xref: /openwifi/driver/sdr.c (revision b62a370457db1ce8ca951bd2d2fab84fce197c9b)
1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos
2 // SPDX-FileCopyrightText: 2022 UGent
3 // SPDX-License-Identifier: AGPL-3.0-or-later
4 
5 #include <linux/bitops.h>
6 #include <linux/dmapool.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/of_address.h>
10 #include <linux/of_platform.h>
11 #include <linux/of_irq.h>
12 #include <linux/slab.h>
13 #include <linux/clk.h>
14 #include <linux/io-64-nonatomic-lo-hi.h>
15 
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 
24 #include <linux/init.h>
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/of_dma.h>
28 #include <linux/platform_device.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/wait.h>
32 #include <linux/sched/task.h>
33 #include <linux/dma/xilinx_dma.h>
34 #include <linux/spi/spi.h>
35 #include <net/mac80211.h>
36 
37 #include <linux/clk.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk-provider.h>
40 
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43 
44 #include <linux/gpio.h>
45 #include <linux/leds.h>
46 
47 #define IIO_AD9361_USE_PRIVATE_H_
48 #include <../../drivers/iio/adc/ad9361_regs.h>
49 #include <../../drivers/iio/adc/ad9361.h>
50 #include <../../drivers/iio/adc/ad9361_private.h>
51 
52 #include <../../drivers/iio/frequency/cf_axi_dds.h>
53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num);
54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb,
55 			       bool tx1, bool tx2, bool immed);
56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy,
57 				  struct ctrl_outs_control *ctrl);
58 extern int ad9361_do_calib_run(struct ad9361_rf_phy *phy, u32 cal, int arg);
59 
60 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
61 #include "hw_def.h"
62 #include "sdr.h"
63 #include "git_rev.h"
64 
65 // driver API of component driver
66 extern struct tx_intf_driver_api *tx_intf_api;
67 extern struct rx_intf_driver_api *rx_intf_api;
68 extern struct openofdm_tx_driver_api *openofdm_tx_api;
69 extern struct openofdm_rx_driver_api *openofdm_rx_api;
70 extern struct xpu_driver_api *xpu_api;
71 
72 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes);
73 u8 gen_mpdu_delim_crc(u16 m);
74 u32 reverse32(u32 d);
75 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant);
76 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant);
77 int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction);
78 int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction);
79 int rssi_correction_lookup_table(u32 freq_MHz);
80 
81 #include "sdrctl_intf.c"
82 #include "sysfs_intf.c"
83 
84 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1)
85 // Internal indication variables after parsing test_mode
86 static bool AGGR_ENABLE = false;
87 static bool TX_OFFSET_TUNING_ENABLE = false;
88 
89 static int init_tx_att = 0;
90 
91 MODULE_AUTHOR("Xianjun Jiao");
92 MODULE_DESCRIPTION("SDR driver");
93 MODULE_LICENSE("GPL v2");
94 
95 module_param(test_mode, int, 0);
96 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)");
97 
98 module_param(init_tx_att, int, 0);
99 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000	example: set to 3000 for 3dB attenuation");
100 
101 // ---------------rfkill---------------------------------------
102 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
103 {
104 	int reg;
105 
106 	if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH)
107 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
108 	else
109 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
110 
111 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]))
112 		return true;// 0 off, 1 on
113 	return false;
114 }
115 
116 void openwifi_rfkill_init(struct ieee80211_hw *hw)
117 {
118 	struct openwifi_priv *priv = hw->priv;
119 
120 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
121 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
122 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
123 	wiphy_rfkill_start_polling(hw->wiphy);
124 }
125 
126 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
127 {
128 	bool enabled;
129 	struct openwifi_priv *priv = hw->priv;
130 
131 	enabled = openwifi_is_radio_enabled(priv);
132 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
133 	if (unlikely(enabled != priv->rfkill_off)) {
134 		priv->rfkill_off = enabled;
135 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
136 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
137 	}
138 }
139 
140 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
141 {
142 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
143 	wiphy_rfkill_stop_polling(hw->wiphy);
144 }
145 //----------------rfkill end-----------------------------------
146 
147 inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction)
148 {
149 	return ((rssi_correction+rssi_dbm)<<1);
150 }
151 
152 inline int rssi_correction_lookup_table(u32 freq_MHz)
153 {
154 	int rssi_correction;
155 
156 	if (freq_MHz<2412) {
157 		rssi_correction = 153;
158 	} else if (freq_MHz<=2484) {
159 		rssi_correction = 153;
160 	} else if (freq_MHz<5160) {
161 		rssi_correction = 153;
162 	} else if (freq_MHz<=5240) {
163 		rssi_correction = 145;
164 	} else if (freq_MHz<=5320) {
165 		rssi_correction = 148;
166 	} else {
167 		rssi_correction = 148;
168 	}
169 
170 	return rssi_correction;
171 }
172 
173 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
174 				  struct ieee80211_conf *conf)
175 {
176 	struct openwifi_priv *priv = dev->priv;
177 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz;
178 	u32 actual_tx_lo;
179 	u32 spi_disable;
180 	u32 diff_tx_lo;
181 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
182 	int static_lbt_th, auto_lbt_th, fpga_lbt_th, receiver_rssi_dbm_th;
183 	struct timeval tv;
184 	unsigned long time_before = 0;
185 	unsigned long time_after = 0;
186 
187 	if (change_flag) {
188 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
189 		diff_tx_lo = priv->last_tx_quad_cal_lo > actual_tx_lo ? priv->last_tx_quad_cal_lo - actual_tx_lo : actual_tx_lo - priv->last_tx_quad_cal_lo;
190 
191 		// -------------------Tx Lo tuning-------------------
192 		clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_tx_lo ) + priv->rf_reg_val[RF_TX_REG_IDX_FO] )>>1) );
193 		priv->actual_tx_lo = actual_tx_lo;
194 
195 		// -------------------Rx Lo tuning-------------------
196 		clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_rx_lo ) + priv->rf_reg_val[RF_RX_REG_IDX_FO] )>>1) );
197 		priv->actual_rx_lo = actual_rx_lo;
198 
199 		// call Tx Quadrature calibration if frequency change is more than 100MHz
200 		if (diff_tx_lo > 100) {
201 			priv->last_tx_quad_cal_lo = actual_tx_lo;
202 			do_gettimeofday(&tv);
203 			time_before = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec );
204 			spi_disable = xpu_api->XPU_REG_SPI_DISABLE_read();  // disable FPGA SPI module
205 			xpu_api->XPU_REG_SPI_DISABLE_write(1);
206 			ad9361_do_calib_run(priv->ad9361_phy, TX_QUAD_CAL, (int)priv->ad9361_phy->state->last_tx_quad_cal_phase);
207 			// restore original SPI disable state
208 			xpu_api->XPU_REG_SPI_DISABLE_write(spi_disable);
209 			do_gettimeofday(&tv);
210 			time_after = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec );
211 		}
212 
213 		// get rssi correction value from lookup table
214 		priv->rssi_correction = rssi_correction_lookup_table(actual_rx_lo);
215 
216 		// set appropriate lbt threshold
217 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
218 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44
219 		// auto_lbt_th = ((priv->rssi_correction-62-16)<<1);
220 		auto_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction); // -78dBm, the same as above ((priv->rssi_correction-62-16)<<1)
221 		static_lbt_th = rssi_dbm_to_rssi_half_db(-(priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]), priv->rssi_correction);
222 		fpga_lbt_th = (priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]==0?auto_lbt_th:static_lbt_th);
223 		xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th);
224 		priv->last_auto_fpga_lbt_th = auto_lbt_th;
225 
226 		// Set rssi_half_db threshold (-85dBm equivalent) to receiver. Receiver will not react to signal lower than this rssi. See test records (OPENOFDM_RX_POWER_THRES_INIT in hw_def.h)
227 		receiver_rssi_dbm_th = (priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]==0?OPENOFDM_RX_RSSI_DBM_TH_DEFAULT:(-priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]));
228 		openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write((OPENOFDM_RX_DC_RUNNING_SUM_TH_INIT<<16)|rssi_dbm_to_rssi_half_db(receiver_rssi_dbm_th, priv->rssi_correction));
229 
230 		if (actual_rx_lo < 2500) {
231 			if (priv->band != BAND_2_4GHZ) {
232 				priv->band = BAND_2_4GHZ;
233 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
234 			}
235 		} else {
236 			if (priv->band != BAND_5_8GHZ) {
237 				priv->band = BAND_5_8GHZ;
238 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
239 			}
240 		}
241 		printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d(%ddBm) (auto %d static %d) tx_quad_cal duration %lu us\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,rssi_half_db_to_rssi_dbm(fpga_lbt_th, priv->rssi_correction),auto_lbt_th,static_lbt_th, time_after-time_before);
242 	}
243 }
244 
245 const struct openwifi_rf_ops ad9361_rf_ops = {
246 	.name		= "ad9361",
247 //	.init		= ad9361_rf_init,
248 //	.stop		= ad9361_rf_stop,
249 	.set_chan	= ad9361_rf_set_channel,
250 //	.calc_rssi	= ad9361_rf_calc_rssi,
251 };
252 
253 u16 reverse16(u16 d) {
254 	union u16_byte2 tmp0, tmp1;
255 	tmp0.a = d;
256 	tmp1.c[0] = tmp0.c[1];
257 	tmp1.c[1] = tmp0.c[0];
258 	return(tmp1.a);
259 }
260 
261 u32 reverse32(u32 d) {
262 	union u32_byte4 tmp0, tmp1;
263 	tmp0.a = d;
264 	tmp1.c[0] = tmp0.c[3];
265 	tmp1.c[1] = tmp0.c[2];
266 	tmp1.c[2] = tmp0.c[1];
267 	tmp1.c[3] = tmp0.c[0];
268 	return(tmp1.a);
269 }
270 
271 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
272 {
273 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
274 	int i;
275 
276 	ring->stop_flag = 0;
277 	ring->bd_wr_idx = 0;
278 	ring->bd_rd_idx = 0;
279 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
280 	if (ring->bds==NULL) {
281 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
282 		return -ENOMEM;
283 	}
284 
285 	for (i = 0; i < NUM_TX_BD; i++) {
286 		ring->bds[i].skb_linked=0; // for tx, skb is from upper layer
287 		//at first right after skb allocated, head, data, tail are the same.
288 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine
289 		ring->bds[i].seq_no = 0;
290 	}
291 
292 	return 0;
293 }
294 
295 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
296 {
297 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
298 	int i;
299 
300 	ring->stop_flag = 0;
301 	ring->bd_wr_idx = 0;
302 	ring->bd_rd_idx = 0;
303 	for (i = 0; i < NUM_TX_BD; i++) {
304 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
305 			continue;
306 		if (ring->bds[i].dma_mapping_addr != 0)
307 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
308 //		if (ring->bds[i].skb_linked!=NULL)
309 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
310 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
311 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
312 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str,
313 			ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr));
314 
315 		ring->bds[i].skb_linked=0;
316 		ring->bds[i].dma_mapping_addr = 0;
317 		ring->bds[i].seq_no = 0;
318 	}
319 	if (ring->bds)
320 		kfree(ring->bds);
321 	ring->bds = NULL;
322 }
323 
324 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
325 {
326 	int i;
327 	u8 *pdata_tmp;
328 
329 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
330 	if (!priv->rx_cyclic_buf) {
331 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
332 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
333 		return(-1);
334 	}
335 
336 	// Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
337 	for (i=0; i<NUM_RX_BD; i++) {
338 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning
339 		(*((u32*)(pdata_tmp+0 ))) = 0;
340 		(*((u32*)(pdata_tmp+4 ))) = 0;
341 	}
342 	printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str);
343 
344 	return 0;
345 }
346 
347 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
348 {
349 	if (priv->rx_cyclic_buf)
350 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
351 
352 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
353 	priv->rx_cyclic_buf = 0;
354 }
355 
356 static int rx_dma_setup(struct ieee80211_hw *dev){
357 	struct openwifi_priv *priv = dev->priv;
358 	struct dma_device *rx_dev = priv->rx_chan->device;
359 
360 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
361 	if (!(priv->rxd)) {
362 		openwifi_free_rx_ring(priv);
363 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
364 		return(-1);
365 	}
366 	priv->rxd->callback = 0;
367 	priv->rxd->callback_param = 0;
368 
369 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
370 
371 	if (dma_submit_error(priv->rx_cookie)) {
372 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
373 		return(-1);
374 	}
375 
376 	dma_async_issue_pending(priv->rx_chan);
377 	return(0);
378 }
379 
380 inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction)
381 {
382 	int rssi_db, rssi_dbm;
383 
384 	rssi_db = (rssi_half_db>>1);
385 
386 	rssi_dbm = rssi_db - rssi_correction;
387 
388 	rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm);
389 
390 	return rssi_dbm;
391 }
392 
393 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
394 {
395 	struct ieee80211_hw *dev = dev_id;
396 	struct openwifi_priv *priv = dev->priv;
397 	struct ieee80211_rx_status rx_status = {0};
398 	struct sk_buff *skb;
399 	struct ieee80211_hdr *hdr;
400 	u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di;
401 	bool ht_flag, short_gi, ht_aggr, ht_aggr_last;
402 	// u32 dma_driver_buf_idx_mod;
403 	u8 *pdata_tmp, fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw;
404 	s8 signal;
405 	u16 agc_status_and_pkt_exist_flag, rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, seq_no=0;
406 	bool content_ok = false, len_overflow = false;
407 
408 #ifdef USE_NEW_RX_INTERRUPT
409 	int i;
410 	spin_lock(&priv->lock);
411 	for (i=0; i<NUM_RX_BD; i++) {
412 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE;
413 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid
414 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
415 			continue;
416 #else
417 	static u8 target_buf_idx_old = 0;
418 	spin_lock(&priv->lock);
419 	while(1) { // loop all rx buffers that have new rx packets
420 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
421 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10)));
422 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
423 			break;
424 #endif
425 
426 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
427 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
428 		rssi_val =     (*((u16*)(pdata_tmp+8 )));
429 		len =          (*((u16*)(pdata_tmp+12)));
430 
431 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
432 
433 		rate_idx =     (*((u16*)(pdata_tmp+14)));
434 		ht_flag  =     ((rate_idx&0x10)!=0);
435 		short_gi =     ((rate_idx&0x20)!=0);
436 		ht_aggr  =     (ht_flag & ((rate_idx&0x40)!=0));
437 		ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0));
438 		rate_idx =     (rate_idx&0x1F);
439 
440 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
441 
442 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
443 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
444 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
445 		fcs_ok = ((fcs_ok&0x80)!=0);
446 
447 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
448 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
449 			// 	printk("%s openwifi_rx: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
450 			// }
451 			content_ok = true;
452 		} else {
453 			printk("%s openwifi_rx: WARNING content!\n", sdr_compatible_str);
454 			content_ok = false;
455 		}
456 
457 		rssi_val = (rssi_val>>1);
458 		if ( (rssi_val+128)<priv->rssi_correction )
459 			signal = -128;
460 		else
461 			signal = rssi_val - priv->rssi_correction;
462 
463 		// fc_di =        (*((u32*)(pdata_tmp+16)));
464 		// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
465 		// addr1_low32  = (*((u32*)(pdata_tmp+16+4+2)));
466 		// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
467 		// addr2_low32  = (*((u32*)(pdata_tmp+16+6+4+2)));
468 		// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
469 		// addr3_low32  = (*((u32*)(pdata_tmp+16+12+4+2)));
470 		if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) {
471 			hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
472 			addr1_low32  = *((u32*)(hdr->addr1+2));
473 			addr1_high16 = *((u16*)(hdr->addr1));
474 			if (len>=20) {
475 				addr2_low32  = *((u32*)(hdr->addr2+2));
476 				addr2_high16 = *((u16*)(hdr->addr2));
477 			}
478 			if (len>=26) {
479 				addr3_low32  = *((u32*)(hdr->addr3+2));
480 				addr3_high16 = *((u16*)(hdr->addr3));
481 			}
482 			if (len>=28)
483 				seq_no = ( (hdr->seq_ctrl&IEEE80211_SCTL_SEQ)>>4 );
484 
485 			if ( (addr1_low32!=0xffffffff || addr1_high16!=0xffff) || (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&4) )
486 				printk("%s openwifi_rx:%4dbytes ht%d aggr%d/%d sgi%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
487 					len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
488 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
489 #ifdef USE_NEW_RX_INTERRUPT
490 					seq_no, fcs_ok, i, signal);
491 #else
492 					seq_no, fcs_ok, target_buf_idx_old, signal);
493 #endif
494 		}
495 
496 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
497 		if (content_ok) {
498 			skb = dev_alloc_skb(len);
499 			if (skb) {
500 				skb_put_data(skb,pdata_tmp+16,len);
501 
502 				rx_status.antenna = priv->runtime_rx_ant_cfg;
503 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
504 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
505 				rx_status.signal = signal;
506 				rx_status.freq = dev->conf.chandef.chan->center_freq;
507 				rx_status.band = dev->conf.chandef.chan->band;
508 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
509 				rx_status.flag |= RX_FLAG_MACTIME_START;
510 				if (!fcs_ok)
511 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
512 				if (rate_idx <= 15)
513 					rx_status.encoding = RX_ENC_LEGACY;
514 				else
515 					rx_status.encoding = RX_ENC_HT;
516 				rx_status.bw = RATE_INFO_BW_20;
517 				if (short_gi)
518 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
519 				if(ht_aggr)
520 				{
521 					rx_status.ampdu_reference = priv->ampdu_reference;
522 					rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
523 					if (ht_aggr_last)
524 						rx_status.flag |= RX_FLAG_AMPDU_IS_LAST;
525 				}
526 
527 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
528 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
529 			} else
530 				printk("%s openwifi_rx: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
531 
532 			if(ht_aggr_last)
533 				priv->ampdu_reference++;
534 		}
535 		(*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed
536 		loop_count++;
537 #ifndef USE_NEW_RX_INTERRUPT
538 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
539 #endif
540 	}
541 
542 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) )
543 		printk("%s openwifi_rx: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
544 
545 // openwifi_rx_out:
546 	spin_unlock(&priv->lock);
547 	return IRQ_HANDLED;
548 }
549 
550 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
551 {
552 	struct ieee80211_hw *dev = dev_id;
553 	struct openwifi_priv *priv = dev->priv;
554 	struct openwifi_ring *ring;
555 	struct sk_buff *skb;
556 	struct ieee80211_tx_info *info;
557 	u32 reg_val1, hw_queue_len, reg_val2, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0;
558 	u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx;
559 	u8 nof_retx=-1, last_bd_rd_idx, i;
560 	u64 blk_ack_bitmap;
561 	// u16 prio_rd_idx_store[64]={0};
562 	bool tx_fail=false;
563 
564 	spin_lock(&priv->lock);
565 
566 	while(1) { // loop all packets that have been sent by FPGA
567 		reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read();
568         reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read();
569 		blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32);
570 
571 		if (reg_val1!=0xFFFFFFFF) {
572 			nof_retx = (reg_val1&0xF);
573 			last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1));
574 			prio = ((reg_val1>>17)&0x3);
575 			num_slot_random = ((reg_val1>>19)&0x1FF);
576 			//num_slot_random = ((0xFF80000 &reg_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
577 			cw = ((reg_val1>>28)&0xF);
578 			//cw = ((0xF0000000 & reg_val1) >> 28);
579 			if(cw > 10) {
580 				cw = 10 ;
581 				num_slot_random += 512 ;
582 			}
583 			pkt_cnt = (reg_val2&0x3F);
584 			blk_ack_ssn = ((reg_val2>>6)&0xFFF);
585 
586 			ring = &(priv->tx_ring[prio]);
587 
588 			if ( ring->stop_flag == 1) {
589 				// Wake up Linux queue if FPGA and driver ring have room
590 				queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1));
591 				dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
592 				hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
593 
594 				if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) {
595 					// printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter);
596 					printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str,
597 					prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, last_bd_rd_idx);
598 					ieee80211_wake_queue(dev, prio);
599 					ring->stop_flag = 0;
600 				}
601 			}
602 
603 			for(i = 1; i <= pkt_cnt; i++)
604 			{
605 				ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64;
606 				seq_no = ring->bds[ring->bd_rd_idx].seq_no;
607 				skb = ring->bds[ring->bd_rd_idx].skb_linked;
608 
609 				dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
610 						skb->len, DMA_MEM_TO_DEV);
611 
612 				info = IEEE80211_SKB_CB(skb);
613 				ieee80211_tx_info_clear_status(info);
614 
615 				// Aggregation packet
616 				if(pkt_cnt > 1)
617 				{
618 					start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF));
619 					tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0);
620 					info->flags |= IEEE80211_TX_STAT_AMPDU;
621 					info->status.ampdu_len = 1;
622 					info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1;
623 
624 					skb_pull(skb, LEN_MPDU_DELIM);
625 					//skb_trim(skb, num_byte_pad_skb);
626 				}
627 				// Normal packet
628 				else
629 				{
630 					tx_fail = ((blk_ack_bitmap&0x1)==0);
631 					info->flags &= (~IEEE80211_TX_CTL_AMPDU);
632 				}
633 
634 				if (tx_fail == false)
635 					info->flags |= IEEE80211_TX_STAT_ACK;
636 
637 				info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
638 				info->status.rates[1].idx = -1;
639 				info->status.rates[2].idx = -1;
640 				info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
641 				info->status.antenna = priv->runtime_tx_ant_cfg;
642 
643 				if ( tx_fail && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
644 					printk("%s openwifi_tx_interrupt: WARNING pkt_no %d/%d tx_result [nof_retx %d pass %d] prio%d wr%d rd%d\n", sdr_compatible_str, i, pkt_cnt, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx);
645 				if ( ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK))||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) )
646 					printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw);
647 
648 				ieee80211_tx_status_irqsafe(dev, skb);
649 			}
650 
651 			loop_count++;
652 
653 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
654 
655 		} else
656 			break;
657 	}
658 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
659 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
660 
661 	spin_unlock(&priv->lock);
662 	return IRQ_HANDLED;
663 }
664 
665 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000};
666 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes)
667 {
668 	u32 i, crc = 0;
669 	u8 idx;
670 	for( i = 0; i < num_bytes; i++)
671 	{
672 		idx = (crc & 0x0F) ^ (data_in[i] & 0x0F);
673 		crc = (crc >> 4) ^ crc_table[idx];
674 
675 		idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F);
676 		crc = (crc >> 4) ^ crc_table[idx];
677 	}
678 
679 	return crc;
680 }
681 
682 u8 gen_mpdu_delim_crc(u16 m)
683 {
684 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc;
685 
686 	for (i = 0; i < 16; i++)
687 	{
688 		temp = c[7] ^ ((m >> i) & 0x01);
689 
690 		c[7] = c[6];
691 		c[6] = c[5];
692 		c[5] = c[4];
693 		c[4] = c[3];
694 		c[3] = c[2];
695 		c[2] = c[1] ^ temp;
696 		c[1] = c[0] ^ temp;
697 		c[0] = temp;
698 	}
699 	mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
700 
701 	return mpdu_delim_crc;
702 }
703 
704 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
705 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
706 {
707 	return container_of(led_cdev, struct gpio_led_data, cdev);
708 }
709 
710 inline int calc_n_ofdm(int num_octet, int n_dbps)
711 {
712 	int num_bit, num_ofdm_sym;
713 
714 	num_bit      = 22+num_octet*8;
715 	num_ofdm_sym = (num_bit/n_dbps) + ((num_bit%n_dbps)!=0);
716 
717 	return (num_ofdm_sym);
718 }
719 
720 inline __le16 gen_ht_duration_id(__le16 frame_control, __le16 aid, u8 qos_hdr, bool use_ht_aggr, u16 rate_hw_value, u16 sifs)
721 {
722 // COTS wifi ht QoS data duration field analysis (lots of capture):
723 
724 // ht non-aggr QoS data: 44, type 2 (data frame) sub-type 8 (1000) 21.7/52/57.8/58.5/65Mbps
725 // ack     ht 36 + 4*[(22+14*8)/78] = 36 + 4*2 = 44
726 // ack legacy 20 + 4*[(22+14*8)/72] = 20 + 4*2 = 28
727 
728 // ht non-aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 6.5Mbps
729 // ack     ht 36 + 4*[(22+14*8)/26] = 36 + 4*6 = 60
730 // ack legacy 20 + 4*[(22+14*8)/24] = 20 + 4*6 = 44
731 
732 // ht     aggr QoS data: 52, type 2 (data frame) sub-type 8 (1000) 19.5/28.9/39/57.8/65/72.2Mbps
733 // ack     ht 36 + 4*[(22+32*8)/78] = 36 + 4*4 = 52
734 // ack legacy 20 + 4*[(22+32*8)/72] = 20 + 4*4 = 36
735 
736 // ht     aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 13/14.4Mbps
737 // ack     ht 36 + 4*[(22+32*8)/52] = 36 + 4*6 = 60
738 // ack legacy 20 + 4*[(22+32*8)/48] = 20 + 4*6 = 44
739 
740 // ht and legacy rate mapping is ont one on one, instead it is modulation combined with coding rate
741 // modulate  coding  ht-mcs ht-n_dbps legacy-mcs legacy-n_dbps
742 // BPSK      1/2     0      26        4          24
743 // QPSK      1/2     1      52        6          48
744 // QPSK      3/4     2      78        7          72
745 // 16QAM     1/2     3      104       8          96
746 // 16QAM     3/4     4      156       9          144
747 // 64QAM     2/3     5      208       10         192
748 // 64QAM     3/4     6      234       11         216
749 
750 // conclusion: duration is: assume ack/blk-ack uses legacy, plus SIFS
751 
752 // other observation: ht always use QoS data, not data (sub-type)
753 // other observation: management/control frame always in non-ht
754 
755 	__le16 dur = 0;
756 	u16 n_dbps;
757 	int num_octet, num_ofdm_sym;
758 
759 	if (ieee80211_is_pspoll(frame_control)) {
760 		dur = (aid|0xc000);
761 	} else if (ieee80211_is_data_qos(frame_control) && (~(qos_hdr&IEEE80211_QOS_CTL_ACK_POLICY_NOACK))) {
762 		rate_hw_value = (rate_hw_value>6?6:rate_hw_value);
763 		n_dbps = (rate_hw_value==0?wifi_n_dbps_table[4]:wifi_n_dbps_table[rate_hw_value+5]);
764 		num_octet = (use_ht_aggr?32:14); //32 bytes for compressed block ack; 14 bytes for normal ack
765 		num_ofdm_sym = calc_n_ofdm(num_octet, n_dbps);
766 		dur = sifs + 20 + 4*num_ofdm_sym; // 20us legacy preamble
767 		// printk("%s gen_ht_duration_id: num_octet %d n_dbps %d num_ofdm_sym %d dur %d\n", sdr_compatible_str,
768 		// num_octet, n_dbps, num_ofdm_sym, dur);
769 	} else {
770 		printk("%s openwifi_tx: WARNING gen_ht_duration_id wrong pkt type!\n", sdr_compatible_str);
771 	}
772 
773 	return dur;
774 }
775 
776 static void openwifi_tx(struct ieee80211_hw *dev,
777 		       struct ieee80211_tx_control *control,
778 		       struct sk_buff *skb)
779 {
780 	struct openwifi_priv *priv = dev->priv;
781 	unsigned long flags;
782 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
783 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
784 	struct openwifi_ring *ring = NULL;
785 	struct sk_buff *skb_new; // temp skb for internal use
786 	dma_addr_t dma_mapping_addr;
787 	unsigned int i;
788 	u16 rate_signal_value, rate_hw_value, len_mpdu, len_psdu, num_dma_symbol, len_mpdu_delim_pad=0, num_byte_pad;
789 	u32 num_dma_byte, addr1_low32, addr2_low32=0, addr3_low32=0, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history;
790 	u16 addr1_high16, addr2_high16=0, addr3_high16=0, sc, seq_no=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration, n_dbps;
791 	u8 pkt_need_ack, retry_limit_raw,use_short_gi,*dma_buf,retry_limit_hw_value,rc_flags,qos_hdr,prio,queue_idx;
792 	bool drv_seqno=false, use_rts_cts, use_cts_protect, ht_aggr_start=false, use_ht_rate, use_ht_aggr, cts_use_traffic_rate=false, force_use_cts_protect=false;
793 	__le16 frame_control,duration_id;
794 	u32 dma_fifo_no_room_flag, hw_queue_len, delay_count=0;
795 	enum dma_status status;
796 
797 	static u32 addr1_low32_prev = -1;
798 	static u16 rate_hw_value_prev = -1;
799 	static u8 pkt_need_ack_prev = -1;
800 	static u16 addr1_high16_prev = -1;
801 	static __le16 duration_id_prev = -1;
802 	static u8 prio_prev = -1;
803 	static u8 retry_limit_raw_prev = -1;
804 	static u8 use_short_gi_prev = -1;
805 
806 	// static bool led_status=0;
807 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
808 
809 	// if ( (priv->phy_tx_sn&7) ==0 ) {
810 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
811 	// 	if (openofdm_state_history!=openofdm_state_history_old){
812 	// 		led_status = (~led_status);
813 	// 		openofdm_state_history_old = openofdm_state_history;
814 	// 		gpiod_set_value(led_dat->gpiod, led_status);
815 	// 	}
816 	// }
817 
818 	if (skb->data_len>0) {// more data are not in linear data area skb->data
819 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
820 		goto openwifi_tx_early_out;
821 	}
822 
823 	len_mpdu = skb->len;
824 
825 	// get Linux priority/queue setting info and target mac address
826 	prio = skb_get_queue_mapping(skb);
827 	if (prio >= MAX_NUM_HW_QUEUE) {
828 		printk("%s openwifi_tx: WARNING prio%d\n", sdr_compatible_str, prio);
829 		goto openwifi_tx_early_out;
830 	}
831 
832 	addr1_low32  = *((u32*)(hdr->addr1+2));
833 	ring = &(priv->tx_ring[prio]);
834 
835 	// -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" -----------
836 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
837 		queue_idx = prio;
838 	} else {// customized prio to queue_idx mapping
839 		//if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only
840 		// check current packet belonging to which slice/hw-queue
841 			for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
842 				if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
843 					break;
844 				}
845 			}
846 		//}
847 		queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest.
848 	}
849 	// -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------
850 	// get other info from packet header
851 	addr1_high16 = *((u16*)(hdr->addr1));
852 	if (len_mpdu>=20) {
853 		addr2_low32  = *((u32*)(hdr->addr2+2));
854 		addr2_high16 = *((u16*)(hdr->addr2));
855 	}
856 	if (len_mpdu>=26) {
857 		addr3_low32  = *((u32*)(hdr->addr3+2));
858 		addr3_high16 = *((u16*)(hdr->addr3));
859 	}
860 
861 	frame_control=hdr->frame_control;
862 	pkt_need_ack = (!(info->flags&IEEE80211_TX_CTL_NO_ACK));
863 
864 	retry_limit_raw = info->control.rates[0].count;
865 
866 	rc_flags = info->control.rates[0].flags;
867 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
868 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
869 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
870 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
871 	use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0);
872 	qos_hdr = (*(ieee80211_get_qos_ctl(hdr)));
873 
874 	// get Linux rate (MCS) setting
875 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
876 	// drv_tx_reg_val[DRV_TX_REG_IDX_RATE]
877 	// override rate legacy: 4:6M,   5:9M,  6:12M,  7:18M, 8:24M, 9:36M, 10:48M,   11:54M
878 	// drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]
879 	// override rate     ht: 4:6.5M, 5:13M, 6:19.5M,7:26M, 8:39M, 9:52M, 10:58.5M, 11:65M
880 	if ( ieee80211_is_data(hdr->frame_control) ) {//rate override command
881 		if (use_ht_rate && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]>0) {
882 			rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0xF)-4;
883 			use_short_gi  = ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0x10)==0x10);
884 		} else if ((!use_ht_rate) && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0)
885 			rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]&0xF);
886 		// TODO: need to map rate_hw_value back to info->control.rates[0].idx!!!
887 	}
888 
889 	// Workaround for a FPGA bug: if aggr happens on ht mcs 0, the tx core will never end, running eneless and stuck the low MAC!
890 	if (use_ht_aggr && rate_hw_value==0)
891 		rate_hw_value = 1;
892 
893 	sifs = (priv->actual_rx_lo<2500?10:16);
894 
895 	if (use_ht_rate) {
896 		// printk("%s openwifi_tx: rate_hw_value %d aggr %d sifs %d\n", sdr_compatible_str, rate_hw_value, use_ht_aggr, sifs);
897 		hdr->duration_id = gen_ht_duration_id(frame_control, control->sta->aid, qos_hdr, use_ht_aggr, rate_hw_value, sifs); //linux only do it for 11a/g, not for 11n and later
898 	}
899 	duration_id = hdr->duration_id;
900 
901 	if (use_rts_cts)
902 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
903 
904 	if (use_cts_protect) {
905 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
906 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info));
907 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
908 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
909 		if (pkt_need_ack)
910 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
911 
912 		n_dbps = (use_ht_rate?wifi_n_dbps_ht_table[rate_hw_value+4]:wifi_n_dbps_table[rate_hw_value]);
913 		traffic_pkt_duration = (use_ht_rate?36:20) + 4*calc_n_ofdm(len_mpdu, n_dbps);
914 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
915 	}
916 
917 // this is 11b stuff
918 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
919 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
920 
921 	if (len_mpdu>=28) {
922 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
923 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
924 				priv->seqno += 0x10;
925 				drv_seqno = true;
926 			}
927 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
928 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
929 		}
930 		sc = hdr->seq_ctrl;
931 		seq_no = (sc&IEEE80211_SCTL_SEQ)>>4;
932 	}
933 
934 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
935 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
936 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
937 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
938 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
939 
940 	// -----------end of preprocess some info from header and skb----------------
941 
942 	// /* HW will perform RTS-CTS when only RTS flags is set.
943 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
944 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
945 	//  */
946 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
947 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
948 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
949 	// 					len_mpdu, info);
950 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
951 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
952 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
953 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
954 	// 					len_mpdu, info);
955 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
956 	// }
957 
958 	if(use_ht_aggr)
959 	{
960 		if(ieee80211_is_data_qos(frame_control) == false)
961 		{
962 			printk("%s openwifi_tx: WARNING packet is not QoS packet!\n", sdr_compatible_str);
963 			goto openwifi_tx_early_out;
964 		}
965 
966 		// psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ]
967 		len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4);
968 		len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad;
969 
970 		if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) ||
971 			(rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) ||
972 			(prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) )
973 		{
974 			addr1_low32_prev = addr1_low32;
975 			addr1_high16_prev = addr1_high16;
976 			duration_id_prev = duration_id;
977 			rate_hw_value_prev = rate_hw_value;
978 			use_short_gi_prev = use_short_gi;
979 			prio_prev = prio;
980 			retry_limit_raw_prev = retry_limit_raw;
981 			pkt_need_ack_prev = pkt_need_ack;
982 
983 			ht_aggr_start = true;
984 		}
985 	}
986 	else
987 	{
988 		// psdu = [ MPDU ]
989 		len_psdu = len_mpdu;
990 
991 		// // Don't need to reset _prev variables every time when it is not ht aggr qos data. Reason:
992 		// // 1. In 99.9999% cases, the ht always use qos data and goes to prio/queue_idx 2. By not resetting the variable to -1, we can have continuous aggregation packet operation in FPGA queue 2.
993 		// // 2. In other words, the aggregation operation for queue 2 in FPGA won't be interrupted by other non aggregation packets (control/management/beacon/etc.) that go to queue 0 (or other queues than 2).
994 		// // 3. From wired domain and upper level ( DSCP, AC (0~3), WMM management, 802.11D service classes and user priority (UP) ) to chip/FPGA queue index, thre should be some (complicated) mapping relationship.
995 		// // 4. More decent design is setting these aggregation flags (ht_aggr_start) per queue/prio here in driver. But since now only queue 2 and 0 are used (data goes to queue 2, others go to queue 0) in normal (most) cases, let's not go to the decent (complicated) solution immediately.
996 		// addr1_low32_prev = -1;
997 		// addr1_high16_prev = -1;
998 		// duration_id_prev = -1;
999 		// use_short_gi_prev = -1;
1000 		// rate_hw_value_prev = -1;
1001 		// prio_prev = -1;
1002 		// retry_limit_raw_prev = -1;
1003 		// pkt_need_ack_prev = -1;
1004 	}
1005 	num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
1006 
1007 	if ( ( (!pkt_need_ack)||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) )
1008 		printk("%s openwifi_tx: %4dbytes ht%d aggr%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
1009 			len_mpdu, (use_ht_rate == false ? 0 : 1), (use_ht_aggr == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
1010 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
1011 			seq_no, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx,
1012 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
1013 			ring->bd_wr_idx,ring->bd_rd_idx);
1014 
1015 	// check whether the packet is bigger than DMA buffer size
1016 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
1017 	if (num_dma_byte > TX_BD_BUF_SIZE) {
1018 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
1019 		goto openwifi_tx_early_out;
1020 	}
1021 
1022 	// Copy MPDU delimiter and padding into sk_buff
1023 	if(use_ht_aggr)
1024 	{
1025 		// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
1026 		if (skb_headroom(skb)<LEN_MPDU_DELIM) {// in case original skb headroom is not enough to host MPDU delimiter
1027 			printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_headroom(skb) %d < LEN_MPDU_DELIM %d\n", sdr_compatible_str, ring->bd_wr_idx, skb_headroom(skb), LEN_MPDU_DELIM);
1028 			if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) {
1029 				printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1030 				goto openwifi_tx_early_out;
1031 			}
1032 			if (skb->sk != NULL)
1033 				skb_set_owner_w(skb_new, skb->sk);
1034 			dev_kfree_skb(skb);
1035 			skb = skb_new;
1036 		}
1037 		skb_push( skb, LEN_MPDU_DELIM );
1038 		dma_buf = skb->data;
1039 
1040 		// fill in MPDU delimiter
1041 		*((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0;
1042 		*((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf));
1043 		*((u8 *)(dma_buf+3)) = 0x4e;
1044 
1045 		// Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter
1046 		num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu);
1047 		if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad
1048 			printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad);
1049 			if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) {
1050 				printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1051 				goto openwifi_tx_early_out;
1052 			}
1053 			if (skb->sk != NULL)
1054 				skb_set_owner_w(skb_new, skb->sk);
1055 			dev_kfree_skb(skb);
1056 			skb = skb_new;
1057 		}
1058 		skb_put( skb, num_byte_pad );
1059 
1060 		// fill in MPDU CRC
1061 		*((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu);
1062 
1063 		// fill in MPDU delimiter padding
1064 		memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad);
1065 
1066 		// num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary.
1067 		// If they have different lengths, add "empty MPDU delimiter" for alignment
1068 		if(num_dma_byte == len_psdu + 4)
1069 		{
1070 			*((u32*)(dma_buf+len_psdu)) = 0x4e140000;
1071 			len_psdu = num_dma_byte;
1072 		}
1073 	}
1074 	else
1075 	{
1076 		// Extend sk_buff to hold padding
1077 		num_byte_pad = num_dma_byte - len_mpdu;
1078 		if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad
1079 			printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad);
1080 			if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) {
1081 				printk("%s openwifi_tx: WARNING sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1082 				goto openwifi_tx_early_out;
1083 			}
1084 			if (skb->sk != NULL)
1085 				skb_set_owner_w(skb_new, skb->sk);
1086 			dev_kfree_skb(skb);
1087 			skb = skb_new;
1088 		}
1089 		skb_put( skb, num_byte_pad );
1090 
1091 		dma_buf = skb->data;
1092 	}
1093 //	for(i = 0; i <= num_dma_symbol; i++)
1094 //		printk("%16llx\n", (*(u64*)(&(dma_buf[i*8]))));
1095 
1096 	rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]);
1097 
1098 	retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) );
1099 
1100 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
1101 	cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value);
1102 	tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | num_dma_symbol );
1103 	phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu );
1104 
1105 	/* We must be sure that tx_flags is written last because the HW
1106 	 * looks at it to check if the rest of data is valid or not
1107 	 */
1108 	//wmb();
1109 	// entry->flags = cpu_to_le32(tx_flags);
1110 	/* We must be sure this has been written before following HW
1111 	 * register write, because this write will make the HW attempts
1112 	 * to DMA the just-written data
1113 	 */
1114 	//wmb();
1115 
1116 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
1117 
1118 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
1119 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
1120 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
1121 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD)  || ring->stop_flag==1 ) {
1122 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
1123 		printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str,
1124 		prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
1125 		ring->stop_flag = 1;
1126 		goto openwifi_tx_early_out_after_lock;
1127 	}
1128 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
1129 
1130 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
1131 	while(delay_count<100 && status!=DMA_COMPLETE) {
1132 		status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
1133 		delay_count++;
1134 		udelay(4);
1135 		// udelay(priv->stat.dbg_ch1);
1136 	}
1137 	if (status!=DMA_COMPLETE) {
1138 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
1139 		goto openwifi_tx_early_out_after_lock;
1140 	}
1141 
1142 //-------------------------fire skb DMA to hardware----------------------------------
1143 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
1144 				 num_dma_byte, DMA_MEM_TO_DEV);
1145 
1146 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
1147 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
1148 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
1149 		goto openwifi_tx_early_out_after_lock;
1150 	}
1151 
1152 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
1153 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
1154 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
1155 
1156 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
1157 	tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config);
1158 	tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config);
1159 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
1160 	if (!(priv->txd)) {
1161 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
1162 		goto openwifi_tx_after_dma_mapping;
1163 	}
1164 
1165 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
1166 
1167 	if (dma_submit_error(priv->tx_cookie)) {
1168 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
1169 		goto openwifi_tx_after_dma_mapping;
1170 	}
1171 
1172 	// seems everything is ok. let's mark this pkt in bd descriptor ring
1173 	ring->bds[ring->bd_wr_idx].seq_no = seq_no;
1174 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
1175 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
1176 
1177 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
1178 
1179 	dma_async_issue_pending(priv->tx_chan);
1180 
1181 	spin_unlock_irqrestore(&priv->lock, flags);
1182 
1183 	return;
1184 
1185 openwifi_tx_after_dma_mapping:
1186 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
1187 
1188 openwifi_tx_early_out_after_lock:
1189 	dev_kfree_skb(skb);
1190 	spin_unlock_irqrestore(&priv->lock, flags);
1191 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1192 	return;
1193 
1194 openwifi_tx_early_out:
1195 	//dev_kfree_skb(skb);
1196 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1197 }
1198 
1199 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant)
1200 {
1201 	struct openwifi_priv *priv = dev->priv;
1202 	u8 fpga_tx_ant_setting, target_rx_ant;
1203 	u32 atten_mdb_tx0, atten_mdb_tx1;
1204 	struct ctrl_outs_control ctrl_out;
1205 	int ret;
1206 
1207 	printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant);
1208 
1209 	if (tx_ant >= 4 || tx_ant == 0) {
1210 		return -EINVAL;
1211 	} else if (rx_ant >= 3 || rx_ant == 0) {
1212 		return -EINVAL;
1213 	}
1214 
1215 	fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16));
1216 	target_rx_ant = ((rx_ant&1)?0:1);
1217 
1218 	// try rf chip setting firstly, only update internal state variable when rf chip succeed
1219 	atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1220 	atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1221 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true);
1222 	if (ret < 0) {
1223 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0);
1224 		return -EINVAL;
1225 	} else {
1226 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0);
1227 	}
1228 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true);
1229 	if (ret < 0) {
1230 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1);
1231 		return -EINVAL;
1232 	} else {
1233 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1);
1234 	}
1235 
1236 	ctrl_out.en_mask = priv->ctrl_out.en_mask;
1237 	ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
1238 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out));
1239 	if (ret < 0) {
1240 		printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1241 		return -EINVAL;
1242 	} else {
1243 		printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1244 	}
1245 
1246 	tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting);
1247 	ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read();
1248 	if (ret != fpga_tx_ant_setting) {
1249 		printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret);
1250 		return -EINVAL;
1251 	} else {
1252 		printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1253 	}
1254 
1255 	rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant);
1256 	ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read();
1257 	if (ret != target_rx_ant) {
1258 		printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret);
1259 		return -EINVAL;
1260 	} else {
1261 		printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1262 	}
1263 
1264 	// update internal state variable
1265 	priv->runtime_tx_ant_cfg = tx_ant;
1266 	priv->runtime_rx_ant_cfg = rx_ant;
1267 
1268 	if (TX_OFFSET_TUNING_ENABLE)
1269 		priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE
1270 	else {
1271 		if (tx_ant == 3)
1272 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH;
1273 		else
1274 			priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1275 	}
1276 
1277 	priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1278 	priv->ctrl_out.index=ctrl_out.index;
1279 
1280 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1281 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1282 
1283 	return 0;
1284 }
1285 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant)
1286 {
1287 	struct openwifi_priv *priv = dev->priv;
1288 
1289 	*tx_ant = priv->runtime_tx_ant_cfg;
1290 	*rx_ant = priv->runtime_rx_ant_cfg;
1291 
1292 	printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant);
1293 
1294 	printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str,
1295 	priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index);
1296 
1297 	printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str,
1298 	tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read());
1299 
1300 	printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str,
1301 	ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER));
1302 
1303 	return 0;
1304 }
1305 
1306 static int openwifi_start(struct ieee80211_hw *dev)
1307 {
1308 	struct openwifi_priv *priv = dev->priv;
1309 	int ret, i;
1310 	u32 reg;
1311 
1312 	for (i=0; i<MAX_NUM_VIF; i++) {
1313 		priv->vif[i] = NULL;
1314 	}
1315 
1316 	// //keep software registers persistent between NIC down and up for multiple times
1317 	/*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
1318 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
1319 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
1320 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
1321 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/
1322 
1323 	//turn on radio
1324 	openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
1325 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
1326 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
1327 		priv->rfkill_off = 1;// 0 off, 1 on
1328 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
1329 	}
1330 	else
1331 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
1332 
1333 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1334 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1335 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1336 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1337 	xpu_api->hw_init(priv->xpu_cfg);
1338 
1339 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1340 
1341 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1342 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1343 
1344 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1345 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1346 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1347 
1348 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1349 	if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) {
1350 		ret = PTR_ERR(priv->rx_chan);
1351 		pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan);
1352 		goto err_dma;
1353 	}
1354 
1355 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1356 	if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) {
1357 		ret = PTR_ERR(priv->tx_chan);
1358 		pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan);
1359 		goto err_dma;
1360 	}
1361 	printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan);
1362 
1363 	ret = openwifi_init_rx_ring(priv);
1364 	if (ret) {
1365 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1366 		goto err_free_rings;
1367 	}
1368 
1369 	priv->seqno=0;
1370 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1371 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1372 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1373 			goto err_free_rings;
1374 		}
1375 	}
1376 
1377 	if ( (ret = rx_dma_setup(dev)) ) {
1378 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1379 		goto err_free_rings;
1380 	}
1381 
1382 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1383 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1384 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1385 	if (ret) {
1386 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1387 		goto err_free_rings;
1388 	} else {
1389 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1390 	}
1391 
1392 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1393 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1394 			IRQF_SHARED, "sdr,tx_itrpt", dev);
1395 	if (ret) {
1396 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1397 		goto err_free_rings;
1398 	} else {
1399 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1400 	}
1401 
1402 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1403 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1404 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1405 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1406 
1407 	// disable ad9361 auto calibration and enable openwifi fpga spi control
1408 	priv->ad9361_phy->state->auto_cal_en = false;   // turn off auto Tx quadrature calib.
1409 	priv->ad9361_phy->state->manual_tx_quad_cal_en = true;  // turn on manual Tx quadrature calib.
1410 	xpu_api->XPU_REG_SPI_DISABLE_write(0);
1411 
1412 // normal_out:
1413 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1414 	return 0;
1415 
1416 err_free_rings:
1417 	openwifi_free_rx_ring(priv);
1418 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1419 		openwifi_free_tx_ring(priv, i);
1420 
1421 err_dma:
1422 	ret = -1;
1423 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1424 	return ret;
1425 }
1426 
1427 static void openwifi_stop(struct ieee80211_hw *dev)
1428 {
1429 	struct openwifi_priv *priv = dev->priv;
1430 	u32 reg, reg1;
1431 	int i;
1432 
1433 	// enable ad9361 auto calibration and disable openwifi fpga spi control
1434 	priv->ad9361_phy->state->auto_cal_en = true;   // turn on auto Tx quadrature calib.
1435 	priv->ad9361_phy->state->manual_tx_quad_cal_en = false;  // turn off manual Tx quadrature calib.
1436 	xpu_api->XPU_REG_SPI_DISABLE_write(1);
1437 
1438 	//turn off radio
1439 	#if 1
1440 	ad9361_tx_mute(priv->ad9361_phy, 1);
1441 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1442 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1443 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1444 		priv->rfkill_off = 0;// 0 off, 1 on
1445 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1446 	}
1447 	else
1448 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1449 	#endif
1450 
1451 	//ieee80211_stop_queue(dev, 0);
1452 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1453 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1454 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1455 
1456 	for (i=0; i<MAX_NUM_VIF; i++) {
1457 		priv->vif[i] = NULL;
1458 	}
1459 
1460 	openwifi_free_rx_ring(priv);
1461 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1462 		openwifi_free_tx_ring(priv, i);
1463 
1464 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1465 	dmaengine_terminate_all(priv->rx_chan);
1466 	dma_release_channel(priv->rx_chan);
1467 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1468 	dmaengine_terminate_all(priv->tx_chan);
1469 	dma_release_channel(priv->tx_chan);
1470 
1471 	//priv->rf->stop(dev);
1472 
1473 	free_irq(priv->irq_rx, dev);
1474 	free_irq(priv->irq_tx, dev);
1475 
1476 // normal_out:
1477 	printk("%s openwifi_stop\n", sdr_compatible_str);
1478 }
1479 
1480 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1481 			   struct ieee80211_vif *vif)
1482 {
1483 	u32 tsft_low, tsft_high;
1484 
1485 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1486 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1487 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1488 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1489 }
1490 
1491 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1492 {
1493 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1494 	u32 tsft_low  = (tsf&0xffffffff);
1495 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1496 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1497 }
1498 
1499 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1500 {
1501 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1502 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1503 }
1504 
1505 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1506 {
1507 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1508 	return(0);
1509 }
1510 
1511 static void openwifi_beacon_work(struct work_struct *work)
1512 {
1513 	struct openwifi_vif *vif_priv =
1514 		container_of(work, struct openwifi_vif, beacon_work.work);
1515 	struct ieee80211_vif *vif =
1516 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1517 	struct ieee80211_hw *dev = vif_priv->dev;
1518 	struct ieee80211_mgmt *mgmt;
1519 	struct sk_buff *skb;
1520 
1521 	/* don't overflow the tx ring */
1522 	if (ieee80211_queue_stopped(dev, 0))
1523 		goto resched;
1524 
1525 	/* grab a fresh beacon */
1526 	skb = ieee80211_beacon_get(dev, vif);
1527 	if (!skb)
1528 		goto resched;
1529 
1530 	/*
1531 	 * update beacon timestamp w/ TSF value
1532 	 * TODO: make hardware update beacon timestamp
1533 	 */
1534 	mgmt = (struct ieee80211_mgmt *)skb->data;
1535 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1536 
1537 	/* TODO: use actual beacon queue */
1538 	skb_set_queue_mapping(skb, 0);
1539 	openwifi_tx(dev, NULL, skb);
1540 
1541 resched:
1542 	/*
1543 	 * schedule next beacon
1544 	 * TODO: use hardware support for beacon timing
1545 	 */
1546 	schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1547 	// printk("%s openwifi_beacon_work beacon_int %d\n", sdr_compatible_str, vif->bss_conf.beacon_int);
1548 }
1549 
1550 static int openwifi_add_interface(struct ieee80211_hw *dev,
1551 				 struct ieee80211_vif *vif)
1552 {
1553 	int i;
1554 	struct openwifi_priv *priv = dev->priv;
1555 	struct openwifi_vif *vif_priv;
1556 
1557 	switch (vif->type) {
1558 	case NL80211_IFTYPE_AP:
1559 	case NL80211_IFTYPE_STATION:
1560 	case NL80211_IFTYPE_ADHOC:
1561 	case NL80211_IFTYPE_MONITOR:
1562 	case NL80211_IFTYPE_MESH_POINT:
1563 		break;
1564 	default:
1565 		return -EOPNOTSUPP;
1566 	}
1567 	// let's support more than 1 interface
1568 	for (i=0; i<MAX_NUM_VIF; i++) {
1569 		if (priv->vif[i] == NULL)
1570 			break;
1571 	}
1572 
1573 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1574 
1575 	if (i==MAX_NUM_VIF)
1576 		return -EBUSY;
1577 
1578 	priv->vif[i] = vif;
1579 
1580 	/* Initialize driver private area */
1581 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1582 	vif_priv->idx = i;
1583 
1584 	vif_priv->dev = dev;
1585 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1586 	vif_priv->enable_beacon = false;
1587 
1588 	priv->mac_addr[0] = vif->addr[0];
1589 	priv->mac_addr[1] = vif->addr[1];
1590 	priv->mac_addr[2] = vif->addr[2];
1591 	priv->mac_addr[3] = vif->addr[3];
1592 	priv->mac_addr[4] = vif->addr[4];
1593 	priv->mac_addr[5] = vif->addr[5];
1594 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); // set mac addr in fpga
1595 
1596 	printk("%s openwifi_add_interface end with vif idx %d addr %02x:%02x:%02x:%02x:%02x:%02x\n", sdr_compatible_str,vif_priv->idx,
1597 	vif->addr[0],vif->addr[1],vif->addr[2],vif->addr[3],vif->addr[4],vif->addr[5]);
1598 
1599 	return 0;
1600 }
1601 
1602 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1603 				     struct ieee80211_vif *vif)
1604 {
1605 	struct openwifi_vif *vif_priv;
1606 	struct openwifi_priv *priv = dev->priv;
1607 
1608 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1609 	priv->vif[vif_priv->idx] = NULL;
1610 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1611 }
1612 
1613 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1614 {
1615 	struct openwifi_priv *priv = dev->priv;
1616 	struct ieee80211_conf *conf = &dev->conf;
1617 
1618 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
1619 		priv->rf->set_chan(dev, conf);
1620 	else
1621 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1622 
1623 	return 0;
1624 }
1625 
1626 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1627 				     struct ieee80211_vif *vif,
1628 				     struct ieee80211_bss_conf *info,
1629 				     u32 changed)
1630 {
1631 	struct openwifi_priv *priv = dev->priv;
1632 	struct openwifi_vif *vif_priv;
1633 	u32 bssid_low, bssid_high;
1634 
1635 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1636 
1637 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1638 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1639 	if (changed & BSS_CHANGED_BSSID) {
1640 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1641 		// write new bssid to our HW, and do not change bssid filter
1642 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1643 		bssid_low = ( *( (u32*)(info->bssid) ) );
1644 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1645 
1646 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1647 		//bssid_high = (bssid_high|bssid_filter_high);
1648 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1649 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1650 	}
1651 
1652 	if (changed & BSS_CHANGED_BEACON_INT) {
1653 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1654 	}
1655 
1656 	if (changed & BSS_CHANGED_TXPOWER)
1657 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1658 
1659 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1660 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1661 
1662 	if (changed & BSS_CHANGED_BASIC_RATES)
1663 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1664 
1665 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1666 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1667 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1668 		if (info->use_short_slot && priv->use_short_slot==false) {
1669 			priv->use_short_slot=true;
1670 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1671 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1672 			priv->use_short_slot=false;
1673 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1674 		}
1675 	}
1676 
1677 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1678 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1679 		vif_priv->enable_beacon = info->enable_beacon;
1680 	}
1681 
1682 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1683 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1684 		if (vif_priv->enable_beacon) {
1685 			schedule_work(&vif_priv->beacon_work.work);
1686 			printk("%s openwifi_bss_info_changed WARNING enable_beacon\n",sdr_compatible_str);
1687 		}
1688 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1689 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1690 	}
1691 }
1692 // helper function
1693 u32 log2val(u32 val){
1694 	u32 ret_val = 0 ;
1695 	while(val>1){
1696 		val = val >> 1 ;
1697 		ret_val ++ ;
1698 	}
1699 	return ret_val ;
1700 }
1701 
1702 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
1703 	      const struct ieee80211_tx_queue_params *params)
1704 {
1705 	u32 reg_val, cw_min_exp, cw_max_exp;
1706 
1707 	printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
1708 		  sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1709 
1710 	reg_val=xpu_api->XPU_REG_CSMA_CFG_read();
1711 	cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
1712 	cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
1713 	switch(queue){
1714 		case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) );  break;
1715 		case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) );  break;
1716 		case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break;
1717 		case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break;
1718 		default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
1719 	}
1720 	xpu_api->XPU_REG_CSMA_CFG_write(reg_val);
1721 	return(0);
1722 }
1723 
1724 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1725 				     struct netdev_hw_addr_list *mc_list)
1726 {
1727 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1728 	return netdev_hw_addr_list_count(mc_list);
1729 }
1730 
1731 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1732 				     unsigned int changed_flags,
1733 				     unsigned int *total_flags,
1734 				     u64 multicast)
1735 {
1736 	u32 filter_flag;
1737 
1738 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1739 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1740 
1741 	filter_flag = (*total_flags);
1742 
1743 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1744 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1745 
1746 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1747 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1748 		filter_flag = (filter_flag|MONITOR_ALL);
1749 	else
1750 		filter_flag = (filter_flag&(~MONITOR_ALL));
1751 
1752 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1753 		filter_flag = (filter_flag|MY_BEACON);
1754 
1755 	filter_flag = (filter_flag|FIF_PSPOLL);
1756 
1757 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
1758 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
1759 
1760 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
1761 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
1762 }
1763 
1764 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params)
1765 {
1766 	struct ieee80211_sta *sta = params->sta;
1767 	enum ieee80211_ampdu_mlme_action action = params->action;
1768 	// struct openwifi_priv *priv = hw->priv;
1769 	u16 max_tx_bytes, buf_size;
1770 	u32 ampdu_action_config;
1771 
1772 	if (!AGGR_ENABLE) {
1773 		return -EOPNOTSUPP;
1774 	}
1775 
1776 	switch (action)
1777 	{
1778 		case IEEE80211_AMPDU_TX_START:
1779 			ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
1780 			printk("%s openwifi_ampdu_action: start TX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1781 			break;
1782 		case IEEE80211_AMPDU_TX_STOP_CONT:
1783 		case IEEE80211_AMPDU_TX_STOP_FLUSH:
1784 		case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
1785 			ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
1786 			printk("%s openwifi_ampdu_action: stop TX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1787 			break;
1788 		case IEEE80211_AMPDU_TX_OPERATIONAL:
1789 			buf_size = 4;
1790 //			buf_size = (params->buf_size) - 1;
1791 			max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1;
1792 			ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes );
1793 			tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config);
1794 			printk("%s openwifi_ampdu_action: TX operational. tid %d max_tx_bytes %d ampdu_density %d buf_size %d\n",
1795 			sdr_compatible_str, params->tid, max_tx_bytes, sta->ht_cap.ampdu_density, buf_size);
1796 			break;
1797 		case IEEE80211_AMPDU_RX_START:
1798 			printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1799 			break;
1800 		case IEEE80211_AMPDU_RX_STOP:
1801 			printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1802 			break;
1803 		default:
1804 			return -EOPNOTSUPP;
1805 	}
1806 
1807 	return 0;
1808 }
1809 
1810 static const struct ieee80211_ops openwifi_ops = {
1811 	.tx			       = openwifi_tx,
1812 	.start			   = openwifi_start,
1813 	.stop			   = openwifi_stop,
1814 	.add_interface	   = openwifi_add_interface,
1815 	.remove_interface  = openwifi_remove_interface,
1816 	.config			   = openwifi_config,
1817 	.set_antenna       = openwifi_set_antenna,
1818 	.get_antenna       = openwifi_get_antenna,
1819 	.bss_info_changed  = openwifi_bss_info_changed,
1820 	.conf_tx		   = openwifi_conf_tx,
1821 	.prepare_multicast = openwifi_prepare_multicast,
1822 	.configure_filter  = openwifi_configure_filter,
1823 	.rfkill_poll	   = openwifi_rfkill_poll,
1824 	.get_tsf		   = openwifi_get_tsf,
1825 	.set_tsf		   = openwifi_set_tsf,
1826 	.reset_tsf		   = openwifi_reset_tsf,
1827 	.set_rts_threshold = openwifi_set_rts_threshold,
1828 	.ampdu_action      = openwifi_ampdu_action,
1829 	.testmode_cmd	   = openwifi_testmode_cmd,
1830 };
1831 
1832 static const struct of_device_id openwifi_dev_of_ids[] = {
1833 	{ .compatible = "sdr,sdr", },
1834 	{}
1835 };
1836 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
1837 
1838 static int custom_match_spi_dev(struct device *dev, void *data)
1839 {
1840     const char *name = data;
1841 
1842 	bool ret = sysfs_streq(name, dev->of_node->name);
1843 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
1844 	return ret;
1845 }
1846 
1847 static int custom_match_platform_dev(struct device *dev, void *data)
1848 {
1849 	struct platform_device *plat_dev = to_platform_device(dev);
1850 	const char *name = data;
1851 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
1852 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
1853 
1854 	if (match_flag) {
1855 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
1856 	}
1857 	return(match_flag);
1858 }
1859 
1860 static int openwifi_dev_probe(struct platform_device *pdev)
1861 {
1862 	struct ieee80211_hw *dev;
1863 	struct openwifi_priv *priv;
1864 	int err=1, rand_val;
1865 	const char *chip_name, *fpga_model;
1866 	u32 reg, i;//, reg1;
1867 
1868 	struct device_node *np = pdev->dev.of_node;
1869 
1870 	struct device *tmp_dev;
1871 	struct platform_device *tmp_pdev;
1872 	struct iio_dev *tmp_indio_dev;
1873 	// struct gpio_leds_priv *tmp_led_priv;
1874 
1875 	printk("\n");
1876 
1877 	if (np) {
1878 		const struct of_device_id *match;
1879 
1880 		match = of_match_node(openwifi_dev_of_ids, np);
1881 		if (match) {
1882 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
1883 			err = 0;
1884 		}
1885 	}
1886 
1887 	if (err)
1888 		return err;
1889 
1890 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
1891 	if (!dev) {
1892 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
1893 		err = -ENOMEM;
1894 		goto err_free_dev;
1895 	}
1896 
1897 	priv = dev->priv;
1898 	priv->pdev = pdev;
1899 
1900 	err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
1901 	if(err < 0) {
1902 		printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
1903 		priv->fpga_type = SMALL_FPGA;
1904 	} else {
1905 		// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
1906 		if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
1907 			priv->fpga_type = LARGE_FPGA;
1908 		// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
1909 		else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
1910 			priv->fpga_type = SMALL_FPGA;
1911 	}
1912 
1913 	// //-------------find ad9361-phy driver for lo/channel control---------------
1914 	priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
1915 	priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
1916 	priv->last_tx_quad_cal_lo = 1000;
1917 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
1918 	if (tmp_dev == NULL) {
1919 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
1920 		err = -ENODEV;
1921 		goto err_free_dev;
1922 	}
1923 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
1924 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
1925 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
1926 		err = -ENODEV;
1927 		goto err_free_dev;
1928 	}
1929 
1930 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
1931 	if (!(priv->ad9361_phy)) {
1932 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
1933 		err = -ENODEV;
1934 		goto err_free_dev;
1935 	}
1936 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
1937 
1938 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
1939 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
1940 	if (!tmp_dev) {
1941 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
1942 		err = -ENODEV;
1943 		goto err_free_dev;
1944 	}
1945 
1946 	tmp_pdev = to_platform_device(tmp_dev);
1947 	if (!tmp_pdev) {
1948 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
1949 		err = -ENODEV;
1950 		goto err_free_dev;
1951 	}
1952 
1953 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
1954 	if (!tmp_indio_dev) {
1955 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
1956 		err = -ENODEV;
1957 		goto err_free_dev;
1958 	}
1959 
1960 	priv->dds_st = iio_priv(tmp_indio_dev);
1961 	if (!(priv->dds_st)) {
1962 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
1963 		err = -ENODEV;
1964 		goto err_free_dev;
1965 	}
1966 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
1967 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
1968 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
1969 
1970 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
1971 	// turn off radio by muting tx
1972 	// ad9361_tx_mute(priv->ad9361_phy, 1);
1973 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1974 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1975 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1976 	// 	priv->rfkill_off = 0;// 0 off, 1 on
1977 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
1978 	// }
1979 	// else
1980 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1981 
1982 	// //-----------------------------parse the test_mode input--------------------------------
1983 	if (test_mode&1)
1984 		AGGR_ENABLE = true;
1985 
1986 	// if (test_mode&2)
1987 	// 	TX_OFFSET_TUNING_ENABLE = false;
1988 
1989 	priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel()
1990 	priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized
1991 
1992 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1993 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1994 
1995 	priv->xpu_cfg = XPU_NORMAL;
1996 
1997 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
1998 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
1999 
2000 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
2001 	if (priv->rf_bw == 20000000) { //DO NOT USE. Not used for long time.
2002 		priv->rx_intf_cfg = RX_INTF_BYPASS;
2003 		priv->tx_intf_cfg = TX_INTF_BYPASS;
2004 		//priv->rx_freq_offset_to_lo_MHz = 0;
2005 		//priv->tx_freq_offset_to_lo_MHz = 0;
2006 	} else if (priv->rf_bw == 40000000) {
2007 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
2008 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
2009 
2010 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
2011 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2012 		if (TX_OFFSET_TUNING_ENABLE)
2013 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
2014 		else
2015 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2016 		// // try another antenna option
2017 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
2018 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
2019 
2020 		#if 0
2021 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
2022 			priv->rx_freq_offset_to_lo_MHz = -10;
2023 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
2024 			priv->rx_freq_offset_to_lo_MHz = 10;
2025 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
2026 			priv->rx_freq_offset_to_lo_MHz = 0;
2027 		} else {
2028 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
2029 		}
2030 		#endif
2031 	} else {
2032 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
2033 		err = -EBADRQC;
2034 		goto err_free_dev;
2035 	}
2036 
2037 	printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att);
2038 
2039 	priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2));
2040 	priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2);
2041 
2042 	priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK;
2043 	priv->ctrl_out.index  =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
2044 
2045 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
2046 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
2047 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
2048 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
2049 
2050 	priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att;
2051 
2052 	//let's by default turn radio on when probing
2053 	err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
2054 	if (err) {
2055 		printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err);
2056 		err = -EIO;
2057 		goto err_free_dev;
2058 	}
2059 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
2060 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
2061 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
2062 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
2063 
2064 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
2065 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
2066 		priv->rfkill_off = 1;// 0 off, 1 on
2067 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
2068 	} else
2069 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
2070 
2071 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
2072 
2073 	// //set ad9361 in certain mode
2074 	#if 0
2075 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
2076 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2077 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
2078 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2079 
2080 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
2081 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
2082 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
2083 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
2084 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
2085 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
2086 	#endif
2087 
2088 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
2089 
2090 	SET_IEEE80211_DEV(dev, &pdev->dev);
2091 	platform_set_drvdata(pdev, dev);
2092 
2093 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
2094 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
2095 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
2096 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
2097 
2098 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
2099 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
2100 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
2101 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
2102 
2103 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
2104 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
2105 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
2106 	priv->ampdu_reference = 0;
2107 
2108 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
2109 	priv->band_2GHz.channels = priv->channels_2GHz;
2110 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
2111 	priv->band_2GHz.bitrates = priv->rates_2GHz;
2112 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
2113 	priv->band_2GHz.ht_cap.ht_supported = true;
2114 	// priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
2115 	if (AGGR_ENABLE) {
2116 		priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2117 		priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2118 	}
2119 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
2120 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2121 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2122 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
2123 
2124 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
2125 	priv->band_5GHz.channels = priv->channels_5GHz;
2126 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
2127 	priv->band_5GHz.bitrates = priv->rates_5GHz;
2128 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
2129 	priv->band_5GHz.ht_cap.ht_supported = true;
2130 	// priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
2131 	if (AGGR_ENABLE) {
2132 		priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2133 		priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2134 	}
2135 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
2136 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2137 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2138 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2139 
2140 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2141 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2142 
2143 	// ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); // remove this because we don't want: mac80211.h: host buffers frame for PS and we fetch them via ieee80211_get_buffered_bc()
2144 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2145 	ieee80211_hw_set(dev, BEACON_TX_STATUS);//mac80211.h: The device/driver provides TX status for sent beacons.
2146 
2147 	ieee80211_hw_set(dev, REPORTS_TX_ACK_STATUS);//mac80211.h: Hardware can provide ack status reports of Tx frames to the stack
2148 
2149 	// * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device
2150 	// *	autonomously manages the PS status of connected stations. When
2151 	// *	this flag is set mac80211 will not trigger PS mode for connected
2152 	// *	stations based on the PM bit of incoming frames.
2153 	// *	Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure
2154 	// *	the PS mode of connected stations.
2155 	ieee80211_hw_set(dev, AP_LINK_PS);
2156 
2157 	if (AGGR_ENABLE) {
2158 		ieee80211_hw_set(dev, AMPDU_AGGREGATION);
2159 	}
2160 
2161 	dev->extra_tx_headroom = LEN_MPDU_DELIM;
2162 
2163 	dev->vif_data_size = sizeof(struct openwifi_vif);
2164 	dev->wiphy->interface_modes =
2165 			BIT(NL80211_IFTYPE_MONITOR)|
2166 			BIT(NL80211_IFTYPE_P2P_GO) |
2167 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
2168 			BIT(NL80211_IFTYPE_AP) |
2169 			BIT(NL80211_IFTYPE_STATION) |
2170 			BIT(NL80211_IFTYPE_ADHOC) |
2171 			BIT(NL80211_IFTYPE_MESH_POINT) |
2172 			BIT(NL80211_IFTYPE_OCB);
2173 	dev->wiphy->iface_combinations = &openwifi_if_comb;
2174 	dev->wiphy->n_iface_combinations = 1;
2175 
2176 	dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK;
2177 	dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK;
2178 
2179 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2180 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2181 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2182 
2183 	chip_name = "ZYNQ";
2184 
2185 	/* we declare to MAC80211 all the queues except for beacon queue
2186 	 * that will be eventually handled by DRV.
2187 	 * TX rings are arranged in such a way that lower is the IDX,
2188 	 * higher is the priority, in order to achieve direct mapping
2189 	 * with mac80211, however the beacon queue is an exception and it
2190 	 * is mapped on the highst tx ring IDX.
2191 	 */
2192 	dev->queues = MAX_NUM_HW_QUEUE;
2193 	//dev->queues = 1;
2194 
2195 	ieee80211_hw_set(dev, SIGNAL_DBM);
2196 
2197 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2198 
2199 	priv->rf = &ad9361_rf_ops;
2200 
2201 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2202 	priv->slice_idx = 0xFFFFFFFF;
2203 
2204 	sg_init_table(&(priv->tx_sg), 1);
2205 
2206 	get_random_bytes(&rand_val, sizeof(rand_val));
2207     rand_val%=250;
2208 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
2209 	priv->mac_addr[5]=rand_val+1;
2210 	//priv->mac_addr[5]=0x11;
2211 	if (!is_valid_ether_addr(priv->mac_addr)) {
2212 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2213 		eth_random_addr(priv->mac_addr);
2214 	}
2215 	printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2216 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2217 
2218 	spin_lock_init(&priv->lock);
2219 
2220 	err = ieee80211_register_hw(dev);
2221 	if (err) {
2222 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2223 		err = -EIO;
2224 		goto err_free_dev;
2225 	} else {
2226 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2227 	}
2228 
2229 	// // //--------------------hook leds (not complete yet)--------------------------------
2230 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
2231 	// if (!tmp_dev) {
2232 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2233 	// 	err = -ENOMEM;
2234 	// 	goto err_free_dev;
2235 	// }
2236 
2237 	// tmp_pdev = to_platform_device(tmp_dev);
2238 	// if (!tmp_pdev) {
2239 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2240 	// 	err = -ENOMEM;
2241 	// 	goto err_free_dev;
2242 	// }
2243 
2244 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2245 	// if (!tmp_led_priv) {
2246 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2247 	// 	err = -ENOMEM;
2248 	// 	goto err_free_dev;
2249 	// }
2250 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2251 	// if (tmp_led_priv->num_leds!=4){
2252 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2253 	// 	err = -ENOMEM;
2254 	// 	goto err_free_dev;
2255 	// }
2256 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2257 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2258 	// priv->num_led = tmp_led_priv->num_leds;
2259 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2260 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2261 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2262 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2263 
2264 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2265 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2266 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2267 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2268 
2269 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2270 		   priv->mac_addr, chip_name, priv->rf->name);
2271 
2272 	openwifi_rfkill_init(dev);
2273 	return 0;
2274 
2275  err_free_dev:
2276 	ieee80211_free_hw(dev);
2277 
2278 	return err;
2279 }
2280 
2281 static int openwifi_dev_remove(struct platform_device *pdev)
2282 {
2283 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2284 
2285 	if (!dev) {
2286 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2287 		return(-1);
2288 	}
2289 
2290 	openwifi_rfkill_exit(dev);
2291 	ieee80211_unregister_hw(dev);
2292 	ieee80211_free_hw(dev);
2293 	return(0);
2294 }
2295 
2296 static struct platform_driver openwifi_dev_driver = {
2297 	.driver = {
2298 		.name = "sdr,sdr",
2299 		.owner = THIS_MODULE,
2300 		.of_match_table = openwifi_dev_of_ids,
2301 	},
2302 	.probe = openwifi_dev_probe,
2303 	.remove = openwifi_dev_remove,
2304 };
2305 
2306 module_platform_driver(openwifi_dev_driver);
2307