1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos 2 // SPDX-FileCopyrightText: 2022 UGent 3 // SPDX-License-Identifier: AGPL-3.0-or-later 4 5 #include <linux/bitops.h> 6 #include <linux/dmapool.h> 7 #include <linux/io.h> 8 #include <linux/iopoll.h> 9 #include <linux/of_address.h> 10 #include <linux/of_platform.h> 11 #include <linux/of_irq.h> 12 #include <linux/slab.h> 13 #include <linux/clk.h> 14 #include <linux/io-64-nonatomic-lo-hi.h> 15 16 #include <linux/delay.h> 17 #include <linux/interrupt.h> 18 19 #include <linux/dmaengine.h> 20 #include <linux/slab.h> 21 #include <linux/delay.h> 22 #include <linux/etherdevice.h> 23 24 #include <linux/init.h> 25 #include <linux/kthread.h> 26 #include <linux/module.h> 27 #include <linux/of_dma.h> 28 #include <linux/platform_device.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/wait.h> 32 #include <linux/sched/task.h> 33 #include <linux/dma/xilinx_dma.h> 34 #include <linux/spi/spi.h> 35 #include <net/mac80211.h> 36 37 #include <linux/clk.h> 38 #include <linux/clkdev.h> 39 #include <linux/clk-provider.h> 40 41 #include <linux/iio/iio.h> 42 #include <linux/iio/sysfs.h> 43 44 #include <linux/gpio.h> 45 #include <linux/leds.h> 46 47 #define IIO_AD9361_USE_PRIVATE_H_ 48 #include <../../drivers/iio/adc/ad9361_regs.h> 49 #include <../../drivers/iio/adc/ad9361.h> 50 #include <../../drivers/iio/adc/ad9361_private.h> 51 52 #include <../../drivers/iio/frequency/cf_axi_dds.h> 53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num); 54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb, 55 bool tx1, bool tx2, bool immed); 56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy, 57 struct ctrl_outs_control *ctrl); 58 extern int ad9361_do_calib_run(struct ad9361_rf_phy *phy, u32 cal, int arg); 59 60 #include "../user_space/sdrctl_src/nl80211_testmode_def.h" 61 #include "hw_def.h" 62 #include "sdr.h" 63 #include "git_rev.h" 64 65 // driver API of component driver 66 extern struct tx_intf_driver_api *tx_intf_api; 67 extern struct rx_intf_driver_api *rx_intf_api; 68 extern struct openofdm_tx_driver_api *openofdm_tx_api; 69 extern struct openofdm_rx_driver_api *openofdm_rx_api; 70 extern struct xpu_driver_api *xpu_api; 71 72 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes); 73 u8 gen_mpdu_delim_crc(u16 m); 74 u32 reverse32(u32 d); 75 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant); 76 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant); 77 int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction); 78 int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction); 79 int rssi_correction_lookup_table(u32 freq_MHz); 80 81 #include "sdrctl_intf.c" 82 #include "sysfs_intf.c" 83 84 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1) 85 // Internal indication variables after parsing test_mode 86 static bool AGGR_ENABLE = false; 87 static bool TX_OFFSET_TUNING_ENABLE = false; 88 89 static int init_tx_att = 0; 90 91 MODULE_AUTHOR("Xianjun Jiao"); 92 MODULE_DESCRIPTION("SDR driver"); 93 MODULE_LICENSE("GPL v2"); 94 95 module_param(test_mode, int, 0); 96 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)"); 97 98 module_param(init_tx_att, int, 0); 99 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000 example: set to 3000 for 3dB attenuation"); 100 101 // ---------------rfkill--------------------------------------- 102 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv) 103 { 104 int reg; 105 106 if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH) 107 reg = ad9361_get_tx_atten(priv->ad9361_phy, 1); 108 else 109 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 110 111 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) 112 return true;// 0 off, 1 on 113 return false; 114 } 115 116 void openwifi_rfkill_init(struct ieee80211_hw *hw) 117 { 118 struct openwifi_priv *priv = hw->priv; 119 120 priv->rfkill_off = openwifi_is_radio_enabled(priv); 121 printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off"); 122 wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off); 123 wiphy_rfkill_start_polling(hw->wiphy); 124 } 125 126 void openwifi_rfkill_poll(struct ieee80211_hw *hw) 127 { 128 bool enabled; 129 struct openwifi_priv *priv = hw->priv; 130 131 enabled = openwifi_is_radio_enabled(priv); 132 // printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); 133 if (unlikely(enabled != priv->rfkill_off)) { 134 priv->rfkill_off = enabled; 135 printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); 136 wiphy_rfkill_set_hw_state(hw->wiphy, !enabled); 137 } 138 } 139 140 void openwifi_rfkill_exit(struct ieee80211_hw *hw) 141 { 142 printk("%s openwifi_rfkill_exit\n", sdr_compatible_str); 143 wiphy_rfkill_stop_polling(hw->wiphy); 144 } 145 //----------------rfkill end----------------------------------- 146 147 inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction) 148 { 149 return ((rssi_correction+rssi_dbm)<<1); 150 } 151 152 inline int rssi_correction_lookup_table(u32 freq_MHz) 153 { 154 int rssi_correction; 155 156 if (freq_MHz<2412) { 157 rssi_correction = 153; 158 } else if (freq_MHz<=2484) { 159 rssi_correction = 153; 160 } else if (freq_MHz<5160) { 161 rssi_correction = 153; 162 } else if (freq_MHz<=5240) { 163 rssi_correction = 145; 164 } else if (freq_MHz<=5320) { 165 rssi_correction = 148; 166 } else { 167 rssi_correction = 148; 168 } 169 170 return rssi_correction; 171 } 172 173 static void ad9361_rf_set_channel(struct ieee80211_hw *dev, 174 struct ieee80211_conf *conf) 175 { 176 struct openwifi_priv *priv = dev->priv; 177 u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz; 178 u32 actual_tx_lo; 179 u32 spi_disable; 180 u32 diff_tx_lo; 181 bool change_flag = (actual_rx_lo != priv->actual_rx_lo); 182 int static_lbt_th, auto_lbt_th, fpga_lbt_th, receiver_rssi_dbm_th; 183 struct timeval tv; 184 unsigned long time_before = 0; 185 unsigned long time_after = 0; 186 187 if (change_flag) { 188 actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz; 189 diff_tx_lo = priv->last_tx_quad_cal_lo > actual_tx_lo ? priv->last_tx_quad_cal_lo - actual_tx_lo : actual_tx_lo - priv->last_tx_quad_cal_lo; 190 191 // -------------------Tx Lo tuning------------------- 192 clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_tx_lo ) + priv->rf_reg_val[RF_TX_REG_IDX_FO] )>>1) ); 193 priv->actual_tx_lo = actual_tx_lo; 194 195 // -------------------Rx Lo tuning------------------- 196 clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_rx_lo ) + priv->rf_reg_val[RF_RX_REG_IDX_FO] )>>1) ); 197 priv->actual_rx_lo = actual_rx_lo; 198 199 // call Tx Quadrature calibration if frequency change is more than 100MHz 200 if (diff_tx_lo > 100) { 201 priv->last_tx_quad_cal_lo = actual_tx_lo; 202 do_gettimeofday(&tv); 203 time_before = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec ); 204 spi_disable = xpu_api->XPU_REG_SPI_DISABLE_read(); // disable FPGA SPI module 205 xpu_api->XPU_REG_SPI_DISABLE_write(1); 206 ad9361_do_calib_run(priv->ad9361_phy, TX_QUAD_CAL, (int)priv->ad9361_phy->state->last_tx_quad_cal_phase); 207 // restore original SPI disable state 208 xpu_api->XPU_REG_SPI_DISABLE_write(spi_disable); 209 do_gettimeofday(&tv); 210 time_after = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec ); 211 } 212 213 // get rssi correction value from lookup table 214 priv->rssi_correction = rssi_correction_lookup_table(actual_rx_lo); 215 216 // set appropriate lbt threshold 217 // xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm 218 // xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44 219 // auto_lbt_th = ((priv->rssi_correction-62-16)<<1); 220 auto_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction); // -78dBm, the same as above ((priv->rssi_correction-62-16)<<1) 221 static_lbt_th = rssi_dbm_to_rssi_half_db(-(priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]), priv->rssi_correction); 222 fpga_lbt_th = (priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]==0?auto_lbt_th:static_lbt_th); 223 xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th); 224 priv->last_auto_fpga_lbt_th = auto_lbt_th; 225 226 // Set rssi_half_db threshold (-85dBm equivalent) to receiver. Receiver will not react to signal lower than this rssi. See test records (OPENOFDM_RX_POWER_THRES_INIT in hw_def.h) 227 receiver_rssi_dbm_th = (priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]==0?OPENOFDM_RX_RSSI_DBM_TH_DEFAULT:(-priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH])); 228 openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write((OPENOFDM_RX_DC_RUNNING_SUM_TH_INIT<<16)|rssi_dbm_to_rssi_half_db(receiver_rssi_dbm_th, priv->rssi_correction)); 229 230 if (actual_rx_lo < 2500) { 231 if (priv->band != BAND_2_4GHZ) { 232 priv->band = BAND_2_4GHZ; 233 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 234 } 235 } else { 236 if (priv->band != BAND_5_8GHZ) { 237 priv->band = BAND_5_8GHZ; 238 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 239 } 240 } 241 printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d(%ddBm) (auto %d static %d) tx_quad_cal duration %lu us\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,rssi_half_db_to_rssi_dbm(fpga_lbt_th, priv->rssi_correction),auto_lbt_th,static_lbt_th, time_after-time_before); 242 } 243 } 244 245 const struct openwifi_rf_ops ad9361_rf_ops = { 246 .name = "ad9361", 247 // .init = ad9361_rf_init, 248 // .stop = ad9361_rf_stop, 249 .set_chan = ad9361_rf_set_channel, 250 // .calc_rssi = ad9361_rf_calc_rssi, 251 }; 252 253 u16 reverse16(u16 d) { 254 union u16_byte2 tmp0, tmp1; 255 tmp0.a = d; 256 tmp1.c[0] = tmp0.c[1]; 257 tmp1.c[1] = tmp0.c[0]; 258 return(tmp1.a); 259 } 260 261 u32 reverse32(u32 d) { 262 union u32_byte4 tmp0, tmp1; 263 tmp0.a = d; 264 tmp1.c[0] = tmp0.c[3]; 265 tmp1.c[1] = tmp0.c[2]; 266 tmp1.c[2] = tmp0.c[1]; 267 tmp1.c[3] = tmp0.c[0]; 268 return(tmp1.a); 269 } 270 271 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx) 272 { 273 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); 274 int i; 275 276 ring->stop_flag = 0; 277 ring->bd_wr_idx = 0; 278 ring->bd_rd_idx = 0; 279 ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL); 280 if (ring->bds==NULL) { 281 printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str); 282 return -ENOMEM; 283 } 284 285 for (i = 0; i < NUM_TX_BD; i++) { 286 ring->bds[i].skb_linked=0; // for tx, skb is from upper layer 287 //at first right after skb allocated, head, data, tail are the same. 288 ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine 289 ring->bds[i].seq_no = 0; 290 } 291 292 return 0; 293 } 294 295 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx) 296 { 297 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); 298 int i; 299 300 ring->stop_flag = 0; 301 ring->bd_wr_idx = 0; 302 ring->bd_rd_idx = 0; 303 for (i = 0; i < NUM_TX_BD; i++) { 304 if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0) 305 continue; 306 if (ring->bds[i].dma_mapping_addr != 0) 307 dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV); 308 // if (ring->bds[i].skb_linked!=NULL) 309 // dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception 310 if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) || 311 (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0)) 312 printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str, 313 ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr)); 314 315 ring->bds[i].skb_linked=0; 316 ring->bds[i].dma_mapping_addr = 0; 317 ring->bds[i].seq_no = 0; 318 } 319 if (ring->bds) 320 kfree(ring->bds); 321 ring->bds = NULL; 322 } 323 324 static int openwifi_init_rx_ring(struct openwifi_priv *priv) 325 { 326 int i; 327 u8 *pdata_tmp; 328 329 priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL); 330 if (!priv->rx_cyclic_buf) { 331 printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str); 332 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); 333 return(-1); 334 } 335 336 // Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA 337 for (i=0; i<NUM_RX_BD; i++) { 338 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning 339 (*((u32*)(pdata_tmp+0 ))) = 0; 340 (*((u32*)(pdata_tmp+4 ))) = 0; 341 } 342 printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str); 343 344 return 0; 345 } 346 347 static void openwifi_free_rx_ring(struct openwifi_priv *priv) 348 { 349 if (priv->rx_cyclic_buf) 350 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); 351 352 priv->rx_cyclic_buf_dma_mapping_addr = 0; 353 priv->rx_cyclic_buf = 0; 354 } 355 356 static int rx_dma_setup(struct ieee80211_hw *dev){ 357 struct openwifi_priv *priv = dev->priv; 358 struct dma_device *rx_dev = priv->rx_chan->device; 359 360 priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT); 361 if (!(priv->rxd)) { 362 openwifi_free_rx_ring(priv); 363 printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd)); 364 return(-1); 365 } 366 priv->rxd->callback = 0; 367 priv->rxd->callback_param = 0; 368 369 priv->rx_cookie = priv->rxd->tx_submit(priv->rxd); 370 371 if (dma_submit_error(priv->rx_cookie)) { 372 printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie)); 373 return(-1); 374 } 375 376 dma_async_issue_pending(priv->rx_chan); 377 return(0); 378 } 379 380 inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction) 381 { 382 int rssi_db, rssi_dbm; 383 384 rssi_db = (rssi_half_db>>1); 385 386 rssi_dbm = rssi_db - rssi_correction; 387 388 rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm); 389 390 return rssi_dbm; 391 } 392 393 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id) 394 { 395 struct ieee80211_hw *dev = dev_id; 396 struct openwifi_priv *priv = dev->priv; 397 struct ieee80211_rx_status rx_status = {0}; 398 struct sk_buff *skb; 399 struct ieee80211_hdr *hdr; 400 u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di; 401 bool ht_flag, short_gi, ht_aggr, ht_aggr_last; 402 // u32 dma_driver_buf_idx_mod; 403 u8 *pdata_tmp, fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw; 404 s8 signal; 405 u16 agc_status_and_pkt_exist_flag, rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0; 406 bool content_ok = false, len_overflow = false; 407 408 #ifdef USE_NEW_RX_INTERRUPT 409 int i; 410 spin_lock(&priv->lock); 411 for (i=0; i<NUM_RX_BD; i++) { 412 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; 413 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid 414 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer 415 continue; 416 #else 417 static u8 target_buf_idx_old = 0; 418 spin_lock(&priv->lock); 419 while(1) { // loop all rx buffers that have new rx packets 420 pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning 421 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); 422 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer 423 break; 424 #endif 425 426 tsft_low = (*((u32*)(pdata_tmp+0 ))); 427 tsft_high = (*((u32*)(pdata_tmp+4 ))); 428 rssi_val = (*((u16*)(pdata_tmp+8 ))); 429 len = (*((u16*)(pdata_tmp+12))); 430 431 len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false); 432 433 rate_idx = (*((u16*)(pdata_tmp+14))); 434 ht_flag = ((rate_idx&0x10)!=0); 435 short_gi = ((rate_idx&0x20)!=0); 436 ht_aggr = (ht_flag & ((rate_idx&0x40)!=0)); 437 ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0)); 438 rate_idx = (rate_idx&0x1F); 439 440 fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) ); 441 442 //phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1)); 443 // phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation 444 // dma_driver_buf_idx_mod = (state.residue&0x7f); 445 fcs_ok = ((fcs_ok&0x80)!=0); 446 447 if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) { 448 // if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) { 449 // printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod); 450 // } 451 content_ok = true; 452 } else { 453 printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str); 454 content_ok = false; 455 } 456 457 rssi_val = (rssi_val>>1); 458 if ( (rssi_val+128)<priv->rssi_correction ) 459 signal = -128; 460 else 461 signal = rssi_val - priv->rssi_correction; 462 463 // fc_di = (*((u32*)(pdata_tmp+16))); 464 // addr1_high16 = (*((u16*)(pdata_tmp+16+4))); 465 // addr1_low32 = (*((u32*)(pdata_tmp+16+4+2))); 466 // addr2_high16 = (*((u16*)(pdata_tmp+16+6+4))); 467 // addr2_low32 = (*((u32*)(pdata_tmp+16+6+4+2))); 468 // addr3_high16 = (*((u16*)(pdata_tmp+16+12+4))); 469 // addr3_low32 = (*((u32*)(pdata_tmp+16+12+4+2))); 470 if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) { 471 hdr = (struct ieee80211_hdr *)(pdata_tmp+16); 472 addr1_low32 = *((u32*)(hdr->addr1+2)); 473 addr1_high16 = *((u16*)(hdr->addr1)); 474 if (len>=20) { 475 addr2_low32 = *((u32*)(hdr->addr2+2)); 476 addr2_high16 = *((u16*)(hdr->addr2)); 477 } 478 if (len>=26) { 479 addr3_low32 = *((u32*)(hdr->addr3+2)); 480 addr3_high16 = *((u16*)(hdr->addr3)); 481 } 482 if (len>=28) 483 sc = hdr->seq_ctrl; 484 485 if ( (addr1_low32!=0xffffffff || addr1_high16!=0xffff) || (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&4) ) 486 printk("%s openwifi_rx_interrupt:%4dbytes ht%d aggr%d/%d sgi%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str, 487 len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id, 488 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), 489 #ifdef USE_NEW_RX_INTERRUPT 490 sc, fcs_ok, i, signal); 491 #else 492 sc, fcs_ok, target_buf_idx_old, signal); 493 #endif 494 } 495 496 // priv->phy_rx_sn_hw_old = phy_rx_sn_hw; 497 if (content_ok) { 498 skb = dev_alloc_skb(len); 499 if (skb) { 500 skb_put_data(skb,pdata_tmp+16,len); 501 502 rx_status.antenna = priv->runtime_rx_ant_cfg; 503 // def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M) 504 rx_status.rate_idx = wifi_rate_table_mapping[rate_idx]; 505 rx_status.signal = signal; 506 rx_status.freq = dev->conf.chandef.chan->center_freq; 507 rx_status.band = dev->conf.chandef.chan->band; 508 rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); 509 rx_status.flag |= RX_FLAG_MACTIME_START; 510 if (!fcs_ok) 511 rx_status.flag |= RX_FLAG_FAILED_FCS_CRC; 512 if (rate_idx <= 15) 513 rx_status.encoding = RX_ENC_LEGACY; 514 else 515 rx_status.encoding = RX_ENC_HT; 516 rx_status.bw = RATE_INFO_BW_20; 517 if (short_gi) 518 rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI; 519 if(ht_aggr) 520 { 521 rx_status.ampdu_reference = priv->ampdu_reference; 522 rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 523 if (ht_aggr_last) 524 rx_status.flag |= RX_FLAG_AMPDU_IS_LAST; 525 } 526 527 memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more. 528 ieee80211_rx_irqsafe(dev, skb); // call mac80211 function 529 } else 530 printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str); 531 532 if(ht_aggr_last) 533 priv->ampdu_reference++; 534 } 535 (*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed 536 loop_count++; 537 #ifndef USE_NEW_RX_INTERRUPT 538 target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1)); 539 #endif 540 } 541 542 if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) ) 543 printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count); 544 545 // openwifi_rx_interrupt_out: 546 spin_unlock(&priv->lock); 547 return IRQ_HANDLED; 548 } 549 550 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id) 551 { 552 struct ieee80211_hw *dev = dev_id; 553 struct openwifi_priv *priv = dev->priv; 554 struct openwifi_ring *ring; 555 struct sk_buff *skb; 556 struct ieee80211_tx_info *info; 557 u32 reg_val1, hw_queue_len, reg_val2, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0; 558 u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx; 559 u8 nof_retx=-1, last_bd_rd_idx, i; 560 u64 blk_ack_bitmap; 561 // u16 prio_rd_idx_store[64]={0}; 562 bool tx_fail=false; 563 564 spin_lock(&priv->lock); 565 566 while(1) { // loop all packets that have been sent by FPGA 567 reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read(); 568 reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read(); 569 blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32); 570 571 if (reg_val1!=0xFFFFFFFF) { 572 nof_retx = (reg_val1&0xF); 573 last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1)); 574 prio = ((reg_val1>>17)&0x3); 575 num_slot_random = ((reg_val1>>19)&0x1FF); 576 //num_slot_random = ((0xFF80000 ®_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE)); 577 cw = ((reg_val1>>28)&0xF); 578 //cw = ((0xF0000000 & reg_val1) >> 28); 579 if(cw > 10) { 580 cw = 10 ; 581 num_slot_random += 512 ; 582 } 583 pkt_cnt = (reg_val2&0x3F); 584 blk_ack_ssn = ((reg_val2>>6)&0xFFF); 585 586 ring = &(priv->tx_ring[prio]); 587 588 if ( ring->stop_flag == 1) { 589 // Wake up Linux queue if FPGA and driver ring have room 590 queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1)); 591 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); 592 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 593 594 if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) { 595 // printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter); 596 printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str, 597 prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, last_bd_rd_idx); 598 ieee80211_wake_queue(dev, prio); 599 ring->stop_flag = 0; 600 } 601 } 602 603 for(i = 1; i <= pkt_cnt; i++) 604 { 605 ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64; 606 seq_no = ring->bds[ring->bd_rd_idx].seq_no; 607 skb = ring->bds[ring->bd_rd_idx].skb_linked; 608 609 dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr, 610 skb->len, DMA_MEM_TO_DEV); 611 612 info = IEEE80211_SKB_CB(skb); 613 ieee80211_tx_info_clear_status(info); 614 615 // Aggregation packet 616 if(pkt_cnt > 1) 617 { 618 start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF)); 619 tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0); 620 info->flags |= IEEE80211_TX_STAT_AMPDU; 621 info->status.ampdu_len = 1; 622 info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1; 623 624 skb_pull(skb, LEN_MPDU_DELIM); 625 //skb_trim(skb, num_byte_pad_skb); 626 } 627 // Normal packet 628 else 629 { 630 tx_fail = ((blk_ack_bitmap&0x1)==0); 631 info->flags &= (~IEEE80211_TX_CTL_AMPDU); 632 } 633 634 if (tx_fail == false) 635 info->flags |= IEEE80211_TX_STAT_ACK; 636 637 info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate 638 info->status.rates[1].idx = -1; 639 info->status.rates[2].idx = -1; 640 info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES 4 641 info->status.antenna = priv->runtime_tx_ant_cfg; 642 643 if ( tx_fail && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) ) 644 printk("%s openwifi_tx_interrupt: WARNING pkt_no %d/%d tx_result [nof_retx %d pass %d] prio%d wr%d rd%d\n", sdr_compatible_str, i, pkt_cnt, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx); 645 if ( ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK))||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) ) 646 printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw); 647 648 ieee80211_tx_status_irqsafe(dev, skb); 649 } 650 651 loop_count++; 652 653 // printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx); 654 655 } else 656 break; 657 } 658 if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) ) 659 printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count); 660 661 spin_unlock(&priv->lock); 662 return IRQ_HANDLED; 663 } 664 665 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000}; 666 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes) 667 { 668 u32 i, crc = 0; 669 u8 idx; 670 for( i = 0; i < num_bytes; i++) 671 { 672 idx = (crc & 0x0F) ^ (data_in[i] & 0x0F); 673 crc = (crc >> 4) ^ crc_table[idx]; 674 675 idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F); 676 crc = (crc >> 4) ^ crc_table[idx]; 677 } 678 679 return crc; 680 } 681 682 u8 gen_mpdu_delim_crc(u16 m) 683 { 684 u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc; 685 686 for (i = 0; i < 16; i++) 687 { 688 temp = c[7] ^ ((m >> i) & 0x01); 689 690 c[7] = c[6]; 691 c[6] = c[5]; 692 c[5] = c[4]; 693 c[4] = c[3]; 694 c[3] = c[2]; 695 c[2] = c[1] ^ temp; 696 c[1] = c[0] ^ temp; 697 c[0] = temp; 698 } 699 mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7); 700 701 return mpdu_delim_crc; 702 } 703 704 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c 705 cdev_to_gpio_led_data(struct led_classdev *led_cdev) 706 { 707 return container_of(led_cdev, struct gpio_led_data, cdev); 708 } 709 710 static void openwifi_tx(struct ieee80211_hw *dev, 711 struct ieee80211_tx_control *control, 712 struct sk_buff *skb) 713 { 714 struct openwifi_priv *priv = dev->priv; 715 unsigned long flags; 716 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 717 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 718 struct openwifi_ring *ring = NULL; 719 dma_addr_t dma_mapping_addr; 720 unsigned int prio=0, i; 721 u32 num_dma_symbol, len_mpdu = 0, len_mpdu_delim_pad = 0, num_dma_byte, len_psdu, num_byte_pad; 722 u32 rate_signal_value,rate_hw_value=0,ack_flag; 723 u32 pkt_need_ack=0, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history; 724 u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration; 725 u8 fc_flag,fc_type,fc_subtype,retry_limit_raw=0,use_short_gi=0,*dma_buf,retry_limit_hw_value,rc_flags,*qos_hdr; 726 bool use_rts_cts, use_cts_protect=false, ht_aggr_start=false, use_ht_rate=false, use_ht_aggr=false, addr_flag, cts_use_traffic_rate=false, force_use_cts_protect=false; 727 __le16 frame_control,duration_id; 728 u32 dma_fifo_no_room_flag, hw_queue_len; 729 enum dma_status status; 730 731 static u32 addr1_low32_prev = -1, rate_hw_value_prev = -1, pkt_need_ack_prev = -1; 732 static u16 addr1_high16_prev = -1; 733 static __le16 duration_id_prev = -1; 734 static unsigned int prio_prev = -1; 735 static u8 retry_limit_raw_prev = -1; 736 static u8 use_short_gi_prev = -1; 737 738 // static bool led_status=0; 739 // struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]); 740 741 // if ( (priv->phy_tx_sn&7) ==0 ) { 742 // openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read(); 743 // if (openofdm_state_history!=openofdm_state_history_old){ 744 // led_status = (~led_status); 745 // openofdm_state_history_old = openofdm_state_history; 746 // gpiod_set_value(led_dat->gpiod, led_status); 747 // } 748 // } 749 750 if (skb->data_len>0) {// more data are not in linear data area skb->data 751 printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str); 752 goto openwifi_tx_early_out; 753 } 754 755 len_mpdu = skb->len; 756 757 // get Linux priority/queue setting info and target mac address 758 prio = skb_get_queue_mapping(skb); 759 addr1_low32 = *((u32*)(hdr->addr1+2)); 760 ring = &(priv->tx_ring[prio]); 761 762 // -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" ----------- 763 if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config 764 queue_idx = prio; 765 } else {// customized prio to queue_idx mapping 766 //if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only 767 // check current packet belonging to which slice/hw-queue 768 for (i=0; i<MAX_NUM_HW_QUEUE; i++) { 769 if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) { 770 break; 771 } 772 } 773 //} 774 queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest. 775 } 776 // -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------ 777 // get other info from packet header 778 addr1_high16 = *((u16*)(hdr->addr1)); 779 if (len_mpdu>=20) { 780 addr2_low32 = *((u32*)(hdr->addr2+2)); 781 addr2_high16 = *((u16*)(hdr->addr2)); 782 } 783 if (len_mpdu>=26) { 784 addr3_low32 = *((u32*)(hdr->addr3+2)); 785 addr3_high16 = *((u16*)(hdr->addr3)); 786 } 787 788 duration_id = hdr->duration_id; 789 frame_control=hdr->frame_control; 790 ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK); 791 fc_type = ((frame_control)>>2)&3; 792 fc_subtype = ((frame_control)>>4)&0xf; 793 fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) ); 794 //if it is broadcasting or multicasting addr 795 addr_flag = ( (addr1_low32==0 && addr1_high16==0) || 796 (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) || 797 (addr1_high16==0x3333) || 798 (addr1_high16==0x0001 && hdr->addr1[2]==0x5E) ); 799 if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame 800 pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent 801 } else { 802 pkt_need_ack = 0; 803 } 804 805 // get Linux rate (MCS) setting 806 rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value; 807 //rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M 808 if (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0 && fc_type==2 && (!addr_flag)) //rate override command 809 rate_hw_value = priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]; 810 811 retry_limit_raw = info->control.rates[0].count; 812 813 rc_flags = info->control.rates[0].flags; 814 use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0); 815 use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0); 816 use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0); 817 use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0); 818 use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0); 819 820 if (use_rts_cts) 821 printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx); 822 823 if (use_cts_protect) { 824 cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value; 825 cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info)); 826 } else if (force_use_cts_protect) { // could override mac80211 setting here. 827 cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M) 828 sifs = (priv->actual_rx_lo<2500?10:16); 829 if (pkt_need_ack) 830 ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL) 831 traffic_pkt_duration = 20 + 4*(((22+len_mpdu*8)/wifi_n_dbps_table[rate_hw_value])+1); 832 cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration); 833 } 834 835 // this is 11b stuff 836 // if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 837 // printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str); 838 839 if (len_mpdu>=28) { 840 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 841 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 842 priv->seqno += 0x10; 843 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 844 hdr->seq_ctrl |= cpu_to_le16(priv->seqno); 845 } 846 sc = hdr->seq_ctrl; 847 } 848 849 if ( ( (!addr_flag)||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) ) 850 printk("%s openwifi_tx: %4dbytes ht%d aggr%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str, 851 len_mpdu, (use_ht_rate == false ? 0 : 1), (use_ht_aggr == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id, 852 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), 853 sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx, 854 // use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration, 855 ring->bd_wr_idx,ring->bd_rd_idx); 856 857 // printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str, 858 // info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags, 859 // info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags, 860 // info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags, 861 // info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags); 862 863 // -----------end of preprocess some info from header and skb---------------- 864 865 // /* HW will perform RTS-CTS when only RTS flags is set. 866 // * HW will perform CTS-to-self when both RTS and CTS flags are set. 867 // * RTS rate and RTS duration will be used also for CTS-to-self. 868 // */ 869 // if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 870 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; 871 // rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config 872 // len_mpdu, info); 873 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str); 874 // } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 875 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; 876 // rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config 877 // len_mpdu, info); 878 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str); 879 // } 880 881 if(use_ht_aggr) 882 { 883 qos_hdr = ieee80211_get_qos_ctl(hdr); 884 if(ieee80211_is_data_qos(frame_control) == false || qos_hdr[0] != priv->tid) 885 { 886 printk("%s openwifi_tx: WARNING packet is either not qos or tid %u does not match registered tid %u\n", sdr_compatible_str, qos_hdr[0], priv->tid); 887 goto openwifi_tx_early_out; 888 } 889 890 // psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ] 891 len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4); 892 len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad; 893 894 if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) || 895 (rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) || 896 (prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) ) 897 { 898 addr1_low32_prev = addr1_low32; 899 addr1_high16_prev = addr1_high16; 900 duration_id_prev = duration_id; 901 rate_hw_value_prev = rate_hw_value; 902 use_short_gi_prev = use_short_gi; 903 prio_prev = prio; 904 retry_limit_raw_prev = retry_limit_raw; 905 pkt_need_ack_prev = pkt_need_ack; 906 907 ht_aggr_start = true; 908 } 909 } 910 else 911 { 912 // psdu = [ MPDU ] 913 len_psdu = len_mpdu; 914 915 addr1_low32_prev = -1; 916 addr1_high16_prev = -1; 917 duration_id_prev = -1; 918 use_short_gi_prev = -1; 919 rate_hw_value_prev = -1; 920 prio_prev = -1; 921 retry_limit_raw_prev = -1; 922 pkt_need_ack_prev = -1; 923 } 924 num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0); 925 926 // check whether the packet is bigger than DMA buffer size 927 num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS); 928 if (num_dma_byte > TX_BD_BUF_SIZE) { 929 printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx); 930 goto openwifi_tx_early_out; 931 } 932 933 // Copy MPDU delimiter and padding into sk_buff 934 if(use_ht_aggr) 935 { 936 // when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary 937 if (skb_headroom(skb)<LEN_MPDU_DELIM) { 938 struct sk_buff *skb_new; // in case original skb headroom is not enough to host MPDU delimiter 939 printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_MPDU_DELIM\n", sdr_compatible_str, ring->bd_wr_idx); 940 if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) { 941 printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx); 942 goto openwifi_tx_early_out; 943 } 944 if (skb->sk != NULL) 945 skb_set_owner_w(skb_new, skb->sk); 946 dev_kfree_skb(skb); 947 skb = skb_new; 948 } 949 skb_push( skb, LEN_MPDU_DELIM ); 950 dma_buf = skb->data; 951 952 // fill in MPDU delimiter 953 *((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0; 954 *((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf)); 955 *((u8 *)(dma_buf+3)) = 0x4e; 956 957 // Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter 958 num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu); 959 if (skb_tailroom(skb)<num_byte_pad) { 960 printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx); 961 goto openwifi_tx_early_out; 962 } 963 skb_put( skb, num_byte_pad ); 964 965 // fill in MPDU CRC 966 *((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu); 967 968 // fill in MPDU delimiter padding 969 memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad); 970 971 // num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary. 972 // If they have different lengths, add "empty MPDU delimiter" for alignment 973 if(num_dma_byte == len_psdu + 4) 974 { 975 *((u32*)(dma_buf+len_psdu)) = 0x4e140000; 976 len_psdu = num_dma_byte; 977 } 978 } 979 else 980 { 981 // Extend sk_buff to hold padding 982 num_byte_pad = num_dma_byte - len_mpdu; 983 if (skb_tailroom(skb)<num_byte_pad) { 984 printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx); 985 goto openwifi_tx_early_out; 986 } 987 skb_put( skb, num_byte_pad ); 988 989 dma_buf = skb->data; 990 } 991 // for(i = 0; i <= num_dma_symbol; i++) 992 // printk("%16llx\n", (*(u64*)(&(dma_buf[i*8])))); 993 994 rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]); 995 996 retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) ); 997 998 cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value]; 999 cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value); 1000 tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | (len_mpdu+LEN_PHY_CRC) ); 1001 phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu ); 1002 1003 /* We must be sure that tx_flags is written last because the HW 1004 * looks at it to check if the rest of data is valid or not 1005 */ 1006 //wmb(); 1007 // entry->flags = cpu_to_le32(tx_flags); 1008 /* We must be sure this has been written before following HW 1009 * register write, because this write will make the HW attempts 1010 * to DMA the just-written data 1011 */ 1012 //wmb(); 1013 1014 spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt 1015 1016 // -------------check whether FPGA dma fifo and queue (queue_idx) has enough room------------- 1017 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); 1018 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 1019 if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD) || ring->stop_flag==1 ) { 1020 ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read 1021 printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str, 1022 prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx); 1023 ring->stop_flag = 1; 1024 goto openwifi_tx_early_out_after_lock; 1025 } 1026 // --------end of check whether FPGA fifo (queue_idx) has enough room------------ 1027 1028 status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL); 1029 if (status!=DMA_COMPLETE) { 1030 printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str); 1031 goto openwifi_tx_early_out_after_lock; 1032 } 1033 1034 //-------------------------fire skb DMA to hardware---------------------------------- 1035 dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf, 1036 num_dma_byte, DMA_MEM_TO_DEV); 1037 1038 if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) { 1039 // dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n"); 1040 printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx); 1041 goto openwifi_tx_early_out_after_lock; 1042 } 1043 1044 sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start 1045 sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr; 1046 sg_dma_len( &(priv->tx_sg) ) = num_dma_byte; 1047 1048 tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg); 1049 tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config); 1050 tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config); 1051 priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL); 1052 if (!(priv->txd)) { 1053 printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd)); 1054 goto openwifi_tx_after_dma_mapping; 1055 } 1056 1057 priv->tx_cookie = priv->txd->tx_submit(priv->txd); 1058 1059 if (dma_submit_error(priv->tx_cookie)) { 1060 printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie)); 1061 goto openwifi_tx_after_dma_mapping; 1062 } 1063 1064 // seems everything is ok. let's mark this pkt in bd descriptor ring 1065 ring->bds[ring->bd_wr_idx].seq_no = (sc&IEEE80211_SCTL_SEQ)>>4; 1066 ring->bds[ring->bd_wr_idx].skb_linked = skb; 1067 ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr; 1068 1069 ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1)); 1070 1071 dma_async_issue_pending(priv->tx_chan); 1072 1073 spin_unlock_irqrestore(&priv->lock, flags); 1074 1075 return; 1076 1077 openwifi_tx_after_dma_mapping: 1078 dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV); 1079 1080 openwifi_tx_early_out_after_lock: 1081 dev_kfree_skb(skb); 1082 spin_unlock_irqrestore(&priv->lock, flags); 1083 // printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); 1084 return; 1085 1086 openwifi_tx_early_out: 1087 //dev_kfree_skb(skb); 1088 // printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); 1089 } 1090 1091 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant) 1092 { 1093 struct openwifi_priv *priv = dev->priv; 1094 u8 fpga_tx_ant_setting, target_rx_ant; 1095 u32 atten_mdb_tx0, atten_mdb_tx1; 1096 struct ctrl_outs_control ctrl_out; 1097 int ret; 1098 1099 printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant); 1100 1101 if (tx_ant >= 4 || tx_ant == 0) { 1102 return -EINVAL; 1103 } else if (rx_ant >= 3 || rx_ant == 0) { 1104 return -EINVAL; 1105 } 1106 1107 fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16)); 1108 target_rx_ant = ((rx_ant&1)?0:1); 1109 1110 // try rf chip setting firstly, only update internal state variable when rf chip succeed 1111 atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); 1112 atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); 1113 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true); 1114 if (ret < 0) { 1115 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0); 1116 return -EINVAL; 1117 } else { 1118 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0); 1119 } 1120 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true); 1121 if (ret < 0) { 1122 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1); 1123 return -EINVAL; 1124 } else { 1125 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1); 1126 } 1127 1128 ctrl_out.en_mask = priv->ctrl_out.en_mask; 1129 ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); 1130 ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out)); 1131 if (ret < 0) { 1132 printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); 1133 return -EINVAL; 1134 } else { 1135 printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); 1136 } 1137 1138 tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting); 1139 ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read(); 1140 if (ret != fpga_tx_ant_setting) { 1141 printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret); 1142 return -EINVAL; 1143 } else { 1144 printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); 1145 } 1146 1147 rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant); 1148 ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read(); 1149 if (ret != target_rx_ant) { 1150 printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret); 1151 return -EINVAL; 1152 } else { 1153 printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); 1154 } 1155 1156 // update internal state variable 1157 priv->runtime_tx_ant_cfg = tx_ant; 1158 priv->runtime_rx_ant_cfg = rx_ant; 1159 1160 if (TX_OFFSET_TUNING_ENABLE) 1161 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE 1162 else { 1163 if (tx_ant == 3) 1164 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH; 1165 else 1166 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1); 1167 } 1168 1169 priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1); 1170 priv->ctrl_out.index=ctrl_out.index; 1171 1172 priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg]; 1173 priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg]; 1174 1175 return 0; 1176 } 1177 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant) 1178 { 1179 struct openwifi_priv *priv = dev->priv; 1180 1181 *tx_ant = priv->runtime_tx_ant_cfg; 1182 *rx_ant = priv->runtime_rx_ant_cfg; 1183 1184 printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant); 1185 1186 printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str, 1187 priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index); 1188 1189 printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str, 1190 tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read()); 1191 1192 printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str, 1193 ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER)); 1194 1195 return 0; 1196 } 1197 1198 static int openwifi_start(struct ieee80211_hw *dev) 1199 { 1200 struct openwifi_priv *priv = dev->priv; 1201 int ret, i; 1202 u32 reg; 1203 1204 for (i=0; i<MAX_NUM_VIF; i++) { 1205 priv->vif[i] = NULL; 1206 } 1207 1208 // //keep software registers persistent between NIC down and up for multiple times 1209 /*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val)); 1210 memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val)); 1211 memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val)); 1212 memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val)); 1213 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/ 1214 1215 //turn on radio 1216 openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); 1217 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); 1218 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { 1219 priv->rfkill_off = 1;// 0 off, 1 on 1220 printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str); 1221 } 1222 else 1223 printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); 1224 1225 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); 1226 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); 1227 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); 1228 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); 1229 xpu_api->hw_init(priv->xpu_cfg); 1230 1231 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); 1232 1233 printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); 1234 printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); 1235 1236 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt 1237 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode 1238 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status 1239 1240 priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm"); 1241 if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) { 1242 ret = PTR_ERR(priv->rx_chan); 1243 pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan); 1244 goto err_dma; 1245 } 1246 1247 priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s"); 1248 if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) { 1249 ret = PTR_ERR(priv->tx_chan); 1250 pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan); 1251 goto err_dma; 1252 } 1253 printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan); 1254 1255 ret = openwifi_init_rx_ring(priv); 1256 if (ret) { 1257 printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret); 1258 goto err_free_rings; 1259 } 1260 1261 priv->seqno=0; 1262 for (i=0; i<MAX_NUM_SW_QUEUE; i++) { 1263 if ((ret = openwifi_init_tx_ring(priv, i))) { 1264 printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret); 1265 goto err_free_rings; 1266 } 1267 } 1268 1269 if ( (ret = rx_dma_setup(dev)) ) { 1270 printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret); 1271 goto err_free_rings; 1272 } 1273 1274 priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1); 1275 ret = request_irq(priv->irq_rx, openwifi_rx_interrupt, 1276 IRQF_SHARED, "sdr,rx_pkt_intr", dev); 1277 if (ret) { 1278 wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n"); 1279 goto err_free_rings; 1280 } else { 1281 printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx); 1282 } 1283 1284 priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3); 1285 ret = request_irq(priv->irq_tx, openwifi_tx_interrupt, 1286 IRQF_SHARED, "sdr,tx_itrpt", dev); 1287 if (ret) { 1288 wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n"); 1289 goto err_free_rings; 1290 } else { 1291 printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx); 1292 } 1293 1294 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM 1295 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt 1296 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS 1297 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer 1298 1299 1300 // normal_out: 1301 printk("%s openwifi_start: normal end\n", sdr_compatible_str); 1302 return 0; 1303 1304 err_free_rings: 1305 openwifi_free_rx_ring(priv); 1306 for (i=0; i<MAX_NUM_SW_QUEUE; i++) 1307 openwifi_free_tx_ring(priv, i); 1308 1309 err_dma: 1310 ret = -1; 1311 printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret); 1312 return ret; 1313 } 1314 1315 static void openwifi_stop(struct ieee80211_hw *dev) 1316 { 1317 struct openwifi_priv *priv = dev->priv; 1318 u32 reg, reg1; 1319 int i; 1320 1321 // enable ad9361 auto calibration and disable openwifi fpga spi control 1322 priv->ad9361_phy->state->auto_cal_en = true; // turn on auto Tx quadrature calib. 1323 priv->ad9361_phy->state->manual_tx_quad_cal_en = false; // turn off manual Tx quadrature calib. 1324 xpu_api->XPU_REG_SPI_DISABLE_write(1); 1325 1326 //turn off radio 1327 #if 1 1328 ad9361_tx_mute(priv->ad9361_phy, 1); 1329 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 1330 reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); 1331 if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { 1332 priv->rfkill_off = 0;// 0 off, 1 on 1333 printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str); 1334 } 1335 else 1336 printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); 1337 #endif 1338 1339 //ieee80211_stop_queue(dev, 0); 1340 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt 1341 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode 1342 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status 1343 1344 for (i=0; i<MAX_NUM_VIF; i++) { 1345 priv->vif[i] = NULL; 1346 } 1347 1348 openwifi_free_rx_ring(priv); 1349 for (i=0; i<MAX_NUM_SW_QUEUE; i++) 1350 openwifi_free_tx_ring(priv, i); 1351 1352 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan)); 1353 dmaengine_terminate_all(priv->rx_chan); 1354 dma_release_channel(priv->rx_chan); 1355 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan)); 1356 dmaengine_terminate_all(priv->tx_chan); 1357 dma_release_channel(priv->tx_chan); 1358 1359 //priv->rf->stop(dev); 1360 1361 free_irq(priv->irq_rx, dev); 1362 free_irq(priv->irq_tx, dev); 1363 1364 // normal_out: 1365 printk("%s openwifi_stop\n", sdr_compatible_str); 1366 } 1367 1368 static u64 openwifi_get_tsf(struct ieee80211_hw *dev, 1369 struct ieee80211_vif *vif) 1370 { 1371 u32 tsft_low, tsft_high; 1372 1373 tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read(); 1374 tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read(); 1375 //printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); 1376 return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); 1377 } 1378 1379 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf) 1380 { 1381 u32 tsft_high = ((tsf >> 32)&0xffffffff); 1382 u32 tsft_low = (tsf&0xffffffff); 1383 xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low); 1384 printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); 1385 } 1386 1387 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 1388 { 1389 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); 1390 printk("%s openwifi_reset_tsf\n", sdr_compatible_str); 1391 } 1392 1393 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value) 1394 { 1395 printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value); 1396 return(0); 1397 } 1398 1399 static void openwifi_beacon_work(struct work_struct *work) 1400 { 1401 struct openwifi_vif *vif_priv = 1402 container_of(work, struct openwifi_vif, beacon_work.work); 1403 struct ieee80211_vif *vif = 1404 container_of((void *)vif_priv, struct ieee80211_vif, drv_priv); 1405 struct ieee80211_hw *dev = vif_priv->dev; 1406 struct ieee80211_mgmt *mgmt; 1407 struct sk_buff *skb; 1408 1409 /* don't overflow the tx ring */ 1410 if (ieee80211_queue_stopped(dev, 0)) 1411 goto resched; 1412 1413 /* grab a fresh beacon */ 1414 skb = ieee80211_beacon_get(dev, vif); 1415 if (!skb) 1416 goto resched; 1417 1418 /* 1419 * update beacon timestamp w/ TSF value 1420 * TODO: make hardware update beacon timestamp 1421 */ 1422 mgmt = (struct ieee80211_mgmt *)skb->data; 1423 mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif)); 1424 1425 /* TODO: use actual beacon queue */ 1426 skb_set_queue_mapping(skb, 0); 1427 openwifi_tx(dev, NULL, skb); 1428 1429 resched: 1430 /* 1431 * schedule next beacon 1432 * TODO: use hardware support for beacon timing 1433 */ 1434 schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int)); 1435 // printk("%s openwifi_beacon_work beacon_int %d\n", sdr_compatible_str, vif->bss_conf.beacon_int); 1436 } 1437 1438 static int openwifi_add_interface(struct ieee80211_hw *dev, 1439 struct ieee80211_vif *vif) 1440 { 1441 int i; 1442 struct openwifi_priv *priv = dev->priv; 1443 struct openwifi_vif *vif_priv; 1444 1445 switch (vif->type) { 1446 case NL80211_IFTYPE_AP: 1447 case NL80211_IFTYPE_STATION: 1448 case NL80211_IFTYPE_ADHOC: 1449 case NL80211_IFTYPE_MONITOR: 1450 case NL80211_IFTYPE_MESH_POINT: 1451 break; 1452 default: 1453 return -EOPNOTSUPP; 1454 } 1455 // let's support more than 1 interface 1456 for (i=0; i<MAX_NUM_VIF; i++) { 1457 if (priv->vif[i] == NULL) 1458 break; 1459 } 1460 1461 printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i); 1462 1463 if (i==MAX_NUM_VIF) 1464 return -EBUSY; 1465 1466 priv->vif[i] = vif; 1467 1468 /* Initialize driver private area */ 1469 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1470 vif_priv->idx = i; 1471 1472 vif_priv->dev = dev; 1473 INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work); 1474 vif_priv->enable_beacon = false; 1475 1476 priv->mac_addr[0] = vif->addr[0]; 1477 priv->mac_addr[1] = vif->addr[1]; 1478 priv->mac_addr[2] = vif->addr[2]; 1479 priv->mac_addr[3] = vif->addr[3]; 1480 priv->mac_addr[4] = vif->addr[4]; 1481 priv->mac_addr[5] = vif->addr[5]; 1482 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); // set mac addr in fpga 1483 1484 printk("%s openwifi_add_interface end with vif idx %d addr %02x:%02x:%02x:%02x:%02x:%02x\n", sdr_compatible_str,vif_priv->idx, 1485 vif->addr[0],vif->addr[1],vif->addr[2],vif->addr[3],vif->addr[4],vif->addr[5]); 1486 1487 return 0; 1488 } 1489 1490 static void openwifi_remove_interface(struct ieee80211_hw *dev, 1491 struct ieee80211_vif *vif) 1492 { 1493 struct openwifi_vif *vif_priv; 1494 struct openwifi_priv *priv = dev->priv; 1495 1496 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1497 priv->vif[vif_priv->idx] = NULL; 1498 printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx); 1499 } 1500 1501 static int openwifi_config(struct ieee80211_hw *dev, u32 changed) 1502 { 1503 struct openwifi_priv *priv = dev->priv; 1504 struct ieee80211_conf *conf = &dev->conf; 1505 1506 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) 1507 priv->rf->set_chan(dev, conf); 1508 else 1509 printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed); 1510 1511 return 0; 1512 } 1513 1514 static void openwifi_bss_info_changed(struct ieee80211_hw *dev, 1515 struct ieee80211_vif *vif, 1516 struct ieee80211_bss_conf *info, 1517 u32 changed) 1518 { 1519 struct openwifi_priv *priv = dev->priv; 1520 struct openwifi_vif *vif_priv; 1521 u32 bssid_low, bssid_high; 1522 1523 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1524 1525 //be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it! 1526 //printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]); 1527 if (changed & BSS_CHANGED_BSSID) { 1528 printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]); 1529 // write new bssid to our HW, and do not change bssid filter 1530 //u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read(); 1531 bssid_low = ( *( (u32*)(info->bssid) ) ); 1532 bssid_high = ( *( (u16*)(info->bssid+4) ) ); 1533 1534 //bssid_filter_high = (bssid_filter_high&0x80000000); 1535 //bssid_high = (bssid_high|bssid_filter_high); 1536 xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low); 1537 xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high); 1538 } 1539 1540 if (changed & BSS_CHANGED_BEACON_INT) { 1541 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int); 1542 } 1543 1544 if (changed & BSS_CHANGED_TXPOWER) 1545 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower); 1546 1547 if (changed & BSS_CHANGED_ERP_CTS_PROT) 1548 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot); 1549 1550 if (changed & BSS_CHANGED_BASIC_RATES) 1551 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates); 1552 1553 if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) { 1554 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str, 1555 changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot); 1556 if (info->use_short_slot && priv->use_short_slot==false) { 1557 priv->use_short_slot=true; 1558 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 1559 } else if ((!info->use_short_slot) && priv->use_short_slot==true) { 1560 priv->use_short_slot=false; 1561 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 1562 } 1563 } 1564 1565 if (changed & BSS_CHANGED_BEACON_ENABLED) { 1566 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str); 1567 vif_priv->enable_beacon = info->enable_beacon; 1568 } 1569 1570 if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) { 1571 cancel_delayed_work_sync(&vif_priv->beacon_work); 1572 if (vif_priv->enable_beacon) { 1573 schedule_work(&vif_priv->beacon_work.work); 1574 printk("%s openwifi_bss_info_changed WARNING enable_beacon\n",sdr_compatible_str); 1575 } 1576 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str, 1577 changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON); 1578 } 1579 } 1580 // helper function 1581 u32 log2val(u32 val){ 1582 u32 ret_val = 0 ; 1583 while(val>1){ 1584 val = val >> 1 ; 1585 ret_val ++ ; 1586 } 1587 return ret_val ; 1588 } 1589 1590 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue, 1591 const struct ieee80211_tx_queue_params *params) 1592 { 1593 u32 reg_val, cw_min_exp, cw_max_exp; 1594 1595 printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n", 1596 sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop); 1597 1598 reg_val=xpu_api->XPU_REG_CSMA_CFG_read(); 1599 cw_min_exp = (log2val(params->cw_min + 1) & 0x0F); 1600 cw_max_exp = (log2val(params->cw_max + 1) & 0x0F); 1601 switch(queue){ 1602 case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) ); break; 1603 case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) ); break; 1604 case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break; 1605 case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break; 1606 default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0); 1607 } 1608 xpu_api->XPU_REG_CSMA_CFG_write(reg_val); 1609 return(0); 1610 } 1611 1612 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev, 1613 struct netdev_hw_addr_list *mc_list) 1614 { 1615 printk("%s openwifi_prepare_multicast\n", sdr_compatible_str); 1616 return netdev_hw_addr_list_count(mc_list); 1617 } 1618 1619 static void openwifi_configure_filter(struct ieee80211_hw *dev, 1620 unsigned int changed_flags, 1621 unsigned int *total_flags, 1622 u64 multicast) 1623 { 1624 u32 filter_flag; 1625 1626 (*total_flags) &= SDR_SUPPORTED_FILTERS; 1627 (*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer 1628 1629 filter_flag = (*total_flags); 1630 1631 filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO); 1632 //filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm 1633 1634 //if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR) 1635 if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode 1636 filter_flag = (filter_flag|MONITOR_ALL); 1637 else 1638 filter_flag = (filter_flag&(~MONITOR_ALL)); 1639 1640 if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) ) 1641 filter_flag = (filter_flag|MY_BEACON); 1642 1643 filter_flag = (filter_flag|FIF_PSPOLL); 1644 1645 xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG); 1646 //xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt 1647 1648 printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str, 1649 (filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1); 1650 } 1651 1652 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) 1653 { 1654 struct ieee80211_sta *sta = params->sta; 1655 enum ieee80211_ampdu_mlme_action action = params->action; 1656 // struct openwifi_priv *priv = hw->priv; 1657 u16 max_tx_bytes, buf_size; 1658 u32 ampdu_action_config; 1659 1660 if (!AGGR_ENABLE) { 1661 return -EOPNOTSUPP; 1662 } 1663 1664 switch (action) 1665 { 1666 case IEEE80211_AMPDU_TX_START: 1667 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); 1668 printk("%s openwifi_ampdu_action: start TX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1669 break; 1670 case IEEE80211_AMPDU_TX_STOP_CONT: 1671 case IEEE80211_AMPDU_TX_STOP_FLUSH: 1672 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: 1673 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); 1674 printk("%s openwifi_ampdu_action: stop TX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1675 break; 1676 case IEEE80211_AMPDU_TX_OPERATIONAL: 1677 buf_size = 4; 1678 // buf_size = (params->buf_size) - 1; 1679 max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1; 1680 ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes ); 1681 tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config); 1682 printk("%s openwifi_ampdu_action: TX operational. tid %d max_tx_bytes %d ampdu_density %d buf_size %d\n", 1683 sdr_compatible_str, params->tid, max_tx_bytes, sta->ht_cap.ampdu_density, buf_size); 1684 break; 1685 case IEEE80211_AMPDU_RX_START: 1686 printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1687 break; 1688 case IEEE80211_AMPDU_RX_STOP: 1689 printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1690 break; 1691 default: 1692 return -EOPNOTSUPP; 1693 } 1694 1695 return 0; 1696 } 1697 1698 static const struct ieee80211_ops openwifi_ops = { 1699 .tx = openwifi_tx, 1700 .start = openwifi_start, 1701 .stop = openwifi_stop, 1702 .add_interface = openwifi_add_interface, 1703 .remove_interface = openwifi_remove_interface, 1704 .config = openwifi_config, 1705 .set_antenna = openwifi_set_antenna, 1706 .get_antenna = openwifi_get_antenna, 1707 .bss_info_changed = openwifi_bss_info_changed, 1708 .conf_tx = openwifi_conf_tx, 1709 .prepare_multicast = openwifi_prepare_multicast, 1710 .configure_filter = openwifi_configure_filter, 1711 .rfkill_poll = openwifi_rfkill_poll, 1712 .get_tsf = openwifi_get_tsf, 1713 .set_tsf = openwifi_set_tsf, 1714 .reset_tsf = openwifi_reset_tsf, 1715 .set_rts_threshold = openwifi_set_rts_threshold, 1716 .ampdu_action = openwifi_ampdu_action, 1717 .testmode_cmd = openwifi_testmode_cmd, 1718 }; 1719 1720 static const struct of_device_id openwifi_dev_of_ids[] = { 1721 { .compatible = "sdr,sdr", }, 1722 {} 1723 }; 1724 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids); 1725 1726 static int custom_match_spi_dev(struct device *dev, void *data) 1727 { 1728 const char *name = data; 1729 1730 bool ret = sysfs_streq(name, dev->of_node->name); 1731 printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret); 1732 return ret; 1733 } 1734 1735 static int custom_match_platform_dev(struct device *dev, void *data) 1736 { 1737 struct platform_device *plat_dev = to_platform_device(dev); 1738 const char *name = data; 1739 char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name); 1740 bool match_flag = (name_in_sys_bus_platform_devices != NULL); 1741 1742 if (match_flag) { 1743 printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name); 1744 } 1745 return(match_flag); 1746 } 1747 1748 static int openwifi_dev_probe(struct platform_device *pdev) 1749 { 1750 struct ieee80211_hw *dev; 1751 struct openwifi_priv *priv; 1752 int err=1, rand_val; 1753 const char *chip_name, *fpga_model; 1754 u32 reg, i;//, reg1; 1755 1756 struct device_node *np = pdev->dev.of_node; 1757 1758 struct device *tmp_dev; 1759 struct platform_device *tmp_pdev; 1760 struct iio_dev *tmp_indio_dev; 1761 // struct gpio_leds_priv *tmp_led_priv; 1762 1763 printk("\n"); 1764 1765 if (np) { 1766 const struct of_device_id *match; 1767 1768 match = of_match_node(openwifi_dev_of_ids, np); 1769 if (match) { 1770 printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str); 1771 err = 0; 1772 } 1773 } 1774 1775 if (err) 1776 return err; 1777 1778 dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops); 1779 if (!dev) { 1780 printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str); 1781 err = -ENOMEM; 1782 goto err_free_dev; 1783 } 1784 1785 priv = dev->priv; 1786 priv->pdev = pdev; 1787 1788 err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model); 1789 if(err < 0) { 1790 printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err); 1791 priv->fpga_type = SMALL_FPGA; 1792 } else { 1793 // LARGE FPGAs (i.e. ZCU102, Z7035, ZC706) 1794 if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL) 1795 priv->fpga_type = LARGE_FPGA; 1796 // SMALL FPGA: (i.e. ZED, ZC702, Z7020) 1797 else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL) 1798 priv->fpga_type = SMALL_FPGA; 1799 } 1800 1801 // //-------------find ad9361-phy driver for lo/channel control--------------- 1802 priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux 1803 priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux 1804 priv->last_tx_quad_cal_lo = 1000; 1805 tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev ); 1806 if (tmp_dev == NULL) { 1807 printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str); 1808 err = -ENODEV; 1809 goto err_free_dev; 1810 } 1811 printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data)); 1812 if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) { 1813 printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str); 1814 err = -ENODEV; 1815 goto err_free_dev; 1816 } 1817 1818 priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev); 1819 if (!(priv->ad9361_phy)) { 1820 printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str); 1821 err = -ENODEV; 1822 goto err_free_dev; 1823 } 1824 printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias); 1825 1826 // //-------------find driver: axi_ad9361 hdl ref design module, dac channel--------------- 1827 tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev ); 1828 if (!tmp_dev) { 1829 printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str); 1830 err = -ENODEV; 1831 goto err_free_dev; 1832 } 1833 1834 tmp_pdev = to_platform_device(tmp_dev); 1835 if (!tmp_pdev) { 1836 printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str); 1837 err = -ENODEV; 1838 goto err_free_dev; 1839 } 1840 1841 tmp_indio_dev = platform_get_drvdata(tmp_pdev); 1842 if (!tmp_indio_dev) { 1843 printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str); 1844 err = -ENODEV; 1845 goto err_free_dev; 1846 } 1847 1848 priv->dds_st = iio_priv(tmp_indio_dev); 1849 if (!(priv->dds_st)) { 1850 printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str); 1851 err = -ENODEV; 1852 goto err_free_dev; 1853 } 1854 printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name); 1855 cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA); 1856 printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str); 1857 1858 // //-------------find driver: axi_ad9361 hdl ref design module, adc channel--------------- 1859 // turn off radio by muting tx 1860 // ad9361_tx_mute(priv->ad9361_phy, 1); 1861 // reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 1862 // reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); 1863 // if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { 1864 // priv->rfkill_off = 0;// 0 off, 1 on 1865 // printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str); 1866 // } 1867 // else 1868 // printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); 1869 1870 // //-----------------------------parse the test_mode input-------------------------------- 1871 if (test_mode&1) 1872 AGGR_ENABLE = true; 1873 1874 // if (test_mode&2) 1875 // TX_OFFSET_TUNING_ENABLE = false; 1876 1877 priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel() 1878 priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized 1879 1880 //priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode 1881 priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode 1882 1883 priv->xpu_cfg = XPU_NORMAL; 1884 1885 priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL; 1886 priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL; 1887 1888 printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) ); 1889 if (priv->rf_bw == 20000000) { //DO NOT USE. Not used for long time. 1890 priv->rx_intf_cfg = RX_INTF_BYPASS; 1891 priv->tx_intf_cfg = TX_INTF_BYPASS; 1892 //priv->rx_freq_offset_to_lo_MHz = 0; 1893 //priv->tx_freq_offset_to_lo_MHz = 0; 1894 } else if (priv->rf_bw == 40000000) { 1895 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work 1896 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work 1897 1898 // // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps 1899 priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0; 1900 if (TX_OFFSET_TUNING_ENABLE) 1901 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364 1902 else 1903 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT0; 1904 // // try another antenna option 1905 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1; 1906 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; 1907 1908 #if 0 1909 if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) { 1910 priv->rx_freq_offset_to_lo_MHz = -10; 1911 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) { 1912 priv->rx_freq_offset_to_lo_MHz = 10; 1913 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) { 1914 priv->rx_freq_offset_to_lo_MHz = 0; 1915 } else { 1916 printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg); 1917 } 1918 #endif 1919 } else { 1920 printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw); 1921 err = -EBADRQC; 1922 goto err_free_dev; 1923 } 1924 1925 printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att); 1926 1927 priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2)); 1928 priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2); 1929 1930 priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK; 1931 priv->ctrl_out.index =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); 1932 1933 memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val)); 1934 memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val)); 1935 memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val)); 1936 memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val)); 1937 1938 priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att; 1939 1940 //let's by default turn radio on when probing 1941 err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); 1942 if (err) { 1943 printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err); 1944 err = -EIO; 1945 goto err_free_dev; 1946 } 1947 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER); 1948 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg); 1949 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE); 1950 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg); 1951 1952 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); 1953 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { 1954 priv->rfkill_off = 1;// 0 off, 1 on 1955 printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str); 1956 } else 1957 printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); 1958 1959 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV; 1960 1961 // //set ad9361 in certain mode 1962 #if 0 1963 err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw); 1964 printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); 1965 err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw); 1966 printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); 1967 1968 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); 1969 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); 1970 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); 1971 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); 1972 printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); 1973 printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); 1974 #endif 1975 1976 dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle. 1977 1978 SET_IEEE80211_DEV(dev, &pdev->dev); 1979 platform_set_drvdata(pdev, dev); 1980 1981 BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates)); 1982 BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates)); 1983 BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels)); 1984 BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels)); 1985 1986 memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates)); 1987 memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates)); 1988 memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels)); 1989 memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels)); 1990 1991 priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM) 1992 priv->channel = 44; //currently useless. this can be changed by band _rf_set_channel() 1993 priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT 1994 priv->ampdu_reference = 0; 1995 1996 priv->band_2GHz.band = NL80211_BAND_2GHZ; 1997 priv->band_2GHz.channels = priv->channels_2GHz; 1998 priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz); 1999 priv->band_2GHz.bitrates = priv->rates_2GHz; 2000 priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz); 2001 priv->band_2GHz.ht_cap.ht_supported = true; 2002 // priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue 2003 if (AGGR_ENABLE) { 2004 priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; 2005 priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; 2006 } 2007 memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs)); 2008 priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff; 2009 priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 2010 dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz); 2011 2012 priv->band_5GHz.band = NL80211_BAND_5GHZ; 2013 priv->band_5GHz.channels = priv->channels_5GHz; 2014 priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz); 2015 priv->band_5GHz.bitrates = priv->rates_5GHz; 2016 priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz); 2017 priv->band_5GHz.ht_cap.ht_supported = true; 2018 // priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue 2019 if (AGGR_ENABLE) { 2020 priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; 2021 priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; 2022 } 2023 memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs)); 2024 priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff; 2025 priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 2026 dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz); 2027 2028 printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str, 2029 priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates); 2030 2031 // ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); // remove this because we don't want: mac80211.h: host buffers frame for PS and we fetch them via ieee80211_get_buffered_bc() 2032 ieee80211_hw_set(dev, RX_INCLUDES_FCS); 2033 ieee80211_hw_set(dev, BEACON_TX_STATUS);//mac80211.h: The device/driver provides TX status for sent beacons. 2034 2035 ieee80211_hw_set(dev, REPORTS_TX_ACK_STATUS);//mac80211.h: Hardware can provide ack status reports of Tx frames to the stack 2036 2037 // * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device 2038 // * autonomously manages the PS status of connected stations. When 2039 // * this flag is set mac80211 will not trigger PS mode for connected 2040 // * stations based on the PM bit of incoming frames. 2041 // * Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure 2042 // * the PS mode of connected stations. 2043 ieee80211_hw_set(dev, AP_LINK_PS); 2044 2045 if (AGGR_ENABLE) { 2046 ieee80211_hw_set(dev, AMPDU_AGGREGATION); 2047 } 2048 2049 dev->extra_tx_headroom = LEN_MPDU_DELIM; 2050 2051 dev->vif_data_size = sizeof(struct openwifi_vif); 2052 dev->wiphy->interface_modes = 2053 BIT(NL80211_IFTYPE_MONITOR)| 2054 BIT(NL80211_IFTYPE_P2P_GO) | 2055 BIT(NL80211_IFTYPE_P2P_CLIENT) | 2056 BIT(NL80211_IFTYPE_AP) | 2057 BIT(NL80211_IFTYPE_STATION) | 2058 BIT(NL80211_IFTYPE_ADHOC) | 2059 BIT(NL80211_IFTYPE_MESH_POINT) | 2060 BIT(NL80211_IFTYPE_OCB); 2061 dev->wiphy->iface_combinations = &openwifi_if_comb; 2062 dev->wiphy->n_iface_combinations = 1; 2063 2064 dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK; 2065 dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK; 2066 2067 dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation 2068 //dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config 2069 wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd); 2070 2071 chip_name = "ZYNQ"; 2072 2073 /* we declare to MAC80211 all the queues except for beacon queue 2074 * that will be eventually handled by DRV. 2075 * TX rings are arranged in such a way that lower is the IDX, 2076 * higher is the priority, in order to achieve direct mapping 2077 * with mac80211, however the beacon queue is an exception and it 2078 * is mapped on the highst tx ring IDX. 2079 */ 2080 dev->queues = MAX_NUM_HW_QUEUE; 2081 //dev->queues = 1; 2082 2083 ieee80211_hw_set(dev, SIGNAL_DBM); 2084 2085 wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 2086 2087 priv->rf = &ad9361_rf_ops; 2088 2089 memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map)); 2090 priv->slice_idx = 0xFFFFFFFF; 2091 2092 sg_init_table(&(priv->tx_sg), 1); 2093 2094 get_random_bytes(&rand_val, sizeof(rand_val)); 2095 rand_val%=250; 2096 priv->mac_addr[0]=0x66; priv->mac_addr[1]=0x55; priv->mac_addr[2]=0x44; priv->mac_addr[3]=0x33; priv->mac_addr[4]=0x22; 2097 priv->mac_addr[5]=rand_val+1; 2098 //priv->mac_addr[5]=0x11; 2099 if (!is_valid_ether_addr(priv->mac_addr)) { 2100 printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str); 2101 eth_random_addr(priv->mac_addr); 2102 } 2103 printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]); 2104 SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr); 2105 2106 spin_lock_init(&priv->lock); 2107 2108 err = ieee80211_register_hw(dev); 2109 if (err) { 2110 pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str); 2111 err = -EIO; 2112 goto err_free_dev; 2113 } else { 2114 printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err); 2115 } 2116 2117 // // //--------------------hook leds (not complete yet)-------------------------------- 2118 // tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field 2119 // if (!tmp_dev) { 2120 // printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str); 2121 // err = -ENOMEM; 2122 // goto err_free_dev; 2123 // } 2124 2125 // tmp_pdev = to_platform_device(tmp_dev); 2126 // if (!tmp_pdev) { 2127 // printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str); 2128 // err = -ENOMEM; 2129 // goto err_free_dev; 2130 // } 2131 2132 // tmp_led_priv = platform_get_drvdata(tmp_pdev); 2133 // if (!tmp_led_priv) { 2134 // printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str); 2135 // err = -ENOMEM; 2136 // goto err_free_dev; 2137 // } 2138 // printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds); 2139 // if (tmp_led_priv->num_leds!=4){ 2140 // printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds); 2141 // err = -ENOMEM; 2142 // goto err_free_dev; 2143 // } 2144 // gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it 2145 // gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it 2146 // priv->num_led = tmp_led_priv->num_leds; 2147 // priv->led[0] = &(tmp_led_priv->leds[0].cdev); 2148 // priv->led[1] = &(tmp_led_priv->leds[1].cdev); 2149 // priv->led[2] = &(tmp_led_priv->leds[2].cdev); 2150 // priv->led[3] = &(tmp_led_priv->leds[3].cdev); 2151 2152 // snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy)); 2153 // snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy)); 2154 // snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy)); 2155 // snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy)); 2156 2157 wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n", 2158 priv->mac_addr, chip_name, priv->rf->name); 2159 2160 openwifi_rfkill_init(dev); 2161 return 0; 2162 2163 err_free_dev: 2164 ieee80211_free_hw(dev); 2165 2166 return err; 2167 } 2168 2169 static int openwifi_dev_remove(struct platform_device *pdev) 2170 { 2171 struct ieee80211_hw *dev = platform_get_drvdata(pdev); 2172 2173 if (!dev) { 2174 pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev); 2175 return(-1); 2176 } 2177 2178 openwifi_rfkill_exit(dev); 2179 ieee80211_unregister_hw(dev); 2180 ieee80211_free_hw(dev); 2181 return(0); 2182 } 2183 2184 static struct platform_driver openwifi_dev_driver = { 2185 .driver = { 2186 .name = "sdr,sdr", 2187 .owner = THIS_MODULE, 2188 .of_match_table = openwifi_dev_of_ids, 2189 }, 2190 .probe = openwifi_dev_probe, 2191 .remove = openwifi_dev_remove, 2192 }; 2193 2194 module_platform_driver(openwifi_dev_driver); 2195