xref: /openwifi/driver/sdr.c (revision bb0a2c5897be8851861bd9d7b2cdc7a9aa83bb1a)
1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu
2 // SPDX-FileCopyrightText: 2019 UGent
3 // SPDX-License-Identifier: AGPL-3.0-or-later
4 
5 #include <linux/bitops.h>
6 #include <linux/dmapool.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/of_address.h>
10 #include <linux/of_platform.h>
11 #include <linux/of_irq.h>
12 #include <linux/slab.h>
13 #include <linux/clk.h>
14 #include <linux/io-64-nonatomic-lo-hi.h>
15 
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 
24 #include <linux/init.h>
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/of_dma.h>
28 #include <linux/platform_device.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/wait.h>
32 #include <linux/sched/task.h>
33 #include <linux/dma/xilinx_dma.h>
34 #include <linux/spi/spi.h>
35 #include <net/mac80211.h>
36 
37 #include <linux/clk.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk-provider.h>
40 
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43 
44 #include <linux/gpio.h>
45 #include <linux/leds.h>
46 
47 #define IIO_AD9361_USE_PRIVATE_H_
48 #include "ad9361/ad9361_regs.h"
49 #include "ad9361/ad9361.h"
50 #include "ad9361/ad9361_private.h"
51 
52 #include <../../drivers/iio/frequency/cf_axi_dds.h>
53 
54 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
55 #include "hw_def.h"
56 #include "sdr.h"
57 #include "git_rev.h"
58 
59 // driver API of component driver
60 extern struct tx_intf_driver_api *tx_intf_api;
61 extern struct rx_intf_driver_api *rx_intf_api;
62 extern struct openofdm_tx_driver_api *openofdm_tx_api;
63 extern struct openofdm_rx_driver_api *openofdm_rx_api;
64 extern struct xpu_driver_api *xpu_api;
65 
66 static int test_mode = 0; // 0 normal; 1 rx test
67 
68 MODULE_AUTHOR("Xianjun Jiao");
69 MODULE_DESCRIPTION("SDR driver");
70 MODULE_LICENSE("GPL v2");
71 
72 module_param(test_mode, int, 0);
73 MODULE_PARM_DESC(myint, "test_mode. 0 normal; 1 rx test");
74 
75 // ---------------rfkill---------------------------------------
76 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
77 {
78 	int reg;
79 
80 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
81 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
82 	else
83 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
84 
85 	if (reg == AD9361_RADIO_ON_TX_ATT)
86 		return true;// 0 off, 1 on
87 	return false;
88 }
89 
90 void openwifi_rfkill_init(struct ieee80211_hw *hw)
91 {
92 	struct openwifi_priv *priv = hw->priv;
93 
94 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
95 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
96 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
97 	wiphy_rfkill_start_polling(hw->wiphy);
98 }
99 
100 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
101 {
102 	bool enabled;
103 	struct openwifi_priv *priv = hw->priv;
104 
105 	enabled = openwifi_is_radio_enabled(priv);
106 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
107 	if (unlikely(enabled != priv->rfkill_off)) {
108 		priv->rfkill_off = enabled;
109 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
110 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
111 	}
112 }
113 
114 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
115 {
116 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
117 	wiphy_rfkill_stop_polling(hw->wiphy);
118 }
119 //----------------rfkill end-----------------------------------
120 
121 //static void ad9361_rf_init(void);
122 //static void ad9361_rf_stop(void);
123 //static void ad9361_rf_calc_rssi(void);
124 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
125 				  struct ieee80211_conf *conf)
126 {
127 	struct openwifi_priv *priv = dev->priv;
128 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz + priv->drv_rx_reg_val[DRV_RX_REG_IDX_EXTRA_FO];
129 	u32 actual_tx_lo;
130 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
131 
132 	if (change_flag) {
133 		priv->actual_rx_lo = actual_rx_lo;
134 
135 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
136 
137 		ad9361_clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) );
138 		ad9361_clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) );
139 
140 		if (actual_rx_lo<2412) {
141 			priv->rssi_correction = 153;
142 		} else if (actual_rx_lo<=2484) {
143 			priv->rssi_correction = 153;
144 		} else if (actual_rx_lo<5160) {
145 			priv->rssi_correction = 153;
146 		} else if (actual_rx_lo<=5240) {
147 			priv->rssi_correction = 145;
148 		} else if (actual_rx_lo<=5320) {
149 			priv->rssi_correction = 148;
150 		} else {
151 			priv->rssi_correction = 148;
152 		}
153 
154 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
155 		xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44
156 
157 		if (actual_rx_lo < 2500) {
158 			//priv->slot_time = 20; //20 is default slot time in ERP(OFDM)/11g 2.4G; short one is 9.
159 			//xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_2_4GHZ<<16);
160 			if (priv->band != BAND_2_4GHZ) {
161 				priv->band = BAND_2_4GHZ;
162 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
163 			}
164 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2)*10)<<16) | 10 ); // high 16 bits to cover sig valid of ACK packet, low 16 bits is adjustment of fcs valid waiting time.  let's add 2us for those device that is really "slow"!
165 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2+2)*10)<<16) | 10 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
166 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 0 );
167 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((10)*10)<<16);
168 		}
169 		else {
170 			//priv->slot_time = 9; //default slot time of OFDM PHY (OFDM by default means 5GHz)
171 			// xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_5_8GHZ<<16);
172 			if (priv->band != BAND_5_8GHZ) {
173 				priv->band = BAND_5_8GHZ;
174 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
175 			}
176 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2)*10)<<16) | 10 ); // because 5GHz needs longer SIFS (16 instead of 10), we need 58 instead of 48 for XPU low mac setting.  let's add 2us for those device that is really "slow"!
177 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2+2)*10)<<16) | 10 );//add 2us for longer fir.  BUT corrding to FPGA probing test, we do not need this
178 			// //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 60*10 );
179 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 50*10 );// for longer fir we need this delay 1us shorter
180 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((16)*10)<<16);
181 		}
182 		//printk("%s ad9361_rf_set_channel %dM rssi_correction %d\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction);
183 		// //-- use less
184 		//clk_prepare_enable(priv->ad9361_phy->clks[RX_RFPLL]);
185 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
186 		//ad9361_set_trx_clock_chain_default(priv->ad9361_phy);
187 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
188 	}
189 	printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag);
190 }
191 
192 const struct openwifi_rf_ops ad9361_rf_ops = {
193 	.name		= "ad9361",
194 //	.init		= ad9361_rf_init,
195 //	.stop		= ad9361_rf_stop,
196 	.set_chan	= ad9361_rf_set_channel,
197 //	.calc_rssi	= ad9361_rf_calc_rssi,
198 };
199 
200 u16 reverse16(u16 d) {
201 	union u16_byte2 tmp0, tmp1;
202 	tmp0.a = d;
203 	tmp1.c[0] = tmp0.c[1];
204 	tmp1.c[1] = tmp0.c[0];
205 	return(tmp1.a);
206 }
207 
208 u32 reverse32(u32 d) {
209 	union u32_byte4 tmp0, tmp1;
210 	tmp0.a = d;
211 	tmp1.c[0] = tmp0.c[3];
212 	tmp1.c[1] = tmp0.c[2];
213 	tmp1.c[2] = tmp0.c[1];
214 	tmp1.c[3] = tmp0.c[0];
215 	return(tmp1.a);
216 }
217 
218 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
219 {
220 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
221 	int i;
222 
223 	ring->stop_flag = 0;
224 	ring->bd_wr_idx = 0;
225 	ring->bd_rd_idx = 0;
226 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
227 	if (ring->bds==NULL) {
228 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
229 		return -ENOMEM;
230 	}
231 
232 	for (i = 0; i < NUM_TX_BD; i++) {
233 		ring->bds[i].skb_linked=0; // for tx, skb is from upper layer
234 		//at first right after skb allocated, head, data, tail are the same.
235 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine
236 	}
237 
238 	return 0;
239 }
240 
241 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
242 {
243 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
244 	int i;
245 
246 	ring->stop_flag = 0;
247 	ring->bd_wr_idx = 0;
248 	ring->bd_rd_idx = 0;
249 	for (i = 0; i < NUM_TX_BD; i++) {
250 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
251 			continue;
252 		if (ring->bds[i].dma_mapping_addr != 0)
253 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
254 //		if (ring->bds[i].skb_linked!=NULL)
255 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
256 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
257 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
258 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str,
259 			ring_idx, i, (void*)(ring->bds[i].skb_linked), ring->bds[i].dma_mapping_addr);
260 
261 		ring->bds[i].skb_linked=0;
262 		ring->bds[i].dma_mapping_addr = 0;
263 	}
264 	if (ring->bds)
265 		kfree(ring->bds);
266 	ring->bds = NULL;
267 }
268 
269 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
270 {
271 	int i;
272 	u8 *pdata_tmp;
273 
274 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
275 	if (!priv->rx_cyclic_buf) {
276 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
277 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
278 		return(-1);
279 	}
280 
281 	// Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
282 	for (i=0; i<NUM_RX_BD; i++) {
283 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning
284 		(*((u32*)(pdata_tmp+0 ))) = 0;
285 		(*((u32*)(pdata_tmp+4 ))) = 0;
286 	}
287 	printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str);
288 
289 	return 0;
290 }
291 
292 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
293 {
294 	if (priv->rx_cyclic_buf)
295 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
296 
297 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
298 	priv->rx_cyclic_buf = 0;
299 }
300 
301 static int rx_dma_setup(struct ieee80211_hw *dev){
302 	struct openwifi_priv *priv = dev->priv;
303 	struct dma_device *rx_dev = priv->rx_chan->device;
304 
305 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
306 	if (!(priv->rxd)) {
307 		openwifi_free_rx_ring(priv);
308 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
309 		return(-1);
310 	}
311 	priv->rxd->callback = 0;
312 	priv->rxd->callback_param = 0;
313 
314 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
315 
316 	if (dma_submit_error(priv->rx_cookie)) {
317 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
318 		return(-1);
319 	}
320 
321 	dma_async_issue_pending(priv->rx_chan);
322 	return(0);
323 }
324 
325 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
326 {
327 	struct ieee80211_hw *dev = dev_id;
328 	struct openwifi_priv *priv = dev->priv;
329 	struct ieee80211_rx_status rx_status = {0};
330 	struct sk_buff *skb;
331 	struct ieee80211_hdr *hdr;
332 	u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0, ht_flag, short_gi;//, fc_di;
333 	// u32 dma_driver_buf_idx_mod;
334 	u8 *pdata_tmp, fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw;
335 	s8 signal;
336 	u16 rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0;
337 	bool content_ok = false, len_overflow = false;
338 	static u8 target_buf_idx_old = 0;
339 
340 	spin_lock(&priv->lock);
341 
342 	while(1) { // loop all rx buffers that have new rx packets
343 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
344 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
345 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
346 		if ( tsft_low==0 && tsft_high==0 ) // no packet in the buffer
347 			break;
348 
349 		rssi_val =     (*((u16*)(pdata_tmp+8 )));
350 		len =          (*((u16*)(pdata_tmp+12)));
351 
352 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
353 
354 		rate_idx =     (*((u16*)(pdata_tmp+14)));
355 		short_gi =     ((rate_idx&0x20)!=0);
356 		rate_idx =     (rate_idx&0xDF);
357 
358 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
359 
360 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
361 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
362 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
363 		fcs_ok = ((fcs_ok&0x80)!=0);
364 		ht_flag = ((rate_idx&0x10)!=0);
365 
366 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
367 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
368 			// 	printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
369 			// }
370 			content_ok = true;
371 		} else {
372 			printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str);
373 			content_ok = false;
374 		}
375 
376 		rssi_val = (rssi_val>>1);
377 		if ( (rssi_val+128)<priv->rssi_correction )
378 			signal = -128;
379 		else
380 			signal = rssi_val - priv->rssi_correction;
381 
382 		// fc_di =        (*((u32*)(pdata_tmp+16)));
383 		// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
384 		// addr1_low32  = (*((u32*)(pdata_tmp+16+4+2)));
385 		// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
386 		// addr2_low32  = (*((u32*)(pdata_tmp+16+6+4+2)));
387 		// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
388 		// addr3_low32  = (*((u32*)(pdata_tmp+16+12+4+2)));
389 		if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) {
390 			hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
391 			addr1_low32  = *((u32*)(hdr->addr1+2));
392 			addr1_high16 = *((u16*)(hdr->addr1));
393 			if (len>=20) {
394 				addr2_low32  = *((u32*)(hdr->addr2+2));
395 				addr2_high16 = *((u16*)(hdr->addr2));
396 			}
397 			if (len>=26) {
398 				addr3_low32  = *((u32*)(hdr->addr3+2));
399 				addr3_high16 = *((u16*)(hdr->addr3));
400 			}
401 			if (len>=28)
402 				sc = hdr->seq_ctrl;
403 
404 			if ( addr1_low32!=0xffffffff || addr1_high16!=0xffff )
405 				printk("%s openwifi_rx_interrupt:%4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
406 					len, ht_flag, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
407 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
408 					sc, fcs_ok, target_buf_idx_old, signal);
409 		}
410 
411 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
412 		if (content_ok) {
413 			skb = dev_alloc_skb(len);
414 			if (skb) {
415 				skb_put_data(skb,pdata_tmp+16,len);
416 
417 				rx_status.antenna = 0;
418 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
419 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
420 				rx_status.signal = signal;
421 				rx_status.freq = dev->conf.chandef.chan->center_freq;
422 				rx_status.band = dev->conf.chandef.chan->band;
423 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
424 				rx_status.flag |= RX_FLAG_MACTIME_START;
425 				if (!fcs_ok)
426 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
427 				if (rate_idx <= 15)
428 					rx_status.encoding = RX_ENC_LEGACY;
429 				else
430 					rx_status.encoding = RX_ENC_HT;
431 				rx_status.bw = RATE_INFO_BW_20;
432 				if (short_gi)
433 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
434 
435 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
436 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
437 			} else
438 				printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
439 		}
440 		(*((u32*)(pdata_tmp+0 ))) = 0;
441 		(*((u32*)(pdata_tmp+4 ))) = 0; // clear the tsft_low and tsft_high to indicate the packet has been processed
442 		loop_count++;
443 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
444 	}
445 
446 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) )
447 		printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
448 
449 // openwifi_rx_interrupt_out:
450 	spin_unlock(&priv->lock);
451 	return IRQ_HANDLED;
452 }
453 
454 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
455 {
456 	struct ieee80211_hw *dev = dev_id;
457 	struct openwifi_priv *priv = dev->priv;
458 	struct openwifi_ring *ring;
459 	struct sk_buff *skb;
460 	struct ieee80211_tx_info *info;
461 	u32 reg_val, hw_queue_len, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0;//, i;
462 	u8 tx_result_report;
463 	// u16 prio_rd_idx_store[64]={0};
464 
465 	spin_lock(&priv->lock);
466 
467 	while(1) { // loop all packets that have been sent by FPGA
468 		reg_val = tx_intf_api->TX_INTF_REG_PKT_INFO_read();
469 		if (reg_val!=0xFFFFFFFF) {
470 			prio = ((0x7FFFF & reg_val)>>(5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
471 			cw = ((0xF0000000 & reg_val) >> 28);
472 			num_slot_random = ((0xFF80000 &reg_val)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
473 			if(cw > 10) {
474 				cw = 10 ;
475 				num_slot_random += 512 ;
476 			}
477 
478 			ring = &(priv->tx_ring[prio]);
479 			ring->bd_rd_idx = ((reg_val>>5)&MAX_PHY_TX_SN);
480 			skb = ring->bds[ring->bd_rd_idx].skb_linked;
481 
482 			dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
483 					skb->len, DMA_MEM_TO_DEV);
484 
485 			if ( ring->stop_flag == 1) {
486 				// Wake up Linux queue if FPGA and driver ring have room
487 				queue_idx = ((reg_val>>(5+NUM_BIT_MAX_PHY_TX_SN))&(MAX_NUM_HW_QUEUE-1));
488 				dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
489 				hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
490 
491 				// printk("%s openwifi_tx_interrupt: WARNING loop %d prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d call %d\n", sdr_compatible_str,
492 				// loop_count, prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, priv->call_counter);
493 
494 				if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) {
495 					// printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter);
496 					printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str,
497 					prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx);
498 					ieee80211_wake_queue(dev, prio);
499 					ring->stop_flag = 0;
500 				}
501 			}
502 
503 			if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) ) {
504 				printk("%s openwifi_tx_interrupt: WARNING %08x %08x %08x %08x\n", sdr_compatible_str, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
505 				continue;
506 			}
507 
508 			skb_pull(skb, LEN_PHY_HEADER);
509 			//skb_trim(skb, num_byte_pad_skb);
510 			info = IEEE80211_SKB_CB(skb);
511 			ieee80211_tx_info_clear_status(info);
512 
513 			tx_result_report = (reg_val&0x1F);
514 			if ( !(info->flags & IEEE80211_TX_CTL_NO_ACK) ) {
515 				if ((tx_result_report&0x10)==0)
516 					info->flags |= IEEE80211_TX_STAT_ACK;
517 
518 				// printk("%s openwifi_tx_interrupt: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
519 				// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
520 				// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
521 				// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
522 				// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
523 			}
524 
525 			info->status.rates[0].count = (tx_result_report&0xF) + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
526 			info->status.rates[1].idx = -1;
527 			info->status.rates[2].idx = -1;
528 			info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
529 
530 			if ( (tx_result_report&0x10) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
531 				printk("%s openwifi_tx_interrupt: WARNING tx_result %02x prio%d wr%d rd%d\n", sdr_compatible_str, tx_result_report, prio, ring->bd_wr_idx, ring->bd_rd_idx);
532 			if ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK)) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) )
533 				printk("%s openwifi_tx_interrupt: tx_result %02x prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, tx_result_report, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random,cw);
534 
535 			ieee80211_tx_status_irqsafe(dev, skb);
536 
537 			loop_count++;
538 
539 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
540 
541 		} else
542 			break;
543 	}
544 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
545 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
546 
547 	spin_unlock(&priv->lock);
548 	return IRQ_HANDLED;
549 }
550 
551 u32 gen_parity(u32 v){
552 	v ^= v >> 1;
553 	v ^= v >> 2;
554 	v = (v & 0x11111111U) * 0x11111111U;
555 	return (v >> 28) & 1;
556 }
557 
558 u8 gen_ht_sig_crc(u64 m)
559 {
560 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, ht_sig_crc;
561 
562 	for (i = 0; i < 34; i++)
563 	{
564 		temp = c[7] ^ ((m >> i) & 0x01);
565 
566 		c[7] = c[6];
567 		c[6] = c[5];
568 		c[5] = c[4];
569 		c[4] = c[3];
570 		c[3] = c[2];
571 		c[2] = c[1] ^ temp;
572 		c[1] = c[0] ^ temp;
573 		c[0] = temp;
574 	}
575 	ht_sig_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
576 
577 	return ht_sig_crc;
578 }
579 
580 u32 calc_phy_header(u8 rate_hw_value, bool use_ht_rate, bool use_short_gi, u32 len, u8 *bytes){
581 	//u32 signal_word = 0 ;
582 	u8  SIG_RATE = 0, HT_SIG_RATE;
583 	u8	len_2to0, len_10to3, len_msb,b0,b1,b2, header_parity ;
584 	u32 l_len, ht_len, ht_sig1, ht_sig2;
585 
586 	// printk("rate_hw_value=%u\tuse_ht_rate=%u\tuse_short_gi=%u\tlen=%u\n", rate_hw_value, use_ht_rate, use_short_gi, len);
587 
588 	// HT-mixed mode ht signal
589 
590 	if(use_ht_rate)
591 	{
592 		SIG_RATE = wifi_mcs_table_11b_force_up[4];
593 		HT_SIG_RATE = rate_hw_value;
594 		l_len  = 24 * len / wifi_n_dbps_ht_table[rate_hw_value];
595 		ht_len = len;
596 	}
597 	else
598 	{
599 		// rate_hw_value = (rate_hw_value<=4?0:(rate_hw_value-4));
600 		// SIG_RATE = wifi_mcs_table_phy_tx[rate_hw_value];
601 		SIG_RATE = wifi_mcs_table_11b_force_up[rate_hw_value];
602 		l_len = len;
603 	}
604 
605 	len_2to0 = l_len & 0x07 ;
606 	len_10to3 = (l_len >> 3 ) & 0xFF ;
607 	len_msb = (l_len >> 11) & 0x01 ;
608 
609 	b0=SIG_RATE | (len_2to0 << 5) ;
610 	b1 = len_10to3 ;
611 	header_parity = gen_parity((len_msb << 16)| (b1<<8) | b0) ;
612 	b2 = ( len_msb | (header_parity << 1) ) ;
613 
614 	memset(bytes,0,16);
615 	bytes[0] = b0 ;
616 	bytes[1] = b1 ;
617     bytes[2] = b2;
618 
619 	// HT-mixed mode signal
620 	if(use_ht_rate)
621 	{
622 		ht_sig1 = (HT_SIG_RATE & 0x7F) | ((ht_len << 8) & 0xFFFF00);
623 		ht_sig2 = 0x04 | (use_short_gi << 7);
624 		ht_sig2 = ht_sig2 | (gen_ht_sig_crc(ht_sig1 | ht_sig2 << 24) << 10);
625 
626 	    bytes[3]  = 1;
627 	    bytes[8]  = (ht_sig1 & 0xFF);
628 	    bytes[9]  = (ht_sig1 >> 8)  & 0xFF;
629 	    bytes[10] = (ht_sig1 >> 16) & 0xFF;
630 	    bytes[11] = (ht_sig2 & 0xFF);
631 	    bytes[12] = (ht_sig2 >> 8)  & 0xFF;
632 	    bytes[13] = (ht_sig2 >> 16) & 0xFF;
633 
634 		return(HT_SIG_RATE);
635 	}
636 	else
637 	{
638 		//signal_word = b0+(b1<<8)+(b2<<16) ;
639 		//return signal_word;
640 		return(SIG_RATE);
641 	}
642 }
643 
644 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
645 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
646 {
647 	return container_of(led_cdev, struct gpio_led_data, cdev);
648 }
649 
650 static void openwifi_tx(struct ieee80211_hw *dev,
651 		       struct ieee80211_tx_control *control,
652 		       struct sk_buff *skb)
653 {
654 	struct openwifi_priv *priv = dev->priv;
655 	unsigned long flags;
656 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
657 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
658 	struct openwifi_ring *ring;
659 	dma_addr_t dma_mapping_addr;
660 	unsigned int prio, i;
661 	u32 num_dma_symbol, len_mac_pdu, num_dma_byte, len_phy_packet, num_byte_pad;
662 	u32 rate_signal_value,rate_hw_value,ack_flag;
663 	u32 pkt_need_ack, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, dma_reg, cts_reg;//, openofdm_state_history;
664 	u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value = 0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration;
665 	u8 fc_flag,fc_type,fc_subtype,retry_limit_raw,*dma_buf,retry_limit_hw_value,rc_flags;
666 	bool use_rts_cts, use_cts_protect, use_ht_rate=false, use_short_gi, addr_flag, cts_use_traffic_rate=false, force_use_cts_protect=false;
667 	__le16 frame_control,duration_id;
668 	u32 dma_fifo_no_room_flag, hw_queue_len;
669 	enum dma_status status;
670 	// static bool led_status=0;
671 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
672 
673 	// if ( (priv->phy_tx_sn&7) ==0 ) {
674 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
675 	// 	if (openofdm_state_history!=openofdm_state_history_old){
676 	// 		led_status = (~led_status);
677 	// 		openofdm_state_history_old = openofdm_state_history;
678 	// 		gpiod_set_value(led_dat->gpiod, led_status);
679 	// 	}
680 	// }
681 
682 	if (test_mode==1){
683 		printk("%s openwifi_tx: WARNING test_mode==1\n", sdr_compatible_str);
684 		goto openwifi_tx_early_out;
685 	}
686 
687 	if (skb->data_len>0) {// more data are not in linear data area skb->data
688 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
689 		goto openwifi_tx_early_out;
690 	}
691 
692 	len_mac_pdu = skb->len;
693 	len_phy_packet = len_mac_pdu + LEN_PHY_HEADER;
694 	num_dma_symbol = (len_phy_packet>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_phy_packet&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
695 
696 	// get Linux priority/queue setting info and target mac address
697 	prio = skb_get_queue_mapping(skb);
698 	addr1_low32  = *((u32*)(hdr->addr1+2));
699 	ring = &(priv->tx_ring[prio]);
700 
701 	// -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" -----------
702 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
703 		queue_idx = prio;
704 	} else {// customized prio to queue_idx mapping
705 		//if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only
706 		// check current packet belonging to which slice/hw-queue
707 			for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
708 				if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
709 					break;
710 				}
711 			}
712 		//}
713 		queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest.
714 	}
715 	// -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------
716 
717 	// check whether the packet is bigger than DMA buffer size
718 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
719 	if (num_dma_byte > TX_BD_BUF_SIZE) {
720 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING num_dma_byte > TX_BD_BUF_SIZE\n");
721 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
722 		goto openwifi_tx_early_out;
723 	}
724 	num_byte_pad = num_dma_byte-len_phy_packet;
725 
726 	// get other info from packet header
727 	addr1_high16 = *((u16*)(hdr->addr1));
728 	if (len_mac_pdu>=20) {
729 		addr2_low32  = *((u32*)(hdr->addr2+2));
730 		addr2_high16 = *((u16*)(hdr->addr2));
731 	}
732 	if (len_mac_pdu>=26) {
733 		addr3_low32  = *((u32*)(hdr->addr3+2));
734 		addr3_high16 = *((u16*)(hdr->addr3));
735 	}
736 
737 	duration_id = hdr->duration_id;
738 	frame_control=hdr->frame_control;
739 	ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK);
740 	fc_type = ((frame_control)>>2)&3;
741 	fc_subtype = ((frame_control)>>4)&0xf;
742 	fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) );
743 	//if it is broadcasting or multicasting addr
744 	addr_flag = ( (addr1_low32==0 && addr1_high16==0) ||
745 	              (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) ||
746 				  (addr1_high16==0x3333) ||
747 				  (addr1_high16==0x0001 && hdr->addr1[2]==0x5E)  );
748 	if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame
749 		pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent
750 	} else {
751 		pkt_need_ack = 0;
752 	}
753 
754 	// get Linux rate (MCS) setting
755 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
756 	//rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
757 	if (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0 && fc_type==2 && (!addr_flag)) //rate override command
758 		rate_hw_value = priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE];
759 
760 	retry_limit_raw = info->control.rates[0].count;
761 
762 	rc_flags = info->control.rates[0].flags;
763 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
764 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
765 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
766 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
767 
768 	if (use_rts_cts)
769 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
770 
771 	if (use_cts_protect) {
772 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
773 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mac_pdu,info));
774 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
775 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
776 		sifs = (priv->actual_rx_lo<2500?10:16);
777 		if (pkt_need_ack)
778 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
779 		traffic_pkt_duration = 20 + 4*(((22+len_mac_pdu*8)/wifi_n_dbps_table[rate_hw_value])+1);
780 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
781 	}
782 
783 // this is 11b stuff
784 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
785 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
786 
787 	if (len_mac_pdu>=28) {
788 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
789 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
790 				priv->seqno += 0x10;
791 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
792 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
793 		}
794 		sc = hdr->seq_ctrl;
795 	}
796 
797 	if ( (!addr_flag) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) )
798 		printk("%s openwifi_tx: %4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
799 			len_mac_pdu, (use_ht_rate == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
800 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
801 			sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx,
802 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
803 			ring->bd_wr_idx,ring->bd_rd_idx);
804 
805 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
806 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
807 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
808 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
809 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
810 
811 	// -----------end of preprocess some info from header and skb----------------
812 
813 	// /* HW will perform RTS-CTS when only RTS flags is set.
814 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
815 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
816 	//  */
817 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
818 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
819 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
820 	// 					len_mac_pdu, info);
821 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
822 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
823 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
824 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
825 	// 					len_mac_pdu, info);
826 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
827 	// }
828 
829 	// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
830 	if (skb_headroom(skb)<LEN_PHY_HEADER) {
831 		struct sk_buff *skb_new; // in case original skb headroom is not enough to host phy header needed by FPGA IP core
832 		printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_PHY_HEADER\n", sdr_compatible_str, ring->bd_wr_idx);
833 		if ((skb_new = skb_realloc_headroom(skb, LEN_PHY_HEADER)) == NULL) {
834 			printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
835 			goto openwifi_tx_early_out;
836 		}
837 		if (skb->sk != NULL)
838 			skb_set_owner_w(skb_new, skb->sk);
839 		dev_kfree_skb(skb);
840 		skb = skb_new;
841 	}
842 
843 	skb_push( skb, LEN_PHY_HEADER );
844 	rate_signal_value = calc_phy_header(rate_hw_value, use_ht_rate, use_short_gi, len_mac_pdu+LEN_PHY_CRC, skb->data); //fill the phy header
845 
846 	//make sure dma length is integer times of DDC_NUM_BYTE_PER_DMA_SYMBOL
847 	if (skb_tailroom(skb)<num_byte_pad) {
848 		printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
849 		// skb_pull(skb, LEN_PHY_HEADER);
850 		goto openwifi_tx_early_out;
851 	}
852 	skb_put( skb, num_byte_pad );
853 
854 	retry_limit_hw_value = (retry_limit_raw - 1)&0xF;
855 	dma_buf = skb->data;
856 
857 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
858 	cts_reg = (((use_cts_protect|force_use_cts_protect)<<31)|(cts_use_traffic_rate<<30)|(cts_duration<<8)|(cts_rate_signal_value<<4)|rate_signal_value);
859 	dma_reg = ( (( ((prio<<(NUM_BIT_MAX_NUM_HW_QUEUE+NUM_BIT_MAX_PHY_TX_SN))|(ring->bd_wr_idx<<NUM_BIT_MAX_NUM_HW_QUEUE)|queue_idx) )<<18)|(retry_limit_hw_value<<14)|(pkt_need_ack<<13)|num_dma_symbol );
860 
861 	/* We must be sure that tx_flags is written last because the HW
862 	 * looks at it to check if the rest of data is valid or not
863 	 */
864 	//wmb();
865 	// entry->flags = cpu_to_le32(tx_flags);
866 	/* We must be sure this has been written before following HW
867 	 * register write, because this write will make the HW attempts
868 	 * to DMA the just-written data
869 	 */
870 	//wmb();
871 
872 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
873 
874 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
875 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
876 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
877 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD)  || ring->stop_flag==1 ) {
878 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
879 		printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str,
880 		prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
881 		ring->stop_flag = 1;
882 		goto openwifi_tx_early_out_after_lock;
883 	}
884 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
885 
886 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
887 	if (status!=DMA_COMPLETE) {
888 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
889 		goto openwifi_tx_early_out_after_lock;
890 	}
891 
892 	if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) ) {
893 		printk("%s openwifi_tx: WARNING 1 %d %08x %08x %08x %08x\n", sdr_compatible_str, num_byte_pad, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
894 		goto openwifi_tx_early_out_after_lock;
895 	}
896 
897 //-------------------------fire skb DMA to hardware----------------------------------
898 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
899 				 num_dma_byte, DMA_MEM_TO_DEV);
900 
901 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
902 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
903 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
904 		goto openwifi_tx_early_out_after_lock;
905 	}
906 
907 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
908 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
909 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
910 
911 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
912 	tx_intf_api->TX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(dma_reg);
913 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
914 	if (!(priv->txd)) {
915 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
916 		goto openwifi_tx_after_dma_mapping;
917 	}
918 
919 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
920 
921 	if (dma_submit_error(priv->tx_cookie)) {
922 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
923 		goto openwifi_tx_after_dma_mapping;
924 	}
925 
926 	// seems everything is ok. let's mark this pkt in bd descriptor ring
927 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
928 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
929 
930 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
931 
932 	dma_async_issue_pending(priv->tx_chan);
933 
934 	if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) )
935 		printk("%s openwifi_tx: WARNING 2 %08x %08x %08x %08x\n", sdr_compatible_str, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
936 
937 	spin_unlock_irqrestore(&priv->lock, flags);
938 
939 	return;
940 
941 openwifi_tx_after_dma_mapping:
942 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
943 
944 openwifi_tx_early_out_after_lock:
945 	// skb_pull(skb, LEN_PHY_HEADER);
946 	dev_kfree_skb(skb);
947 	spin_unlock_irqrestore(&priv->lock, flags);
948 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
949 	return;
950 
951 openwifi_tx_early_out:
952 	dev_kfree_skb(skb);
953 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
954 }
955 
956 static int openwifi_start(struct ieee80211_hw *dev)
957 {
958 	struct openwifi_priv *priv = dev->priv;
959 	int ret, i, rssi_half_db_offset, agc_gain_delay;//rssi_half_db_th,
960 	u32 reg;
961 
962 	for (i=0; i<MAX_NUM_VIF; i++) {
963 		priv->vif[i] = NULL;
964 	}
965 
966 	memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
967 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
968 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
969 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
970 
971 	//turn on radio
972 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
973 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
974 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
975 	} else {
976 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
977 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
978 	}
979 	if (reg == AD9361_RADIO_ON_TX_ATT) {
980 		priv->rfkill_off = 1;// 0 off, 1 on
981 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
982 	}
983 	else
984 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
985 
986 	if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
987 		priv->ctrl_out.index=0x16;
988 	else
989 		priv->ctrl_out.index=0x17;
990 
991 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
992 	if (ret < 0) {
993 		printk("%s openwifi_start: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, ret);
994 	} else {
995 		printk("%s openwifi_start: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
996 	}
997 
998 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
999 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1000 
1001 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1002 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1003 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1004 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1005 	xpu_api->hw_init(priv->xpu_cfg);
1006 
1007 	agc_gain_delay = 50; //samples
1008 	rssi_half_db_offset = 150; // to be consistent
1009 	xpu_api->XPU_REG_RSSI_DB_CFG_write(0x80000000|((rssi_half_db_offset<<16)|agc_gain_delay) );
1010 	xpu_api->XPU_REG_RSSI_DB_CFG_write((~0x80000000)&((rssi_half_db_offset<<16)|agc_gain_delay) );
1011 
1012 	openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write(0);
1013 	// rssi_half_db_th = 87<<1; // -62dBm // will setup in runtime in _rf_set_channel
1014 	// xpu_api->XPU_REG_LBT_TH_write(rssi_half_db_th); // set IQ rssi th step .5dB to xxx and enable it
1015 	xpu_api->XPU_REG_FORCE_IDLE_MISC_write(75); //control the duration to force ch_idle after decoding a packet due to imperfection of agc and signals
1016 
1017 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((40)<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz (Attention, current tx core has around 1.19us starting delay that makes the ack fall behind 10us SIFS in 2.4GHz! Need to improve TX in 2.4GHz!)
1018 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51)<<16)|0 );//now our tx send out I/Q immediately
1019 	xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51+23)<<16)|(0+23) );//we have more time when we use FIR in AD9361
1020 
1021 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP0_write( (1<<31) | (((45+2+2)*10 + 15)<<16) | 10 );//2.4GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1022 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP1_write( (1<<31) | (((51+2+2)*10 + 15)<<16) | 10 );//5GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1023 
1024 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write( ((16*10)<<16)|(10*10) );//high 16bit 5GHz; low 16 bit 2.4GHz. counter speed 10MHz is assumed
1025 
1026 	// //xpu_api->XPU_REG_BB_RF_DELAY_write(51); // fine tuned value at 0.005us. old: dac-->ant port: 0.6us, 57 taps fir at 40MHz: 1.425us; round trip: 2*(0.6+1.425)=4.05us; 4.05*10=41
1027 	// xpu_api->XPU_REG_BB_RF_DELAY_write(47);//add .5us for slightly longer fir -- already in xpu.c
1028 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1029 
1030 	// setup time schedule of 4 slices
1031 	// slice 0
1032 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write(50000-1); // total 50ms
1033 	xpu_api->XPU_REG_SLICE_COUNT_START_write(0); //start 0ms
1034 	xpu_api->XPU_REG_SLICE_COUNT_END_write(50000-1); //end 50ms
1035 
1036 	// slice 1
1037 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((1<<20)|(50000-1)); // total 50ms
1038 	xpu_api->XPU_REG_SLICE_COUNT_START_write((1<<20)|(0)); //start 0ms
1039 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(20000-1)); //end 20ms
1040 	xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(50000-1)); //end 20ms
1041 
1042 	// slice 2
1043 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((2<<20)|(50000-1)); // total 50ms
1044 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(20000)); //start 20ms
1045 	xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(0)); //start 20ms
1046 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(40000-1)); //end 20ms
1047 	xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(50000-1)); //end 20ms
1048 
1049 	// slice 3
1050 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((3<<20)|(50000-1)); // total 50ms
1051 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(40000)); //start 40ms
1052 	xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(0)); //start 40ms
1053 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1054 	xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1055 
1056 	// all slice sync rest
1057 	xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1058 	xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1059 
1060 	//xpu_api->XPU_REG_MAC_ADDR_HIGH_write( (*( (u16*)(priv->mac_addr + 4) )) );
1061 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1062 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1063 
1064 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1065 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1066 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1067 
1068 	if (test_mode==1) {
1069 		printk("%s openwifi_start: test_mode==1\n",sdr_compatible_str);
1070 		goto normal_out;
1071 	}
1072 
1073 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1074 	if (IS_ERR(priv->rx_chan)) {
1075 		ret = PTR_ERR(priv->rx_chan);
1076 		pr_err("%s openwifi_start: No Rx channel %d\n",sdr_compatible_str,ret);
1077 		goto err_dma;
1078 	}
1079 
1080 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1081 	if (IS_ERR(priv->tx_chan)) {
1082 		ret = PTR_ERR(priv->tx_chan);
1083 		pr_err("%s openwifi_start: No Tx channel %d\n",sdr_compatible_str,ret);
1084 		goto err_dma;
1085 	}
1086 	printk("%s openwifi_start: DMA channel setup successfully.\n",sdr_compatible_str);
1087 
1088 	ret = openwifi_init_rx_ring(priv);
1089 	if (ret) {
1090 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1091 		goto err_free_rings;
1092 	}
1093 
1094 	priv->seqno=0;
1095 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1096 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1097 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1098 			goto err_free_rings;
1099 		}
1100 	}
1101 
1102 	if ( (ret = rx_dma_setup(dev)) ) {
1103 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1104 		goto err_free_rings;
1105 	}
1106 
1107 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1108 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1109 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1110 	if (ret) {
1111 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1112 		goto err_free_rings;
1113 	} else {
1114 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1115 	}
1116 
1117 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1118 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1119 			IRQF_SHARED, "sdr,tx_itrpt1", dev);
1120 	if (ret) {
1121 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1122 		goto err_free_rings;
1123 	} else {
1124 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1125 	}
1126 
1127 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1128 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1129 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1130 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1131 
1132 	//ieee80211_wake_queue(dev, 0);
1133 
1134 normal_out:
1135 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1136 	return 0;
1137 
1138 err_free_rings:
1139 	openwifi_free_rx_ring(priv);
1140 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1141 		openwifi_free_tx_ring(priv, i);
1142 
1143 err_dma:
1144 	ret = -1;
1145 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1146 	return ret;
1147 }
1148 
1149 static void openwifi_stop(struct ieee80211_hw *dev)
1150 {
1151 	struct openwifi_priv *priv = dev->priv;
1152 	u32 reg, reg1;
1153 	int i;
1154 
1155 	if (test_mode==1){
1156 		pr_info("%s openwifi_stop: test_mode==1\n", sdr_compatible_str);
1157 		goto normal_out;
1158 	}
1159 
1160 	//turn off radio
1161 	#if 1
1162 	ad9361_tx_mute(priv->ad9361_phy, 1);
1163 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1164 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1165 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1166 		priv->rfkill_off = 0;// 0 off, 1 on
1167 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1168 	}
1169 	else
1170 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1171 	#endif
1172 
1173 	//ieee80211_stop_queue(dev, 0);
1174 
1175 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1176 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1177 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1178 
1179 	for (i=0; i<MAX_NUM_VIF; i++) {
1180 		priv->vif[i] = NULL;
1181 	}
1182 
1183 	openwifi_free_rx_ring(priv);
1184 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1185 		openwifi_free_tx_ring(priv, i);
1186 
1187 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1188 	dmaengine_terminate_all(priv->rx_chan);
1189 	dma_release_channel(priv->rx_chan);
1190 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1191 	dmaengine_terminate_all(priv->tx_chan);
1192 	dma_release_channel(priv->tx_chan);
1193 
1194 	//priv->rf->stop(dev);
1195 
1196 	free_irq(priv->irq_rx, dev);
1197 	free_irq(priv->irq_tx, dev);
1198 
1199 normal_out:
1200 	printk("%s openwifi_stop\n", sdr_compatible_str);
1201 }
1202 
1203 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1204 			   struct ieee80211_vif *vif)
1205 {
1206 	u32 tsft_low, tsft_high;
1207 
1208 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1209 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1210 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1211 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1212 }
1213 
1214 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1215 {
1216 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1217 	u32 tsft_low  = (tsf&0xffffffff);
1218 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1219 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1220 }
1221 
1222 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1223 {
1224 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1225 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1226 }
1227 
1228 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1229 {
1230 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1231 	return(0);
1232 }
1233 
1234 static void openwifi_beacon_work(struct work_struct *work)
1235 {
1236 	struct openwifi_vif *vif_priv =
1237 		container_of(work, struct openwifi_vif, beacon_work.work);
1238 	struct ieee80211_vif *vif =
1239 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1240 	struct ieee80211_hw *dev = vif_priv->dev;
1241 	struct ieee80211_mgmt *mgmt;
1242 	struct sk_buff *skb;
1243 
1244 	/* don't overflow the tx ring */
1245 	if (ieee80211_queue_stopped(dev, 0))
1246 		goto resched;
1247 
1248 	/* grab a fresh beacon */
1249 	skb = ieee80211_beacon_get(dev, vif);
1250 	if (!skb)
1251 		goto resched;
1252 
1253 	/*
1254 	 * update beacon timestamp w/ TSF value
1255 	 * TODO: make hardware update beacon timestamp
1256 	 */
1257 	mgmt = (struct ieee80211_mgmt *)skb->data;
1258 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1259 
1260 	/* TODO: use actual beacon queue */
1261 	skb_set_queue_mapping(skb, 0);
1262 	openwifi_tx(dev, NULL, skb);
1263 
1264 resched:
1265 	/*
1266 	 * schedule next beacon
1267 	 * TODO: use hardware support for beacon timing
1268 	 */
1269 	schedule_delayed_work(&vif_priv->beacon_work,
1270 			usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1271 }
1272 
1273 static int openwifi_add_interface(struct ieee80211_hw *dev,
1274 				 struct ieee80211_vif *vif)
1275 {
1276 	int i;
1277 	struct openwifi_priv *priv = dev->priv;
1278 	struct openwifi_vif *vif_priv;
1279 
1280 	switch (vif->type) {
1281 	case NL80211_IFTYPE_AP:
1282 	case NL80211_IFTYPE_STATION:
1283 	case NL80211_IFTYPE_ADHOC:
1284 	case NL80211_IFTYPE_MONITOR:
1285 	case NL80211_IFTYPE_MESH_POINT:
1286 		break;
1287 	default:
1288 		return -EOPNOTSUPP;
1289 	}
1290 	// let's support more than 1 interface
1291 	for (i=0; i<MAX_NUM_VIF; i++) {
1292 		if (priv->vif[i] == NULL)
1293 			break;
1294 	}
1295 
1296 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1297 
1298 	if (i==MAX_NUM_VIF)
1299 		return -EBUSY;
1300 
1301 	priv->vif[i] = vif;
1302 
1303 	/* Initialize driver private area */
1304 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1305 	vif_priv->idx = i;
1306 
1307 	vif_priv->dev = dev;
1308 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1309 	vif_priv->enable_beacon = false;
1310 
1311 	printk("%s openwifi_add_interface end with vif idx %d\n", sdr_compatible_str,vif_priv->idx);
1312 
1313 	return 0;
1314 }
1315 
1316 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1317 				     struct ieee80211_vif *vif)
1318 {
1319 	struct openwifi_vif *vif_priv;
1320 	struct openwifi_priv *priv = dev->priv;
1321 
1322 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1323 	priv->vif[vif_priv->idx] = NULL;
1324 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1325 }
1326 
1327 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1328 {
1329 	struct openwifi_priv *priv = dev->priv;
1330 	struct ieee80211_conf *conf = &dev->conf;
1331 
1332 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
1333 		priv->rf->set_chan(dev, conf);
1334 	else
1335 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1336 
1337 	return 0;
1338 }
1339 
1340 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1341 				     struct ieee80211_vif *vif,
1342 				     struct ieee80211_bss_conf *info,
1343 				     u32 changed)
1344 {
1345 	struct openwifi_priv *priv = dev->priv;
1346 	struct openwifi_vif *vif_priv;
1347 	u32 bssid_low, bssid_high;
1348 
1349 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1350 
1351 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1352 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1353 	if (changed & BSS_CHANGED_BSSID) {
1354 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1355 		// write new bssid to our HW, and do not change bssid filter
1356 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1357 		bssid_low = ( *( (u32*)(info->bssid) ) );
1358 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1359 
1360 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1361 		//bssid_high = (bssid_high|bssid_filter_high);
1362 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1363 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1364 	}
1365 
1366 	if (changed & BSS_CHANGED_BEACON_INT) {
1367 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1368 	}
1369 
1370 	if (changed & BSS_CHANGED_TXPOWER)
1371 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1372 
1373 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1374 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1375 
1376 	if (changed & BSS_CHANGED_BASIC_RATES)
1377 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1378 
1379 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1380 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1381 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1382 		if (info->use_short_slot && priv->use_short_slot==false) {
1383 			priv->use_short_slot=true;
1384 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1385 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1386 			priv->use_short_slot=false;
1387 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1388 		}
1389 	}
1390 
1391 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1392 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1393 		vif_priv->enable_beacon = info->enable_beacon;
1394 	}
1395 
1396 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1397 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1398 		if (vif_priv->enable_beacon)
1399 			schedule_work(&vif_priv->beacon_work.work);
1400 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1401 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1402 	}
1403 }
1404 // helper function
1405 u32 log2val(u32 val){
1406 	u32 ret_val = 0 ;
1407 	while(val>1){
1408 		val = val >> 1 ;
1409 		ret_val ++ ;
1410 	}
1411 	return ret_val ;
1412 }
1413 
1414 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
1415 	      const struct ieee80211_tx_queue_params *params)
1416 {
1417 	u32 reg_val, cw_min_exp, cw_max_exp;
1418 
1419 	printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
1420 		  sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1421 
1422 	reg_val=xpu_api->XPU_REG_CSMA_CFG_read();
1423 	cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
1424 	cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
1425 	switch(queue){
1426 		case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) );  break;
1427 		case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) );  break;
1428 		case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break;
1429 		case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break;
1430 		default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
1431 	}
1432 	xpu_api->XPU_REG_CSMA_CFG_write(reg_val);
1433 	return(0);
1434 }
1435 
1436 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1437 				     struct netdev_hw_addr_list *mc_list)
1438 {
1439 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1440 	return netdev_hw_addr_list_count(mc_list);
1441 }
1442 
1443 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1444 				     unsigned int changed_flags,
1445 				     unsigned int *total_flags,
1446 				     u64 multicast)
1447 {
1448 	u32 filter_flag;
1449 
1450 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1451 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1452 
1453 	filter_flag = (*total_flags);
1454 
1455 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1456 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1457 
1458 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1459 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1460 		filter_flag = (filter_flag|MONITOR_ALL);
1461 	else
1462 		filter_flag = (filter_flag&(~MONITOR_ALL));
1463 
1464 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1465 		filter_flag = (filter_flag|MY_BEACON);
1466 
1467 	filter_flag = (filter_flag|FIF_PSPOLL);
1468 
1469 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
1470 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
1471 
1472 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
1473 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
1474 }
1475 
1476 static int openwifi_testmode_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void *data, int len)
1477 {
1478 	struct openwifi_priv *priv = hw->priv;
1479 	struct nlattr *tb[OPENWIFI_ATTR_MAX + 1];
1480 	struct sk_buff *skb;
1481 	int err;
1482 	u32 tmp=-1, reg_cat, reg_addr, reg_val, reg_addr_idx, tsft_high, tsft_low;
1483 
1484 	err = nla_parse(tb, OPENWIFI_ATTR_MAX, data, len, openwifi_testmode_policy, NULL);
1485 	if (err)
1486 		return err;
1487 
1488 	if (!tb[OPENWIFI_ATTR_CMD])
1489 		return -EINVAL;
1490 
1491 	switch (nla_get_u32(tb[OPENWIFI_ATTR_CMD])) {
1492 	case OPENWIFI_CMD_SET_GAP:
1493 		if (!tb[OPENWIFI_ATTR_GAP])
1494 			return -EINVAL;
1495 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_GAP]);
1496 		printk("%s openwifi radio inter frame gap set to %d usec\n", sdr_compatible_str, tmp);
1497 		xpu_api->XPU_REG_CSMA_CFG_write(tmp); // unit us
1498 		return 0;
1499 	case OPENWIFI_CMD_GET_GAP:
1500 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1501 		if (!skb)
1502 			return -ENOMEM;
1503 		tmp = xpu_api->XPU_REG_CSMA_CFG_read();
1504 		if (nla_put_u32(skb, OPENWIFI_ATTR_GAP, tmp))
1505 			goto nla_put_failure;
1506 		return cfg80211_testmode_reply(skb);
1507 	case OPENWIFI_CMD_SET_SLICE_IDX:
1508 		if (!tb[OPENWIFI_ATTR_SLICE_IDX])
1509 			return -EINVAL;
1510 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_IDX]);
1511 		printk("%s set openwifi slice_idx in hex: %08x\n", sdr_compatible_str, tmp);
1512 		if (tmp == MAX_NUM_HW_QUEUE) {
1513 			printk("%s set openwifi slice_idx reset all queue counter.\n", sdr_compatible_str);
1514 			xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1515 			xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1516 		} else {
1517 			priv->slice_idx = tmp;
1518 		}
1519 		return 0;
1520 	case OPENWIFI_CMD_GET_SLICE_IDX:
1521 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1522 		if (!skb)
1523 			return -ENOMEM;
1524 		tmp = priv->slice_idx;
1525 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_IDX, tmp))
1526 			goto nla_put_failure;
1527 		printk("%s get openwifi slice_idx in hex: %08x\n", sdr_compatible_str, tmp);
1528 		return cfg80211_testmode_reply(skb);
1529 	case OPENWIFI_CMD_SET_ADDR:
1530 		if (!tb[OPENWIFI_ATTR_ADDR])
1531 			return -EINVAL;
1532 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_ADDR]);
1533 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1534 			printk("%s set openwifi slice_target_mac_addr(low32) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1535 		} else {
1536 			printk("%s set openwifi slice_target_mac_addr(low32) in hex: %08x to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1537 			priv->dest_mac_addr_queue_map[priv->slice_idx] = reverse32(tmp);
1538 		}
1539 		return 0;
1540 	case OPENWIFI_CMD_GET_ADDR:
1541 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1542 		if (!skb)
1543 			return -ENOMEM;
1544 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1545 			tmp = -1;
1546 		} else {
1547 			tmp = reverse32(priv->dest_mac_addr_queue_map[priv->slice_idx]);
1548 		}
1549 		if (nla_put_u32(skb, OPENWIFI_ATTR_ADDR, tmp))
1550 			goto nla_put_failure;
1551 		printk("%s get openwifi slice_target_mac_addr(low32) in hex: %08x of slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1552 		return cfg80211_testmode_reply(skb);
1553 
1554 	case OPENWIFI_CMD_SET_SLICE_TOTAL:
1555 		if (!tb[OPENWIFI_ATTR_SLICE_TOTAL])
1556 			return -EINVAL;
1557 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL]);
1558 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1559 			printk("%s set SLICE_TOTAL(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1560 		} else {
1561 			printk("%s set SLICE_TOTAL(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1562 			xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((priv->slice_idx<<20)|tmp);
1563 		}
1564 		return 0;
1565 	case OPENWIFI_CMD_GET_SLICE_TOTAL:
1566 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1567 		if (!skb)
1568 			return -ENOMEM;
1569 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL_read());
1570 		printk("%s get SLICE_TOTAL(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1571 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL, tmp))
1572 			goto nla_put_failure;
1573 		return cfg80211_testmode_reply(skb);
1574 
1575 	case OPENWIFI_CMD_SET_SLICE_START:
1576 		if (!tb[OPENWIFI_ATTR_SLICE_START])
1577 			return -EINVAL;
1578 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START]);
1579 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1580 			printk("%s set SLICE_START(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1581 		} else {
1582 			printk("%s set SLICE_START(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1583 			xpu_api->XPU_REG_SLICE_COUNT_START_write((priv->slice_idx<<20)|tmp);
1584 		}
1585 		return 0;
1586 	case OPENWIFI_CMD_GET_SLICE_START:
1587 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1588 		if (!skb)
1589 			return -ENOMEM;
1590 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_START_read());
1591 		printk("%s get SLICE_START(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1592 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START, tmp))
1593 			goto nla_put_failure;
1594 		return cfg80211_testmode_reply(skb);
1595 
1596 	case OPENWIFI_CMD_SET_SLICE_END:
1597 		if (!tb[OPENWIFI_ATTR_SLICE_END])
1598 			return -EINVAL;
1599 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END]);
1600 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1601 			printk("%s set SLICE_END(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1602 		} else {
1603 			printk("%s set SLICE_END(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1604 			xpu_api->XPU_REG_SLICE_COUNT_END_write((priv->slice_idx<<20)|tmp);
1605 		}
1606 		return 0;
1607 	case OPENWIFI_CMD_GET_SLICE_END:
1608 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1609 		if (!skb)
1610 			return -ENOMEM;
1611 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_END_read());
1612 		printk("%s get SLICE_END(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1613 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END, tmp))
1614 			goto nla_put_failure;
1615 		return cfg80211_testmode_reply(skb);
1616 
1617 	// case OPENWIFI_CMD_SET_SLICE_TOTAL1:
1618 	// 	if (!tb[OPENWIFI_ATTR_SLICE_TOTAL1])
1619 	// 		return -EINVAL;
1620 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL1]);
1621 	// 	printk("%s set SLICE_TOTAL1(duration) to %d usec\n", sdr_compatible_str, tmp);
1622 	// 	// xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_write(tmp);
1623 	// 	return 0;
1624 	// case OPENWIFI_CMD_GET_SLICE_TOTAL1:
1625 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1626 	// 	if (!skb)
1627 	// 		return -ENOMEM;
1628 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_read());
1629 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL1, tmp))
1630 	// 		goto nla_put_failure;
1631 	// 	return cfg80211_testmode_reply(skb);
1632 
1633 	// case OPENWIFI_CMD_SET_SLICE_START1:
1634 	// 	if (!tb[OPENWIFI_ATTR_SLICE_START1])
1635 	// 		return -EINVAL;
1636 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START1]);
1637 	// 	printk("%s set SLICE_START1(duration) to %d usec\n", sdr_compatible_str, tmp);
1638 	// 	// xpu_api->XPU_REG_SLICE_COUNT_START1_write(tmp);
1639 	// 	return 0;
1640 	// case OPENWIFI_CMD_GET_SLICE_START1:
1641 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1642 	// 	if (!skb)
1643 	// 		return -ENOMEM;
1644 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_START1_read());
1645 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START1, tmp))
1646 	// 		goto nla_put_failure;
1647 	// 	return cfg80211_testmode_reply(skb);
1648 
1649 	// case OPENWIFI_CMD_SET_SLICE_END1:
1650 	// 	if (!tb[OPENWIFI_ATTR_SLICE_END1])
1651 	// 		return -EINVAL;
1652 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END1]);
1653 	// 	printk("%s set SLICE_END1(duration) to %d usec\n", sdr_compatible_str, tmp);
1654 	// 	// xpu_api->XPU_REG_SLICE_COUNT_END1_write(tmp);
1655 	// 	return 0;
1656 	// case OPENWIFI_CMD_GET_SLICE_END1:
1657 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1658 	// 	if (!skb)
1659 	// 		return -ENOMEM;
1660 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_END1_read());
1661 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END1, tmp))
1662 	// 		goto nla_put_failure;
1663 	// 	return cfg80211_testmode_reply(skb);
1664 
1665 	case OPENWIFI_CMD_SET_RSSI_TH:
1666 		if (!tb[OPENWIFI_ATTR_RSSI_TH])
1667 			return -EINVAL;
1668 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_RSSI_TH]);
1669 		printk("%s set RSSI_TH to %d\n", sdr_compatible_str, tmp);
1670 		xpu_api->XPU_REG_LBT_TH_write(tmp);
1671 		return 0;
1672 	case OPENWIFI_CMD_GET_RSSI_TH:
1673 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1674 		if (!skb)
1675 			return -ENOMEM;
1676 		tmp = xpu_api->XPU_REG_LBT_TH_read();
1677 		if (nla_put_u32(skb, OPENWIFI_ATTR_RSSI_TH, tmp))
1678 			goto nla_put_failure;
1679 		return cfg80211_testmode_reply(skb);
1680 
1681 	case OPENWIFI_CMD_SET_TSF:
1682 		printk("openwifi_set_tsf_1");
1683 		if ( (!tb[OPENWIFI_ATTR_HIGH_TSF]) || (!tb[OPENWIFI_ATTR_LOW_TSF]) )
1684 				return -EINVAL;
1685 		printk("openwifi_set_tsf_2");
1686 		tsft_high = nla_get_u32(tb[OPENWIFI_ATTR_HIGH_TSF]);
1687 		tsft_low  = nla_get_u32(tb[OPENWIFI_ATTR_LOW_TSF]);
1688 		xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1689 		printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1690 		return 0;
1691 
1692 	case REG_CMD_SET:
1693 		if ( (!tb[REG_ATTR_ADDR]) || (!tb[REG_ATTR_VAL]) )
1694 			return -EINVAL;
1695 		reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
1696 		reg_val  = nla_get_u32(tb[REG_ATTR_VAL]);
1697 		reg_cat = ((reg_addr>>16)&0xFFFF);
1698 		reg_addr = (reg_addr&0xFFFF);
1699 		reg_addr_idx = (reg_addr>>2);
1700 		printk("%s recv set cmd reg cat %d addr %08x val %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_val, reg_addr_idx);
1701 		if (reg_cat==1)
1702 			printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
1703 		else if (reg_cat==2)
1704 			rx_intf_api->reg_write(reg_addr,reg_val);
1705 		else if (reg_cat==3)
1706 			tx_intf_api->reg_write(reg_addr,reg_val);
1707 		else if (reg_cat==4)
1708 			openofdm_rx_api->reg_write(reg_addr,reg_val);
1709 		else if (reg_cat==5)
1710 			openofdm_tx_api->reg_write(reg_addr,reg_val);
1711 		else if (reg_cat==6)
1712 			xpu_api->reg_write(reg_addr,reg_val);
1713 		else if (reg_cat==7) {
1714 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1715 				priv->drv_rx_reg_val[reg_addr_idx]=reg_val;
1716 				if (reg_addr_idx==DRV_RX_REG_IDX_FREQ_BW_CFG) {
1717 					if (reg_val==0)
1718 						priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1719 					else
1720 						priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
1721 
1722 					priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1723 					//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1724 				}
1725 			} else
1726 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1727 		}
1728 		else if (reg_cat==8) {
1729 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1730 				priv->drv_tx_reg_val[reg_addr_idx]=reg_val;
1731 				if (reg_addr_idx==DRV_TX_REG_IDX_FREQ_BW_CFG) {
1732 					if (reg_val==0) {
1733 						priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
1734 						ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true);
1735 					} else {
1736 						priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1;
1737 						ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true);
1738 					}
1739 
1740 					//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1741 					priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1742 				}
1743 			} else
1744 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1745 		}
1746 		else if (reg_cat==9) {
1747 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG)
1748 				priv->drv_xpu_reg_val[reg_addr_idx]=reg_val;
1749 			else
1750 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1751 		}
1752 		else
1753 			printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
1754 
1755 		return 0;
1756 	case REG_CMD_GET:
1757 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1758 		if (!skb)
1759 			return -ENOMEM;
1760 		reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
1761 		reg_cat = ((reg_addr>>16)&0xFFFF);
1762 		reg_addr = (reg_addr&0xFFFF);
1763 		reg_addr_idx = (reg_addr>>2);
1764 		printk("%s recv get cmd reg cat %d addr %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_addr_idx);
1765 		if (reg_cat==1) {
1766 			printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
1767 			tmp = 0xFFFFFFFF;
1768 		}
1769 		else if (reg_cat==2)
1770 			tmp = rx_intf_api->reg_read(reg_addr);
1771 		else if (reg_cat==3)
1772 			tmp = tx_intf_api->reg_read(reg_addr);
1773 		else if (reg_cat==4)
1774 			tmp = openofdm_rx_api->reg_read(reg_addr);
1775 		else if (reg_cat==5)
1776 			tmp = openofdm_tx_api->reg_read(reg_addr);
1777 		else if (reg_cat==6)
1778 			tmp = xpu_api->reg_read(reg_addr);
1779 		else if (reg_cat==7) {
1780 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1781 				if (reg_addr_idx==DRV_RX_REG_IDX_FREQ_BW_CFG) {
1782 					priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1783 					//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1784 
1785 					if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
1786 						priv->drv_rx_reg_val[reg_addr_idx]=0;
1787 					else if	(priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT1)
1788 						priv->drv_rx_reg_val[reg_addr_idx]=1;
1789 				}
1790 				tmp = priv->drv_rx_reg_val[reg_addr_idx];
1791 			} else
1792 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1793 		}
1794 		else if (reg_cat==8) {
1795 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1796 				if (reg_addr_idx==DRV_TX_REG_IDX_FREQ_BW_CFG) {
1797 					//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1798 					priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1799 					if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)
1800 						priv->drv_tx_reg_val[reg_addr_idx]=0;
1801 					else if	(priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
1802 						priv->drv_tx_reg_val[reg_addr_idx]=1;
1803 				}
1804 				tmp = priv->drv_tx_reg_val[reg_addr_idx];
1805 			} else
1806 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1807 		}
1808 		else if (reg_cat==9) {
1809 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG)
1810 				tmp = priv->drv_xpu_reg_val[reg_addr_idx];
1811 			else
1812 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1813 		}
1814 		else
1815 			printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
1816 
1817 		if (nla_put_u32(skb, REG_ATTR_VAL, tmp))
1818 			goto nla_put_failure;
1819 		return cfg80211_testmode_reply(skb);
1820 
1821 	default:
1822 		return -EOPNOTSUPP;
1823 	}
1824 
1825  nla_put_failure:
1826 	dev_kfree_skb(skb);
1827 	return -ENOBUFS;
1828 }
1829 
1830 static const struct ieee80211_ops openwifi_ops = {
1831 	.tx			       = openwifi_tx,
1832 	.start			   = openwifi_start,
1833 	.stop			   = openwifi_stop,
1834 	.add_interface	   = openwifi_add_interface,
1835 	.remove_interface  = openwifi_remove_interface,
1836 	.config			   = openwifi_config,
1837 	.bss_info_changed  = openwifi_bss_info_changed,
1838 	.conf_tx		   = openwifi_conf_tx,
1839 	.prepare_multicast = openwifi_prepare_multicast,
1840 	.configure_filter  = openwifi_configure_filter,
1841 	.rfkill_poll	   = openwifi_rfkill_poll,
1842 	.get_tsf		   = openwifi_get_tsf,
1843 	.set_tsf		   = openwifi_set_tsf,
1844 	.reset_tsf		   = openwifi_reset_tsf,
1845 	.set_rts_threshold = openwifi_set_rts_threshold,
1846 	.testmode_cmd	   = openwifi_testmode_cmd,
1847 };
1848 
1849 static const struct of_device_id openwifi_dev_of_ids[] = {
1850 	{ .compatible = "sdr,sdr", },
1851 	{}
1852 };
1853 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
1854 
1855 static int custom_match_spi_dev(struct device *dev, void *data)
1856 {
1857     const char *name = data;
1858 
1859 	bool ret = sysfs_streq(name, dev->of_node->name);
1860 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
1861 	return ret;
1862 }
1863 
1864 static int custom_match_platform_dev(struct device *dev, void *data)
1865 {
1866 	struct platform_device *plat_dev = to_platform_device(dev);
1867 	const char *name = data;
1868 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
1869 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
1870 
1871 	if (match_flag) {
1872 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
1873 	}
1874 	return(match_flag);
1875 }
1876 
1877 static int openwifi_dev_probe(struct platform_device *pdev)
1878 {
1879 	struct ieee80211_hw *dev;
1880 	struct openwifi_priv *priv;
1881 	int err=1, rand_val;
1882 	const char *chip_name, *fpga_model;
1883 	u32 reg;//, reg1;
1884 
1885 	struct device_node *np = pdev->dev.of_node;
1886 
1887 	struct device *tmp_dev;
1888 	struct platform_device *tmp_pdev;
1889 	struct iio_dev *tmp_indio_dev;
1890 	// struct gpio_leds_priv *tmp_led_priv;
1891 
1892 	printk("\n");
1893 
1894 	if (np) {
1895 		const struct of_device_id *match;
1896 
1897 		match = of_match_node(openwifi_dev_of_ids, np);
1898 		if (match) {
1899 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
1900 			err = 0;
1901 		}
1902 	}
1903 
1904 	if (err)
1905 		return err;
1906 
1907 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
1908 	if (!dev) {
1909 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
1910 		err = -ENOMEM;
1911 		goto err_free_dev;
1912 	}
1913 
1914 	priv = dev->priv;
1915 	priv->pdev = pdev;
1916 
1917 	err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
1918 	if(err < 0) {
1919 		printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
1920 		priv->fpga_type = SMALL_FPGA;
1921 	} else {
1922 		// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
1923 		if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
1924 			priv->fpga_type = LARGE_FPGA;
1925 		// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
1926 		else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
1927 			priv->fpga_type = SMALL_FPGA;
1928 	}
1929 
1930 	// //-------------find ad9361-phy driver for lo/channel control---------------
1931 	priv->actual_rx_lo = 0;
1932 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
1933 	if (tmp_dev == NULL) {
1934 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
1935 		err = -ENOMEM;
1936 		goto err_free_dev;
1937 	}
1938 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
1939 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
1940 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
1941 		err = -ENOMEM;
1942 		goto err_free_dev;
1943 	}
1944 
1945 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
1946 	if (!(priv->ad9361_phy)) {
1947 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
1948 		err = -ENOMEM;
1949 		goto err_free_dev;
1950 	}
1951 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
1952 
1953 	priv->ctrl_out.en_mask=0xFF;
1954 	priv->ctrl_out.index=0x16;
1955 	err = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
1956 	if (err < 0) {
1957 		printk("%s openwifi_dev_probe: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, err);
1958 	} else {
1959 		printk("%s openwifi_dev_probe: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
1960 	}
1961 
1962 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
1963 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
1964 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
1965 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
1966 
1967 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
1968 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
1969 	if (!tmp_dev) {
1970 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
1971 		err = -ENOMEM;
1972 		goto err_free_dev;
1973 	}
1974 
1975 	tmp_pdev = to_platform_device(tmp_dev);
1976 	if (!tmp_pdev) {
1977 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
1978 		err = -ENOMEM;
1979 		goto err_free_dev;
1980 	}
1981 
1982 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
1983 	if (!tmp_indio_dev) {
1984 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
1985 		err = -ENOMEM;
1986 		goto err_free_dev;
1987 	}
1988 
1989 	priv->dds_st = iio_priv(tmp_indio_dev);
1990 	if (!(priv->dds_st)) {
1991 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
1992 		err = -ENOMEM;
1993 		goto err_free_dev;
1994 	}
1995 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
1996 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
1997 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
1998 
1999 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
2000 	// turn off radio by muting tx
2001 	// ad9361_tx_mute(priv->ad9361_phy, 1);
2002 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
2003 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2004 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
2005 	// 	priv->rfkill_off = 0;// 0 off, 1 on
2006 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
2007 	// }
2008 	// else
2009 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
2010 
2011 	priv->rssi_correction = 43;//this will be set in real-time by _rf_set_channel()
2012 
2013 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2014 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2015 
2016 	priv->xpu_cfg = XPU_NORMAL;
2017 
2018 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
2019 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
2020 
2021 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
2022 	if (priv->rf_bw == 20000000) {
2023 		priv->rx_intf_cfg = RX_INTF_BYPASS;
2024 		priv->tx_intf_cfg = TX_INTF_BYPASS;
2025 		//priv->rx_freq_offset_to_lo_MHz = 0;
2026 		//priv->tx_freq_offset_to_lo_MHz = 0;
2027 	} else if (priv->rf_bw == 40000000) {
2028 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
2029 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
2030 
2031 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
2032 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2033 		priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
2034 		// // try another antenna option
2035 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
2036 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
2037 
2038 		#if 0
2039 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
2040 			priv->rx_freq_offset_to_lo_MHz = -10;
2041 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
2042 			priv->rx_freq_offset_to_lo_MHz = 10;
2043 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
2044 			priv->rx_freq_offset_to_lo_MHz = 0;
2045 		} else {
2046 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
2047 		}
2048 		#endif
2049 	} else {
2050 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
2051 	}
2052 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
2053 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
2054 	printk("%s openwifi_dev_probe: test_mode %d\n", sdr_compatible_str, test_mode);
2055 
2056 	//let's by default turn radio on when probing
2057 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
2058 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
2059 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
2060 	} else {
2061 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
2062 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2063 	}
2064 	if (reg == AD9361_RADIO_ON_TX_ATT) {
2065 		priv->rfkill_off = 1;// 0 off, 1 on
2066 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
2067 	}
2068 	else
2069 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
2070 
2071 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
2072 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
2073 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
2074 
2075 	// //set ad9361 in certain mode
2076 	#if 0
2077 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
2078 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2079 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
2080 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2081 
2082 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
2083 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
2084 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
2085 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
2086 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
2087 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
2088 	#endif
2089 
2090 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
2091 
2092 	SET_IEEE80211_DEV(dev, &pdev->dev);
2093 	platform_set_drvdata(pdev, dev);
2094 
2095 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
2096 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
2097 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
2098 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
2099 
2100 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
2101 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
2102 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
2103 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
2104 
2105 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
2106 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
2107 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
2108 
2109 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
2110 	priv->band_2GHz.channels = priv->channels_2GHz;
2111 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
2112 	priv->band_2GHz.bitrates = priv->rates_2GHz;
2113 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
2114 	priv->band_2GHz.ht_cap.ht_supported = true;
2115 	priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
2116 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
2117 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2118 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2119 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
2120 
2121 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
2122 	priv->band_5GHz.channels = priv->channels_5GHz;
2123 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
2124 	priv->band_5GHz.bitrates = priv->rates_5GHz;
2125 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
2126 	priv->band_5GHz.ht_cap.ht_supported = true;
2127 	priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
2128 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
2129 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2130 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2131 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2132 
2133 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2134 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2135 
2136 	ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING);
2137 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2138 	ieee80211_hw_set(dev, BEACON_TX_STATUS);
2139 
2140 	dev->vif_data_size = sizeof(struct openwifi_vif);
2141 	dev->wiphy->interface_modes =
2142 			BIT(NL80211_IFTYPE_MONITOR)|
2143 			BIT(NL80211_IFTYPE_P2P_GO) |
2144 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
2145 			BIT(NL80211_IFTYPE_AP) |
2146 			BIT(NL80211_IFTYPE_STATION) |
2147 			BIT(NL80211_IFTYPE_ADHOC) |
2148 			BIT(NL80211_IFTYPE_MESH_POINT) |
2149 			BIT(NL80211_IFTYPE_OCB);
2150 	dev->wiphy->iface_combinations = &openwifi_if_comb;
2151 	dev->wiphy->n_iface_combinations = 1;
2152 
2153 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2154 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2155 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2156 
2157 	chip_name = "ZYNQ";
2158 
2159 	/* we declare to MAC80211 all the queues except for beacon queue
2160 	 * that will be eventually handled by DRV.
2161 	 * TX rings are arranged in such a way that lower is the IDX,
2162 	 * higher is the priority, in order to achieve direct mapping
2163 	 * with mac80211, however the beacon queue is an exception and it
2164 	 * is mapped on the highst tx ring IDX.
2165 	 */
2166 	dev->queues = MAX_NUM_HW_QUEUE;
2167 	//dev->queues = 1;
2168 
2169 	ieee80211_hw_set(dev, SIGNAL_DBM);
2170 
2171 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2172 
2173 	priv->rf = &ad9361_rf_ops;
2174 
2175 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2176 	priv->slice_idx = 0xFFFFFFFF;
2177 
2178 	sg_init_table(&(priv->tx_sg), 1);
2179 
2180 	get_random_bytes(&rand_val, sizeof(rand_val));
2181     rand_val%=250;
2182 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
2183 	priv->mac_addr[5]=rand_val+1;
2184 	//priv->mac_addr[5]=0x11;
2185 	if (!is_valid_ether_addr(priv->mac_addr)) {
2186 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2187 		eth_random_addr(priv->mac_addr);
2188 	} else {
2189 		printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2190 	}
2191 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2192 
2193 	spin_lock_init(&priv->lock);
2194 
2195 	err = ieee80211_register_hw(dev);
2196 	if (err) {
2197 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2198 		goto err_free_dev;
2199 	} else {
2200 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2201 	}
2202 
2203 	// // //--------------------hook leds (not complete yet)--------------------------------
2204 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
2205 	// if (!tmp_dev) {
2206 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2207 	// 	err = -ENOMEM;
2208 	// 	goto err_free_dev;
2209 	// }
2210 
2211 	// tmp_pdev = to_platform_device(tmp_dev);
2212 	// if (!tmp_pdev) {
2213 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2214 	// 	err = -ENOMEM;
2215 	// 	goto err_free_dev;
2216 	// }
2217 
2218 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2219 	// if (!tmp_led_priv) {
2220 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2221 	// 	err = -ENOMEM;
2222 	// 	goto err_free_dev;
2223 	// }
2224 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2225 	// if (tmp_led_priv->num_leds!=4){
2226 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2227 	// 	err = -ENOMEM;
2228 	// 	goto err_free_dev;
2229 	// }
2230 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2231 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2232 	// priv->num_led = tmp_led_priv->num_leds;
2233 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2234 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2235 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2236 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2237 
2238 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2239 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2240 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2241 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2242 
2243 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2244 		   priv->mac_addr, chip_name, priv->rf->name);
2245 
2246 	openwifi_rfkill_init(dev);
2247 	return 0;
2248 
2249  err_free_dev:
2250 	ieee80211_free_hw(dev);
2251 
2252 	return err;
2253 }
2254 
2255 static int openwifi_dev_remove(struct platform_device *pdev)
2256 {
2257 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2258 
2259 	if (!dev) {
2260 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2261 		return(-1);
2262 	}
2263 
2264 	openwifi_rfkill_exit(dev);
2265 	ieee80211_unregister_hw(dev);
2266 	ieee80211_free_hw(dev);
2267 	return(0);
2268 }
2269 
2270 static struct platform_driver openwifi_dev_driver = {
2271 	.driver = {
2272 		.name = "sdr,sdr",
2273 		.owner = THIS_MODULE,
2274 		.of_match_table = openwifi_dev_of_ids,
2275 	},
2276 	.probe = openwifi_dev_probe,
2277 	.remove = openwifi_dev_remove,
2278 };
2279 
2280 module_platform_driver(openwifi_dev_driver);
2281