high = (*((u32*)(pdata_tmp+4 ))); 411 rssi_val = (*((u16*)(pdata_tmp+8 ))); 412 len = (*((u16*)(pdata_tmp+12))); 413 414 len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false); 415 416 rate_idx = (*((u16*)(pdata_tmp+14))); 417 ht_flag = ((rate_idx&0x10)!=0); 418 short_gi = ((rate_idx&0x20)!=0); 419 ht_aggr = (ht_flag & ((rate_idx&0x40)!=0)); 420 ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0)); 421 rate_idx = (rate_idx&0x1F); 422 423 fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) ); 424 425 //phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1)); 426 // phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation 427 // dma_driver_buf_idx_mod = (state.residue&0x7f); 428 fcs_ok = ((fcs_ok&0x80)!=0); 429 430 if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) { 431 // if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) { 432 // printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod); 433 // } 434 content_ok = true; 435 } else { 436 printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str); 437 content_ok = false; 438 } 439 440 rssi_val = (rssi_val>>1); 441 if ( (rssi_val+128)<priv->rssi_correction ) 442 signal = -128; 443 else 444 signal = rssi_val - priv->rssi_correction; 445 446 // fc_di = (*((u32*)(pdata_tmp+16))); 447 // addr1_high16 = (*((u16*)(pdata_tmp+16+4))); 448 // addr1_low32 = (*((u32*)(pdata_tmp+16+4+2))); 449 // addr2_high16 = (*((u16*)(pdata_tmp+16+6+4))); 450 // addr2_low32 = (*((u32*)(pdata_tmp+16+6+4+2))); 451 // addr3_high16 = (*((u16*)(pdata_tmp+16+12+4))); 452 // addr3_low32 = (*((u32*)(pdata_tmp+16+12+4+2))); 453 if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) { 454 hdr = (struct ieee80211_hdr *)(pdata_tmp+16); 455 addr1_low32 = *((u32*)(hdr->addr1+2)); 456 addr1_high16 = *((u16*)(hdr->addr1)); 457 if (len>=20) { 458 addr2_low32 = *((u32*)(hdr->addr2+2)); 459 addr2_high16 = *((u16*)(hdr->addr2)); 460 } 461 if (len>=26) { 462 addr3_low32 = *((u32*)(hdr->addr3+2)); 463 addr3_high16 = *((u16*)(hdr->addr3)); 464 } 465 if (len>=28) 466 sc = hdr->seq_ctrl; 467 468 if ( (addr1_low32!=0xffffffff || addr1_high16!=0xffff) || (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&4) ) 469 printk("%s openwifi_rx_interrupt:%4dbytes ht%d aggr%d/%d sgi%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str, 470 len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id, 471 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), 472 #ifdef USE_NEW_RX_INTERRUPT 473 sc, fcs_ok, i, signal); 474 #else 475 sc, fcs_ok, target_buf_idx_old, signal); 476 #endif 477 } 478 479 // priv->phy_rx_sn_hw_old = phy_rx_sn_hw; 480 if (content_ok) { 481 skb = dev_alloc_skb(len); 482 if (skb) { 483 skb_put_data(skb,pdata_tmp+16,len); 484 485 rx_status.antenna = priv->runtime_rx_ant_cfg; 486 // def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M) 487 rx_status.rate_idx = wifi_rate_table_mapping[rate_idx]; 488 rx_status.signal = signal; 489 rx_status.freq = dev->conf.chandef.chan->center_freq; 490 rx_status.band = dev->conf.chandef.chan->band; 491 rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); 492 rx_status.flag |= RX_FLAG_MACTIME_START; 493 if (!fcs_ok) 494 rx_status.flag |= RX_FLAG_FAILED_FCS_CRC; 495 if (rate_idx <= 15) 496 rx_status.encoding = RX_ENC_LEGACY; 497 else 498 rx_status.encoding = RX_ENC_HT; 499 rx_status.bw = RATE_INFO_BW_20; 500 if (short_gi) 501 rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI; 502 if(ht_aggr) 503 { 504 rx_status.ampdu_reference = priv->ampdu_reference; 505 rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 506 if (ht_aggr_last) 507 rx_status.flag |= RX_FLAG_AMPDU_IS_LAST; 508 } 509 510 memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more. 511 ieee80211_rx_irqsafe(dev, skb); // call mac80211 function 512 } else 513 printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str); 514 515 if(ht_aggr_last) 516 priv->ampdu_reference++; 517 } 518 (*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed 519 loop_count++; 520 #ifndef USE_NEW_RX_INTERRUPT 521 target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1)); 522 #endif 523 } 524 525 if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) ) 526 printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count); 527 528 // openwifi_rx_interrupt_out: 529 spin_unlock(&priv->lock); 530 return IRQ_HANDLED; 531 } 532 533 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id) 534 { 535 struct ieee80211_hw *dev = dev_id; 536 struct openwifi_priv *priv = dev->priv; 537 struct openwifi_ring *ring; 538 struct sk_buff *skb; 539 struct ieee80211_tx_info *info; 540 u32 reg_val1, hw_queue_len, reg_val2, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0; 541 u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx; 542 u8 nof_retx=-1, last_bd_rd_idx, i; 543 u64 blk_ack_bitmap; 544 // u16 prio_rd_idx_store[64]={0}; 545 bool tx_fail=false; 546 547 spin_lock(&priv->lock); 548 549 while(1) { // loop all packets that have been sent by FPGA 550 reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read(); 551 reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read(); 552 blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32); 553 554 if (reg_val1!=0xFFFFFFFF) { 555 nof_retx = (reg_val1&0xF); 556 last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1)); 557 prio = ((reg_val1>>17)&0x3); 558 num_slot_random = ((reg_val1>>19)&0x1FF); 559 //num_slot_random = ((0xFF80000 ®_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE)); 560 cw = ((reg_val1>>28)&0xF); 561 //cw = ((0xF0000000 & reg_val1) >> 28); 562 if(cw > 10) { 563 cw = 10 ; 564 num_slot_random += 512 ; 565 } 566 pkt_cnt = (reg_val2&0x3F); 567 blk_ack_ssn = ((reg_val2>>6)&0xFFF); 568 569 ring = &(priv->tx_ring[prio]); 570 571 if ( ring->stop_flag == 1) { 572 // Wake up Linux queue if FPGA and driver ring have room 573 queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1)); 574 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); 575 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 576 577 if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) { 578 // printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter); 579 printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str, 580 prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, last_bd_rd_idx); 581 ieee80211_wake_queue(dev, prio); 582 ring->stop_flag = 0; 583 } 584 } 585 586 for(i = 1; i <= pkt_cnt; i++) 587 { 588 ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64; 589 seq_no = ring->bds[ring->bd_rd_idx].seq_no; 590 skb = ring->bds[ring->bd_rd_idx].skb_linked; 591 592 dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr, 593 skb->len, DMA_MEM_TO_DEV); 594 595 info = IEEE80211_SKB_CB(skb); 596 ieee80211_tx_info_clear_status(info); 597 598 // Aggregation packet 599 if(pkt_cnt > 1) 600 { 601 start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF)); 602 tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0); 603 info->flags |= IEEE80211_TX_STAT_AMPDU; 604 info->status.ampdu_len = 1; 605 info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1; 606 607 skb_pull(skb, LEN_MPDU_DELIM); 608 //skb_trim(skb, num_byte_pad_skb); 609 } 610 // Normal packet 611 else 612 { 613 tx_fail = ((blk_ack_bitmap&0x1)==0); 614 info->flags &= (~IEEE80211_TX_CTL_AMPDU); 615 } 616 617 if (tx_fail == false) 618 info->flags |= IEEE80211_TX_STAT_ACK; 619 620 info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate 621 info->status.rates[1].idx = -1; 622 info->status.rates[2].idx = -1; 623 info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES 4 624 info->status.antenna = priv->runtime_tx_ant_cfg; 625 626 if ( tx_fail && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) ) 627 printk("%s openwifi_tx_interrupt: WARNING pkt_no %d/%d tx_result [nof_retx %d pass %d] prio%d wr%d rd%d\n", sdr_compatible_str, i, pkt_cnt, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx); 628 if ( ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK))||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) ) 629 printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw); 630 631 ieee80211_tx_status_irqsafe(dev, skb); 632 } 633 634 loop_count++; 635 636 // printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx); 637 638 } else 639 break; 640 } 641 if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) ) 642 printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count); 643 644 spin_unlock(&priv->lock); 645 return IRQ_HANDLED; 646 } 647 648 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000}; 649 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes) 650 { 651 u32 i, crc = 0; 652 u8 idx; 653 for( i = 0; i < num_bytes; i++) 654 { 655 idx = (crc & 0x0F) ^ (data_in[i] & 0x0F); 656 crc = (crc >> 4) ^ crc_table[idx]; 657 658 idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F); 659 crc = (crc >> 4) ^ crc_table[idx]; 660 } 661 662 return crc; 663 } 664 665 u8 gen_mpdu_delim_crc(u16 m) 666 { 667 u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc; 668 669 for (i = 0; i < 16; i++) 670 { 671 temp = c[7] ^ ((m >> i) & 0x01); 672 673 c[7] = c[6]; 674 c[6] = c[5]; 675 c[5] = c[4]; 676 c[4] = c[3]; 677 c[3] = c[2]; 678 c[2] = c[1] ^ temp; 679 c[1] = c[0] ^ temp; 680 c[0] = temp; 681 } 682 mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7); 683 684 return mpdu_delim_crc; 685 } 686 687 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c 688 cdev_to_gpio_led_data(struct led_classdev *led_cdev) 689 { 690 return container_of(led_cdev, struct gpio_led_data, cdev); 691 } 692 693 static void openwifi_tx(struct ieee80211_hw *dev, 694 struct ieee80211_tx_control *control, 695 struct sk_buff *skb) 696 { 697 struct openwifi_priv *priv = dev->priv; 698 unsigned long flags; 699 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 700 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 701 struct openwifi_ring *ring = NULL; 702 dma_addr_t dma_mapping_addr; 703 unsigned int prio=0, i; 704 u32 num_dma_symbol, len_mpdu = 0, len_mpdu_delim_pad = 0, num_dma_byte, len_psdu, num_byte_pad; 705 u32 rate_signal_value,rate_hw_value=0,ack_flag; 706 u32 pkt_need_ack=0, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history; 707 u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration; 708 u8 fc_flag,fc_type,fc_subtype,retry_limit_raw=0,use_short_gi=0,*dma_buf,retry_limit_hw_value,rc_flags,*qos_hdr; 709 bool use_rts_cts, use_cts_protect=false, ht_aggr_start=false, use_ht_rate=false, use_ht_aggr=false, addr_flag, cts_use_traffic_rate=false, force_use_cts_protect=false; 710 __le16 frame_control,duration_id; 711 u32 dma_fifo_no_room_flag, hw_queue_len; 712 enum dma_status status; 713 714 static u32 addr1_low32_prev = -1, rate_hw_value_prev = -1, pkt_need_ack_prev = -1; 715 static u16 addr1_high16_prev = -1; 716 static __le16 duration_id_prev = -1; 717 static unsigned int prio_prev = -1; 718 static u8 retry_limit_raw_prev = -1; 719 static u8 use_short_gi_prev = -1; 720 721 // static bool led_status=0; 722 // struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]); 723 724 // if ( (priv->phy_tx_sn&7) ==0 ) { 725 // openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read(); 726 // if (openofdm_state_history!=openofdm_state_history_old){ 727 // led_status = (~led_status); 728 // openofdm_state_history_old = openofdm_state_history; 729 // gpiod_set_value(led_dat->gpiod, led_status); 730 // } 731 // } 732 733 if (skb->data_len>0) {// more data are not in linear data area skb->data 734 printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str); 735 goto openwifi_tx_early_out; 736 } 737 738 len_mpdu = skb->len; 739 740 // get Linux priority/queue setting info and target mac address 741 prio = skb_get_queue_mapping(skb); 742 addr1_low32 = *((u32*)(hdr->addr1+2)); 743 ring = &(priv->tx_ring[prio]); 744 745 // -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" ----------- 746 if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config 747 queue_idx = prio; 748 } else {// customized prio to queue_idx mapping 749 //if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only 750 // check current packet belonging to which slice/hw-queue 751 for (i=0; i<MAX_NUM_HW_QUEUE; i++) { 752 if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) { 753 break; 754 } 755 } 756 //} 757 queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest. 758 } 759 // -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------ 760 // get other info from packet header 761 addr1_high16 = *((u16*)(hdr->addr1)); 762 if (len_mpdu>=20) { 763 addr2_low32 = *((u32*)(hdr->addr2+2)); 764 addr2_high16 = *((u16*)(hdr->addr2)); 765 } 766 if (len_mpdu>=26) { 767 addr3_low32 = *((u32*)(hdr->addr3+2)); 768 addr3_high16 = *((u16*)(hdr->addr3)); 769 } 770 771 duration_id = hdr->duration_id; 772 frame_control=hdr->frame_control; 773 ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK); 774 fc_type = ((frame_control)>>2)&3; 775 fc_subtype = ((frame_control)>>4)&0xf; 776 fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) ); 777 //if it is broadcasting or multicasting addr 778 addr_flag = ( (addr1_low32==0 && addr1_high16==0) || 779 (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) || 780 (addr1_high16==0x3333) || 781 (addr1_high16==0x0001 && hdr->addr1[2]==0x5E) ); 782 if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame 783 pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent 784 } else { 785 pkt_need_ack = 0; 786 } 787 788 // get Linux rate (MCS) setting 789 rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value; 790 //rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M 791 if (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0 && fc_type==2 && (!addr_flag)) //rate override command 792 rate_hw_value = priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]; 793 794 retry_limit_raw = info->control.rates[0].count; 795 796 rc_flags = info->control.rates[0].flags; 797 use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0); 798 use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0); 799 use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0); 800 use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0); 801 use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0); 802 803 if (use_rts_cts) 804 printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx); 805 806 if (use_cts_protect) { 807 cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value; 808 cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info)); 809 } else if (force_use_cts_protect) { // could override mac80211 setting here. 810 cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M) 811 sifs = (priv->actual_rx_lo<2500?10:16); 812 if (pkt_need_ack) 813 ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL) 814 traffic_pkt_duration = 20 + 4*(((22+len_mpdu*8)/wifi_n_dbps_table[rate_hw_value])+1); 815 cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration); 816 } 817 818 // this is 11b stuff 819 // if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 820 // printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str); 821 822 if (len_mpdu>=28) { 823 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 824 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 825 priv->seqno += 0x10; 826 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 827 hdr->seq_ctrl |= cpu_to_le16(priv->seqno); 828 } 829 sc = hdr->seq_ctrl; 830 } 831 832 if ( ( (!addr_flag)||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) ) 833 printk("%s openwifi_tx: %4dbytes ht%d aggr%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str, 834 len_mpdu, (use_ht_rate == false ? 0 : 1), (use_ht_aggr == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id, 835 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), 836 sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx, 837 // use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration, 838 ring->bd_wr_idx,ring->bd_rd_idx); 839 840 // printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str, 841 // info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags, 842 // info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags, 843 // info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags, 844 // info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags); 845 846 // -----------end of preprocess some info from header and skb---------------- 847 848 // /* HW will perform RTS-CTS when only RTS flags is set. 849 // * HW will perform CTS-to-self when both RTS and CTS flags are set. 850 // * RTS rate and RTS duration will be used also for CTS-to-self. 851 // */ 852 // if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 853 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; 854 // rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config 855 // len_mpdu, info); 856 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str); 857 // } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 858 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; 859 // rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config 860 // len_mpdu, info); 861 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str); 862 // } 863 864 if(use_ht_aggr) 865 { 866 qos_hdr = ieee80211_get_qos_ctl(hdr); 867 if(ieee80211_is_data_qos(frame_control) == false || qos_hdr[0] != priv->tid) 868 { 869 printk("%s openwifi_tx: WARNING packet is either not qos or tid %u does not match registered tid %u\n", sdr_compatible_str, qos_hdr[0], priv->tid); 870 goto openwifi_tx_early_out; 871 } 872 873 // psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ] 874 len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4); 875 len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad; 876 877 if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) || 878 (rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) || 879 (prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) ) 880 { 881 addr1_low32_prev = addr1_low32; 882 addr1_high16_prev = addr1_high16; 883 duration_id_prev = duration_id; 884 rate_hw_value_prev = rate_hw_value; 885 use_short_gi_prev = use_short_gi; 886 prio_prev = prio; 887 retry_limit_raw_prev = retry_limit_raw; 888 pkt_need_ack_prev = pkt_need_ack; 889 890 ht_aggr_start = true; 891 } 892 } 893 else 894 { 895 // psdu = [ MPDU ] 896 len_psdu = len_mpdu; 897 898 addr1_low32_prev = -1; 899 addr1_high16_prev = -1; 900 duration_id_prev = -1; 901 use_short_gi_prev = -1; 902 rate_hw_value_prev = -1; 903 prio_prev = -1; 904 retry_limit_raw_prev = -1; 905 pkt_need_ack_prev = -1; 906 } 907 num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0); 908 909 // check whether the packet is bigger than DMA buffer size 910 num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS); 911 if (num_dma_byte > TX_BD_BUF_SIZE) { 912 printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx); 913 goto openwifi_tx_early_out; 914 } 915 916 // Copy MPDU delimiter and padding into sk_buff 917 if(use_ht_aggr) 918 { 919 // when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary 920 if (skb_headroom(skb)<LEN_MPDU_DELIM) { 921 struct sk_buff *skb_new; // in case original skb headroom is not enough to host MPDU delimiter 922 printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_MPDU_DELIM\n", sdr_compatible_str, ring->bd_wr_idx); 923 if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) { 924 printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx); 925 goto openwifi_tx_early_out; 926 } 927 if (skb->sk != NULL) 928 skb_set_owner_w(skb_new, skb->sk); 929 dev_kfree_skb(skb); 930 skb = skb_new; 931 } 932 skb_push( skb, LEN_MPDU_DELIM ); 933 dma_buf = skb->data; 934 935 // fill in MPDU delimiter 936 *((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0; 937 *((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf)); 938 *((u8 *)(dma_buf+3)) = 0x4e; 939 940 // Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter 941 num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu); 942 if (skb_tailroom(skb)<num_byte_pad) { 943 printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx); 944 goto openwifi_tx_early_out; 945 } 946 skb_put( skb, num_byte_pad ); 947 948 // fill in MPDU CRC 949 *((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu); 950 951 // fill in MPDU delimiter padding 952 memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad); 953 954 // num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary. 955 // If they have different lengths, add "empty MPDU delimiter" for alignment 956 if(num_dma_byte == len_psdu + 4) 957 { 958 *((u32*)(dma_buf+len_psdu)) = 0x4e140000; 959 len_psdu = num_dma_byte; 960 } 961 } 962 else 963 { 964 // Extend sk_buff to hold padding 965 num_byte_pad = num_dma_byte - len_mpdu; 966 if (skb_tailroom(skb)<num_byte_pad) { 967 printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx); 968 goto openwifi_tx_early_out; 969 } 970 skb_put( skb, num_byte_pad ); 971 972 dma_buf = skb->data; 973 } 974 // for(i = 0; i <= num_dma_symbol; i++) 975 // printk("%16llx\n", (*(u64*)(&(dma_buf[i*8])))); 976 977 rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]); 978 979 retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) ); 980 981 cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value]; 982 cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value); 983 tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | (len_mpdu+LEN_PHY_CRC) ); 984 phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu ); 985 986 /* We must be sure that tx_flags is written last because the HW 987 * looks at it to check if the rest of data is valid or not 988 */ 989 //wmb(); 990 // entry->flags = cpu_to_le32(tx_flags); 991 /* We must be sure this has been written before following HW 992 * register write, because this write will make the HW attempts 993 * to DMA the just-written data 994 */ 995 //wmb(); 996 997 spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt 998 999 // -------------check whether FPGA dma fifo and queue (queue_idx) has enough room------------- 1000 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); 1001 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 1002 if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD) || ring->stop_flag==1 ) { 1003 ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read 1004 printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str, 1005 prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx); 1006 ring->stop_flag = 1; 1007 goto openwifi_tx_early_out_after_lock; 1008 } 1009 // --------end of check whether FPGA fifo (queue_idx) has enough room------------ 1010 1011 status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL); 1012 if (status!=DMA_COMPLETE) { 1013 printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str); 1014 goto openwifi_tx_early_out_after_lock; 1015 } 1016 1017 //-------------------------fire skb DMA to hardware---------------------------------- 1018 dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf, 1019 num_dma_byte, DMA_MEM_TO_DEV); 1020 1021 if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) { 1022 // dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n"); 1023 printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx); 1024 goto openwifi_tx_early_out_after_lock; 1025 } 1026 1027 sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start 1028 sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr; 1029 sg_dma_len( &(priv->tx_sg) ) = num_dma_byte; 1030 1031 tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg); 1032 tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config); 1033 tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config); 1034 priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL); 1035 if (!(priv->txd)) { 1036 printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd)); 1037 goto openwifi_tx_after_dma_mapping; 1038 } 1039 1040 priv->tx_cookie = priv->txd->tx_submit(priv->txd); 1041 1042 if (dma_submit_error(priv->tx_cookie)) { 1043 printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie)); 1044 goto openwifi_tx_after_dma_mapping; 1045 } 1046 1047 // seems everything is ok. let's mark this pkt in bd descriptor ring 1048 ring->bds[ring->bd_wr_idx].seq_no = (sc&IEEE80211_SCTL_SEQ)>>4; 1049 ring->bds[ring->bd_wr_idx].skb_linked = skb; 1050 ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr; 1051 1052 ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1)); 1053 1054 dma_async_issue_pending(priv->tx_chan); 1055 1056 spin_unlock_irqrestore(&priv->lock, flags); 1057 1058 return; 1059 1060 openwifi_tx_after_dma_mapping: 1061 dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV); 1062 1063 openwifi_tx_early_out_after_lock: 1064 dev_kfree_skb(skb); 1065 spin_unlock_irqrestore(&priv->lock, flags); 1066 // printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); 1067 return; 1068 1069 openwifi_tx_early_out: 1070 //dev_kfree_skb(skb); 1071 // printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); 1072 } 1073 1074 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant) 1075 { 1076 struct openwifi_priv *priv = dev->priv; 1077 u8 fpga_tx_ant_setting, target_rx_ant; 1078 u32 atten_mdb_tx0, atten_mdb_tx1; 1079 struct ctrl_outs_control ctrl_out; 1080 int ret; 1081 1082 printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant); 1083 1084 if (tx_ant >= 4 || tx_ant == 0) { 1085 return -EINVAL; 1086 } else if (rx_ant >= 3 || rx_ant == 0) { 1087 return -EINVAL; 1088 } 1089 1090 fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16)); 1091 target_rx_ant = ((rx_ant&1)?0:1); 1092 1093 // try rf chip setting firstly, only update internal state variable when rf chip succeed 1094 atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); 1095 atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); 1096 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true); 1097 if (ret < 0) { 1098 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0); 1099 return -EINVAL; 1100 } else { 1101 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0); 1102 } 1103 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true); 1104 if (ret < 0) { 1105 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1); 1106 return -EINVAL; 1107 } else { 1108 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1); 1109 } 1110 1111 ctrl_out.en_mask = priv->ctrl_out.en_mask; 1112 ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); 1113 ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out)); 1114 if (ret < 0) { 1115 printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); 1116 return -EINVAL; 1117 } else { 1118 printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); 1119 } 1120 1121 tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting); 1122 ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read(); 1123 if (ret != fpga_tx_ant_setting) { 1124 printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret); 1125 return -EINVAL; 1126 } else { 1127 printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); 1128 } 1129 1130 rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant); 1131 ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read(); 1132 if (ret != target_rx_ant) { 1133 printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret); 1134 return -EINVAL; 1135 } else { 1136 printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); 1137 } 1138 1139 // update internal state variable 1140 priv->runtime_tx_ant_cfg = tx_ant; 1141 priv->runtime_rx_ant_cfg = rx_ant; 1142 1143 if (TX_OFFSET_TUNING_ENABLE) 1144 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE 1145 else { 1146 if (tx_ant == 3) 1147 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH; 1148 else 1149 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1); 1150 } 1151 1152 priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1); 1153 priv->ctrl_out.index=ctrl_out.index; 1154 1155 priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg]; 1156 priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg]; 1157 1158 return 0; 1159 } 1160 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant) 1161 { 1162 struct openwifi_priv *priv = dev->priv; 1163 1164 *tx_ant = priv->runtime_tx_ant_cfg; 1165 *rx_ant = priv->runtime_rx_ant_cfg; 1166 1167 printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant); 1168 1169 printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str, 1170 priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index); 1171 1172 printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str, 1173 tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read()); 1174 1175 printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str, 1176 ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER)); 1177 1178 return 0; 1179 } 1180 1181 static int openwifi_start(struct ieee80211_hw *dev) 1182 { 1183 struct openwifi_priv *priv = dev->priv; 1184 int ret, i; 1185 u32 reg; 1186 1187 for (i=0; i<MAX_NUM_VIF; i++) { 1188 priv->vif[i] = NULL; 1189 } 1190 1191 // //keep software registers persistent between NIC down and up for multiple times 1192 /*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val)); 1193 memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val)); 1194 memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val)); 1195 memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val)); 1196 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/ 1197 1198 //turn on radio 1199 openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); 1200 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); 1201 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { 1202 priv->rfkill_off = 1;// 0 off, 1 on 1203 printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str); 1204 } 1205 else 1206 printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); 1207 1208 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); 1209 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); 1210 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); 1211 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); 1212 xpu_api->hw_init(priv->xpu_cfg); 1213 1214 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); 1215 1216 printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); 1217 printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); 1218 1219 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt 1220 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode 1221 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status 1222 1223 priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm"); 1224 if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) { 1225 ret = PTR_ERR(priv->rx_chan); 1226 pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan); 1227 goto err_dma; 1228 } 1229 1230 priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s"); 1231 if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) { 1232 ret = PTR_ERR(priv->tx_chan); 1233 pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan); 1234 goto err_dma; 1235 } 1236 printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan); 1237 1238 ret = openwifi_init_rx_ring(priv); 1239 if (ret) { 1240 printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret); 1241 goto err_free_rings; 1242 } 1243 1244 priv->seqno=0; 1245 for (i=0; i<MAX_NUM_SW_QUEUE; i++) { 1246 if ((ret = openwifi_init_tx_ring(priv, i))) { 1247 printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret); 1248 goto err_free_rings; 1249 } 1250 } 1251 1252 if ( (ret = rx_dma_setup(dev)) ) { 1253 printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret); 1254 goto err_free_rings; 1255 } 1256 1257 priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1); 1258 ret = request_irq(priv->irq_rx, openwifi_rx_interrupt, 1259 IRQF_SHARED, "sdr,rx_pkt_intr", dev); 1260 if (ret) { 1261 wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n"); 1262 goto err_free_rings; 1263 } else { 1264 printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx); 1265 } 1266 1267 priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3); 1268 ret = request_irq(priv->irq_tx, openwifi_tx_interrupt, 1269 IRQF_SHARED, "sdr,tx_itrpt", dev); 1270 if (ret) { 1271 wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n"); 1272 goto err_free_rings; 1273 } else { 1274 printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx); 1275 } 1276 1277 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM 1278 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt 1279 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS 1280 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer 1281 1282 1283 // normal_out: 1284 printk("%s openwifi_start: normal end\n", sdr_compatible_str); 1285 return 0; 1286 1287 err_free_rings: 1288 openwifi_free_rx_ring(priv); 1289 for (i=0; i<MAX_NUM_SW_QUEUE; i++) 1290 openwifi_free_tx_ring(priv, i); 1291 1292 err_dma: 1293 ret = -1; 1294 printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret); 1295 return ret; 1296 } 1297 1298 static void openwifi_stop(struct ieee80211_hw *dev) 1299 { 1300 struct openwifi_priv *priv = dev->priv; 1301 u32 reg, reg1; 1302 int i; 1303 1304 1305 //turn off radio 1306 #if 1 1307 ad9361_tx_mute(priv->ad9361_phy, 1); 1308 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 1309 reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); 1310 if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { 1311 priv->rfkill_off = 0;// 0 off, 1 on 1312 printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str); 1313 } 1314 else 1315 printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); 1316 #endif 1317 1318 //ieee80211_stop_queue(dev, 0); 1319 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt 1320 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode 1321 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status 1322 1323 for (i=0; i<MAX_NUM_VIF; i++) { 1324 priv->vif[i] = NULL; 1325 } 1326 1327 openwifi_free_rx_ring(priv); 1328 for (i=0; i<MAX_NUM_SW_QUEUE; i++) 1329 openwifi_free_tx_ring(priv, i); 1330 1331 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan)); 1332 dmaengine_terminate_all(priv->rx_chan); 1333 dma_release_channel(priv->rx_chan); 1334 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan)); 1335 dmaengine_terminate_all(priv->tx_chan); 1336 dma_release_channel(priv->tx_chan); 1337 1338 //priv->rf->stop(dev); 1339 1340 free_irq(priv->irq_rx, dev); 1341 free_irq(priv->irq_tx, dev); 1342 1343 // normal_out: 1344 printk("%s openwifi_stop\n", sdr_compatible_str); 1345 } 1346 1347 static u64 openwifi_get_tsf(struct ieee80211_hw *dev, 1348 struct ieee80211_vif *vif) 1349 { 1350 u32 tsft_low, tsft_high; 1351 1352 tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read(); 1353 tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read(); 1354 //printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); 1355 return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); 1356 } 1357 1358 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf) 1359 { 1360 u32 tsft_high = ((tsf >> 32)&0xffffffff); 1361 u32 tsft_low = (tsf&0xffffffff); 1362 xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low); 1363 printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); 1364 } 1365 1366 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 1367 { 1368 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); 1369 printk("%s openwifi_reset_tsf\n", sdr_compatible_str); 1370 } 1371 1372 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value) 1373 { 1374 printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value); 1375 return(0); 1376 } 1377 1378 static void openwifi_beacon_work(struct work_struct *work) 1379 { 1380 struct openwifi_vif *vif_priv = 1381 container_of(work, struct openwifi_vif, beacon_work.work); 1382 struct ieee80211_vif *vif = 1383 container_of((void *)vif_priv, struct ieee80211_vif, drv_priv); 1384 struct ieee80211_hw *dev = vif_priv->dev; 1385 struct ieee80211_mgmt *mgmt; 1386 struct sk_buff *skb; 1387 1388 /* don't overflow the tx ring */ 1389 if (ieee80211_queue_stopped(dev, 0)) 1390 goto resched; 1391 1392 /* grab a fresh beacon */ 1393 skb = ieee80211_beacon_get(dev, vif); 1394 if (!skb) 1395 goto resched; 1396 1397 /* 1398 * update beacon timestamp w/ TSF value 1399 * TODO: make hardware update beacon timestamp 1400 */ 1401 mgmt = (struct ieee80211_mgmt *)skb->data; 1402 mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif)); 1403 1404 /* TODO: use actual beacon queue */ 1405 skb_set_queue_mapping(skb, 0); 1406 openwifi_tx(dev, NULL, skb); 1407 1408 resched: 1409 /* 1410 * schedule next beacon 1411 * TODO: use hardware support for beacon timing 1412 */ 1413 schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int)); 1414 // printk("%s openwifi_beacon_work beacon_int %d\n", sdr_compatible_str, vif->bss_conf.beacon_int); 1415 } 1416 1417 static int openwifi_add_interface(struct ieee80211_hw *dev, 1418 struct ieee80211_vif *vif) 1419 { 1420 int i; 1421 struct openwifi_priv *priv = dev->priv; 1422 struct openwifi_vif *vif_priv; 1423 1424 switch (vif->type) { 1425 case NL80211_IFTYPE_AP: 1426 case NL80211_IFTYPE_STATION: 1427 case NL80211_IFTYPE_ADHOC: 1428 case NL80211_IFTYPE_MONITOR: 1429 case NL80211_IFTYPE_MESH_POINT: 1430 break; 1431 default: 1432 return -EOPNOTSUPP; 1433 } 1434 // let's support more than 1 interface 1435 for (i=0; i<MAX_NUM_VIF; i++) { 1436 if (priv->vif[i] == NULL) 1437 break; 1438 } 1439 1440 printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i); 1441 1442 if (i==MAX_NUM_VIF) 1443 return -EBUSY; 1444 1445 priv->vif[i] = vif; 1446 1447 /* Initialize driver private area */ 1448 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1449 vif_priv->idx = i; 1450 1451 vif_priv->dev = dev; 1452 INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work); 1453 vif_priv->enable_beacon = false; 1454 1455 priv->mac_addr[0] = vif->addr[0]; 1456 priv->mac_addr[1] = vif->addr[1]; 1457 priv->mac_addr[2] = vif->addr[2]; 1458 priv->mac_addr[3] = vif->addr[3]; 1459 priv->mac_addr[4] = vif->addr[4]; 1460 priv->mac_addr[5] = vif->addr[5]; 1461 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); // set mac addr in fpga 1462 1463 printk("%s openwifi_add_interface end with vif idx %d addr %02x:%02x:%02x:%02x:%02x:%02x\n", sdr_compatible_str,vif_priv->idx, 1464 vif->addr[0],vif->addr[1],vif->addr[2],vif->addr[3],vif->addr[4],vif->addr[5]); 1465 1466 return 0; 1467 } 1468 1469 static void openwifi_remove_interface(struct ieee80211_hw *dev, 1470 struct ieee80211_vif *vif) 1471 { 1472 struct openwifi_vif *vif_priv; 1473 struct openwifi_priv *priv = dev->priv; 1474 1475 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1476 priv->vif[vif_priv->idx] = NULL; 1477 printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx); 1478 } 1479 1480 static int openwifi_config(struct ieee80211_hw *dev, u32 changed) 1481 { 1482 struct openwifi_priv *priv = dev->priv; 1483 struct ieee80211_conf *conf = &dev->conf; 1484 1485 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) 1486 priv->rf->set_chan(dev, conf); 1487 else 1488 printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed); 1489 1490 return 0; 1491 } 1492 1493 static void openwifi_bss_info_changed(struct ieee80211_hw *dev, 1494 struct ieee80211_vif *vif, 1495 struct ieee80211_bss_conf *info, 1496 u32 changed) 1497 { 1498 struct openwifi_priv *priv = dev->priv; 1499 struct openwifi_vif *vif_priv; 1500 u32 bssid_low, bssid_high; 1501 1502 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1503 1504 //be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it! 1505 //printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]); 1506 if (changed & BSS_CHANGED_BSSID) { 1507 printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]); 1508 // write new bssid to our HW, and do not change bssid filter 1509 //u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read(); 1510 bssid_low = ( *( (u32*)(info->bssid) ) ); 1511 bssid_high = ( *( (u16*)(info->bssid+4) ) ); 1512 1513 //bssid_filter_high = (bssid_filter_high&0x80000000); 1514 //bssid_high = (bssid_high|bssid_filter_high); 1515 xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low); 1516 xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high); 1517 } 1518 1519 if (changed & BSS_CHANGED_BEACON_INT) { 1520 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int); 1521 } 1522 1523 if (changed & BSS_CHANGED_TXPOWER) 1524 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower); 1525 1526 if (changed & BSS_CHANGED_ERP_CTS_PROT) 1527 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot); 1528 1529 if (changed & BSS_CHANGED_BASIC_RATES) 1530 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates); 1531 1532 if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) { 1533 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str, 1534 changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot); 1535 if (info->use_short_slot && priv->use_short_slot==false) { 1536 priv->use_short_slot=true; 1537 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 1538 } else if ((!info->use_short_slot) && priv->use_short_slot==true) { 1539 priv->use_short_slot=false; 1540 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 1541 } 1542 } 1543 1544 if (changed & BSS_CHANGED_BEACON_ENABLED) { 1545 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str); 1546 vif_priv->enable_beacon = info->enable_beacon; 1547 } 1548 1549 if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) { 1550 cancel_delayed_work_sync(&vif_priv->beacon_work); 1551 if (vif_priv->enable_beacon) { 1552 schedule_work(&vif_priv->beacon_work.work); 1553 printk("%s openwifi_bss_info_changed WARNING enable_beacon\n",sdr_compatible_str); 1554 } 1555 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str, 1556 changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON); 1557 } 1558 } 1559 // helper function 1560 u32 log2val(u32 val){ 1561 u32 ret_val = 0 ; 1562 while(val>1){ 1563 val = val >> 1 ; 1564 ret_val ++ ; 1565 } 1566 return ret_val ; 1567 } 1568 1569 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue, 1570 const struct ieee80211_tx_queue_params *params) 1571 { 1572 u32 reg_val, cw_min_exp, cw_max_exp; 1573 1574 printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n", 1575 sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop); 1576 1577 reg_val=xpu_api->XPU_REG_CSMA_CFG_read(); 1578 cw_min_exp = (log2val(params->cw_min + 1) & 0x0F); 1579 cw_max_exp = (log2val(params->cw_max + 1) & 0x0F); 1580 switch(queue){ 1581 case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) ); break; 1582 case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) ); break; 1583 case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break; 1584 case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break; 1585 default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0); 1586 } 1587 xpu_api->XPU_REG_CSMA_CFG_write(reg_val); 1588 return(0); 1589 } 1590 1591 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev, 1592 struct netdev_hw_addr_list *mc_list) 1593 { 1594 printk("%s openwifi_prepare_multicast\n", sdr_compatible_str); 1595 return netdev_hw_addr_list_count(mc_list); 1596 } 1597 1598 static void openwifi_configure_filter(struct ieee80211_hw *dev, 1599 unsigned int changed_flags, 1600 unsigned int *total_flags, 1601 u64 multicast) 1602 { 1603 u32 filter_flag; 1604 1605 (*total_flags) &= SDR_SUPPORTED_FILTERS; 1606 (*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer 1607 1608 filter_flag = (*total_flags); 1609 1610 filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO); 1611 //filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm 1612 1613 //if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR) 1614 if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode 1615 filter_flag = (filter_flag|MONITOR_ALL); 1616 else 1617 filter_flag = (filter_flag&(~MONITOR_ALL)); 1618 1619 if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) ) 1620 filter_flag = (filter_flag|MY_BEACON); 1621 1622 filter_flag = (filter_flag|FIF_PSPOLL); 1623 1624 xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG); 1625 //xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt 1626 1627 printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str, 1628 (filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1); 1629 } 1630 1631 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) 1632 { 1633 struct ieee80211_sta *sta = params->sta; 1634 enum ieee80211_ampdu_mlme_action action = params->action; 1635 // struct openwifi_priv *priv = hw->priv; 1636 u16 max_tx_bytes, buf_size; 1637 u32 ampdu_action_config; 1638 1639 if (!AGGR_ENABLE) { 1640 return -EOPNOTSUPP; 1641 } 1642 1643 switch (action) 1644 { 1645 case IEEE80211_AMPDU_TX_START: 1646 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); 1647 printk("%s openwifi_ampdu_action: start TX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1648 break; 1649 case IEEE80211_AMPDU_TX_STOP_CONT: 1650 case IEEE80211_AMPDU_TX_STOP_FLUSH: 1651 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: 1652 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); 1653 printk("%s openwifi_ampdu_action: stop TX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1654 break; 1655 case IEEE80211_AMPDU_TX_OPERATIONAL: 1656 buf_size = 4; 1657 // buf_size = (params->buf_size) - 1; 1658 max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1; 1659 ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes ); 1660 tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config); 1661 printk("%s openwifi_ampdu_action: TX operational. tid %d max_tx_bytes %d ampdu_density %d buf_size %d\n", 1662 sdr_compatible_str, params->tid, max_tx_bytes, sta->ht_cap.ampdu_density, buf_size); 1663 break; 1664 case IEEE80211_AMPDU_RX_START: 1665 printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1666 break; 1667 case IEEE80211_AMPDU_RX_STOP: 1668 printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1669 break; 1670 default: 1671 return -EOPNOTSUPP; 1672 } 1673 1674 return 0; 1675 } 1676 1677 static const struct ieee80211_ops openwifi_ops = { 1678 .tx = openwifi_tx, 1679 .start = openwifi_start, 1680 .stop = openwifi_stop, 1681 .add_interface = openwifi_add_interface, 1682 .remove_interface = openwifi_remove_interface, 1683 .config = openwifi_config, 1684 .set_antenna = openwifi_set_antenna, 1685 .get_antenna = openwifi_get_antenna, 1686 .bss_info_changed = openwifi_bss_info_changed, 1687 .conf_tx = openwifi_conf_tx, 1688 .prepare_multicast = openwifi_prepare_multicast, 1689 .configure_filter = openwifi_configure_filter, 1690 .rfkill_poll = openwifi_rfkill_poll, 1691 .get_tsf = openwifi_get_tsf, 1692 .set_tsf = openwifi_set_tsf, 1693 .reset_tsf = openwifi_reset_tsf, 1694 .set_rts_threshold = openwifi_set_rts_threshold, 1695 .ampdu_action = openwifi_ampdu_action, 1696 .testmode_cmd = openwifi_testmode_cmd, 1697 }; 1698 1699 static const struct of_device_id openwifi_dev_of_ids[] = { 1700 { .compatible = "sdr,sdr", }, 1701 {} 1702 }; 1703 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids); 1704 1705 static int custom_match_spi_dev(struct device *dev, void *data) 1706 { 1707 const char *name = data; 1708 1709 bool ret = sysfs_streq(name, dev->of_node->name); 1710 printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret); 1711 return ret; 1712 } 1713 1714 static int custom_match_platform_dev(struct device *dev, void *data) 1715 { 1716 struct platform_device *plat_dev = to_platform_device(dev); 1717 const char *name = data; 1718 char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name); 1719 bool match_flag = (name_in_sys_bus_platform_devices != NULL); 1720 1721 if (match_flag) { 1722 printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name); 1723 } 1724 return(match_flag); 1725 } 1726 1727 static int openwifi_dev_probe(struct platform_device *pdev) 1728 { 1729 struct ieee80211_hw *dev; 1730 struct openwifi_priv *priv; 1731 int err=1, rand_val; 1732 const char *chip_name, *fpga_model; 1733 u32 reg, i;//, reg1; 1734 1735 struct device_node *np = pdev->dev.of_node; 1736 1737 struct device *tmp_dev; 1738 struct platform_device *tmp_pdev; 1739 struct iio_dev *tmp_indio_dev; 1740 // struct gpio_leds_priv *tmp_led_priv; 1741 1742 printk("\n"); 1743 1744 if (np) { 1745 const struct of_device_id *match; 1746 1747 match = of_match_node(openwifi_dev_of_ids, np); 1748 if (match) { 1749 printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str); 1750 err = 0; 1751 } 1752 } 1753 1754 if (err) 1755 return err; 1756 1757 dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops); 1758 if (!dev) { 1759 printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str); 1760 err = -ENOMEM; 1761 goto err_free_dev; 1762 } 1763 1764 priv = dev->priv; 1765 priv->pdev = pdev; 1766 1767 err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model); 1768 if(err < 0) { 1769 printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err); 1770 priv->fpga_type = SMALL_FPGA; 1771 } else { 1772 // LARGE FPGAs (i.e. ZCU102, Z7035, ZC706) 1773 if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL) 1774 priv->fpga_type = LARGE_FPGA; 1775 // SMALL FPGA: (i.e. ZED, ZC702, Z7020) 1776 else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL) 1777 priv->fpga_type = SMALL_FPGA; 1778 } 1779 1780 // //-------------find ad9361-phy driver for lo/channel control--------------- 1781 priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux 1782 priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux 1783 tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev ); 1784 if (tmp_dev == NULL) { 1785 printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str); 1786 err = -ENODEV; 1787 goto err_free_dev; 1788 } 1789 printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data)); 1790 if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) { 1791 printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str); 1792 err = -ENODEV; 1793 goto err_free_dev; 1794 } 1795 1796 priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev); 1797 if (!(priv->ad9361_phy)) { 1798 printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str); 1799 err = -ENODEV; 1800 goto err_free_dev; 1801 } 1802 printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias); 1803 1804 // //-------------find driver: axi_ad9361 hdl ref design module, dac channel--------------- 1805 tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev ); 1806 if (!tmp_dev) { 1807 printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str); 1808 err = -ENODEV; 1809 goto err_free_dev; 1810 } 1811 1812 tmp_pdev = to_platform_device(tmp_dev); 1813 if (!tmp_pdev) { 1814 printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str); 1815 err = -ENODEV; 1816 goto err_free_dev; 1817 } 1818 1819 tmp_indio_dev = platform_get_drvdata(tmp_pdev); 1820 if (!tmp_indio_dev) { 1821 printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str); 1822 err = -ENODEV; 1823 goto err_free_dev; 1824 } 1825 1826 priv->dds_st = iio_priv(tmp_indio_dev); 1827 if (!(priv->dds_st)) { 1828 printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str); 1829 err = -ENODEV; 1830 goto err_free_dev; 1831 } 1832 printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name); 1833 cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA); 1834 printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str); 1835 1836 // //-------------find driver: axi_ad9361 hdl ref design module, adc channel--------------- 1837 // turn off radio by muting tx 1838 // ad9361_tx_mute(priv->ad9361_phy, 1); 1839 // reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 1840 // reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); 1841 // if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { 1842 // priv->rfkill_off = 0;// 0 off, 1 on 1843 // printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str); 1844 // } 1845 // else 1846 // printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); 1847 1848 // //-----------------------------parse the test_mode input-------------------------------- 1849 if (test_mode&1) 1850 AGGR_ENABLE = true; 1851 1852 // if (test_mode&2) 1853 // TX_OFFSET_TUNING_ENABLE = false; 1854 1855 priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel() 1856 priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized 1857 1858 //priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode 1859 priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode 1860 1861 priv->xpu_cfg = XPU_NORMAL; 1862 1863 priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL; 1864 priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL; 1865 1866 printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) ); 1867 if (priv->rf_bw == 20000000) { //DO NOT USE. Not used for long time. 1868 priv->rx_intf_cfg = RX_INTF_BYPASS; 1869 priv->tx_intf_cfg = TX_INTF_BYPASS; 1870 //priv->rx_freq_offset_to_lo_MHz = 0; 1871 //priv->tx_freq_offset_to_lo_MHz = 0; 1872 } else if (priv->rf_bw == 40000000) { 1873 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work 1874 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work 1875 1876 // // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps 1877 priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0; 1878 if (TX_OFFSET_TUNING_ENABLE) 1879 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364 1880 else 1881 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT0; 1882 // // try another antenna option 1883 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1; 1884 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; 1885 1886 #if 0 1887 if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) { 1888 priv->rx_freq_offset_to_lo_MHz = -10; 1889 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) { 1890 priv->rx_freq_offset_to_lo_MHz = 10; 1891 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) { 1892 priv->rx_freq_offset_to_lo_MHz = 0; 1893 } else { 1894 printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg); 1895 } 1896 #endif 1897 } else { 1898 printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw); 1899 err = -EBADRQC; 1900 goto err_free_dev; 1901 } 1902 1903 printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att); 1904 1905 priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2)); 1906 priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2); 1907 1908 priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK; 1909 priv->ctrl_out.index =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); 1910 1911 memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val)); 1912 memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val)); 1913 memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val)); 1914 memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val)); 1915 1916 priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att; 1917 1918 //let's by default turn radio on when probing 1919 err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); 1920 if (err) { 1921 printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err); 1922 err = -EIO; 1923 goto err_free_dev; 1924 } 1925 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER); 1926 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg); 1927 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE); 1928 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg); 1929 1930 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); 1931 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { 1932 priv->rfkill_off = 1;// 0 off, 1 on 1933 printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str); 1934 } else 1935 printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); 1936 1937 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV; 1938 1939 // //set ad9361 in certain mode 1940 #if 0 1941 err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw); 1942 printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); 1943 err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw); 1944 printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); 1945 1946 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); 1947 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); 1948 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); 1949 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); 1950 printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); 1951 printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); 1952 #endif 1953 1954 dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle. 1955 1956 SET_IEEE80211_DEV(dev, &pdev->dev); 1957 platform_set_drvdata(pdev, dev); 1958 1959 BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates)); 1960 BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates)); 1961 BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels)); 1962 BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels)); 1963 1964 memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates)); 1965 memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates)); 1966 memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels)); 1967 memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels)); 1968 1969 priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM) 1970 priv->channel = 44; //currently useless. this can be changed by band _rf_set_channel() 1971 priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT 1972 priv->ampdu_reference = 0; 1973 1974 priv->band_2GHz.band = NL80211_BAND_2GHZ; 1975 priv->band_2GHz.channels = priv->channels_2GHz; 1976 priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz); 1977 priv->band_2GHz.bitrates = priv->rates_2GHz; 1978 priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz); 1979 priv->band_2GHz.ht_cap.ht_supported = true; 1980 // priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue 1981 if (AGGR_ENABLE) { 1982 priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; 1983 priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; 1984 } 1985 memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs)); 1986 priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff; 1987 priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 1988 dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz); 1989 1990 priv->band_5GHz.band = NL80211_BAND_5GHZ; 1991 priv->band_5GHz.channels = priv->channels_5GHz; 1992 priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz); 1993 priv->band_5GHz.bitrates = priv->rates_5GHz; 1994 priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz); 1995 priv->band_5GHz.ht_cap.ht_supported = true; 1996 // priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue 1997 if (AGGR_ENABLE) { 1998 priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; 1999 priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; 2000 } 2001 memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs)); 2002 priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff; 2003 priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 2004 dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz); 2005 2006 printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str, 2007 priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates); 2008 2009 // ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); // remove this because we don't want: mac80211.h: host buffers frame for PS and we fetch them via ieee80211_get_buffered_bc() 2010 ieee80211_hw_set(dev, RX_INCLUDES_FCS); 2011 ieee80211_hw_set(dev, BEACON_TX_STATUS);//mac80211.h: The device/driver provides TX status for sent beacons. 2012 2013 ieee80211_hw_set(dev, REPORTS_TX_ACK_STATUS);//mac80211.h: Hardware can provide ack status reports of Tx frames to the stack 2014 2015 // * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device 2016 // * autonomously manages the PS status of connected stations. When 2017 // * this flag is set mac80211 will not trigger PS mode for connected 2018 // * stations based on the PM bit of incoming frames. 2019 // * Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure 2020 // * the PS mode of connected stations. 2021 ieee80211_hw_set(dev, AP_LINK_PS); 2022 2023 if (AGGR_ENABLE) { 2024 ieee80211_hw_set(dev, AMPDU_AGGREGATION); 2025 } 2026 2027 dev->extra_tx_headroom = LEN_MPDU_DELIM; 2028 2029 dev->vif_data_size = sizeof(struct openwifi_vif); 2030 dev->wiphy->interface_modes = 2031 BIT(NL80211_IFTYPE_MONITOR)| 2032 BIT(NL80211_IFTYPE_P2P_GO) | 2033 BIT(NL80211_IFTYPE_P2P_CLIENT) | 2034 BIT(NL80211_IFTYPE_AP) | 2035 BIT(NL80211_IFTYPE_STATION) | 2036 BIT(NL80211_IFTYPE_ADHOC) | 2037 BIT(NL80211_IFTYPE_MESH_POINT) | 2038 BIT(NL80211_IFTYPE_OCB); 2039 dev->wiphy->iface_combinations = &openwifi_if_comb; 2040 dev->wiphy->n_iface_combinations = 1; 2041 2042 dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK; 2043 dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK; 2044 2045 dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation 2046 //dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config 2047 wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd); 2048 2049 chip_name = "ZYNQ"; 2050 2051 /* we declare to MAC80211 all the queues except for beacon queue 2052 * that will be eventually handled by DRV. 2053 * TX rings are arranged in such a way that lower is the IDX, 2054 * higher is the priority, in order to achieve direct mapping 2055 * with mac80211, however the beacon queue is an exception and it 2056 * is mapped on the highst tx ring IDX. 2057 */ 2058 dev->queues = MAX_NUM_HW_QUEUE; 2059 //dev->queues = 1; 2060 2061 ieee80211_hw_set(dev, SIGNAL_DBM); 2062 2063 wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 2064 2065 priv->rf = &ad9361_rf_ops; 2066 2067 memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map)); 2068 priv->slice_idx = 0xFFFFFFFF; 2069 2070 sg_init_table(&(priv->tx_sg), 1); 2071 2072 get_random_bytes(&rand_val, sizeof(rand_val)); 2073 rand_val%=250; 2074 priv->mac_addr[0]=0x66; priv->mac_addr[1]=0x55; priv->mac_addr[2]=0x44; priv->mac_addr[3]=0x33; priv->mac_addr[4]=0x22; 2075 priv->mac_addr[5]=rand_val+1; 2076 //priv->mac_addr[5]=0x11; 2077 if (!is_valid_ether_addr(priv->mac_addr)) { 2078 printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str); 2079 eth_random_addr(priv->mac_addr); 2080 } 2081 printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]); 2082 SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr); 2083 2084 spin_lock_init(&priv->lock); 2085 2086 err = ieee80211_register_hw(dev); 2087 if (err) { 2088 pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str); 2089 err = -EIO; 2090 goto err_free_dev; 2091 } else { 2092 printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err); 2093 } 2094 2095 // // //--------------------hook leds (not complete yet)-------------------------------- 2096 // tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field 2097 // if (!tmp_dev) { 2098 // printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str); 2099 // err = -ENOMEM; 2100 // goto err_free_dev; 2101 // } 2102 2103 // tmp_pdev = to_platform_device(tmp_dev); 2104 // if (!tmp_pdev) { 2105 // printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str); 2106 // err = -ENOMEM; 2107 // goto err_free_dev; 2108 // } 2109 2110 // tmp_led_priv = platform_get_drvdata(tmp_pdev); 2111 // if (!tmp_led_priv) { 2112 // printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str); 2113 // err = -ENOMEM; 2114 // goto err_free_dev; 2115 // } 2116 // printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds); 2117 // if (tmp_led_priv->num_leds!=4){ 2118 // printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds); 2119 // err = -ENOMEM; 2120 // goto err_free_dev; 2121 // } 2122 // gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it 2123 // gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it 2124 // priv->num_led = tmp_led_priv->num_leds; 2125 // priv->led[0] = &(tmp_led_priv->leds[0].cdev); 2126 // priv->led[1] = &(tmp_led_priv->leds[1].cdev); 2127 // priv->led[2] = &(tmp_led_priv->leds[2].cdev); 2128 // priv->led[3] = &(tmp_led_priv->leds[3].cdev); 2129 2130 // snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy)); 2131 // snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy)); 2132 // snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy)); 2133 // snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy)); 2134 2135 wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n", 2136 priv->mac_addr, chip_name, priv->rf->name); 2137 2138 openwifi_rfkill_init(dev); 2139 return 0; 2140 2141 err_free_dev: 2142 ieee80211_free_hw(dev); 2143 2144 return err; 2145 } 2146 2147 static int openwifi_dev_remove(struct platform_device *pdev) 2148 { 2149 struct ieee80211_hw *dev = platform_get_drvdata(pdev); 2150 2151 if (!dev) { 2152 pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev); 2153 return(-1); 2154 } 2155 2156 openwifi_rfkill_exit(dev); 2157 ieee80211_unregister_hw(dev); 2158 ieee80211_free_hw(dev); 2159 return(0); 2160 } 2161 2162 static struct platform_driver openwifi_dev_driver = { 2163 .driver = { 2164 .name = "sdr,sdr", 2165 .owner = THIS_MODULE, 2166 .of_match_table = openwifi_dev_of_ids, 2167 }, 2168 .probe = openwifi_dev_probe, 2169 .remove = openwifi_dev_remove, 2170 }; 2171 2172 module_platform_driver(openwifi_dev_driver); 2173