xref: /openwifi/driver/sdr.c (revision d4c3d8108eacec40382d61209ec291ae93e2530d)
1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos
2 // SPDX-FileCopyrightText: 2022 UGent
3 // SPDX-License-Identifier: AGPL-3.0-or-later
4 
5 #include <linux/bitops.h>
6 #include <linux/dmapool.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/of_address.h>
10 #include <linux/of_platform.h>
11 #include <linux/of_irq.h>
12 #include <linux/slab.h>
13 #include <linux/clk.h>
14 #include <linux/io-64-nonatomic-lo-hi.h>
15 
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 
24 #include <linux/init.h>
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/of_dma.h>
28 #include <linux/platform_device.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/wait.h>
32 #include <linux/sched/task.h>
33 #include <linux/dma/xilinx_dma.h>
34 #include <linux/spi/spi.h>
35 #include <net/mac80211.h>
36 
37 #include <linux/clk.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk-provider.h>
40 
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43 
44 #include <linux/gpio.h>
45 #include <linux/leds.h>
46 
47 #define IIO_AD9361_USE_PRIVATE_H_
48 #include <../../drivers/iio/adc/ad9361_regs.h>
49 #include <../../drivers/iio/adc/ad9361.h>
50 #include <../../drivers/iio/adc/ad9361_private.h>
51 
52 #include <../../drivers/iio/frequency/cf_axi_dds.h>
53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num);
54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb,
55 			       bool tx1, bool tx2, bool immed);
56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy,
57 				  struct ctrl_outs_control *ctrl);
58 extern int ad9361_do_calib_run(struct ad9361_rf_phy *phy, u32 cal, int arg);
59 
60 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
61 #include "hw_def.h"
62 #include "sdr.h"
63 #include "git_rev.h"
64 
65 // driver API of component driver
66 extern struct tx_intf_driver_api *tx_intf_api;
67 extern struct rx_intf_driver_api *rx_intf_api;
68 extern struct openofdm_tx_driver_api *openofdm_tx_api;
69 extern struct openofdm_rx_driver_api *openofdm_rx_api;
70 extern struct xpu_driver_api *xpu_api;
71 
72 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes);
73 u8 gen_mpdu_delim_crc(u16 m);
74 u32 reverse32(u32 d);
75 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant);
76 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant);
77 int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction);
78 int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction);
79 int rssi_correction_lookup_table(u32 freq_MHz);
80 void ad9361_tx_calibration(struct openwifi_priv *priv, u32 actual_tx_lo);
81 void openwifi_rf_rx_update_after_tuning(struct openwifi_priv *priv, u32 actual_rx_lo);
82 
83 #include "sdrctl_intf.c"
84 #include "sysfs_intf.c"
85 
86 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1)
87 // Internal indication variables after parsing test_mode
88 static bool AGGR_ENABLE = false;
89 static bool TX_OFFSET_TUNING_ENABLE = false;
90 
91 static int init_tx_att = 0;
92 
93 MODULE_AUTHOR("Xianjun Jiao");
94 MODULE_DESCRIPTION("SDR driver");
95 MODULE_LICENSE("GPL v2");
96 
97 module_param(test_mode, int, 0);
98 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)");
99 
100 module_param(init_tx_att, int, 0);
101 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000	example: set to 3000 for 3dB attenuation");
102 
103 // ---------------rfkill---------------------------------------
104 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
105 {
106 	int reg;
107 
108 	if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH)
109 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
110 	else
111 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
112 
113 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]))
114 		return true;// 0 off, 1 on
115 	return false;
116 }
117 
118 void openwifi_rfkill_init(struct ieee80211_hw *hw)
119 {
120 	struct openwifi_priv *priv = hw->priv;
121 
122 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
123 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
124 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
125 	wiphy_rfkill_start_polling(hw->wiphy);
126 }
127 
128 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
129 {
130 	bool enabled;
131 	struct openwifi_priv *priv = hw->priv;
132 
133 	enabled = openwifi_is_radio_enabled(priv);
134 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
135 	if (unlikely(enabled != priv->rfkill_off)) {
136 		priv->rfkill_off = enabled;
137 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
138 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
139 	}
140 }
141 
142 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
143 {
144 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
145 	wiphy_rfkill_stop_polling(hw->wiphy);
146 }
147 //----------------rfkill end-----------------------------------
148 
149 inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction)
150 {
151 	return ((rssi_correction+rssi_dbm)<<1);
152 }
153 
154 inline int rssi_correction_lookup_table(u32 freq_MHz)
155 {
156 	int rssi_correction;
157 
158 	if (freq_MHz<2412) {
159 		rssi_correction = 153;
160 	} else if (freq_MHz<=2484) {
161 		rssi_correction = 153;
162 	} else if (freq_MHz<5160) {
163 		rssi_correction = 153;
164 	} else if (freq_MHz<=5240) {
165 		rssi_correction = 145;
166 	} else if (freq_MHz<=5320) {
167 		rssi_correction = 145;
168 	} else {
169 		rssi_correction = 145;
170 	}
171 
172 	return rssi_correction;
173 }
174 
175 inline void ad9361_tx_calibration(struct openwifi_priv *priv, u32 actual_tx_lo)
176 {
177 	struct timeval tv;
178 	unsigned long time_before = 0;
179 	unsigned long time_after = 0;
180 	u32 spi_disable;
181 
182 	priv->last_tx_quad_cal_lo = actual_tx_lo;
183 	do_gettimeofday(&tv);
184 	time_before = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec );
185 	spi_disable = xpu_api->XPU_REG_SPI_DISABLE_read(); // backup current fpga spi disable state
186 	xpu_api->XPU_REG_SPI_DISABLE_write(1); // disable FPGA SPI module
187 	ad9361_do_calib_run(priv->ad9361_phy, TX_QUAD_CAL, (int)priv->ad9361_phy->state->last_tx_quad_cal_phase);
188 	xpu_api->XPU_REG_SPI_DISABLE_write(spi_disable); // restore original SPI disable state
189 	do_gettimeofday(&tv);
190 	time_after = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec );
191 
192 	printk("%s ad9361_tx_calibration %dMHz tx_quad_cal duration %lu us\n", sdr_compatible_str, actual_tx_lo, time_after-time_before);
193 }
194 
195 inline void openwifi_rf_rx_update_after_tuning(struct openwifi_priv *priv, u32 actual_rx_lo)
196 {
197 	int static_lbt_th, auto_lbt_th, fpga_lbt_th, receiver_rssi_dbm_th, receiver_rssi_th;
198 
199 	// get rssi correction value from lookup table
200 	priv->rssi_correction = rssi_correction_lookup_table(actual_rx_lo);
201 
202 	// set appropriate lbt threshold
203 	auto_lbt_th = rssi_dbm_to_rssi_half_db(-62, priv->rssi_correction); // -62dBm
204 	static_lbt_th = rssi_dbm_to_rssi_half_db(-(priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]), priv->rssi_correction);
205 	fpga_lbt_th = (priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]==0?auto_lbt_th:static_lbt_th);
206 	xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th);
207 	priv->last_auto_fpga_lbt_th = auto_lbt_th;
208 
209 	// Set rssi_half_db threshold (-85dBm equivalent) to receiver. Receiver will not react to signal lower than this rssi. See test records (OPENOFDM_RX_POWER_THRES_INIT in hw_def.h)
210 	receiver_rssi_dbm_th = (priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]==0?OPENOFDM_RX_RSSI_DBM_TH_DEFAULT:(-priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]));
211 	receiver_rssi_th = rssi_dbm_to_rssi_half_db(receiver_rssi_dbm_th, priv->rssi_correction);
212 	openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write((OPENOFDM_RX_DC_RUNNING_SUM_TH_INIT<<16)|receiver_rssi_th);
213 
214 	if (actual_rx_lo < 2500) {
215 		if (priv->band != BAND_2_4GHZ) {
216 			priv->band = BAND_2_4GHZ;
217 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
218 		}
219 	} else {
220 		if (priv->band != BAND_5_8GHZ) {
221 			priv->band = BAND_5_8GHZ;
222 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
223 		}
224 	}
225 	printk("%s openwifi_rf_rx_update_after_tuning %dMHz rssi_correction %d fpga_lbt_th %d(%ddBm) auto %d static %d receiver th %d(%ddBm)\n", sdr_compatible_str,
226 	actual_rx_lo, priv->rssi_correction, fpga_lbt_th, rssi_half_db_to_rssi_dbm(fpga_lbt_th, priv->rssi_correction), auto_lbt_th, static_lbt_th, receiver_rssi_th, receiver_rssi_dbm_th);
227 }
228 
229 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
230 				  struct ieee80211_conf *conf)
231 {
232 	struct openwifi_priv *priv = dev->priv;
233 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz;
234 	u32 actual_tx_lo;
235 	u32 diff_tx_lo;
236 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
237 
238 	if (change_flag && priv->rf_reg_val[RF_TX_REG_IDX_FREQ_MHZ]==0 && priv->rf_reg_val[RF_RX_REG_IDX_FREQ_MHZ]==0) {
239 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
240 		diff_tx_lo = priv->last_tx_quad_cal_lo > actual_tx_lo ? priv->last_tx_quad_cal_lo - actual_tx_lo : actual_tx_lo - priv->last_tx_quad_cal_lo;
241 
242 		// -------------------Tx Lo tuning-------------------
243 		clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo) )>>1);
244 		priv->actual_tx_lo = actual_tx_lo;
245 
246 		// -------------------Rx Lo tuning-------------------
247 		clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo) )>>1);
248 		priv->actual_rx_lo = actual_rx_lo;
249 
250 		// call Tx Quadrature calibration if frequency change is more than 100MHz
251 		if (diff_tx_lo > 100)
252 			ad9361_tx_calibration(priv, actual_tx_lo);
253 
254 		openwifi_rf_rx_update_after_tuning(priv, actual_rx_lo);
255 		printk("%s ad9361_rf_set_channel %dMHz done\n", sdr_compatible_str,conf->chandef.chan->center_freq);
256 	}
257 }
258 
259 const struct openwifi_rf_ops ad9361_rf_ops = {
260 	.name		= "ad9361",
261 //	.init		= ad9361_rf_init,
262 //	.stop		= ad9361_rf_stop,
263 	.set_chan	= ad9361_rf_set_channel,
264 //	.calc_rssi	= ad9361_rf_calc_rssi,
265 };
266 
267 u16 reverse16(u16 d) {
268 	union u16_byte2 tmp0, tmp1;
269 	tmp0.a = d;
270 	tmp1.c[0] = tmp0.c[1];
271 	tmp1.c[1] = tmp0.c[0];
272 	return(tmp1.a);
273 }
274 
275 u32 reverse32(u32 d) {
276 	union u32_byte4 tmp0, tmp1;
277 	tmp0.a = d;
278 	tmp1.c[0] = tmp0.c[3];
279 	tmp1.c[1] = tmp0.c[2];
280 	tmp1.c[2] = tmp0.c[1];
281 	tmp1.c[3] = tmp0.c[0];
282 	return(tmp1.a);
283 }
284 
285 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
286 {
287 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
288 	int i;
289 
290 	ring->stop_flag = -1;
291 	ring->bd_wr_idx = 0;
292 	ring->bd_rd_idx = 0;
293 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
294 	if (ring->bds==NULL) {
295 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
296 		return -ENOMEM;
297 	}
298 
299 	for (i = 0; i < NUM_TX_BD; i++) {
300 		ring->bds[i].skb_linked=NULL; // for tx, skb is from upper layer
301 		//at first right after skb allocated, head, data, tail are the same.
302 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine
303 		ring->bds[i].seq_no = 0xffff; // invalid value
304 		ring->bds[i].prio = 0xff; // invalid value
305 		ring->bds[i].len_mpdu = 0; // invalid value
306 	}
307 
308 	return 0;
309 }
310 
311 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
312 {
313 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
314 	int i;
315 
316 	ring->stop_flag = -1;
317 	ring->bd_wr_idx = 0;
318 	ring->bd_rd_idx = 0;
319 	for (i = 0; i < NUM_TX_BD; i++) {
320 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
321 			continue;
322 		if (ring->bds[i].dma_mapping_addr != 0)
323 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
324 //		if (ring->bds[i].skb_linked!=NULL)
325 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
326 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
327 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
328 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str,
329 			ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr));
330 
331 		ring->bds[i].skb_linked=NULL;
332 		ring->bds[i].dma_mapping_addr = 0;
333 		ring->bds[i].seq_no = 0xffff; // invalid value
334 		ring->bds[i].prio = 0xff; // invalid value
335 		ring->bds[i].len_mpdu = 0; // invalid value
336 	}
337 	if (ring->bds)
338 		kfree(ring->bds);
339 	ring->bds = NULL;
340 }
341 
342 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
343 {
344 	int i;
345 	u8 *pdata_tmp;
346 
347 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
348 	if (!priv->rx_cyclic_buf) {
349 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
350 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
351 		return(-1);
352 	}
353 
354 	// Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
355 	for (i=0; i<NUM_RX_BD; i++) {
356 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning
357 		(*((u16*)(pdata_tmp+10))) = 0;
358 	}
359 	printk("%s openwifi_init_rx_ring: NUM_RX_BD %d RX_BD_BUF_SIZE %d pkt existing flag are cleared!\n", sdr_compatible_str,
360 	NUM_RX_BD, RX_BD_BUF_SIZE);
361 
362 	return 0;
363 }
364 
365 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
366 {
367 	if (priv->rx_cyclic_buf)
368 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
369 
370 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
371 	priv->rx_cyclic_buf = 0;
372 }
373 
374 static int rx_dma_setup(struct ieee80211_hw *dev){
375 	struct openwifi_priv *priv = dev->priv;
376 	struct dma_device *rx_dev = priv->rx_chan->device;
377 
378 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
379 	if (!(priv->rxd)) {
380 		openwifi_free_rx_ring(priv);
381 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
382 		return(-1);
383 	}
384 	priv->rxd->callback = 0;
385 	priv->rxd->callback_param = 0;
386 
387 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
388 
389 	if (dma_submit_error(priv->rx_cookie)) {
390 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
391 		return(-1);
392 	}
393 
394 	dma_async_issue_pending(priv->rx_chan);
395 	return(0);
396 }
397 
398 inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction)
399 {
400 	int rssi_db, rssi_dbm;
401 
402 	rssi_db = (rssi_half_db>>1);
403 
404 	rssi_dbm = rssi_db - rssi_correction;
405 
406 	rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm);
407 
408 	return rssi_dbm;
409 }
410 
411 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
412 {
413 	struct ieee80211_hw *dev = dev_id;
414 	struct openwifi_priv *priv = dev->priv;
415 	struct ieee80211_rx_status rx_status = {0};
416 	struct sk_buff *skb;
417 	struct ieee80211_hdr *hdr;
418 	u32 addr1_low32, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di;
419 	bool ht_flag, short_gi, ht_aggr, ht_aggr_last;
420 	// u32 dma_driver_buf_idx_mod;
421 	u8 *pdata_tmp;
422 	u8 fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw;
423 	s8 signal;
424 	u16 agc_status_and_pkt_exist_flag, rssi_half_db, addr1_high16, addr2_high16=0, addr3_high16=0, seq_no=0;
425 	bool content_ok, len_overflow, is_unicast;
426 
427 #ifdef USE_NEW_RX_INTERRUPT
428 	int i;
429 	spin_lock(&priv->lock);
430 	for (i=0; i<NUM_RX_BD; i++) {
431 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE;
432 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid
433 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
434 			continue;
435 #else
436 	static u8 target_buf_idx_old = 0;
437 	spin_lock(&priv->lock);
438 	while(1) { // loop all rx buffers that have new rx packets
439 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
440 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10)));
441 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
442 			break;
443 #endif
444 
445 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
446 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
447 		rssi_half_db = (*((u16*)(pdata_tmp+8 )));
448 		len =          (*((u16*)(pdata_tmp+12)));
449 
450 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
451 
452 		rate_idx =     (*((u16*)(pdata_tmp+14)));
453 		ht_flag  =     ((rate_idx&0x10)!=0);
454 		short_gi =     ((rate_idx&0x20)!=0);
455 		ht_aggr  =     (ht_flag & ((rate_idx&0x40)!=0));
456 		ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0));
457 		rate_idx =     (rate_idx&0x1F);
458 
459 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
460 
461 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
462 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
463 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
464 		fcs_ok = ((fcs_ok&0x80)!=0);
465 
466 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
467 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
468 			// 	printk("%s openwifi_rx: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
469 			// }
470 			content_ok = true;
471 		} else {
472 			printk("%s openwifi_rx: WARNING content! len%d overflow%d rate_idx%d\n", sdr_compatible_str,
473 			len, len_overflow, rate_idx);
474 			content_ok = false;
475 		}
476 
477 		signal = rssi_half_db_to_rssi_dbm(rssi_half_db, priv->rssi_correction);
478 
479 		hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
480 		if (len>=20) {
481 			addr2_low32  = *((u32*)(hdr->addr2+2));
482 			addr2_high16 = *((u16*)(hdr->addr2));
483 		}
484 
485 		addr1_low32  = *((u32*)(hdr->addr1+2));
486 		addr1_high16 = *((u16*)(hdr->addr1));
487 
488 		if ( priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ANY ) {
489 			if (len>=26) {
490 				addr3_low32  = *((u32*)(hdr->addr3+2));
491 				addr3_high16 = *((u16*)(hdr->addr3));
492 			}
493 			if (len>=28)
494 				seq_no = ( (hdr->seq_ctrl&IEEE80211_SCTL_SEQ)>>4 );
495 
496 			is_unicast = (addr1_low32!=0xffffffff || addr1_high16!=0xffff);
497 
498 			if ( (( is_unicast)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST))   ||
499 			     ((!is_unicast)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST)) ||
500 				 ((  fcs_ok==0)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ERROR)) )
501 				printk("%s openwifi_rx: %dB ht%daggr%d/%d sgi%d %dM FC%04x DI%04x ADDR%04x%08x/%04x%08x/%04x%08x SC%d fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
502 					len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
503 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
504 #ifdef USE_NEW_RX_INTERRUPT
505 					seq_no, fcs_ok, i, signal);
506 #else
507 					seq_no, fcs_ok, target_buf_idx_old, signal);
508 #endif
509 		}
510 
511 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
512 		if (content_ok) {
513 			skb = dev_alloc_skb(len);
514 			if (skb) {
515 				skb_put_data(skb,pdata_tmp+16,len);
516 
517 				rx_status.antenna = priv->runtime_rx_ant_cfg;
518 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
519 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
520 				rx_status.signal = signal;
521 
522 				// rx_status.freq = dev->conf.chandef.chan->center_freq;
523 				rx_status.freq = priv->actual_rx_lo;
524 				// rx_status.band = dev->conf.chandef.chan->band;
525 				rx_status.band = (rx_status.freq<2500?NL80211_BAND_2GHZ:NL80211_BAND_5GHZ);
526 
527 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
528 				rx_status.flag |= RX_FLAG_MACTIME_START;
529 				if (!fcs_ok)
530 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
531 				if (rate_idx <= 15)
532 					rx_status.encoding = RX_ENC_LEGACY;
533 				else
534 					rx_status.encoding = RX_ENC_HT;
535 				rx_status.bw = RATE_INFO_BW_20;
536 				if (short_gi)
537 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
538 				if(ht_aggr)
539 				{
540 					rx_status.ampdu_reference = priv->ampdu_reference;
541 					rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
542 					if (ht_aggr_last)
543 						rx_status.flag |= RX_FLAG_AMPDU_IS_LAST;
544 				}
545 
546 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
547 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
548 
549 				// printk("%s openwifi_rx: addr1_low32 %08x self addr %08x\n", sdr_compatible_str, addr1_low32, ( *( (u32*)(priv->mac_addr+2) ) ));
550 				if (addr1_low32 == ( *( (u32*)(priv->mac_addr+2) ) ) && priv->stat.stat_enable) {
551 					agc_status_and_pkt_exist_flag = (agc_status_and_pkt_exist_flag&0x7f);
552 					if (len>=20) {// rx stat
553 						if (addr2_low32 == priv->stat.rx_target_sender_mac_addr || priv->stat.rx_target_sender_mac_addr==0) {
554 							if ( ieee80211_is_data(hdr->frame_control) ) {
555 								priv->stat.rx_data_pkt_mcs_realtime = rate_idx;
556 								priv->stat.rx_data_pkt_num_total++;
557 								if (!fcs_ok) {
558 									priv->stat.rx_data_pkt_num_fail++;
559 									priv->stat.rx_data_pkt_fail_mcs_realtime = rate_idx;
560 									priv->stat.rx_data_fail_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
561 								} else {
562 									priv->stat.rx_data_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
563 								}
564 							} else if ( ieee80211_is_mgmt(hdr->frame_control) ) {
565 								priv->stat.rx_mgmt_pkt_mcs_realtime = rate_idx;
566 								priv->stat.rx_mgmt_pkt_num_total++;
567 								if (!fcs_ok) {
568 									priv->stat.rx_mgmt_pkt_num_fail++;
569 									priv->stat.rx_mgmt_pkt_fail_mcs_realtime = rate_idx;
570 									priv->stat.rx_mgmt_fail_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
571 								} else {
572 									priv->stat.rx_mgmt_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
573 								}
574 							}
575 						}
576 					} else if ( ieee80211_is_ack(hdr->frame_control) ) {
577 						priv->stat.rx_ack_pkt_mcs_realtime = rate_idx;
578 						priv->stat.rx_ack_pkt_num_total++;
579 						if (!fcs_ok) {
580 							priv->stat.rx_ack_pkt_num_fail++;
581 						} else {
582 							priv->stat.rx_ack_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
583 						}
584 					}
585 				}
586 			} else
587 				printk("%s openwifi_rx: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
588 
589 			if(ht_aggr_last)
590 				priv->ampdu_reference++;
591 		}
592 		(*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed
593 		loop_count++;
594 #ifndef USE_NEW_RX_INTERRUPT
595 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
596 #endif
597 	}
598 
599 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ERROR) )
600 		printk("%s openwifi_rx: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
601 
602 // openwifi_rx_out:
603 	spin_unlock(&priv->lock);
604 	return IRQ_HANDLED;
605 }
606 
607 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
608 {
609 	struct ieee80211_hw *dev = dev_id;
610 	struct openwifi_priv *priv = dev->priv;
611 	struct openwifi_ring *ring, *drv_ring_tmp;
612 	struct sk_buff *skb;
613 	struct ieee80211_tx_info *info;
614 	struct ieee80211_hdr *hdr;
615 	u32 reg_val1, hw_queue_len, reg_val2, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0, addr1_low32, mcs_for_sysfs;
616 	u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx;
617 	u8 nof_retx=-1, last_bd_rd_idx, i, prio, queue_idx, nof_retx_stat;
618 	u64 blk_ack_bitmap;
619 	// u16 prio_rd_idx_store[64]={0};
620 	bool tx_fail=false, fpga_queue_has_room=false;
621 	bool use_ht_aggr, pkt_need_ack, use_ht_rate, prio_wake_up_flag = false;
622 
623 	spin_lock(&priv->lock);
624 
625 	while(1) { // loop all packets that have been sent by FPGA
626 		reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read();
627         reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read();
628 		blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32);
629 
630 		if (reg_val1!=0xFFFFFFFF) {
631 			nof_retx = (reg_val1&0xF);
632 			last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1));
633 			prio = ((reg_val1>>17)&0x3);
634 			num_slot_random = ((reg_val1>>19)&0x1FF);
635 			//num_slot_random = ((0xFF80000 &reg_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
636 			cw = ((reg_val1>>28)&0xF);
637 			//cw = ((0xF0000000 & reg_val1) >> 28);
638 			if(cw > 10) {
639 				cw = 10 ;
640 				num_slot_random += 512 ;
641 			}
642 			pkt_cnt = (reg_val2&0x3F);
643 			blk_ack_ssn = ((reg_val2>>6)&0xFFF);
644 
645 			queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1));
646 			dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
647 			hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
648 			// check which linux prio is stopped by this queue (queue_idx)
649 			for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
650 				drv_ring_tmp = &(priv->tx_ring[i]);
651 				if ( drv_ring_tmp->stop_flag == prio ) {
652 
653 					if ( ((dma_fifo_no_room_flag>>i)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(i*8))&0xFF))>=RING_ROOM_THRESHOLD )
654 						fpga_queue_has_room=true;
655 					else
656 						fpga_queue_has_room=false;
657 
658 					// Wake up Linux queue due to the current fpga queue releases some room
659 					if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP )
660 						printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio%d i%d queue%d no room flag%x hwq len%08x wr%d rd%d\n", sdr_compatible_str,
661 						        prio, i, queue_idx, dma_fifo_no_room_flag, hw_queue_len, drv_ring_tmp->bd_wr_idx, last_bd_rd_idx);
662 
663 					if (fpga_queue_has_room) {
664 						prio_wake_up_flag = true;
665 						drv_ring_tmp->stop_flag = -1;
666 
667 						if (priv->stat.stat_enable) {
668 							priv->stat.tx_prio_wakeup_num[prio]++;
669 							priv->stat.tx_queue_wakeup_num[i]++;
670 						}
671 					} else {
672 						if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP )
673 							printk("%s openwifi_tx_interrupt: WARNING no room! prio_wake_up_flag%d\n", sdr_compatible_str, prio_wake_up_flag);
674 					}
675 				}
676 			}
677 			if (prio_wake_up_flag)
678 				ieee80211_wake_queue(dev, prio);
679 
680 			if (priv->stat.stat_enable) {
681 				priv->stat.tx_prio_interrupt_num[prio] = priv->stat.tx_prio_interrupt_num[prio] + pkt_cnt;
682 				priv->stat.tx_queue_interrupt_num[queue_idx] = priv->stat.tx_queue_interrupt_num[queue_idx] + pkt_cnt;
683 			}
684 
685 			ring = &(priv->tx_ring[queue_idx]);
686 			for(i = 1; i <= pkt_cnt; i++)
687 			{
688 				ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64;
689 				seq_no = ring->bds[ring->bd_rd_idx].seq_no;
690 
691 				if (seq_no == 0xffff) {// it has been forced cleared by the openwifi_tx (due to out-of-order Tx of different queues to the air?)
692 					printk("%s openwifi_tx_interrupt: WARNING wr%d rd%d last_bd_rd_idx%d i%d pkt_cnt%d prio%d fpga q%d hwq len%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str,
693 					ring->bd_wr_idx, ring->bd_rd_idx, last_bd_rd_idx, i, pkt_cnt, prio, queue_idx, hw_queue_len, ring->bds[ring->bd_rd_idx].prio, ring->bds[ring->bd_rd_idx].len_mpdu, seq_no, ring->bds[ring->bd_rd_idx].skb_linked, ring->bds[ring->bd_rd_idx].dma_mapping_addr);
694 					continue;
695 				}
696 
697 				skb = ring->bds[ring->bd_rd_idx].skb_linked;
698 
699 				dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
700 						skb->len, DMA_MEM_TO_DEV);
701 
702 				info = IEEE80211_SKB_CB(skb);
703 				use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0);
704 				ieee80211_tx_info_clear_status(info);
705 
706 				// Aggregation packet
707 				if (use_ht_aggr)
708 				{
709 					start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF));
710 					tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0);
711 					info->flags |= IEEE80211_TX_STAT_AMPDU;
712 					info->status.ampdu_len = 1;
713 					info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1;
714 
715 					skb_pull(skb, LEN_MPDU_DELIM);
716 					//skb_trim(skb, num_byte_pad_skb);
717 				}
718 				// Normal packet
719 				else
720 				{
721 					tx_fail = ((blk_ack_bitmap&0x1)==0);
722 					info->flags &= (~IEEE80211_TX_CTL_AMPDU);
723 				}
724 
725 				pkt_need_ack = (!(info->flags & IEEE80211_TX_CTL_NO_ACK));
726 				// do statistics for data packet that needs ack
727 				hdr = (struct ieee80211_hdr *)skb->data;
728 				addr1_low32  = *((u32*)(hdr->addr1+2));
729 				if ( priv->stat.stat_enable && pkt_need_ack && (addr1_low32 == priv->stat.rx_target_sender_mac_addr || priv->stat.rx_target_sender_mac_addr==0) ) {
730 					use_ht_rate = (((info->control.rates[0].flags)&IEEE80211_TX_RC_MCS)!=0);
731 					mcs_for_sysfs = ieee80211_get_tx_rate(dev, info)->hw_value;
732 					if (use_ht_rate)
733 						mcs_for_sysfs = (mcs_for_sysfs | 0x80000000);
734 
735 					if ( ieee80211_is_data(hdr->frame_control) ) {
736 						nof_retx_stat = (nof_retx<=5?nof_retx:5);
737 
738 						priv->stat.tx_data_pkt_need_ack_num_total++;
739 						priv->stat.tx_data_pkt_mcs_realtime = mcs_for_sysfs;
740 						priv->stat.tx_data_pkt_need_ack_num_retx[nof_retx_stat]++;
741 						if (tx_fail) {
742 							priv->stat.tx_data_pkt_need_ack_num_total_fail++;
743 							priv->stat.tx_data_pkt_fail_mcs_realtime = mcs_for_sysfs;
744 							priv->stat.tx_data_pkt_need_ack_num_retx_fail[nof_retx_stat]++;
745 						}
746 					} else if ( ieee80211_is_mgmt(hdr->frame_control) ) {
747 						nof_retx_stat = (nof_retx<=2?nof_retx:2);
748 
749 						priv->stat.tx_mgmt_pkt_need_ack_num_total++;
750 						priv->stat.tx_mgmt_pkt_mcs_realtime = mcs_for_sysfs;
751 						priv->stat.tx_mgmt_pkt_need_ack_num_retx[nof_retx_stat]++;
752 						if (tx_fail) {
753 							priv->stat.tx_mgmt_pkt_need_ack_num_total_fail++;
754 							priv->stat.tx_mgmt_pkt_fail_mcs_realtime = mcs_for_sysfs;
755 							priv->stat.tx_mgmt_pkt_need_ack_num_retx_fail[nof_retx_stat]++;
756 						}
757 					}
758 				}
759 
760 				if ( tx_fail == false )
761 					info->flags |= IEEE80211_TX_STAT_ACK;
762 
763 				info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
764 				info->status.rates[1].idx = -1;
765 				// info->status.rates[2].idx = -1;
766 				// info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
767 				info->status.antenna = priv->runtime_tx_ant_cfg;
768 
769 				if ( ( (!pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST) ) || ( (pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST) ) ){
770 					printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] SC%d prio%d q%d wr%d rd%d num_slot%d cw%d hwq len%08x no_room_flag%x\n", sdr_compatible_str,
771 					nof_retx+1, !tx_fail, seq_no, prio, queue_idx, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw, hw_queue_len, dma_fifo_no_room_flag);
772 				}
773 
774 				ieee80211_tx_status_irqsafe(dev, skb);
775 
776 				ring->bds[ring->bd_rd_idx].prio = 0xff; // invalid value
777 				ring->bds[ring->bd_rd_idx].len_mpdu = 0; // invalid value
778 				ring->bds[ring->bd_rd_idx].seq_no = 0xffff;
779 				ring->bds[ring->bd_rd_idx].skb_linked = NULL;
780 				ring->bds[ring->bd_rd_idx].dma_mapping_addr = 0;
781 			}
782 
783 			loop_count++;
784 
785 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
786 
787 		} else
788 			break;
789 	}
790 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&DMESG_LOG_ERROR) )
791 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
792 
793 	spin_unlock(&priv->lock);
794 	return IRQ_HANDLED;
795 }
796 
797 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000};
798 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes)
799 {
800 	u32 i, crc = 0;
801 	u8 idx;
802 	for( i = 0; i < num_bytes; i++)
803 	{
804 		idx = (crc & 0x0F) ^ (data_in[i] & 0x0F);
805 		crc = (crc >> 4) ^ crc_table[idx];
806 
807 		idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F);
808 		crc = (crc >> 4) ^ crc_table[idx];
809 	}
810 
811 	return crc;
812 }
813 
814 u8 gen_mpdu_delim_crc(u16 m)
815 {
816 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc;
817 
818 	for (i = 0; i < 16; i++)
819 	{
820 		temp = c[7] ^ ((m >> i) & 0x01);
821 
822 		c[7] = c[6];
823 		c[6] = c[5];
824 		c[5] = c[4];
825 		c[4] = c[3];
826 		c[3] = c[2];
827 		c[2] = c[1] ^ temp;
828 		c[1] = c[0] ^ temp;
829 		c[0] = temp;
830 	}
831 	mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
832 
833 	return mpdu_delim_crc;
834 }
835 
836 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
837 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
838 {
839 	return container_of(led_cdev, struct gpio_led_data, cdev);
840 }
841 
842 inline int calc_n_ofdm(int num_octet, int n_dbps)
843 {
844 	int num_bit, num_ofdm_sym;
845 
846 	num_bit      = 22+num_octet*8;
847 	num_ofdm_sym = (num_bit/n_dbps) + ((num_bit%n_dbps)!=0);
848 
849 	return (num_ofdm_sym);
850 }
851 
852 inline __le16 gen_ht_duration_id(__le16 frame_control, __le16 aid, u8 qos_hdr, bool use_ht_aggr, u16 rate_hw_value, u16 sifs)
853 {
854 // COTS wifi ht QoS data duration field analysis (lots of capture):
855 
856 // ht non-aggr QoS data: 44, type 2 (data frame) sub-type 8 (1000) 21.7/52/57.8/58.5/65Mbps
857 // ack     ht 36 + 4*[(22+14*8)/78] = 36 + 4*2 = 44
858 // ack legacy 20 + 4*[(22+14*8)/72] = 20 + 4*2 = 28
859 
860 // ht non-aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 6.5Mbps
861 // ack     ht 36 + 4*[(22+14*8)/26] = 36 + 4*6 = 60
862 // ack legacy 20 + 4*[(22+14*8)/24] = 20 + 4*6 = 44
863 
864 // ht     aggr QoS data: 52, type 2 (data frame) sub-type 8 (1000) 19.5/28.9/39/57.8/65/72.2Mbps
865 // ack     ht 36 + 4*[(22+32*8)/78] = 36 + 4*4 = 52
866 // ack legacy 20 + 4*[(22+32*8)/72] = 20 + 4*4 = 36
867 
868 // ht     aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 13/14.4Mbps
869 // ack     ht 36 + 4*[(22+32*8)/52] = 36 + 4*6 = 60
870 // ack legacy 20 + 4*[(22+32*8)/48] = 20 + 4*6 = 44
871 
872 // ht and legacy rate mapping is ont one on one, instead it is modulation combined with coding rate
873 // modulate  coding  ht-mcs ht-n_dbps legacy-mcs legacy-n_dbps
874 // BPSK      1/2     0      26        4          24
875 // QPSK      1/2     1      52        6          48
876 // QPSK      3/4     2      78        7          72
877 // 16QAM     1/2     3      104       8          96
878 // 16QAM     3/4     4      156       9          144
879 // 64QAM     2/3     5      208       10         192
880 // 64QAM     3/4     6      234       11         216
881 
882 // conclusion: duration is: assume ack/blk-ack uses legacy, plus SIFS
883 
884 // other observation: ht always use QoS data, not data (sub-type)
885 // other observation: management/control frame always in non-ht
886 
887 	__le16 dur = 0;
888 	u16 n_dbps;
889 	int num_octet, num_ofdm_sym;
890 
891 	if (ieee80211_is_pspoll(frame_control)) {
892 		dur = (aid|0xc000);
893 	} else if (ieee80211_is_data_qos(frame_control) && (~(qos_hdr&IEEE80211_QOS_CTL_ACK_POLICY_NOACK))) {
894 		rate_hw_value = (rate_hw_value>6?6:rate_hw_value);
895 		n_dbps = (rate_hw_value==0?wifi_n_dbps_table[4]:wifi_n_dbps_table[rate_hw_value+5]);
896 		num_octet = (use_ht_aggr?32:14); //32 bytes for compressed block ack; 14 bytes for normal ack
897 		num_ofdm_sym = calc_n_ofdm(num_octet, n_dbps);
898 		dur = sifs + 20 + 4*num_ofdm_sym; // 20us legacy preamble
899 		// printk("%s gen_ht_duration_id: num_octet %d n_dbps %d num_ofdm_sym %d dur %d\n", sdr_compatible_str,
900 		// num_octet, n_dbps, num_ofdm_sym, dur);
901 	} else {
902 		printk("%s openwifi_tx: WARNING gen_ht_duration_id wrong pkt type!\n", sdr_compatible_str);
903 	}
904 
905 	return dur;
906 }
907 
908 inline void report_pkt_loss_due_to_driver_drop(struct ieee80211_hw *dev, struct sk_buff *skb)
909 {
910 	struct openwifi_priv *priv = dev->priv;
911 	struct ieee80211_tx_info *info;
912 
913 	info = IEEE80211_SKB_CB(skb);
914 	ieee80211_tx_info_clear_status(info);
915 	info->status.rates[0].count = 1;
916 	info->status.rates[1].idx = -1;
917 	info->status.antenna = priv->runtime_tx_ant_cfg;
918 	ieee80211_tx_status_irqsafe(dev, skb);
919 }
920 
921 static void openwifi_tx(struct ieee80211_hw *dev,
922 		       struct ieee80211_tx_control *control,
923 		       struct sk_buff *skb)
924 {
925 	struct openwifi_priv *priv = dev->priv;
926 	unsigned long flags;
927 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
928 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
929 	struct openwifi_ring *ring = NULL;
930 	struct sk_buff *skb_new; // temp skb for internal use
931 	struct ieee80211_tx_info *info_skipped;
932 	dma_addr_t dma_mapping_addr;
933 	unsigned int i, j, empty_bd_idx = 0;
934 	u16 rate_signal_value, rate_hw_value, len_mpdu, len_psdu, num_dma_symbol, len_mpdu_delim_pad=0, num_byte_pad;
935 	u32 num_dma_byte, addr1_low32, addr2_low32=0, addr3_low32=0, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history;
936 	u16 addr1_high16, addr2_high16=0, addr3_high16=0, sc, seq_no=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration, n_dbps;
937 	u8 pkt_need_ack, retry_limit_raw,use_short_gi,*dma_buf,retry_limit_hw_value,rc_flags,qos_hdr,prio,queue_idx,drv_ring_idx;
938 	bool drv_seqno=false, use_rts_cts, use_cts_protect, ht_aggr_start=false, use_ht_rate, use_ht_aggr, cts_use_traffic_rate=false, force_use_cts_protect=false;
939 	__le16 frame_control,duration_id;
940 	u32 dma_fifo_no_room_flag, hw_queue_len, delay_count=0;
941 	enum dma_status status;
942 
943 	static u32 addr1_low32_prev = -1;
944 	static u16 rate_hw_value_prev = -1;
945 	static u8 pkt_need_ack_prev = -1;
946 	static u16 addr1_high16_prev = -1;
947 	static __le16 duration_id_prev = -1;
948 	static u8 prio_prev = -1;
949 	static u8 retry_limit_raw_prev = -1;
950 	static u8 use_short_gi_prev = -1;
951 
952 	// static bool led_status=0;
953 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
954 
955 	// if ( (priv->phy_tx_sn&7) ==0 ) {
956 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
957 	// 	if (openofdm_state_history!=openofdm_state_history_old){
958 	// 		led_status = (~led_status);
959 	// 		openofdm_state_history_old = openofdm_state_history;
960 	// 		gpiod_set_value(led_dat->gpiod, led_status);
961 	// 	}
962 	// }
963 
964 	if (skb->data_len>0) {// more data are not in linear data area skb->data
965 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
966 		goto openwifi_tx_early_out;
967 	}
968 
969 	len_mpdu = skb->len;
970 
971 	// get Linux priority/queue setting info and target mac address
972 	prio = skb_get_queue_mapping(skb);
973 	if (prio >= MAX_NUM_HW_QUEUE) {
974 		printk("%s openwifi_tx: WARNING prio%d\n", sdr_compatible_str, prio);
975 		goto openwifi_tx_early_out;
976 	}
977 
978 	addr1_low32  = *((u32*)(hdr->addr1+2));
979 
980 	// ---- DO your idea here! Map Linux/SW "prio" to driver "drv_ring_idx" (then 1on1 to FPGA queue_idx) ---
981 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
982 		drv_ring_idx = prio;
983 	} else {// customized prio to drv_ring_idx mapping
984 		// check current packet belonging to which slice/hw-queue
985 		for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
986 			if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
987 				break;
988 			}
989 		}
990 		drv_ring_idx = (i>=MAX_NUM_HW_QUEUE?prio:i); // if no address is hit
991 	}
992 
993 	ring = &(priv->tx_ring[drv_ring_idx]);
994 
995 	spin_lock_irqsave(&priv->lock, flags);
996 	if (ring->bds[ring->bd_wr_idx].seq_no != 0xffff) { // not cleared yet by interrupt
997 		for (i=1; i<NUM_TX_BD; i++) {
998 			if (ring->bds[(ring->bd_wr_idx+i)&(NUM_TX_BD-1)].seq_no == 0xffff) {
999 				empty_bd_idx = i;
1000 				break;
1001 			}
1002 		}
1003 		hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
1004 		if (empty_bd_idx) { // clear all bds before the empty bd and report failure to Linux
1005 			if (priv->stat.stat_enable) {
1006 				priv->stat.tx_prio_stop0_fake_num[prio]++;
1007 				priv->stat.tx_queue_stop0_fake_num[drv_ring_idx]++;
1008 			}
1009 			for (i=0; i<empty_bd_idx; i++) {
1010 				j = ( (ring->bd_wr_idx+i)&(NUM_TX_BD-1) );
1011 				printk("%s openwifi_tx: WARNING fake stop queue empty_bd_idx%d i%d lnx prio%d map to q%d stop%d hwq len%d wr%d rd%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str,
1012 				empty_bd_idx, i, prio, drv_ring_idx, ring->stop_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, ring->bds[j].prio, ring->bds[j].len_mpdu, ring->bds[j].seq_no, ring->bds[j].skb_linked, ring->bds[j].dma_mapping_addr);
1013 				// tell Linux this skb failed
1014 				skb_new = ring->bds[j].skb_linked;
1015 				dma_unmap_single(priv->tx_chan->device->dev,ring->bds[j].dma_mapping_addr,
1016 							skb_new->len, DMA_MEM_TO_DEV);
1017 				info_skipped = IEEE80211_SKB_CB(skb_new);
1018 				ieee80211_tx_info_clear_status(info_skipped);
1019 				info_skipped->status.rates[0].count = 1;
1020 				info_skipped->status.rates[1].idx = -1;
1021 				info_skipped->status.antenna = priv->runtime_tx_ant_cfg;
1022 				ieee80211_tx_status_irqsafe(dev, skb_new);
1023 
1024 				ring->bds[j].prio = 0xff; // invalid value
1025 				ring->bds[j].len_mpdu = 0; // invalid value
1026 				ring->bds[j].seq_no = 0xffff;
1027 				ring->bds[j].skb_linked = NULL;
1028 				ring->bds[j].dma_mapping_addr = 0;
1029 
1030 			}
1031 			if (ring->stop_flag != -1) { //the interrupt seems will never come, we need to wake up the queue in case the interrupt will never wake it up
1032 				ieee80211_wake_queue(dev, ring->stop_flag);
1033 				ring->stop_flag = -1;
1034 			}
1035 		} else {
1036 			j = ring->bd_wr_idx;
1037 			printk("%s openwifi_tx: WARNING real stop queue lnx prio%d map to q%d stop%d hwq len%d wr%d rd%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str,
1038 			prio, drv_ring_idx, ring->stop_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, ring->bds[j].prio, ring->bds[j].len_mpdu, ring->bds[j].seq_no, ring->bds[j].skb_linked, ring->bds[j].dma_mapping_addr);
1039 
1040 			ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
1041 			ring->stop_flag = prio;
1042 			if (priv->stat.stat_enable) {
1043 				priv->stat.tx_prio_stop0_real_num[prio]++;
1044 				priv->stat.tx_queue_stop0_real_num[drv_ring_idx]++;
1045 			}
1046 
1047 			spin_unlock_irqrestore(&priv->lock, flags);
1048 			goto openwifi_tx_early_out;
1049 		}
1050 	}
1051 	spin_unlock_irqrestore(&priv->lock, flags);
1052 	// -------------------- end of Map Linux/SW "prio" to driver "drv_ring_idx" ------------------
1053 
1054 	// get other info from packet header
1055 	addr1_high16 = *((u16*)(hdr->addr1));
1056 	if (len_mpdu>=20) {
1057 		addr2_low32  = *((u32*)(hdr->addr2+2));
1058 		addr2_high16 = *((u16*)(hdr->addr2));
1059 	}
1060 	if (len_mpdu>=26) {
1061 		addr3_low32  = *((u32*)(hdr->addr3+2));
1062 		addr3_high16 = *((u16*)(hdr->addr3));
1063 	}
1064 
1065 	frame_control=hdr->frame_control;
1066 	pkt_need_ack = (!(info->flags&IEEE80211_TX_CTL_NO_ACK));
1067 
1068 	retry_limit_raw = info->control.rates[0].count;
1069 
1070 	rc_flags = info->control.rates[0].flags;
1071 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
1072 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
1073 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
1074 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
1075 	use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0);
1076 	qos_hdr = (*(ieee80211_get_qos_ctl(hdr)));
1077 
1078 	// get Linux rate (MCS) setting
1079 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
1080 	// drv_tx_reg_val[DRV_TX_REG_IDX_RATE]
1081 	// override rate legacy: 4:6M,   5:9M,  6:12M,  7:18M, 8:24M, 9:36M, 10:48M,   11:54M
1082 	// drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]
1083 	// override rate     ht: 4:6.5M, 5:13M, 6:19.5M,7:26M, 8:39M, 9:52M, 10:58.5M, 11:65M
1084 	if ( ieee80211_is_data(hdr->frame_control) ) {//rate override command
1085 		if (use_ht_rate && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]>0) {
1086 			rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0xF)-4;
1087 			use_short_gi  = ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0x10)==0x10);
1088 		} else if ((!use_ht_rate) && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0)
1089 			rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]&0xF);
1090 		// TODO: need to map rate_hw_value back to info->control.rates[0].idx!!!
1091 	}
1092 
1093 	// Workaround for a FPGA bug: if aggr happens on ht mcs 0, the tx core will never end, running eneless and stuck the low MAC!
1094 	if (use_ht_aggr && rate_hw_value==0)
1095 		rate_hw_value = 1;
1096 
1097 	// sifs = (priv->actual_rx_lo<2500?10:16);
1098   sifs = 16; // for ofdm, sifs is always 16
1099 
1100 	if (use_ht_rate) {
1101 		// printk("%s openwifi_tx: rate_hw_value %d aggr %d sifs %d\n", sdr_compatible_str, rate_hw_value, use_ht_aggr, sifs);
1102 		hdr->duration_id = gen_ht_duration_id(frame_control, control->sta->aid, qos_hdr, use_ht_aggr, rate_hw_value, sifs); //linux only do it for 11a/g, not for 11n and later
1103 	}
1104 	duration_id = hdr->duration_id;
1105 
1106 	if (use_rts_cts)
1107 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
1108 
1109 	if (use_cts_protect) {
1110 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
1111 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info));
1112 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
1113 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
1114 		if (pkt_need_ack)
1115 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
1116 
1117 		n_dbps = (use_ht_rate?wifi_n_dbps_ht_table[rate_hw_value+4]:wifi_n_dbps_table[rate_hw_value]);
1118 		traffic_pkt_duration = (use_ht_rate?36:20) + 4*calc_n_ofdm(len_mpdu, n_dbps);
1119 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
1120 	}
1121 
1122 // this is 11b stuff
1123 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1124 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
1125 
1126 	if (len_mpdu>=28) {
1127 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1128 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
1129 				priv->seqno += 0x10;
1130 				drv_seqno = true;
1131 			}
1132 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1133 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
1134 		}
1135 		sc = hdr->seq_ctrl;
1136 		seq_no = (sc&IEEE80211_SCTL_SEQ)>>4;
1137 	}
1138 
1139 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
1140 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
1141 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
1142 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
1143 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
1144 
1145 	// -----------end of preprocess some info from header and skb----------------
1146 
1147 	// /* HW will perform RTS-CTS when only RTS flags is set.
1148 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
1149 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
1150 	//  */
1151 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1152 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
1153 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
1154 	// 					len_mpdu, info);
1155 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
1156 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1157 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
1158 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
1159 	// 					len_mpdu, info);
1160 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
1161 	// }
1162 
1163 	if(use_ht_aggr)
1164 	{
1165 		if(ieee80211_is_data_qos(frame_control) == false)
1166 		{
1167 			printk("%s openwifi_tx: WARNING packet is not QoS packet!\n", sdr_compatible_str);
1168 			goto openwifi_tx_early_out;
1169 		}
1170 
1171 		// psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ]
1172 		len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4);
1173 		len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad;
1174 
1175 		if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) ||
1176 			(rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) ||
1177 			(prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) )
1178 		{
1179 			addr1_low32_prev = addr1_low32;
1180 			addr1_high16_prev = addr1_high16;
1181 			duration_id_prev = duration_id;
1182 			rate_hw_value_prev = rate_hw_value;
1183 			use_short_gi_prev = use_short_gi;
1184 			prio_prev = prio;
1185 			retry_limit_raw_prev = retry_limit_raw;
1186 			pkt_need_ack_prev = pkt_need_ack;
1187 
1188 			ht_aggr_start = true;
1189 		}
1190 	}
1191 	else
1192 	{
1193 		// psdu = [ MPDU ]
1194 		len_psdu = len_mpdu;
1195 
1196 		// // Don't need to reset _prev variables every time when it is not ht aggr qos data. Reason:
1197 		// // 1. In 99.9999% cases, the ht always use qos data and goes to prio/queue_idx 2. By not resetting the variable to -1, we can have continuous aggregation packet operation in FPGA queue 2.
1198 		// // 2. In other words, the aggregation operation for queue 2 in FPGA won't be interrupted by other non aggregation packets (control/management/beacon/etc.) that go to queue 0 (or other queues than 2).
1199 		// // 3. From wired domain and upper level ( DSCP, AC (0~3), WMM management, 802.11D service classes and user priority (UP) ) to chip/FPGA queue index, thre should be some (complicated) mapping relationship.
1200 		// // 4. More decent design is setting these aggregation flags (ht_aggr_start) per queue/prio here in driver. But since now only queue 2 and 0 are used (data goes to queue 2, others go to queue 0) in normal (most) cases, let's not go to the decent (complicated) solution immediately.
1201 		// addr1_low32_prev = -1;
1202 		// addr1_high16_prev = -1;
1203 		// duration_id_prev = -1;
1204 		// use_short_gi_prev = -1;
1205 		// rate_hw_value_prev = -1;
1206 		// prio_prev = -1;
1207 		// retry_limit_raw_prev = -1;
1208 		// pkt_need_ack_prev = -1;
1209 	}
1210 	num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
1211 
1212 	if ( ( (!pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST) ) || ( (pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST) ) )
1213 		printk("%s openwifi_tx: %dB RC%x %dM FC%04x DI%04x ADDR%04x%08x/%04x%08x/%04x%08x flag%08x QoS%02x SC%d_%d retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
1214 			len_mpdu, rc_flags, (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
1215 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
1216 			info->flags, qos_hdr, seq_no, drv_seqno, retry_limit_raw, pkt_need_ack, prio, drv_ring_idx,
1217 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
1218 			ring->bd_wr_idx,ring->bd_rd_idx);
1219 
1220 	// check whether the packet is bigger than DMA buffer size
1221 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
1222 	if (num_dma_byte > TX_BD_BUF_SIZE) {
1223 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
1224 		goto openwifi_tx_early_out;
1225 	}
1226 
1227 	// Copy MPDU delimiter and padding into sk_buff
1228 	if(use_ht_aggr)
1229 	{
1230 		// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
1231 		if (skb_headroom(skb)<LEN_MPDU_DELIM) {// in case original skb headroom is not enough to host MPDU delimiter
1232 			printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_headroom(skb) %d < LEN_MPDU_DELIM %d\n", sdr_compatible_str, ring->bd_wr_idx, skb_headroom(skb), LEN_MPDU_DELIM);
1233 			if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) {
1234 				printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1235 				goto openwifi_tx_early_out;
1236 			}
1237 			if (skb->sk != NULL)
1238 				skb_set_owner_w(skb_new, skb->sk);
1239 			dev_kfree_skb(skb);
1240 			skb = skb_new;
1241 		}
1242 		skb_push( skb, LEN_MPDU_DELIM );
1243 		dma_buf = skb->data;
1244 
1245 		// fill in MPDU delimiter
1246 		*((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0;
1247 		*((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf));
1248 		*((u8 *)(dma_buf+3)) = 0x4e;
1249 
1250 		// Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter
1251 		num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu);
1252 		if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad
1253 			printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad);
1254 			if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) {
1255 				printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1256 				goto openwifi_tx_early_out;
1257 			}
1258 			if (skb->sk != NULL)
1259 				skb_set_owner_w(skb_new, skb->sk);
1260 			dev_kfree_skb(skb);
1261 			skb = skb_new;
1262 		}
1263 		skb_put( skb, num_byte_pad );
1264 
1265 		// fill in MPDU CRC
1266 		*((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu);
1267 
1268 		// fill in MPDU delimiter padding
1269 		memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad);
1270 
1271 		// num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary.
1272 		// If they have different lengths, add "empty MPDU delimiter" for alignment
1273 		if(num_dma_byte == len_psdu + 4)
1274 		{
1275 			*((u32*)(dma_buf+len_psdu)) = 0x4e140000;
1276 			len_psdu = num_dma_byte;
1277 		}
1278 	}
1279 	else
1280 	{
1281 		// Extend sk_buff to hold padding
1282 		num_byte_pad = num_dma_byte - len_mpdu;
1283 		if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad
1284 			printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad);
1285 			if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) {
1286 				printk("%s openwifi_tx: WARNING sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1287 				goto openwifi_tx_early_out;
1288 			}
1289 			if (skb->sk != NULL)
1290 				skb_set_owner_w(skb_new, skb->sk);
1291 			dev_kfree_skb(skb);
1292 			skb = skb_new;
1293 		}
1294 		skb_put( skb, num_byte_pad );
1295 
1296 		dma_buf = skb->data;
1297 	}
1298 //	for(i = 0; i <= num_dma_symbol; i++)
1299 //		printk("%16llx\n", (*(u64*)(&(dma_buf[i*8]))));
1300 
1301 	rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]);
1302 
1303 	retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) );
1304 
1305 	queue_idx = drv_ring_idx; // from driver ring idx to FPGA queue_idx mapping
1306 
1307 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
1308 	cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value);
1309 	tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | num_dma_symbol );
1310 	phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu );
1311 
1312 	/* We must be sure that tx_flags is written last because the HW
1313 	 * looks at it to check if the rest of data is valid or not
1314 	 */
1315 	//wmb();
1316 	// entry->flags = cpu_to_le32(tx_flags);
1317 	/* We must be sure this has been written before following HW
1318 	 * register write, because this write will make the HW attempts
1319 	 * to DMA the just-written data
1320 	 */
1321 	//wmb();
1322 
1323 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
1324 
1325 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
1326 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
1327 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
1328 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<=RING_ROOM_THRESHOLD)  || ring->stop_flag>=0 ) {
1329 		if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP )
1330 			printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio%d queue%d no room flag%x hwq len%08x request%d wr%d rd%d\n", sdr_compatible_str,
1331 			        prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
1332 
1333 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
1334 		ring->stop_flag = prio;
1335 		if (priv->stat.stat_enable) {
1336 			priv->stat.tx_prio_stop1_num[prio]++;
1337 			priv->stat.tx_queue_stop1_num[queue_idx]++;
1338 		}
1339 		// goto openwifi_tx_early_out_after_lock;
1340 	}
1341 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
1342 
1343 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
1344 	while(delay_count<100 && status!=DMA_COMPLETE) {
1345 		status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
1346 		delay_count++;
1347 		udelay(4);
1348 		// udelay(priv->stat.dbg_ch1);
1349 	}
1350 	if (status!=DMA_COMPLETE) {
1351 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
1352 		goto openwifi_tx_early_out_after_lock;
1353 	}
1354 
1355 //-------------------------fire skb DMA to hardware----------------------------------
1356 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
1357 				 num_dma_byte, DMA_MEM_TO_DEV);
1358 
1359 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
1360 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
1361 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
1362 		goto openwifi_tx_early_out_after_lock;
1363 	}
1364 
1365 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
1366 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
1367 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
1368 
1369 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
1370 	tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config);
1371 	tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config);
1372 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
1373 	if (!(priv->txd)) {
1374 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
1375 		goto openwifi_tx_after_dma_mapping;
1376 	}
1377 
1378 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
1379 
1380 	if (dma_submit_error(priv->tx_cookie)) {
1381 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
1382 		goto openwifi_tx_after_dma_mapping;
1383 	}
1384 
1385 	// seems everything is ok. let's mark this pkt in bd descriptor ring
1386 	ring->bds[ring->bd_wr_idx].prio = prio;
1387 	ring->bds[ring->bd_wr_idx].len_mpdu = len_mpdu;
1388 	ring->bds[ring->bd_wr_idx].seq_no = seq_no;
1389 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
1390 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
1391 
1392 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
1393 
1394 	dma_async_issue_pending(priv->tx_chan);
1395 
1396 	spin_unlock_irqrestore(&priv->lock, flags);
1397 
1398 	if (priv->stat.stat_enable) {
1399 		priv->stat.tx_prio_num[prio]++;
1400 		priv->stat.tx_queue_num[queue_idx]++;
1401 	}
1402 
1403 	return;
1404 
1405 openwifi_tx_after_dma_mapping:
1406 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
1407 
1408 openwifi_tx_early_out_after_lock:
1409 	spin_unlock_irqrestore(&priv->lock, flags);
1410 	report_pkt_loss_due_to_driver_drop(dev, skb);
1411 	// dev_kfree_skb(skb);
1412 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1413 	return;
1414 
1415 openwifi_tx_early_out:
1416 	report_pkt_loss_due_to_driver_drop(dev, skb);
1417 	// dev_kfree_skb(skb);
1418 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1419 }
1420 
1421 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant)
1422 {
1423 	struct openwifi_priv *priv = dev->priv;
1424 	u8 fpga_tx_ant_setting, target_rx_ant;
1425 	u32 atten_mdb_tx0, atten_mdb_tx1;
1426 	struct ctrl_outs_control ctrl_out;
1427 	int ret;
1428 
1429 	printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant);
1430 
1431 	if (tx_ant >= 4 || tx_ant == 0) {
1432 		return -EINVAL;
1433 	} else if (rx_ant >= 3 || rx_ant == 0) {
1434 		return -EINVAL;
1435 	}
1436 
1437 	fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16));
1438 	target_rx_ant = ((rx_ant&1)?0:1);
1439 
1440 	// try rf chip setting firstly, only update internal state variable when rf chip succeed
1441 	atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1442 	atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1443 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true);
1444 	if (ret < 0) {
1445 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0);
1446 		return -EINVAL;
1447 	} else {
1448 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0);
1449 	}
1450 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true);
1451 	if (ret < 0) {
1452 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1);
1453 		return -EINVAL;
1454 	} else {
1455 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1);
1456 	}
1457 
1458 	ctrl_out.en_mask = priv->ctrl_out.en_mask;
1459 	ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
1460 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out));
1461 	if (ret < 0) {
1462 		printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1463 		return -EINVAL;
1464 	} else {
1465 		printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1466 	}
1467 
1468 	tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting);
1469 	ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read();
1470 	if (ret != fpga_tx_ant_setting) {
1471 		printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret);
1472 		return -EINVAL;
1473 	} else {
1474 		printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1475 	}
1476 
1477 	rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant);
1478 	ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read();
1479 	if (ret != target_rx_ant) {
1480 		printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret);
1481 		return -EINVAL;
1482 	} else {
1483 		printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1484 	}
1485 
1486 	// update internal state variable
1487 	priv->runtime_tx_ant_cfg = tx_ant;
1488 	priv->runtime_rx_ant_cfg = rx_ant;
1489 
1490 	if (TX_OFFSET_TUNING_ENABLE)
1491 		priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE
1492 	else {
1493 		if (tx_ant == 3)
1494 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH;
1495 		else
1496 			priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1497 	}
1498 
1499 	priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1500 	priv->ctrl_out.index=ctrl_out.index;
1501 
1502 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1503 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1504 
1505 	return 0;
1506 }
1507 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant)
1508 {
1509 	struct openwifi_priv *priv = dev->priv;
1510 
1511 	*tx_ant = priv->runtime_tx_ant_cfg;
1512 	*rx_ant = priv->runtime_rx_ant_cfg;
1513 
1514 	printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant);
1515 
1516 	printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str,
1517 	priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index);
1518 
1519 	printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str,
1520 	tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read());
1521 
1522 	printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str,
1523 	ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER));
1524 
1525 	return 0;
1526 }
1527 
1528 static int openwifi_start(struct ieee80211_hw *dev)
1529 {
1530 	struct openwifi_priv *priv = dev->priv;
1531 	int ret, i;
1532 	u32 reg;
1533 
1534 	for (i=0; i<MAX_NUM_VIF; i++) {
1535 		priv->vif[i] = NULL;
1536 	}
1537 
1538 	// //keep software registers persistent between NIC down and up for multiple times
1539 	/*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
1540 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
1541 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
1542 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
1543 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/
1544 
1545 	//turn on radio
1546 	openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
1547 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
1548 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
1549 		priv->rfkill_off = 1;// 0 off, 1 on
1550 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
1551 	}
1552 	else
1553 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
1554 
1555 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1556 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1557 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1558 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1559 	xpu_api->hw_init(priv->xpu_cfg);
1560 
1561 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1562 
1563 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1564 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1565 
1566 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1567 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1568 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1569 
1570 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1571 	if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) {
1572 		ret = PTR_ERR(priv->rx_chan);
1573 		pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan);
1574 		goto err_dma;
1575 	}
1576 
1577 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1578 	if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) {
1579 		ret = PTR_ERR(priv->tx_chan);
1580 		pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan);
1581 		goto err_dma;
1582 	}
1583 	printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan);
1584 
1585 	ret = openwifi_init_rx_ring(priv);
1586 	if (ret) {
1587 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1588 		goto err_free_rings;
1589 	}
1590 
1591 	priv->seqno=0;
1592 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1593 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1594 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1595 			goto err_free_rings;
1596 		}
1597 	}
1598 
1599 	if ( (ret = rx_dma_setup(dev)) ) {
1600 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1601 		goto err_free_rings;
1602 	}
1603 
1604 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1605 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1606 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1607 	if (ret) {
1608 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1609 		goto err_free_rings;
1610 	} else {
1611 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1612 	}
1613 
1614 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1615 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1616 			IRQF_SHARED, "sdr,tx_itrpt", dev);
1617 	if (ret) {
1618 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1619 		goto err_free_rings;
1620 	} else {
1621 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1622 	}
1623 
1624 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1625 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1626 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1627 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1628 
1629 	priv->stat.csma_cfg0 = xpu_api->XPU_REG_FORCE_IDLE_MISC_read();
1630 
1631 	// disable ad9361 auto calibration and enable openwifi fpga spi control
1632 	priv->ad9361_phy->state->auto_cal_en = false;   // turn off auto Tx quadrature calib.
1633 	priv->ad9361_phy->state->manual_tx_quad_cal_en = true;  // turn on manual Tx quadrature calib.
1634 	xpu_api->XPU_REG_SPI_DISABLE_write(0);
1635 
1636 // normal_out:
1637 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1638 	return 0;
1639 
1640 err_free_rings:
1641 	openwifi_free_rx_ring(priv);
1642 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1643 		openwifi_free_tx_ring(priv, i);
1644 
1645 err_dma:
1646 	ret = -1;
1647 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1648 	return ret;
1649 }
1650 
1651 static void openwifi_stop(struct ieee80211_hw *dev)
1652 {
1653 	struct openwifi_priv *priv = dev->priv;
1654 	u32 reg, reg1;
1655 	int i;
1656 
1657 	// enable ad9361 auto calibration and disable openwifi fpga spi control
1658 	priv->ad9361_phy->state->auto_cal_en = true;   // turn on auto Tx quadrature calib.
1659 	priv->ad9361_phy->state->manual_tx_quad_cal_en = false;  // turn off manual Tx quadrature calib.
1660 	xpu_api->XPU_REG_SPI_DISABLE_write(1);
1661 
1662 	//turn off radio
1663 	#if 1
1664 	ad9361_tx_mute(priv->ad9361_phy, 1);
1665 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1666 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1667 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1668 		priv->rfkill_off = 0;// 0 off, 1 on
1669 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1670 	}
1671 	else
1672 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1673 	#endif
1674 
1675 	//ieee80211_stop_queue(dev, 0);
1676 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1677 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1678 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1679 
1680 	for (i=0; i<MAX_NUM_VIF; i++) {
1681 		priv->vif[i] = NULL;
1682 	}
1683 
1684 	openwifi_free_rx_ring(priv);
1685 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1686 		openwifi_free_tx_ring(priv, i);
1687 
1688 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1689 	dmaengine_terminate_all(priv->rx_chan);
1690 	dma_release_channel(priv->rx_chan);
1691 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1692 	dmaengine_terminate_all(priv->tx_chan);
1693 	dma_release_channel(priv->tx_chan);
1694 
1695 	//priv->rf->stop(dev);
1696 
1697 	free_irq(priv->irq_rx, dev);
1698 	free_irq(priv->irq_tx, dev);
1699 
1700 // normal_out:
1701 	printk("%s openwifi_stop\n", sdr_compatible_str);
1702 }
1703 
1704 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1705 			   struct ieee80211_vif *vif)
1706 {
1707 	u32 tsft_low, tsft_high;
1708 
1709 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1710 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1711 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1712 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1713 }
1714 
1715 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1716 {
1717 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1718 	u32 tsft_low  = (tsf&0xffffffff);
1719 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1720 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1721 }
1722 
1723 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1724 {
1725 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1726 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1727 }
1728 
1729 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1730 {
1731 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1732 	return(0);
1733 }
1734 
1735 static void openwifi_beacon_work(struct work_struct *work)
1736 {
1737 	struct openwifi_vif *vif_priv =
1738 		container_of(work, struct openwifi_vif, beacon_work.work);
1739 	struct ieee80211_vif *vif =
1740 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1741 	struct ieee80211_hw *dev = vif_priv->dev;
1742 	struct ieee80211_mgmt *mgmt;
1743 	struct sk_buff *skb;
1744 
1745 	/* don't overflow the tx ring */
1746 	if (ieee80211_queue_stopped(dev, 0))
1747 		goto resched;
1748 
1749 	/* grab a fresh beacon */
1750 	skb = ieee80211_beacon_get(dev, vif);
1751 	if (!skb)
1752 		goto resched;
1753 
1754 	/*
1755 	 * update beacon timestamp w/ TSF value
1756 	 * TODO: make hardware update beacon timestamp
1757 	 */
1758 	mgmt = (struct ieee80211_mgmt *)skb->data;
1759 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1760 
1761 	/* TODO: use actual beacon queue */
1762 	skb_set_queue_mapping(skb, 0);
1763 	openwifi_tx(dev, NULL, skb);
1764 
1765 resched:
1766 	/*
1767 	 * schedule next beacon
1768 	 * TODO: use hardware support for beacon timing
1769 	 */
1770 	schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1771 	// printk("%s openwifi_beacon_work beacon_int %d\n", sdr_compatible_str, vif->bss_conf.beacon_int);
1772 }
1773 
1774 static int openwifi_add_interface(struct ieee80211_hw *dev,
1775 				 struct ieee80211_vif *vif)
1776 {
1777 	int i;
1778 	struct openwifi_priv *priv = dev->priv;
1779 	struct openwifi_vif *vif_priv;
1780 
1781 	switch (vif->type) {
1782 	case NL80211_IFTYPE_AP:
1783 	case NL80211_IFTYPE_STATION:
1784 	case NL80211_IFTYPE_ADHOC:
1785 	case NL80211_IFTYPE_MONITOR:
1786 	case NL80211_IFTYPE_MESH_POINT:
1787 		break;
1788 	default:
1789 		return -EOPNOTSUPP;
1790 	}
1791 	// let's support more than 1 interface
1792 	for (i=0; i<MAX_NUM_VIF; i++) {
1793 		if (priv->vif[i] == NULL)
1794 			break;
1795 	}
1796 
1797 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1798 
1799 	if (i==MAX_NUM_VIF)
1800 		return -EBUSY;
1801 
1802 	priv->vif[i] = vif;
1803 
1804 	/* Initialize driver private area */
1805 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1806 	vif_priv->idx = i;
1807 
1808 	vif_priv->dev = dev;
1809 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1810 	vif_priv->enable_beacon = false;
1811 
1812 	priv->mac_addr[0] = vif->addr[0];
1813 	priv->mac_addr[1] = vif->addr[1];
1814 	priv->mac_addr[2] = vif->addr[2];
1815 	priv->mac_addr[3] = vif->addr[3];
1816 	priv->mac_addr[4] = vif->addr[4];
1817 	priv->mac_addr[5] = vif->addr[5];
1818 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); // set mac addr in fpga
1819 
1820 	printk("%s openwifi_add_interface end with vif idx %d addr %02x:%02x:%02x:%02x:%02x:%02x\n", sdr_compatible_str,vif_priv->idx,
1821 	vif->addr[0],vif->addr[1],vif->addr[2],vif->addr[3],vif->addr[4],vif->addr[5]);
1822 
1823 	return 0;
1824 }
1825 
1826 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1827 				     struct ieee80211_vif *vif)
1828 {
1829 	struct openwifi_vif *vif_priv;
1830 	struct openwifi_priv *priv = dev->priv;
1831 
1832 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1833 	priv->vif[vif_priv->idx] = NULL;
1834 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1835 }
1836 
1837 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1838 {
1839 	struct openwifi_priv *priv = dev->priv;
1840 	struct ieee80211_conf *conf = &dev->conf;
1841 
1842 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
1843 		if ( priv->stat.restrict_freq_mhz>0 && (conf->chandef.chan->center_freq != priv->stat.restrict_freq_mhz) ) {
1844 			printk("%s openwifi_config avoid Linux requested freq %dMHz (restrict freq %dMHz)\n", sdr_compatible_str,
1845 			conf->chandef.chan->center_freq, priv->stat.restrict_freq_mhz);
1846 			return -EINVAL;
1847 		}
1848 		priv->rf->set_chan(dev, conf);
1849 	} else
1850 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1851 
1852 	return 0;
1853 }
1854 
1855 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1856 				     struct ieee80211_vif *vif,
1857 				     struct ieee80211_bss_conf *info,
1858 				     u32 changed)
1859 {
1860 	struct openwifi_priv *priv = dev->priv;
1861 	struct openwifi_vif *vif_priv;
1862 	u32 bssid_low, bssid_high;
1863 
1864 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1865 
1866 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1867 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1868 	if (changed & BSS_CHANGED_BSSID) {
1869 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1870 		// write new bssid to our HW, and do not change bssid filter
1871 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1872 		bssid_low = ( *( (u32*)(info->bssid) ) );
1873 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1874 
1875 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1876 		//bssid_high = (bssid_high|bssid_filter_high);
1877 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1878 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1879 	}
1880 
1881 	if (changed & BSS_CHANGED_BEACON_INT) {
1882 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1883 	}
1884 
1885 	if (changed & BSS_CHANGED_TXPOWER)
1886 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1887 
1888 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1889 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1890 
1891 	if (changed & BSS_CHANGED_BASIC_RATES)
1892 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1893 
1894 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1895 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1896 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1897 		if (info->use_short_slot && priv->use_short_slot==false) {
1898 			priv->use_short_slot=true;
1899 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1900 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1901 			priv->use_short_slot=false;
1902 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1903 		}
1904 	}
1905 
1906 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1907 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1908 		vif_priv->enable_beacon = info->enable_beacon;
1909 	}
1910 
1911 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1912 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1913 		if (vif_priv->enable_beacon) {
1914 			schedule_work(&vif_priv->beacon_work.work);
1915 			printk("%s openwifi_bss_info_changed WARNING enable_beacon\n",sdr_compatible_str);
1916 		}
1917 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1918 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1919 	}
1920 }
1921 // helper function
1922 u32 log2val(u32 val){
1923 	u32 ret_val = 0 ;
1924 	while(val>1){
1925 		val = val >> 1 ;
1926 		ret_val ++ ;
1927 	}
1928 	return ret_val ;
1929 }
1930 
1931 static int openwifi_conf_tx(struct ieee80211_hw *dev, struct ieee80211_vif *vif, u16 queue,
1932 	      const struct ieee80211_tx_queue_params *params)
1933 {
1934 	struct openwifi_priv *priv = dev->priv;
1935 	u32 reg_val, cw_min_exp, cw_max_exp;
1936 
1937 	if (priv->stat.cw_max_min_cfg == 0) {
1938 		printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
1939 			sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1940 
1941 		reg_val=xpu_api->XPU_REG_CSMA_CFG_read();
1942 		cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
1943 		cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
1944 		switch(queue){
1945 			case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) );  break;
1946 			case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) );  break;
1947 			case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break;
1948 			case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break;
1949 			default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
1950 		}
1951 	} else {
1952 		reg_val = priv->stat.cw_max_min_cfg;
1953 		printk("%s openwifi_conf_tx: override cw max min for q3 to q0: %d %d; %d %d; %d %d; %d %d\n",
1954 			sdr_compatible_str,
1955 			(1<<((reg_val>>28)&0xF))-1,
1956 			(1<<((reg_val>>24)&0xF))-1,
1957 			(1<<((reg_val>>20)&0xF))-1,
1958 			(1<<((reg_val>>16)&0xF))-1,
1959 			(1<<((reg_val>>12)&0xF))-1,
1960 			(1<<((reg_val>> 8)&0xF))-1,
1961 			(1<<((reg_val>> 4)&0xF))-1,
1962 			(1<<((reg_val>> 0)&0xF))-1);
1963 	}
1964 	xpu_api->XPU_REG_CSMA_CFG_write(reg_val);
1965 	return(0);
1966 }
1967 
1968 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1969 				     struct netdev_hw_addr_list *mc_list)
1970 {
1971 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1972 	return netdev_hw_addr_list_count(mc_list);
1973 }
1974 
1975 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1976 				     unsigned int changed_flags,
1977 				     unsigned int *total_flags,
1978 				     u64 multicast)
1979 {
1980 	struct openwifi_priv *priv = dev->priv;
1981 	u32 filter_flag;
1982 
1983 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1984 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1985 
1986 	filter_flag = (*total_flags);
1987 
1988 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1989 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1990 
1991 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1992 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1993 		filter_flag = (filter_flag|MONITOR_ALL);
1994 	else
1995 		filter_flag = (filter_flag&(~MONITOR_ALL));
1996 
1997 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1998 		filter_flag = (filter_flag|MY_BEACON);
1999 
2000 	filter_flag = (filter_flag|FIF_PSPOLL);
2001 
2002 	if (priv->stat.rx_monitor_all)
2003 		filter_flag = (filter_flag|MONITOR_ALL);
2004 
2005 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
2006 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
2007 
2008 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
2009 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
2010 }
2011 
2012 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params)
2013 {
2014 	struct ieee80211_sta *sta = params->sta;
2015 	enum ieee80211_ampdu_mlme_action action = params->action;
2016 	// struct openwifi_priv *priv = hw->priv;
2017 	u16 max_tx_bytes, buf_size;
2018 	u32 ampdu_action_config;
2019 
2020 	if (!AGGR_ENABLE) {
2021 		return -EOPNOTSUPP;
2022 	}
2023 
2024 	switch (action)
2025 	{
2026 		case IEEE80211_AMPDU_TX_START:
2027 			ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
2028 			printk("%s openwifi_ampdu_action: start TX aggregation. tid %d\n", sdr_compatible_str, params->tid);
2029 			break;
2030 		case IEEE80211_AMPDU_TX_STOP_CONT:
2031 		case IEEE80211_AMPDU_TX_STOP_FLUSH:
2032 		case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
2033 			ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
2034 			printk("%s openwifi_ampdu_action: stop TX aggregation. tid %d\n", sdr_compatible_str, params->tid);
2035 			break;
2036 		case IEEE80211_AMPDU_TX_OPERATIONAL:
2037 			buf_size = 4;
2038 //			buf_size = (params->buf_size) - 1;
2039 			max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1;
2040 			ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes );
2041 			tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config);
2042 			printk("%s openwifi_ampdu_action: TX operational. tid %d max_tx_bytes %d ampdu_density %d buf_size %d\n",
2043 			sdr_compatible_str, params->tid, max_tx_bytes, sta->ht_cap.ampdu_density, buf_size);
2044 			break;
2045 		case IEEE80211_AMPDU_RX_START:
2046 			printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
2047 			break;
2048 		case IEEE80211_AMPDU_RX_STOP:
2049 			printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
2050 			break;
2051 		default:
2052 			return -EOPNOTSUPP;
2053 	}
2054 
2055 	return 0;
2056 }
2057 
2058 static const struct ieee80211_ops openwifi_ops = {
2059 	.tx			       = openwifi_tx,
2060 	.start			   = openwifi_start,
2061 	.stop			   = openwifi_stop,
2062 	.add_interface	   = openwifi_add_interface,
2063 	.remove_interface  = openwifi_remove_interface,
2064 	.config			   = openwifi_config,
2065 	.set_antenna       = openwifi_set_antenna,
2066 	.get_antenna       = openwifi_get_antenna,
2067 	.bss_info_changed  = openwifi_bss_info_changed,
2068 	.conf_tx		   = openwifi_conf_tx,
2069 	.prepare_multicast = openwifi_prepare_multicast,
2070 	.configure_filter  = openwifi_configure_filter,
2071 	.rfkill_poll	   = openwifi_rfkill_poll,
2072 	.get_tsf		   = openwifi_get_tsf,
2073 	.set_tsf		   = openwifi_set_tsf,
2074 	.reset_tsf		   = openwifi_reset_tsf,
2075 	.set_rts_threshold = openwifi_set_rts_threshold,
2076 	.ampdu_action      = openwifi_ampdu_action,
2077 	.testmode_cmd	   = openwifi_testmode_cmd,
2078 };
2079 
2080 static const struct of_device_id openwifi_dev_of_ids[] = {
2081 	{ .compatible = "sdr,sdr", },
2082 	{}
2083 };
2084 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
2085 
2086 static int custom_match_spi_dev(struct device *dev, void *data)
2087 {
2088     const char *name = data;
2089 
2090 	bool ret = sysfs_streq(name, dev->of_node->name);
2091 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
2092 	return ret;
2093 }
2094 
2095 static int custom_match_platform_dev(struct device *dev, void *data)
2096 {
2097 	struct platform_device *plat_dev = to_platform_device(dev);
2098 	const char *name = data;
2099 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
2100 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
2101 
2102 	if (match_flag) {
2103 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
2104 	}
2105 	return(match_flag);
2106 }
2107 
2108 static int openwifi_dev_probe(struct platform_device *pdev)
2109 {
2110 	struct ieee80211_hw *dev;
2111 	struct openwifi_priv *priv;
2112 	int err=1, rand_val;
2113 	const char *chip_name, *fpga_model;
2114 	u32 reg, i;//, reg1;
2115 
2116 	struct device_node *np = pdev->dev.of_node;
2117 
2118 	struct device *tmp_dev;
2119 	struct platform_device *tmp_pdev;
2120 	struct iio_dev *tmp_indio_dev;
2121 	// struct gpio_leds_priv *tmp_led_priv;
2122 
2123 	printk("\n");
2124 
2125 	if (np) {
2126 		const struct of_device_id *match;
2127 
2128 		match = of_match_node(openwifi_dev_of_ids, np);
2129 		if (match) {
2130 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
2131 			err = 0;
2132 		}
2133 	}
2134 
2135 	if (err)
2136 		return err;
2137 
2138 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
2139 	if (!dev) {
2140 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
2141 		err = -ENOMEM;
2142 		goto err_free_dev;
2143 	}
2144 
2145 	priv = dev->priv;
2146 	priv->pdev = pdev;
2147 
2148 	err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
2149 	if(err < 0) {
2150 		printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
2151 		priv->fpga_type = SMALL_FPGA;
2152 	} else {
2153 		// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
2154 		if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
2155 			priv->fpga_type = LARGE_FPGA;
2156 		// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
2157 		else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
2158 			priv->fpga_type = SMALL_FPGA;
2159 	}
2160 
2161 	// //-------------find ad9361-phy driver for lo/channel control---------------
2162 	priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
2163 	priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
2164 	priv->last_tx_quad_cal_lo = 1000;
2165 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
2166 	if (tmp_dev == NULL) {
2167 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
2168 		err = -ENODEV;
2169 		goto err_free_dev;
2170 	}
2171 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
2172 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
2173 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
2174 		err = -ENODEV;
2175 		goto err_free_dev;
2176 	}
2177 
2178 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
2179 	if (!(priv->ad9361_phy)) {
2180 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
2181 		err = -ENODEV;
2182 		goto err_free_dev;
2183 	}
2184 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
2185 
2186 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
2187 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
2188 	if (!tmp_dev) {
2189 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
2190 		err = -ENODEV;
2191 		goto err_free_dev;
2192 	}
2193 
2194 	tmp_pdev = to_platform_device(tmp_dev);
2195 	if (!tmp_pdev) {
2196 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
2197 		err = -ENODEV;
2198 		goto err_free_dev;
2199 	}
2200 
2201 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
2202 	if (!tmp_indio_dev) {
2203 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
2204 		err = -ENODEV;
2205 		goto err_free_dev;
2206 	}
2207 
2208 	priv->dds_st = iio_priv(tmp_indio_dev);
2209 	if (!(priv->dds_st)) {
2210 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
2211 		err = -ENODEV;
2212 		goto err_free_dev;
2213 	}
2214 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
2215 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
2216 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
2217 
2218 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
2219 	// turn off radio by muting tx
2220 	// ad9361_tx_mute(priv->ad9361_phy, 1);
2221 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
2222 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2223 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
2224 	// 	priv->rfkill_off = 0;// 0 off, 1 on
2225 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
2226 	// }
2227 	// else
2228 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
2229 
2230 	// //-----------------------------parse the test_mode input--------------------------------
2231 	if (test_mode&1)
2232 		AGGR_ENABLE = true;
2233 
2234 	// if (test_mode&2)
2235 	// 	TX_OFFSET_TUNING_ENABLE = false;
2236 
2237 	priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel()
2238 	priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized
2239 
2240 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2241 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2242 
2243 	priv->xpu_cfg = XPU_NORMAL;
2244 
2245 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
2246 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
2247 
2248 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
2249 	if (priv->rf_bw == 20000000) { //DO NOT USE. Not used for long time.
2250 		priv->rx_intf_cfg = RX_INTF_BYPASS;
2251 		priv->tx_intf_cfg = TX_INTF_BYPASS;
2252 		//priv->rx_freq_offset_to_lo_MHz = 0;
2253 		//priv->tx_freq_offset_to_lo_MHz = 0;
2254 	} else if (priv->rf_bw == 40000000) {
2255 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
2256 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
2257 
2258 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
2259 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2260 		if (TX_OFFSET_TUNING_ENABLE)
2261 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
2262 		else
2263 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2264 		// // try another antenna option
2265 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
2266 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
2267 
2268 		#if 0
2269 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
2270 			priv->rx_freq_offset_to_lo_MHz = -10;
2271 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
2272 			priv->rx_freq_offset_to_lo_MHz = 10;
2273 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
2274 			priv->rx_freq_offset_to_lo_MHz = 0;
2275 		} else {
2276 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
2277 		}
2278 		#endif
2279 	} else {
2280 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
2281 		err = -EBADRQC;
2282 		goto err_free_dev;
2283 	}
2284 
2285 	printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att);
2286 
2287 	priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2));
2288 	priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2);
2289 
2290 	priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK;
2291 	priv->ctrl_out.index  =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
2292 
2293 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
2294 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
2295 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
2296 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
2297 
2298 	priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att;
2299 
2300 	//let's by default turn radio on when probing
2301 	err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
2302 	if (err) {
2303 		printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err);
2304 		err = -EIO;
2305 		goto err_free_dev;
2306 	}
2307 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
2308 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
2309 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
2310 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
2311 
2312 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
2313 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
2314 		priv->rfkill_off = 1;// 0 off, 1 on
2315 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
2316 	} else
2317 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
2318 
2319 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
2320 
2321 	// //set ad9361 in certain mode
2322 	#if 0
2323 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
2324 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2325 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
2326 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2327 
2328 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
2329 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
2330 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
2331 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
2332 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
2333 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
2334 	#endif
2335 
2336 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
2337 
2338 	SET_IEEE80211_DEV(dev, &pdev->dev);
2339 	platform_set_drvdata(pdev, dev);
2340 
2341 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
2342 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
2343 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
2344 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
2345 
2346 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
2347 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
2348 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
2349 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
2350 
2351 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
2352 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
2353 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
2354 	priv->ampdu_reference = 0;
2355 
2356 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
2357 	priv->band_2GHz.channels = priv->channels_2GHz;
2358 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
2359 	priv->band_2GHz.bitrates = priv->rates_2GHz;
2360 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
2361 	priv->band_2GHz.ht_cap.ht_supported = true;
2362 	// priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
2363 	if (AGGR_ENABLE) {
2364 		priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2365 		priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2366 	}
2367 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
2368 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2369 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2370 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
2371 
2372 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
2373 	priv->band_5GHz.channels = priv->channels_5GHz;
2374 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
2375 	priv->band_5GHz.bitrates = priv->rates_5GHz;
2376 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
2377 	priv->band_5GHz.ht_cap.ht_supported = true;
2378 	// priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
2379 	if (AGGR_ENABLE) {
2380 		priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2381 		priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2382 	}
2383 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
2384 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2385 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2386 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2387 
2388 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2389 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2390 
2391 	// ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); // remove this because we don't want: mac80211.h: host buffers frame for PS and we fetch them via ieee80211_get_buffered_bc()
2392 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2393 	ieee80211_hw_set(dev, BEACON_TX_STATUS);//mac80211.h: The device/driver provides TX status for sent beacons.
2394 
2395 	ieee80211_hw_set(dev, REPORTS_TX_ACK_STATUS);//mac80211.h: Hardware can provide ack status reports of Tx frames to the stack
2396 
2397 	// * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device
2398 	// *	autonomously manages the PS status of connected stations. When
2399 	// *	this flag is set mac80211 will not trigger PS mode for connected
2400 	// *	stations based on the PM bit of incoming frames.
2401 	// *	Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure
2402 	// *	the PS mode of connected stations.
2403 	ieee80211_hw_set(dev, AP_LINK_PS);
2404 
2405 	if (AGGR_ENABLE) {
2406 		ieee80211_hw_set(dev, AMPDU_AGGREGATION);
2407 	}
2408 
2409 	dev->extra_tx_headroom = LEN_MPDU_DELIM;
2410 
2411 	dev->vif_data_size = sizeof(struct openwifi_vif);
2412 	dev->wiphy->interface_modes =
2413 			BIT(NL80211_IFTYPE_MONITOR)|
2414 			BIT(NL80211_IFTYPE_P2P_GO) |
2415 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
2416 			BIT(NL80211_IFTYPE_AP) |
2417 			BIT(NL80211_IFTYPE_STATION) |
2418 			BIT(NL80211_IFTYPE_ADHOC) |
2419 			BIT(NL80211_IFTYPE_MESH_POINT) |
2420 			BIT(NL80211_IFTYPE_OCB);
2421 	dev->wiphy->iface_combinations = &openwifi_if_comb;
2422 	dev->wiphy->n_iface_combinations = 1;
2423 
2424 	dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK;
2425 	dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK;
2426 
2427 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2428 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2429 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2430 
2431 	chip_name = "ZYNQ";
2432 
2433 	/* we declare to MAC80211 all the queues except for beacon queue
2434 	 * that will be eventually handled by DRV.
2435 	 * TX rings are arranged in such a way that lower is the IDX,
2436 	 * higher is the priority, in order to achieve direct mapping
2437 	 * with mac80211, however the beacon queue is an exception and it
2438 	 * is mapped on the highst tx ring IDX.
2439 	 */
2440 	dev->queues = MAX_NUM_HW_QUEUE;
2441 
2442 	ieee80211_hw_set(dev, SIGNAL_DBM);
2443 
2444 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2445 
2446 	priv->rf = &ad9361_rf_ops;
2447 
2448 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2449 	priv->slice_idx = 0xFFFFFFFF;
2450 
2451 	sg_init_table(&(priv->tx_sg), 1);
2452 
2453 	get_random_bytes(&rand_val, sizeof(rand_val));
2454     rand_val%=250;
2455 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
2456 	priv->mac_addr[5]=rand_val+1;
2457 	//priv->mac_addr[5]=0x11;
2458 	if (!is_valid_ether_addr(priv->mac_addr)) {
2459 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2460 		eth_random_addr(priv->mac_addr);
2461 	}
2462 	printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2463 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2464 
2465 	spin_lock_init(&priv->lock);
2466 
2467 	err = ieee80211_register_hw(dev);
2468 	if (err) {
2469 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2470 		err = -EIO;
2471 		goto err_free_dev;
2472 	} else {
2473 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2474 	}
2475 
2476 	// create sysfs for arbitrary iq setting
2477 	sysfs_bin_attr_init(&priv->bin_iq);
2478 	priv->bin_iq.attr.name = "tx_intf_iq_data";
2479 	priv->bin_iq.attr.mode = S_IWUSR | S_IRUGO;
2480 	priv->bin_iq.write = openwifi_tx_intf_bin_iq_write;
2481 	priv->bin_iq.read = openwifi_tx_intf_bin_iq_read;
2482 	priv->bin_iq.size = 4096;
2483 	err = sysfs_create_bin_file(&pdev->dev.kobj, &priv->bin_iq);
2484 	printk("%s openwifi_dev_probe: sysfs_create_bin_file %d\n",sdr_compatible_str, err);
2485 	if (err < 0)
2486 		goto err_free_dev;
2487 
2488 	priv->tx_intf_arbitrary_iq_num = 0;
2489 	// priv->tx_intf_arbitrary_iq[0] = 1;
2490 	// priv->tx_intf_arbitrary_iq[1] = 2;
2491 
2492 	err = sysfs_create_group(&pdev->dev.kobj, &tx_intf_attribute_group);
2493 	printk("%s openwifi_dev_probe: sysfs_create_group tx_intf_attribute_group %d\n",sdr_compatible_str, err);
2494 	if (err < 0)
2495 		goto err_free_dev;
2496 	priv->tx_intf_iq_ctl = 0;
2497 
2498 	// create sysfs for stat
2499 	err = sysfs_create_group(&pdev->dev.kobj, &stat_attribute_group);
2500 	printk("%s openwifi_dev_probe: sysfs_create_group stat_attribute_group %d\n",sdr_compatible_str, err);
2501 	if (err < 0)
2502 		goto err_free_dev;
2503 
2504 	priv->stat.stat_enable = 0; // by default disable
2505 
2506 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
2507 		priv->stat.tx_prio_num[i] = 0;
2508 		priv->stat.tx_prio_interrupt_num[i] = 0;
2509 		priv->stat.tx_prio_stop0_fake_num[i] = 0;
2510 		priv->stat.tx_prio_stop0_real_num[i] = 0;
2511 		priv->stat.tx_prio_stop1_num[i] = 0;
2512 		priv->stat.tx_prio_wakeup_num[i] = 0;
2513 	}
2514 	for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
2515 		priv->stat.tx_queue_num[i] = 0;
2516 		priv->stat.tx_queue_interrupt_num[i] = 0;
2517 		priv->stat.tx_queue_stop0_fake_num[i] = 0;
2518 		priv->stat.tx_queue_stop0_real_num[i] = 0;
2519 		priv->stat.tx_queue_stop1_num[i] = 0;
2520 		priv->stat.tx_queue_wakeup_num[i] = 0;
2521 	}
2522 
2523 	priv->stat.tx_data_pkt_need_ack_num_total = 0;
2524 	priv->stat.tx_data_pkt_need_ack_num_total_fail = 0;
2525 	for (i=0; i<6; i++) {
2526 		priv->stat.tx_data_pkt_need_ack_num_retx[i] = 0;
2527 		priv->stat.tx_data_pkt_need_ack_num_retx_fail[i] = 0;
2528 	}
2529 	priv->stat.tx_data_pkt_mcs_realtime = 0;
2530 	priv->stat.tx_data_pkt_fail_mcs_realtime = 0;
2531 
2532 	priv->stat.tx_mgmt_pkt_need_ack_num_total = 0;
2533 	priv->stat.tx_mgmt_pkt_need_ack_num_total_fail = 0;
2534 	for (i=0; i<3; i++) {
2535 		priv->stat.tx_mgmt_pkt_need_ack_num_retx[i] = 0;
2536 		priv->stat.tx_mgmt_pkt_need_ack_num_retx_fail[i] = 0;
2537 	}
2538 	priv->stat.tx_mgmt_pkt_mcs_realtime = 0;
2539 	priv->stat.tx_mgmt_pkt_fail_mcs_realtime = 0;
2540 
2541 	priv->stat.rx_monitor_all = 0;
2542 	priv->stat.rx_target_sender_mac_addr = 0;
2543 	priv->stat.rx_data_ok_agc_gain_value_realtime = 0;
2544 	priv->stat.rx_data_fail_agc_gain_value_realtime = 0;
2545 	priv->stat.rx_mgmt_ok_agc_gain_value_realtime = 0;
2546 	priv->stat.rx_mgmt_fail_agc_gain_value_realtime = 0;
2547 	priv->stat.rx_ack_ok_agc_gain_value_realtime = 0;
2548 
2549 	priv->stat.rx_monitor_all = 0;
2550 	priv->stat.rx_data_pkt_num_total = 0;
2551 	priv->stat.rx_data_pkt_num_fail = 0;
2552 	priv->stat.rx_mgmt_pkt_num_total = 0;
2553 	priv->stat.rx_mgmt_pkt_num_fail = 0;
2554 	priv->stat.rx_ack_pkt_num_total = 0;
2555 	priv->stat.rx_ack_pkt_num_fail = 0;
2556 
2557 	priv->stat.rx_data_pkt_mcs_realtime = 0;
2558 	priv->stat.rx_data_pkt_fail_mcs_realtime = 0;
2559 	priv->stat.rx_mgmt_pkt_mcs_realtime = 0;
2560 	priv->stat.rx_mgmt_pkt_fail_mcs_realtime = 0;
2561 	priv->stat.rx_ack_pkt_mcs_realtime = 0;
2562 
2563 	priv->stat.restrict_freq_mhz = 0;
2564 
2565 	priv->stat.csma_cfg0 = 0;
2566 	priv->stat.cw_max_min_cfg = 0;
2567 
2568 	priv->stat.dbg_ch0 = 0;
2569 	priv->stat.dbg_ch1 = 0;
2570 	priv->stat.dbg_ch2 = 0;
2571 
2572 	// // //--------------------hook leds (not complete yet)--------------------------------
2573 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
2574 	// if (!tmp_dev) {
2575 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2576 	// 	err = -ENOMEM;
2577 	// 	goto err_free_dev;
2578 	// }
2579 
2580 	// tmp_pdev = to_platform_device(tmp_dev);
2581 	// if (!tmp_pdev) {
2582 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2583 	// 	err = -ENOMEM;
2584 	// 	goto err_free_dev;
2585 	// }
2586 
2587 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2588 	// if (!tmp_led_priv) {
2589 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2590 	// 	err = -ENOMEM;
2591 	// 	goto err_free_dev;
2592 	// }
2593 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2594 	// if (tmp_led_priv->num_leds!=4){
2595 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2596 	// 	err = -ENOMEM;
2597 	// 	goto err_free_dev;
2598 	// }
2599 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2600 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2601 	// priv->num_led = tmp_led_priv->num_leds;
2602 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2603 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2604 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2605 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2606 
2607 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2608 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2609 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2610 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2611 
2612 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2613 		   priv->mac_addr, chip_name, priv->rf->name);
2614 
2615 	openwifi_rfkill_init(dev);
2616 	return 0;
2617 
2618  err_free_dev:
2619 	ieee80211_free_hw(dev);
2620 
2621 	return err;
2622 }
2623 
2624 static int openwifi_dev_remove(struct platform_device *pdev)
2625 {
2626 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2627 	struct openwifi_priv *priv = dev->priv;
2628 
2629 	if (!dev) {
2630 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2631 		return(-1);
2632 	}
2633 
2634 	sysfs_remove_bin_file(&pdev->dev.kobj, &priv->bin_iq);
2635 	sysfs_remove_group(&pdev->dev.kobj, &tx_intf_attribute_group);
2636 	sysfs_remove_group(&pdev->dev.kobj, &stat_attribute_group);
2637 
2638 	openwifi_rfkill_exit(dev);
2639 	ieee80211_unregister_hw(dev);
2640 	ieee80211_free_hw(dev);
2641 	return(0);
2642 }
2643 
2644 static struct platform_driver openwifi_dev_driver = {
2645 	.driver = {
2646 		.name = "sdr,sdr",
2647 		.owner = THIS_MODULE,
2648 		.of_match_table = openwifi_dev_of_ids,
2649 	},
2650 	.probe = openwifi_dev_probe,
2651 	.remove = openwifi_dev_remove,
2652 };
2653 
2654 module_platform_driver(openwifi_dev_driver);
2655