xref: /openwifi/driver/sdr.c (revision 8b7c849019f7f3d4aca28e15e9faedb333130a36)
1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos
2 // SPDX-FileCopyrightText: 2022 UGent
3 // SPDX-License-Identifier: AGPL-3.0-or-later
4 
5 #include <linux/bitops.h>
6 #include <linux/dmapool.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/of_address.h>
10 #include <linux/of_platform.h>
11 #include <linux/of_irq.h>
12 #include <linux/slab.h>
13 #include <linux/clk.h>
14 #include <linux/io-64-nonatomic-lo-hi.h>
15 
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 
24 #include <linux/init.h>
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/of_dma.h>
28 #include <linux/platform_device.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/wait.h>
32 #include <linux/sched/task.h>
33 #include <linux/dma/xilinx_dma.h>
34 #include <linux/spi/spi.h>
35 #include <net/mac80211.h>
36 
37 #include <linux/clk.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk-provider.h>
40 
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43 
44 #include <linux/gpio.h>
45 #include <linux/leds.h>
46 
47 #define IIO_AD9361_USE_PRIVATE_H_
48 #include <../../drivers/iio/adc/ad9361_regs.h>
49 #include <../../drivers/iio/adc/ad9361.h>
50 #include <../../drivers/iio/adc/ad9361_private.h>
51 
52 #include <../../drivers/iio/frequency/cf_axi_dds.h>
53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num);
54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb,
55 			       bool tx1, bool tx2, bool immed);
56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy,
57 				  struct ctrl_outs_control *ctrl);
58 extern int ad9361_do_calib_run(struct ad9361_rf_phy *phy, u32 cal, int arg);
59 
60 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
61 #include "hw_def.h"
62 #include "sdr.h"
63 #include "git_rev.h"
64 
65 // driver API of component driver
66 extern struct tx_intf_driver_api *tx_intf_api;
67 extern struct rx_intf_driver_api *rx_intf_api;
68 extern struct openofdm_tx_driver_api *openofdm_tx_api;
69 extern struct openofdm_rx_driver_api *openofdm_rx_api;
70 extern struct xpu_driver_api *xpu_api;
71 
72 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes);
73 u8 gen_mpdu_delim_crc(u16 m);
74 u32 reverse32(u32 d);
75 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant);
76 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant);
77 int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction);
78 int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction);
79 int rssi_correction_lookup_table(u32 freq_MHz);
80 
81 #include "sdrctl_intf.c"
82 #include "sysfs_intf.c"
83 
84 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1)
85 // Internal indication variables after parsing test_mode
86 static bool AGGR_ENABLE = false;
87 static bool TX_OFFSET_TUNING_ENABLE = false;
88 
89 static int init_tx_att = 0;
90 
91 MODULE_AUTHOR("Xianjun Jiao");
92 MODULE_DESCRIPTION("SDR driver");
93 MODULE_LICENSE("GPL v2");
94 
95 module_param(test_mode, int, 0);
96 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)");
97 
98 module_param(init_tx_att, int, 0);
99 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000	example: set to 3000 for 3dB attenuation");
100 
101 // ---------------rfkill---------------------------------------
102 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
103 {
104 	int reg;
105 
106 	if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH)
107 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
108 	else
109 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
110 
111 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]))
112 		return true;// 0 off, 1 on
113 	return false;
114 }
115 
116 void openwifi_rfkill_init(struct ieee80211_hw *hw)
117 {
118 	struct openwifi_priv *priv = hw->priv;
119 
120 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
121 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
122 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
123 	wiphy_rfkill_start_polling(hw->wiphy);
124 }
125 
126 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
127 {
128 	bool enabled;
129 	struct openwifi_priv *priv = hw->priv;
130 
131 	enabled = openwifi_is_radio_enabled(priv);
132 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
133 	if (unlikely(enabled != priv->rfkill_off)) {
134 		priv->rfkill_off = enabled;
135 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
136 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
137 	}
138 }
139 
140 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
141 {
142 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
143 	wiphy_rfkill_stop_polling(hw->wiphy);
144 }
145 //----------------rfkill end-----------------------------------
146 
147 inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction)
148 {
149 	return ((rssi_correction+rssi_dbm)<<1);
150 }
151 
152 inline int rssi_correction_lookup_table(u32 freq_MHz)
153 {
154 	int rssi_correction;
155 
156 	if (freq_MHz<2412) {
157 		rssi_correction = 153;
158 	} else if (freq_MHz<=2484) {
159 		rssi_correction = 153;
160 	} else if (freq_MHz<5160) {
161 		rssi_correction = 153;
162 	} else if (freq_MHz<=5240) {
163 		rssi_correction = 145;
164 	} else if (freq_MHz<=5320) {
165 		rssi_correction = 148;
166 	} else {
167 		rssi_correction = 148;
168 	}
169 
170 	return rssi_correction;
171 }
172 
173 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
174 				  struct ieee80211_conf *conf)
175 {
176 	struct openwifi_priv *priv = dev->priv;
177 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz;
178 	u32 actual_tx_lo;
179 	u32 spi_disable;
180 	u32 diff_tx_lo;
181 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
182 	int static_lbt_th, auto_lbt_th, fpga_lbt_th, receiver_rssi_dbm_th;
183 	struct timeval tv;
184 	unsigned long time_before = 0;
185 	unsigned long time_after = 0;
186 
187 	if (change_flag) {
188 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
189 		diff_tx_lo = priv->last_tx_quad_cal_lo > actual_tx_lo ? priv->last_tx_quad_cal_lo - actual_tx_lo : actual_tx_lo - priv->last_tx_quad_cal_lo;
190 
191 		// -------------------Tx Lo tuning-------------------
192 		clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_tx_lo ) + priv->rf_reg_val[RF_TX_REG_IDX_FO] )>>1) );
193 		priv->actual_tx_lo = actual_tx_lo;
194 
195 		// -------------------Rx Lo tuning-------------------
196 		clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_rx_lo ) + priv->rf_reg_val[RF_RX_REG_IDX_FO] )>>1) );
197 		priv->actual_rx_lo = actual_rx_lo;
198 
199 		// call Tx Quadrature calibration if frequency change is more than 100MHz
200 		if (diff_tx_lo > 100) {
201 			priv->last_tx_quad_cal_lo = actual_tx_lo;
202 			do_gettimeofday(&tv);
203 			time_before = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec );
204 			spi_disable = xpu_api->XPU_REG_SPI_DISABLE_read();  // disable FPGA SPI module
205 			xpu_api->XPU_REG_SPI_DISABLE_write(1);
206 			ad9361_do_calib_run(priv->ad9361_phy, TX_QUAD_CAL, (int)priv->ad9361_phy->state->last_tx_quad_cal_phase);
207 			// restore original SPI disable state
208 			xpu_api->XPU_REG_SPI_DISABLE_write(spi_disable);
209 			do_gettimeofday(&tv);
210 			time_after = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec );
211 		}
212 
213 		// get rssi correction value from lookup table
214 		priv->rssi_correction = rssi_correction_lookup_table(actual_rx_lo);
215 
216 		// set appropriate lbt threshold
217 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
218 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44
219 		// auto_lbt_th = ((priv->rssi_correction-62-16)<<1);
220 		auto_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction); // -78dBm, the same as above ((priv->rssi_correction-62-16)<<1)
221 		static_lbt_th = rssi_dbm_to_rssi_half_db(-(priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]), priv->rssi_correction);
222 		fpga_lbt_th = (priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]==0?auto_lbt_th:static_lbt_th);
223 		xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th);
224 		priv->last_auto_fpga_lbt_th = auto_lbt_th;
225 
226 		// Set rssi_half_db threshold (-85dBm equivalent) to receiver. Receiver will not react to signal lower than this rssi. See test records (OPENOFDM_RX_POWER_THRES_INIT in hw_def.h)
227 		receiver_rssi_dbm_th = (priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]==0?OPENOFDM_RX_RSSI_DBM_TH_DEFAULT:(-priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]));
228 		openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write((OPENOFDM_RX_DC_RUNNING_SUM_TH_INIT<<16)|rssi_dbm_to_rssi_half_db(receiver_rssi_dbm_th, priv->rssi_correction));
229 
230 		if (actual_rx_lo < 2500) {
231 			if (priv->band != BAND_2_4GHZ) {
232 				priv->band = BAND_2_4GHZ;
233 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
234 			}
235 		} else {
236 			if (priv->band != BAND_5_8GHZ) {
237 				priv->band = BAND_5_8GHZ;
238 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
239 			}
240 		}
241 		printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d(%ddBm) (auto %d static %d) tx_quad_cal duration %lu us\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,rssi_half_db_to_rssi_dbm(fpga_lbt_th, priv->rssi_correction),auto_lbt_th,static_lbt_th, time_after-time_before);
242 	}
243 }
244 
245 const struct openwifi_rf_ops ad9361_rf_ops = {
246 	.name		= "ad9361",
247 //	.init		= ad9361_rf_init,
248 //	.stop		= ad9361_rf_stop,
249 	.set_chan	= ad9361_rf_set_channel,
250 //	.calc_rssi	= ad9361_rf_calc_rssi,
251 };
252 
253 u16 reverse16(u16 d) {
254 	union u16_byte2 tmp0, tmp1;
255 	tmp0.a = d;
256 	tmp1.c[0] = tmp0.c[1];
257 	tmp1.c[1] = tmp0.c[0];
258 	return(tmp1.a);
259 }
260 
261 u32 reverse32(u32 d) {
262 	union u32_byte4 tmp0, tmp1;
263 	tmp0.a = d;
264 	tmp1.c[0] = tmp0.c[3];
265 	tmp1.c[1] = tmp0.c[2];
266 	tmp1.c[2] = tmp0.c[1];
267 	tmp1.c[3] = tmp0.c[0];
268 	return(tmp1.a);
269 }
270 
271 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
272 {
273 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
274 	int i;
275 
276 	ring->stop_flag = -1;
277 	ring->bd_wr_idx = 0;
278 	ring->bd_rd_idx = 0;
279 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
280 	if (ring->bds==NULL) {
281 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
282 		return -ENOMEM;
283 	}
284 
285 	for (i = 0; i < NUM_TX_BD; i++) {
286 		ring->bds[i].skb_linked=NULL; // for tx, skb is from upper layer
287 		//at first right after skb allocated, head, data, tail are the same.
288 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine
289 		ring->bds[i].seq_no = 0xffff; // invalid value
290 		ring->bds[i].prio = 0xff; // invalid value
291 		ring->bds[i].len_mpdu = 0; // invalid value
292 	}
293 
294 	return 0;
295 }
296 
297 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
298 {
299 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
300 	int i;
301 
302 	ring->stop_flag = -1;
303 	ring->bd_wr_idx = 0;
304 	ring->bd_rd_idx = 0;
305 	for (i = 0; i < NUM_TX_BD; i++) {
306 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
307 			continue;
308 		if (ring->bds[i].dma_mapping_addr != 0)
309 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
310 //		if (ring->bds[i].skb_linked!=NULL)
311 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
312 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
313 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
314 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str,
315 			ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr));
316 
317 		ring->bds[i].skb_linked=NULL;
318 		ring->bds[i].dma_mapping_addr = 0;
319 		ring->bds[i].seq_no = 0xffff; // invalid value
320 		ring->bds[i].prio = 0xff; // invalid value
321 		ring->bds[i].len_mpdu = 0; // invalid value
322 	}
323 	if (ring->bds)
324 		kfree(ring->bds);
325 	ring->bds = NULL;
326 }
327 
328 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
329 {
330 	int i;
331 	u8 *pdata_tmp;
332 
333 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
334 	if (!priv->rx_cyclic_buf) {
335 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
336 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
337 		return(-1);
338 	}
339 
340 	// Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
341 	for (i=0; i<NUM_RX_BD; i++) {
342 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning
343 		(*((u16*)(pdata_tmp+10))) = 0;
344 	}
345 	printk("%s openwifi_init_rx_ring: NUM_RX_BD %d RX_BD_BUF_SIZE %d pkt existing flag are cleared!\n", sdr_compatible_str,
346 	NUM_RX_BD, RX_BD_BUF_SIZE);
347 
348 	return 0;
349 }
350 
351 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
352 {
353 	if (priv->rx_cyclic_buf)
354 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
355 
356 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
357 	priv->rx_cyclic_buf = 0;
358 }
359 
360 static int rx_dma_setup(struct ieee80211_hw *dev){
361 	struct openwifi_priv *priv = dev->priv;
362 	struct dma_device *rx_dev = priv->rx_chan->device;
363 
364 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
365 	if (!(priv->rxd)) {
366 		openwifi_free_rx_ring(priv);
367 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
368 		return(-1);
369 	}
370 	priv->rxd->callback = 0;
371 	priv->rxd->callback_param = 0;
372 
373 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
374 
375 	if (dma_submit_error(priv->rx_cookie)) {
376 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
377 		return(-1);
378 	}
379 
380 	dma_async_issue_pending(priv->rx_chan);
381 	return(0);
382 }
383 
384 inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction)
385 {
386 	int rssi_db, rssi_dbm;
387 
388 	rssi_db = (rssi_half_db>>1);
389 
390 	rssi_dbm = rssi_db - rssi_correction;
391 
392 	rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm);
393 
394 	return rssi_dbm;
395 }
396 
397 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
398 {
399 	struct ieee80211_hw *dev = dev_id;
400 	struct openwifi_priv *priv = dev->priv;
401 	struct ieee80211_rx_status rx_status = {0};
402 	struct sk_buff *skb;
403 	struct ieee80211_hdr *hdr;
404 	u32 addr1_low32, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di;
405 	bool ht_flag, short_gi, ht_aggr, ht_aggr_last;
406 	// u32 dma_driver_buf_idx_mod;
407 	u8 *pdata_tmp;
408 	u8 fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw;
409 	s8 signal;
410 	u16 agc_status_and_pkt_exist_flag, rssi_half_db, addr1_high16, addr2_high16=0, addr3_high16=0, seq_no=0;
411 	bool content_ok, len_overflow, is_unicast;
412 
413 #ifdef USE_NEW_RX_INTERRUPT
414 	int i;
415 	spin_lock(&priv->lock);
416 	for (i=0; i<NUM_RX_BD; i++) {
417 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE;
418 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid
419 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
420 			continue;
421 #else
422 	static u8 target_buf_idx_old = 0;
423 	spin_lock(&priv->lock);
424 	while(1) { // loop all rx buffers that have new rx packets
425 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
426 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10)));
427 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
428 			break;
429 #endif
430 
431 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
432 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
433 		rssi_half_db = (*((u16*)(pdata_tmp+8 )));
434 		len =          (*((u16*)(pdata_tmp+12)));
435 
436 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
437 
438 		rate_idx =     (*((u16*)(pdata_tmp+14)));
439 		ht_flag  =     ((rate_idx&0x10)!=0);
440 		short_gi =     ((rate_idx&0x20)!=0);
441 		ht_aggr  =     (ht_flag & ((rate_idx&0x40)!=0));
442 		ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0));
443 		rate_idx =     (rate_idx&0x1F);
444 
445 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
446 
447 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
448 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
449 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
450 		fcs_ok = ((fcs_ok&0x80)!=0);
451 
452 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
453 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
454 			// 	printk("%s openwifi_rx: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
455 			// }
456 			content_ok = true;
457 		} else {
458 			printk("%s openwifi_rx: WARNING content! len%d overflow%d rate_idx%d\n", sdr_compatible_str,
459 			len, len_overflow, rate_idx);
460 			content_ok = false;
461 		}
462 
463 		signal = rssi_half_db_to_rssi_dbm(rssi_half_db, priv->rssi_correction);
464 
465 		hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
466 		if (len>=20) {
467 			addr2_low32  = *((u32*)(hdr->addr2+2));
468 			addr2_high16 = *((u16*)(hdr->addr2));
469 		}
470 
471 		addr1_low32  = *((u32*)(hdr->addr1+2));
472 		addr1_high16 = *((u16*)(hdr->addr1));
473 
474 		if ( priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ANY ) {
475 			if (len>=26) {
476 				addr3_low32  = *((u32*)(hdr->addr3+2));
477 				addr3_high16 = *((u16*)(hdr->addr3));
478 			}
479 			if (len>=28)
480 				seq_no = ( (hdr->seq_ctrl&IEEE80211_SCTL_SEQ)>>4 );
481 
482 			is_unicast = (addr1_low32!=0xffffffff || addr1_high16!=0xffff);
483 
484 			if ( (( is_unicast)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST))   ||
485 			     ((!is_unicast)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST)) ||
486 				 ((  fcs_ok==0)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ERROR)) )
487 				printk("%s openwifi_rx: %dB ht%daggr%d/%d sgi%d %dM FC%04x DI%04x ADDR%04x%08x/%04x%08x/%04x%08x SC%d fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
488 					len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
489 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
490 #ifdef USE_NEW_RX_INTERRUPT
491 					seq_no, fcs_ok, i, signal);
492 #else
493 					seq_no, fcs_ok, target_buf_idx_old, signal);
494 #endif
495 		}
496 
497 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
498 		if (content_ok) {
499 			skb = dev_alloc_skb(len);
500 			if (skb) {
501 				skb_put_data(skb,pdata_tmp+16,len);
502 
503 				rx_status.antenna = priv->runtime_rx_ant_cfg;
504 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
505 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
506 				rx_status.signal = signal;
507 
508 				// rx_status.freq = dev->conf.chandef.chan->center_freq;
509 				rx_status.freq = priv->actual_rx_lo;
510 				// rx_status.band = dev->conf.chandef.chan->band;
511 				rx_status.band = (rx_status.freq<2500?NL80211_BAND_2GHZ:NL80211_BAND_5GHZ);
512 
513 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
514 				rx_status.flag |= RX_FLAG_MACTIME_START;
515 				if (!fcs_ok)
516 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
517 				if (rate_idx <= 15)
518 					rx_status.encoding = RX_ENC_LEGACY;
519 				else
520 					rx_status.encoding = RX_ENC_HT;
521 				rx_status.bw = RATE_INFO_BW_20;
522 				if (short_gi)
523 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
524 				if(ht_aggr)
525 				{
526 					rx_status.ampdu_reference = priv->ampdu_reference;
527 					rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
528 					if (ht_aggr_last)
529 						rx_status.flag |= RX_FLAG_AMPDU_IS_LAST;
530 				}
531 
532 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
533 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
534 			} else
535 				printk("%s openwifi_rx: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
536 
537 			if(ht_aggr_last)
538 				priv->ampdu_reference++;
539 		}
540 		(*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed
541 		loop_count++;
542 #ifndef USE_NEW_RX_INTERRUPT
543 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
544 #endif
545 	}
546 
547 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ERROR) )
548 		printk("%s openwifi_rx: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
549 
550 // openwifi_rx_out:
551 	spin_unlock(&priv->lock);
552 	return IRQ_HANDLED;
553 }
554 
555 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
556 {
557 	struct ieee80211_hw *dev = dev_id;
558 	struct openwifi_priv *priv = dev->priv;
559 	struct openwifi_ring *ring, *drv_ring_tmp;
560 	struct sk_buff *skb;
561 	struct ieee80211_tx_info *info;
562 	struct ieee80211_hdr *hdr;
563 	u32 reg_val1, hw_queue_len, reg_val2, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0, addr1_low32, mcs_for_sysfs;
564 	u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx;
565 	u8 nof_retx=-1, last_bd_rd_idx, i, prio, queue_idx, nof_retx_stat;
566 	u64 blk_ack_bitmap;
567 	// u16 prio_rd_idx_store[64]={0};
568 	bool tx_fail=false, fpga_queue_has_room=false;
569 	bool use_ht_aggr, pkt_need_ack, use_ht_rate, prio_wake_up_flag = false;
570 
571 	spin_lock(&priv->lock);
572 
573 	while(1) { // loop all packets that have been sent by FPGA
574 		reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read();
575         reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read();
576 		blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32);
577 
578 		if (reg_val1!=0xFFFFFFFF) {
579 			nof_retx = (reg_val1&0xF);
580 			last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1));
581 			prio = ((reg_val1>>17)&0x3);
582 			num_slot_random = ((reg_val1>>19)&0x1FF);
583 			//num_slot_random = ((0xFF80000 &reg_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
584 			cw = ((reg_val1>>28)&0xF);
585 			//cw = ((0xF0000000 & reg_val1) >> 28);
586 			if(cw > 10) {
587 				cw = 10 ;
588 				num_slot_random += 512 ;
589 			}
590 			pkt_cnt = (reg_val2&0x3F);
591 			blk_ack_ssn = ((reg_val2>>6)&0xFFF);
592 
593 			queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1));
594 			dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
595 			hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
596 			// check which linux prio is stopped by this queue (queue_idx)
597 			for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
598 				drv_ring_tmp = &(priv->tx_ring[i]);
599 				if ( drv_ring_tmp->stop_flag == prio ) {
600 
601 					if ( ((dma_fifo_no_room_flag>>i)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(i*8))&0xFF))>=RING_ROOM_THRESHOLD )
602 						fpga_queue_has_room=true;
603 					else
604 						fpga_queue_has_room=false;
605 
606 					// Wake up Linux queue due to the current fpga queue releases some room
607 					if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP )
608 						printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio%d i%d queue%d no room flag%x hwq len%08x wr%d rd%d\n", sdr_compatible_str,
609 						        prio, i, queue_idx, dma_fifo_no_room_flag, hw_queue_len, drv_ring_tmp->bd_wr_idx, last_bd_rd_idx);
610 
611 					if (fpga_queue_has_room) {
612 						prio_wake_up_flag = true;
613 						drv_ring_tmp->stop_flag = -1;
614 
615 					} else {
616 						if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP )
617 							printk("%s openwifi_tx_interrupt: WARNING no room! prio_wake_up_flag%d\n", sdr_compatible_str, prio_wake_up_flag);
618 					}
619 				}
620 			}
621 			if (prio_wake_up_flag)
622 				ieee80211_wake_queue(dev, prio);
623 
624 			ring = &(priv->tx_ring[queue_idx]);
625 			for(i = 1; i <= pkt_cnt; i++)
626 			{
627 				ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64;
628 				seq_no = ring->bds[ring->bd_rd_idx].seq_no;
629 
630 				if (seq_no == 0xffff) {// it has been forced cleared by the openwifi_tx (due to out-of-order Tx of different queues to the air?)
631 					printk("%s openwifi_tx_interrupt: WARNING wr%d rd%d last_bd_rd_idx%d i%d pkt_cnt%d prio%d fpga q%d hwq len%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str,
632 					ring->bd_wr_idx, ring->bd_rd_idx, last_bd_rd_idx, i, pkt_cnt, prio, queue_idx, hw_queue_len, ring->bds[ring->bd_rd_idx].prio, ring->bds[ring->bd_rd_idx].len_mpdu, seq_no, ring->bds[ring->bd_rd_idx].skb_linked, ring->bds[ring->bd_rd_idx].dma_mapping_addr);
633 					continue;
634 				}
635 
636 				skb = ring->bds[ring->bd_rd_idx].skb_linked;
637 
638 				dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
639 						skb->len, DMA_MEM_TO_DEV);
640 
641 				info = IEEE80211_SKB_CB(skb);
642 				use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0);
643 				ieee80211_tx_info_clear_status(info);
644 
645 				// Aggregation packet
646 				if (use_ht_aggr)
647 				{
648 					start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF));
649 					tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0);
650 					info->flags |= IEEE80211_TX_STAT_AMPDU;
651 					info->status.ampdu_len = 1;
652 					info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1;
653 
654 					skb_pull(skb, LEN_MPDU_DELIM);
655 					//skb_trim(skb, num_byte_pad_skb);
656 				}
657 				// Normal packet
658 				else
659 				{
660 					tx_fail = ((blk_ack_bitmap&0x1)==0);
661 					info->flags &= (~IEEE80211_TX_CTL_AMPDU);
662 				}
663 
664 				pkt_need_ack = (!(info->flags & IEEE80211_TX_CTL_NO_ACK));
665 				if (tx_fail == false)
666 					info->flags |= IEEE80211_TX_STAT_ACK;
667 
668 				info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
669 				info->status.rates[1].idx = -1;
670 				// info->status.rates[2].idx = -1;
671 				// info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
672 				info->status.antenna = priv->runtime_tx_ant_cfg;
673 
674 				if ( ( (!pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST) ) || ( (pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST) ) ){
675 					printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] SC%d prio%d q%d wr%d rd%d num_slot%d cw%d hwq len%08x no_room_flag%x\n", sdr_compatible_str,
676 					nof_retx+1, !tx_fail, seq_no, prio, queue_idx, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw, hw_queue_len, dma_fifo_no_room_flag);
677 				}
678 
679 				ieee80211_tx_status_irqsafe(dev, skb);
680 
681 				ring->bds[ring->bd_rd_idx].prio = 0xff; // invalid value
682 				ring->bds[ring->bd_rd_idx].len_mpdu = 0; // invalid value
683 				ring->bds[ring->bd_rd_idx].seq_no = 0xffff;
684 				ring->bds[ring->bd_rd_idx].skb_linked = NULL;
685 				ring->bds[ring->bd_rd_idx].dma_mapping_addr = 0;
686 			}
687 
688 			loop_count++;
689 
690 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
691 
692 		} else
693 			break;
694 	}
695 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&DMESG_LOG_ERROR) )
696 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
697 
698 	spin_unlock(&priv->lock);
699 	return IRQ_HANDLED;
700 }
701 
702 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000};
703 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes)
704 {
705 	u32 i, crc = 0;
706 	u8 idx;
707 	for( i = 0; i < num_bytes; i++)
708 	{
709 		idx = (crc & 0x0F) ^ (data_in[i] & 0x0F);
710 		crc = (crc >> 4) ^ crc_table[idx];
711 
712 		idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F);
713 		crc = (crc >> 4) ^ crc_table[idx];
714 	}
715 
716 	return crc;
717 }
718 
719 u8 gen_mpdu_delim_crc(u16 m)
720 {
721 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc;
722 
723 	for (i = 0; i < 16; i++)
724 	{
725 		temp = c[7] ^ ((m >> i) & 0x01);
726 
727 		c[7] = c[6];
728 		c[6] = c[5];
729 		c[5] = c[4];
730 		c[4] = c[3];
731 		c[3] = c[2];
732 		c[2] = c[1] ^ temp;
733 		c[1] = c[0] ^ temp;
734 		c[0] = temp;
735 	}
736 	mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
737 
738 	return mpdu_delim_crc;
739 }
740 
741 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
742 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
743 {
744 	return container_of(led_cdev, struct gpio_led_data, cdev);
745 }
746 
747 inline int calc_n_ofdm(int num_octet, int n_dbps)
748 {
749 	int num_bit, num_ofdm_sym;
750 
751 	num_bit      = 22+num_octet*8;
752 	num_ofdm_sym = (num_bit/n_dbps) + ((num_bit%n_dbps)!=0);
753 
754 	return (num_ofdm_sym);
755 }
756 
757 inline __le16 gen_ht_duration_id(__le16 frame_control, __le16 aid, u8 qos_hdr, bool use_ht_aggr, u16 rate_hw_value, u16 sifs)
758 {
759 // COTS wifi ht QoS data duration field analysis (lots of capture):
760 
761 // ht non-aggr QoS data: 44, type 2 (data frame) sub-type 8 (1000) 21.7/52/57.8/58.5/65Mbps
762 // ack     ht 36 + 4*[(22+14*8)/78] = 36 + 4*2 = 44
763 // ack legacy 20 + 4*[(22+14*8)/72] = 20 + 4*2 = 28
764 
765 // ht non-aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 6.5Mbps
766 // ack     ht 36 + 4*[(22+14*8)/26] = 36 + 4*6 = 60
767 // ack legacy 20 + 4*[(22+14*8)/24] = 20 + 4*6 = 44
768 
769 // ht     aggr QoS data: 52, type 2 (data frame) sub-type 8 (1000) 19.5/28.9/39/57.8/65/72.2Mbps
770 // ack     ht 36 + 4*[(22+32*8)/78] = 36 + 4*4 = 52
771 // ack legacy 20 + 4*[(22+32*8)/72] = 20 + 4*4 = 36
772 
773 // ht     aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 13/14.4Mbps
774 // ack     ht 36 + 4*[(22+32*8)/52] = 36 + 4*6 = 60
775 // ack legacy 20 + 4*[(22+32*8)/48] = 20 + 4*6 = 44
776 
777 // ht and legacy rate mapping is ont one on one, instead it is modulation combined with coding rate
778 // modulate  coding  ht-mcs ht-n_dbps legacy-mcs legacy-n_dbps
779 // BPSK      1/2     0      26        4          24
780 // QPSK      1/2     1      52        6          48
781 // QPSK      3/4     2      78        7          72
782 // 16QAM     1/2     3      104       8          96
783 // 16QAM     3/4     4      156       9          144
784 // 64QAM     2/3     5      208       10         192
785 // 64QAM     3/4     6      234       11         216
786 
787 // conclusion: duration is: assume ack/blk-ack uses legacy, plus SIFS
788 
789 // other observation: ht always use QoS data, not data (sub-type)
790 // other observation: management/control frame always in non-ht
791 
792 	__le16 dur = 0;
793 	u16 n_dbps;
794 	int num_octet, num_ofdm_sym;
795 
796 	if (ieee80211_is_pspoll(frame_control)) {
797 		dur = (aid|0xc000);
798 	} else if (ieee80211_is_data_qos(frame_control) && (~(qos_hdr&IEEE80211_QOS_CTL_ACK_POLICY_NOACK))) {
799 		rate_hw_value = (rate_hw_value>6?6:rate_hw_value);
800 		n_dbps = (rate_hw_value==0?wifi_n_dbps_table[4]:wifi_n_dbps_table[rate_hw_value+5]);
801 		num_octet = (use_ht_aggr?32:14); //32 bytes for compressed block ack; 14 bytes for normal ack
802 		num_ofdm_sym = calc_n_ofdm(num_octet, n_dbps);
803 		dur = sifs + 20 + 4*num_ofdm_sym; // 20us legacy preamble
804 		// printk("%s gen_ht_duration_id: num_octet %d n_dbps %d num_ofdm_sym %d dur %d\n", sdr_compatible_str,
805 		// num_octet, n_dbps, num_ofdm_sym, dur);
806 	} else {
807 		printk("%s openwifi_tx: WARNING gen_ht_duration_id wrong pkt type!\n", sdr_compatible_str);
808 	}
809 
810 	return dur;
811 }
812 
813 inline void report_pkt_loss_due_to_driver_drop(struct ieee80211_hw *dev, struct sk_buff *skb)
814 {
815 	struct openwifi_priv *priv = dev->priv;
816 	struct ieee80211_tx_info *info;
817 
818 	info = IEEE80211_SKB_CB(skb);
819 	ieee80211_tx_info_clear_status(info);
820 	info->status.rates[0].count = 1;
821 	info->status.rates[1].idx = -1;
822 	info->status.antenna = priv->runtime_tx_ant_cfg;
823 	ieee80211_tx_status_irqsafe(dev, skb);
824 }
825 
826 static void openwifi_tx(struct ieee80211_hw *dev,
827 		       struct ieee80211_tx_control *control,
828 		       struct sk_buff *skb)
829 {
830 	struct openwifi_priv *priv = dev->priv;
831 	unsigned long flags;
832 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
833 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
834 	struct openwifi_ring *ring = NULL;
835 	struct sk_buff *skb_new; // temp skb for internal use
836 	struct ieee80211_tx_info *info_skipped;
837 	dma_addr_t dma_mapping_addr;
838 	unsigned int i, j, empty_bd_idx = 0;
839 	u16 rate_signal_value, rate_hw_value, len_mpdu, len_psdu, num_dma_symbol, len_mpdu_delim_pad=0, num_byte_pad;
840 	u32 num_dma_byte, addr1_low32, addr2_low32=0, addr3_low32=0, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history;
841 	u16 addr1_high16, addr2_high16=0, addr3_high16=0, sc, seq_no=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration, n_dbps;
842 	u8 pkt_need_ack, retry_limit_raw,use_short_gi,*dma_buf,retry_limit_hw_value,rc_flags,qos_hdr,prio,queue_idx,drv_ring_idx;
843 	bool drv_seqno=false, use_rts_cts, use_cts_protect, ht_aggr_start=false, use_ht_rate, use_ht_aggr, cts_use_traffic_rate=false, force_use_cts_protect=false;
844 	__le16 frame_control,duration_id;
845 	u32 dma_fifo_no_room_flag, hw_queue_len, delay_count=0;
846 	enum dma_status status;
847 
848 	static u32 addr1_low32_prev = -1;
849 	static u16 rate_hw_value_prev = -1;
850 	static u8 pkt_need_ack_prev = -1;
851 	static u16 addr1_high16_prev = -1;
852 	static __le16 duration_id_prev = -1;
853 	static u8 prio_prev = -1;
854 	static u8 retry_limit_raw_prev = -1;
855 	static u8 use_short_gi_prev = -1;
856 
857 	// static bool led_status=0;
858 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
859 
860 	// if ( (priv->phy_tx_sn&7) ==0 ) {
861 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
862 	// 	if (openofdm_state_history!=openofdm_state_history_old){
863 	// 		led_status = (~led_status);
864 	// 		openofdm_state_history_old = openofdm_state_history;
865 	// 		gpiod_set_value(led_dat->gpiod, led_status);
866 	// 	}
867 	// }
868 
869 	if (skb->data_len>0) {// more data are not in linear data area skb->data
870 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
871 		goto openwifi_tx_early_out;
872 	}
873 
874 	len_mpdu = skb->len;
875 
876 	// get Linux priority/queue setting info and target mac address
877 	prio = skb_get_queue_mapping(skb);
878 	if (prio >= MAX_NUM_HW_QUEUE) {
879 		printk("%s openwifi_tx: WARNING prio%d\n", sdr_compatible_str, prio);
880 		goto openwifi_tx_early_out;
881 	}
882 
883 	addr1_low32  = *((u32*)(hdr->addr1+2));
884 
885 	// ---- DO your idea here! Map Linux/SW "prio" to driver "drv_ring_idx" (then 1on1 to FPGA queue_idx) ---
886 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
887 		drv_ring_idx = prio;
888 	} else {// customized prio to drv_ring_idx mapping
889 		// check current packet belonging to which slice/hw-queue
890 		for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
891 			if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
892 				break;
893 			}
894 		}
895 		drv_ring_idx = (i>=MAX_NUM_HW_QUEUE?prio:i); // if no address is hit
896 	}
897 
898 	ring = &(priv->tx_ring[drv_ring_idx]);
899 
900 	spin_lock_irqsave(&priv->lock, flags);
901 	if (ring->bds[ring->bd_wr_idx].seq_no != 0xffff) { // not cleared yet by interrupt
902 		for (i=1; i<NUM_TX_BD; i++) {
903 			if (ring->bds[(ring->bd_wr_idx+i)&(NUM_TX_BD-1)].seq_no == 0xffff) {
904 				empty_bd_idx = i;
905 				break;
906 			}
907 		}
908 		hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
909 		if (empty_bd_idx) { // clear all bds before the empty bd and report failure to Linux
910 			for (i=0; i<empty_bd_idx; i++) {
911 				j = ( (ring->bd_wr_idx+i)&(NUM_TX_BD-1) );
912 				printk("%s openwifi_tx: WARNING fake stop queue empty_bd_idx%d i%d lnx prio%d map to q%d stop%d hwq len%d wr%d rd%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str,
913 				empty_bd_idx, i, prio, drv_ring_idx, ring->stop_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, ring->bds[j].prio, ring->bds[j].len_mpdu, ring->bds[j].seq_no, ring->bds[j].skb_linked, ring->bds[j].dma_mapping_addr);
914 				// tell Linux this skb failed
915 				skb_new = ring->bds[j].skb_linked;
916 				dma_unmap_single(priv->tx_chan->device->dev,ring->bds[j].dma_mapping_addr,
917 							skb_new->len, DMA_MEM_TO_DEV);
918 				info_skipped = IEEE80211_SKB_CB(skb_new);
919 				ieee80211_tx_info_clear_status(info_skipped);
920 				info_skipped->status.rates[0].count = 1;
921 				info_skipped->status.rates[1].idx = -1;
922 				info_skipped->status.antenna = priv->runtime_tx_ant_cfg;
923 				ieee80211_tx_status_irqsafe(dev, skb_new);
924 
925 				ring->bds[j].prio = 0xff; // invalid value
926 				ring->bds[j].len_mpdu = 0; // invalid value
927 				ring->bds[j].seq_no = 0xffff;
928 				ring->bds[j].skb_linked = NULL;
929 				ring->bds[j].dma_mapping_addr = 0;
930 
931 			}
932 			if (ring->stop_flag != -1) { //the interrupt seems will never come, we need to wake up the queue in case the interrupt will never wake it up
933 				ieee80211_wake_queue(dev, ring->stop_flag);
934 				ring->stop_flag = -1;
935 			}
936 		} else {
937 			j = ring->bd_wr_idx;
938 			printk("%s openwifi_tx: WARNING real stop queue lnx prio%d map to q%d stop%d hwq len%d wr%d rd%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str,
939 			prio, drv_ring_idx, ring->stop_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, ring->bds[j].prio, ring->bds[j].len_mpdu, ring->bds[j].seq_no, ring->bds[j].skb_linked, ring->bds[j].dma_mapping_addr);
940 
941 			ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
942 			ring->stop_flag = prio;
943 
944 			spin_unlock_irqrestore(&priv->lock, flags);
945 			goto openwifi_tx_early_out;
946 		}
947 	}
948 	spin_unlock_irqrestore(&priv->lock, flags);
949 	// -------------------- end of Map Linux/SW "prio" to driver "drv_ring_idx" ------------------
950 
951 	// get other info from packet header
952 	addr1_high16 = *((u16*)(hdr->addr1));
953 	if (len_mpdu>=20) {
954 		addr2_low32  = *((u32*)(hdr->addr2+2));
955 		addr2_high16 = *((u16*)(hdr->addr2));
956 	}
957 	if (len_mpdu>=26) {
958 		addr3_low32  = *((u32*)(hdr->addr3+2));
959 		addr3_high16 = *((u16*)(hdr->addr3));
960 	}
961 
962 	frame_control=hdr->frame_control;
963 	pkt_need_ack = (!(info->flags&IEEE80211_TX_CTL_NO_ACK));
964 
965 	retry_limit_raw = info->control.rates[0].count;
966 
967 	rc_flags = info->control.rates[0].flags;
968 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
969 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
970 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
971 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
972 	use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0);
973 	qos_hdr = (*(ieee80211_get_qos_ctl(hdr)));
974 
975 	// get Linux rate (MCS) setting
976 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
977 	// drv_tx_reg_val[DRV_TX_REG_IDX_RATE]
978 	// override rate legacy: 4:6M,   5:9M,  6:12M,  7:18M, 8:24M, 9:36M, 10:48M,   11:54M
979 	// drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]
980 	// override rate     ht: 4:6.5M, 5:13M, 6:19.5M,7:26M, 8:39M, 9:52M, 10:58.5M, 11:65M
981 	if ( ieee80211_is_data(hdr->frame_control) ) {//rate override command
982 		if (use_ht_rate && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]>0) {
983 			rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0xF)-4;
984 			use_short_gi  = ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0x10)==0x10);
985 		} else if ((!use_ht_rate) && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0)
986 			rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]&0xF);
987 		// TODO: need to map rate_hw_value back to info->control.rates[0].idx!!!
988 	}
989 
990 	// Workaround for a FPGA bug: if aggr happens on ht mcs 0, the tx core will never end, running eneless and stuck the low MAC!
991 	if (use_ht_aggr && rate_hw_value==0)
992 		rate_hw_value = 1;
993 
994 	sifs = (priv->actual_rx_lo<2500?10:16);
995 
996 	if (use_ht_rate) {
997 		// printk("%s openwifi_tx: rate_hw_value %d aggr %d sifs %d\n", sdr_compatible_str, rate_hw_value, use_ht_aggr, sifs);
998 		hdr->duration_id = gen_ht_duration_id(frame_control, control->sta->aid, qos_hdr, use_ht_aggr, rate_hw_value, sifs); //linux only do it for 11a/g, not for 11n and later
999 	}
1000 	duration_id = hdr->duration_id;
1001 
1002 	if (use_rts_cts)
1003 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
1004 
1005 	if (use_cts_protect) {
1006 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
1007 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info));
1008 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
1009 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
1010 		if (pkt_need_ack)
1011 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
1012 
1013 		n_dbps = (use_ht_rate?wifi_n_dbps_ht_table[rate_hw_value+4]:wifi_n_dbps_table[rate_hw_value]);
1014 		traffic_pkt_duration = (use_ht_rate?36:20) + 4*calc_n_ofdm(len_mpdu, n_dbps);
1015 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
1016 	}
1017 
1018 // this is 11b stuff
1019 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1020 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
1021 
1022 	if (len_mpdu>=28) {
1023 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1024 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
1025 				priv->seqno += 0x10;
1026 				drv_seqno = true;
1027 			}
1028 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1029 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
1030 		}
1031 		sc = hdr->seq_ctrl;
1032 		seq_no = (sc&IEEE80211_SCTL_SEQ)>>4;
1033 	}
1034 
1035 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
1036 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
1037 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
1038 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
1039 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
1040 
1041 	// -----------end of preprocess some info from header and skb----------------
1042 
1043 	// /* HW will perform RTS-CTS when only RTS flags is set.
1044 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
1045 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
1046 	//  */
1047 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1048 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
1049 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
1050 	// 					len_mpdu, info);
1051 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
1052 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1053 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
1054 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
1055 	// 					len_mpdu, info);
1056 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
1057 	// }
1058 
1059 	if(use_ht_aggr)
1060 	{
1061 		if(ieee80211_is_data_qos(frame_control) == false)
1062 		{
1063 			printk("%s openwifi_tx: WARNING packet is not QoS packet!\n", sdr_compatible_str);
1064 			goto openwifi_tx_early_out;
1065 		}
1066 
1067 		// psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ]
1068 		len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4);
1069 		len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad;
1070 
1071 		if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) ||
1072 			(rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) ||
1073 			(prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) )
1074 		{
1075 			addr1_low32_prev = addr1_low32;
1076 			addr1_high16_prev = addr1_high16;
1077 			duration_id_prev = duration_id;
1078 			rate_hw_value_prev = rate_hw_value;
1079 			use_short_gi_prev = use_short_gi;
1080 			prio_prev = prio;
1081 			retry_limit_raw_prev = retry_limit_raw;
1082 			pkt_need_ack_prev = pkt_need_ack;
1083 
1084 			ht_aggr_start = true;
1085 		}
1086 	}
1087 	else
1088 	{
1089 		// psdu = [ MPDU ]
1090 		len_psdu = len_mpdu;
1091 
1092 		// // Don't need to reset _prev variables every time when it is not ht aggr qos data. Reason:
1093 		// // 1. In 99.9999% cases, the ht always use qos data and goes to prio/queue_idx 2. By not resetting the variable to -1, we can have continuous aggregation packet operation in FPGA queue 2.
1094 		// // 2. In other words, the aggregation operation for queue 2 in FPGA won't be interrupted by other non aggregation packets (control/management/beacon/etc.) that go to queue 0 (or other queues than 2).
1095 		// // 3. From wired domain and upper level ( DSCP, AC (0~3), WMM management, 802.11D service classes and user priority (UP) ) to chip/FPGA queue index, thre should be some (complicated) mapping relationship.
1096 		// // 4. More decent design is setting these aggregation flags (ht_aggr_start) per queue/prio here in driver. But since now only queue 2 and 0 are used (data goes to queue 2, others go to queue 0) in normal (most) cases, let's not go to the decent (complicated) solution immediately.
1097 		// addr1_low32_prev = -1;
1098 		// addr1_high16_prev = -1;
1099 		// duration_id_prev = -1;
1100 		// use_short_gi_prev = -1;
1101 		// rate_hw_value_prev = -1;
1102 		// prio_prev = -1;
1103 		// retry_limit_raw_prev = -1;
1104 		// pkt_need_ack_prev = -1;
1105 	}
1106 	num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
1107 
1108 	if ( ( (!pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST) ) || ( (pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST) ) )
1109 		printk("%s openwifi_tx: %dB RC%x %dM FC%04x DI%04x ADDR%04x%08x/%04x%08x/%04x%08x flag%08x QoS%02x SC%d_%d retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
1110 			len_mpdu, rc_flags, (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
1111 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
1112 			info->flags, qos_hdr, seq_no, drv_seqno, retry_limit_raw, pkt_need_ack, prio, drv_ring_idx,
1113 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
1114 			ring->bd_wr_idx,ring->bd_rd_idx);
1115 
1116 	// check whether the packet is bigger than DMA buffer size
1117 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
1118 	if (num_dma_byte > TX_BD_BUF_SIZE) {
1119 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
1120 		goto openwifi_tx_early_out;
1121 	}
1122 
1123 	// Copy MPDU delimiter and padding into sk_buff
1124 	if(use_ht_aggr)
1125 	{
1126 		// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
1127 		if (skb_headroom(skb)<LEN_MPDU_DELIM) {// in case original skb headroom is not enough to host MPDU delimiter
1128 			printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_headroom(skb) %d < LEN_MPDU_DELIM %d\n", sdr_compatible_str, ring->bd_wr_idx, skb_headroom(skb), LEN_MPDU_DELIM);
1129 			if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) {
1130 				printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1131 				goto openwifi_tx_early_out;
1132 			}
1133 			if (skb->sk != NULL)
1134 				skb_set_owner_w(skb_new, skb->sk);
1135 			dev_kfree_skb(skb);
1136 			skb = skb_new;
1137 		}
1138 		skb_push( skb, LEN_MPDU_DELIM );
1139 		dma_buf = skb->data;
1140 
1141 		// fill in MPDU delimiter
1142 		*((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0;
1143 		*((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf));
1144 		*((u8 *)(dma_buf+3)) = 0x4e;
1145 
1146 		// Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter
1147 		num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu);
1148 		if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad
1149 			printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad);
1150 			if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) {
1151 				printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1152 				goto openwifi_tx_early_out;
1153 			}
1154 			if (skb->sk != NULL)
1155 				skb_set_owner_w(skb_new, skb->sk);
1156 			dev_kfree_skb(skb);
1157 			skb = skb_new;
1158 		}
1159 		skb_put( skb, num_byte_pad );
1160 
1161 		// fill in MPDU CRC
1162 		*((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu);
1163 
1164 		// fill in MPDU delimiter padding
1165 		memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad);
1166 
1167 		// num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary.
1168 		// If they have different lengths, add "empty MPDU delimiter" for alignment
1169 		if(num_dma_byte == len_psdu + 4)
1170 		{
1171 			*((u32*)(dma_buf+len_psdu)) = 0x4e140000;
1172 			len_psdu = num_dma_byte;
1173 		}
1174 	}
1175 	else
1176 	{
1177 		// Extend sk_buff to hold padding
1178 		num_byte_pad = num_dma_byte - len_mpdu;
1179 		if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad
1180 			printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad);
1181 			if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) {
1182 				printk("%s openwifi_tx: WARNING sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1183 				goto openwifi_tx_early_out;
1184 			}
1185 			if (skb->sk != NULL)
1186 				skb_set_owner_w(skb_new, skb->sk);
1187 			dev_kfree_skb(skb);
1188 			skb = skb_new;
1189 		}
1190 		skb_put( skb, num_byte_pad );
1191 
1192 		dma_buf = skb->data;
1193 	}
1194 //	for(i = 0; i <= num_dma_symbol; i++)
1195 //		printk("%16llx\n", (*(u64*)(&(dma_buf[i*8]))));
1196 
1197 	rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]);
1198 
1199 	retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) );
1200 
1201 	queue_idx = drv_ring_idx; // from driver ring idx to FPGA queue_idx mapping
1202 
1203 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
1204 	cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value);
1205 	tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | num_dma_symbol );
1206 	phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu );
1207 
1208 	/* We must be sure that tx_flags is written last because the HW
1209 	 * looks at it to check if the rest of data is valid or not
1210 	 */
1211 	//wmb();
1212 	// entry->flags = cpu_to_le32(tx_flags);
1213 	/* We must be sure this has been written before following HW
1214 	 * register write, because this write will make the HW attempts
1215 	 * to DMA the just-written data
1216 	 */
1217 	//wmb();
1218 
1219 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
1220 
1221 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
1222 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
1223 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
1224 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<=RING_ROOM_THRESHOLD)  || ring->stop_flag>=0 ) {
1225 		if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP )
1226 			printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio%d queue%d no room flag%x hwq len%08x request%d wr%d rd%d\n", sdr_compatible_str,
1227 			        prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
1228 
1229 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
1230 		ring->stop_flag = prio;
1231 		// goto openwifi_tx_early_out_after_lock;
1232 	}
1233 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
1234 
1235 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
1236 	while(delay_count<100 && status!=DMA_COMPLETE) {
1237 		status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
1238 		delay_count++;
1239 		udelay(4);
1240 		// udelay(priv->stat.dbg_ch1);
1241 	}
1242 	if (status!=DMA_COMPLETE) {
1243 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
1244 		goto openwifi_tx_early_out_after_lock;
1245 	}
1246 
1247 //-------------------------fire skb DMA to hardware----------------------------------
1248 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
1249 				 num_dma_byte, DMA_MEM_TO_DEV);
1250 
1251 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
1252 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
1253 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
1254 		goto openwifi_tx_early_out_after_lock;
1255 	}
1256 
1257 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
1258 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
1259 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
1260 
1261 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
1262 	tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config);
1263 	tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config);
1264 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
1265 	if (!(priv->txd)) {
1266 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
1267 		goto openwifi_tx_after_dma_mapping;
1268 	}
1269 
1270 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
1271 
1272 	if (dma_submit_error(priv->tx_cookie)) {
1273 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
1274 		goto openwifi_tx_after_dma_mapping;
1275 	}
1276 
1277 	// seems everything is ok. let's mark this pkt in bd descriptor ring
1278 	ring->bds[ring->bd_wr_idx].prio = prio;
1279 	ring->bds[ring->bd_wr_idx].len_mpdu = len_mpdu;
1280 	ring->bds[ring->bd_wr_idx].seq_no = seq_no;
1281 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
1282 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
1283 
1284 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
1285 
1286 	dma_async_issue_pending(priv->tx_chan);
1287 
1288 	spin_unlock_irqrestore(&priv->lock, flags);
1289 
1290 	return;
1291 
1292 openwifi_tx_after_dma_mapping:
1293 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
1294 
1295 openwifi_tx_early_out_after_lock:
1296 	spin_unlock_irqrestore(&priv->lock, flags);
1297 	report_pkt_loss_due_to_driver_drop(dev, skb);
1298 	// dev_kfree_skb(skb);
1299 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1300 	return;
1301 
1302 openwifi_tx_early_out:
1303 	report_pkt_loss_due_to_driver_drop(dev, skb);
1304 	// dev_kfree_skb(skb);
1305 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1306 }
1307 
1308 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant)
1309 {
1310 	struct openwifi_priv *priv = dev->priv;
1311 	u8 fpga_tx_ant_setting, target_rx_ant;
1312 	u32 atten_mdb_tx0, atten_mdb_tx1;
1313 	struct ctrl_outs_control ctrl_out;
1314 	int ret;
1315 
1316 	printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant);
1317 
1318 	if (tx_ant >= 4 || tx_ant == 0) {
1319 		return -EINVAL;
1320 	} else if (rx_ant >= 3 || rx_ant == 0) {
1321 		return -EINVAL;
1322 	}
1323 
1324 	fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16));
1325 	target_rx_ant = ((rx_ant&1)?0:1);
1326 
1327 	// try rf chip setting firstly, only update internal state variable when rf chip succeed
1328 	atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1329 	atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1330 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true);
1331 	if (ret < 0) {
1332 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0);
1333 		return -EINVAL;
1334 	} else {
1335 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0);
1336 	}
1337 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true);
1338 	if (ret < 0) {
1339 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1);
1340 		return -EINVAL;
1341 	} else {
1342 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1);
1343 	}
1344 
1345 	ctrl_out.en_mask = priv->ctrl_out.en_mask;
1346 	ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
1347 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out));
1348 	if (ret < 0) {
1349 		printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1350 		return -EINVAL;
1351 	} else {
1352 		printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1353 	}
1354 
1355 	tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting);
1356 	ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read();
1357 	if (ret != fpga_tx_ant_setting) {
1358 		printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret);
1359 		return -EINVAL;
1360 	} else {
1361 		printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1362 	}
1363 
1364 	rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant);
1365 	ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read();
1366 	if (ret != target_rx_ant) {
1367 		printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret);
1368 		return -EINVAL;
1369 	} else {
1370 		printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1371 	}
1372 
1373 	// update internal state variable
1374 	priv->runtime_tx_ant_cfg = tx_ant;
1375 	priv->runtime_rx_ant_cfg = rx_ant;
1376 
1377 	if (TX_OFFSET_TUNING_ENABLE)
1378 		priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE
1379 	else {
1380 		if (tx_ant == 3)
1381 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH;
1382 		else
1383 			priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1384 	}
1385 
1386 	priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1387 	priv->ctrl_out.index=ctrl_out.index;
1388 
1389 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1390 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1391 
1392 	return 0;
1393 }
1394 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant)
1395 {
1396 	struct openwifi_priv *priv = dev->priv;
1397 
1398 	*tx_ant = priv->runtime_tx_ant_cfg;
1399 	*rx_ant = priv->runtime_rx_ant_cfg;
1400 
1401 	printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant);
1402 
1403 	printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str,
1404 	priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index);
1405 
1406 	printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str,
1407 	tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read());
1408 
1409 	printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str,
1410 	ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER));
1411 
1412 	return 0;
1413 }
1414 
1415 static int openwifi_start(struct ieee80211_hw *dev)
1416 {
1417 	struct openwifi_priv *priv = dev->priv;
1418 	int ret, i;
1419 	u32 reg;
1420 
1421 	for (i=0; i<MAX_NUM_VIF; i++) {
1422 		priv->vif[i] = NULL;
1423 	}
1424 
1425 	// //keep software registers persistent between NIC down and up for multiple times
1426 	/*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
1427 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
1428 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
1429 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
1430 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/
1431 
1432 	//turn on radio
1433 	openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
1434 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
1435 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
1436 		priv->rfkill_off = 1;// 0 off, 1 on
1437 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
1438 	}
1439 	else
1440 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
1441 
1442 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1443 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1444 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1445 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1446 	xpu_api->hw_init(priv->xpu_cfg);
1447 
1448 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1449 
1450 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1451 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1452 
1453 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1454 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1455 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1456 
1457 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1458 	if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) {
1459 		ret = PTR_ERR(priv->rx_chan);
1460 		pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan);
1461 		goto err_dma;
1462 	}
1463 
1464 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1465 	if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) {
1466 		ret = PTR_ERR(priv->tx_chan);
1467 		pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan);
1468 		goto err_dma;
1469 	}
1470 	printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan);
1471 
1472 	ret = openwifi_init_rx_ring(priv);
1473 	if (ret) {
1474 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1475 		goto err_free_rings;
1476 	}
1477 
1478 	priv->seqno=0;
1479 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1480 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1481 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1482 			goto err_free_rings;
1483 		}
1484 	}
1485 
1486 	if ( (ret = rx_dma_setup(dev)) ) {
1487 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1488 		goto err_free_rings;
1489 	}
1490 
1491 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1492 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1493 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1494 	if (ret) {
1495 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1496 		goto err_free_rings;
1497 	} else {
1498 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1499 	}
1500 
1501 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1502 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1503 			IRQF_SHARED, "sdr,tx_itrpt", dev);
1504 	if (ret) {
1505 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1506 		goto err_free_rings;
1507 	} else {
1508 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1509 	}
1510 
1511 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1512 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1513 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1514 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1515 
1516 	// disable ad9361 auto calibration and enable openwifi fpga spi control
1517 	priv->ad9361_phy->state->auto_cal_en = false;   // turn off auto Tx quadrature calib.
1518 	priv->ad9361_phy->state->manual_tx_quad_cal_en = true;  // turn on manual Tx quadrature calib.
1519 	xpu_api->XPU_REG_SPI_DISABLE_write(0);
1520 
1521 // normal_out:
1522 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1523 	return 0;
1524 
1525 err_free_rings:
1526 	openwifi_free_rx_ring(priv);
1527 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1528 		openwifi_free_tx_ring(priv, i);
1529 
1530 err_dma:
1531 	ret = -1;
1532 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1533 	return ret;
1534 }
1535 
1536 static void openwifi_stop(struct ieee80211_hw *dev)
1537 {
1538 	struct openwifi_priv *priv = dev->priv;
1539 	u32 reg, reg1;
1540 	int i;
1541 
1542 	// enable ad9361 auto calibration and disable openwifi fpga spi control
1543 	priv->ad9361_phy->state->auto_cal_en = true;   // turn on auto Tx quadrature calib.
1544 	priv->ad9361_phy->state->manual_tx_quad_cal_en = false;  // turn off manual Tx quadrature calib.
1545 	xpu_api->XPU_REG_SPI_DISABLE_write(1);
1546 
1547 	//turn off radio
1548 	#if 1
1549 	ad9361_tx_mute(priv->ad9361_phy, 1);
1550 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1551 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1552 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1553 		priv->rfkill_off = 0;// 0 off, 1 on
1554 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1555 	}
1556 	else
1557 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1558 	#endif
1559 
1560 	//ieee80211_stop_queue(dev, 0);
1561 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1562 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1563 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1564 
1565 	for (i=0; i<MAX_NUM_VIF; i++) {
1566 		priv->vif[i] = NULL;
1567 	}
1568 
1569 	openwifi_free_rx_ring(priv);
1570 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1571 		openwifi_free_tx_ring(priv, i);
1572 
1573 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1574 	dmaengine_terminate_all(priv->rx_chan);
1575 	dma_release_channel(priv->rx_chan);
1576 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1577 	dmaengine_terminate_all(priv->tx_chan);
1578 	dma_release_channel(priv->tx_chan);
1579 
1580 	//priv->rf->stop(dev);
1581 
1582 	free_irq(priv->irq_rx, dev);
1583 	free_irq(priv->irq_tx, dev);
1584 
1585 // normal_out:
1586 	printk("%s openwifi_stop\n", sdr_compatible_str);
1587 }
1588 
1589 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1590 			   struct ieee80211_vif *vif)
1591 {
1592 	u32 tsft_low, tsft_high;
1593 
1594 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1595 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1596 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1597 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1598 }
1599 
1600 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1601 {
1602 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1603 	u32 tsft_low  = (tsf&0xffffffff);
1604 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1605 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1606 }
1607 
1608 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1609 {
1610 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1611 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1612 }
1613 
1614 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1615 {
1616 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1617 	return(0);
1618 }
1619 
1620 static void openwifi_beacon_work(struct work_struct *work)
1621 {
1622 	struct openwifi_vif *vif_priv =
1623 		container_of(work, struct openwifi_vif, beacon_work.work);
1624 	struct ieee80211_vif *vif =
1625 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1626 	struct ieee80211_hw *dev = vif_priv->dev;
1627 	struct ieee80211_mgmt *mgmt;
1628 	struct sk_buff *skb;
1629 
1630 	/* don't overflow the tx ring */
1631 	if (ieee80211_queue_stopped(dev, 0))
1632 		goto resched;
1633 
1634 	/* grab a fresh beacon */
1635 	skb = ieee80211_beacon_get(dev, vif);
1636 	if (!skb)
1637 		goto resched;
1638 
1639 	/*
1640 	 * update beacon timestamp w/ TSF value
1641 	 * TODO: make hardware update beacon timestamp
1642 	 */
1643 	mgmt = (struct ieee80211_mgmt *)skb->data;
1644 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1645 
1646 	/* TODO: use actual beacon queue */
1647 	skb_set_queue_mapping(skb, 0);
1648 	openwifi_tx(dev, NULL, skb);
1649 
1650 resched:
1651 	/*
1652 	 * schedule next beacon
1653 	 * TODO: use hardware support for beacon timing
1654 	 */
1655 	schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1656 	// printk("%s openwifi_beacon_work beacon_int %d\n", sdr_compatible_str, vif->bss_conf.beacon_int);
1657 }
1658 
1659 static int openwifi_add_interface(struct ieee80211_hw *dev,
1660 				 struct ieee80211_vif *vif)
1661 {
1662 	int i;
1663 	struct openwifi_priv *priv = dev->priv;
1664 	struct openwifi_vif *vif_priv;
1665 
1666 	switch (vif->type) {
1667 	case NL80211_IFTYPE_AP:
1668 	case NL80211_IFTYPE_STATION:
1669 	case NL80211_IFTYPE_ADHOC:
1670 	case NL80211_IFTYPE_MONITOR:
1671 	case NL80211_IFTYPE_MESH_POINT:
1672 		break;
1673 	default:
1674 		return -EOPNOTSUPP;
1675 	}
1676 	// let's support more than 1 interface
1677 	for (i=0; i<MAX_NUM_VIF; i++) {
1678 		if (priv->vif[i] == NULL)
1679 			break;
1680 	}
1681 
1682 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1683 
1684 	if (i==MAX_NUM_VIF)
1685 		return -EBUSY;
1686 
1687 	priv->vif[i] = vif;
1688 
1689 	/* Initialize driver private area */
1690 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1691 	vif_priv->idx = i;
1692 
1693 	vif_priv->dev = dev;
1694 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1695 	vif_priv->enable_beacon = false;
1696 
1697 	priv->mac_addr[0] = vif->addr[0];
1698 	priv->mac_addr[1] = vif->addr[1];
1699 	priv->mac_addr[2] = vif->addr[2];
1700 	priv->mac_addr[3] = vif->addr[3];
1701 	priv->mac_addr[4] = vif->addr[4];
1702 	priv->mac_addr[5] = vif->addr[5];
1703 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); // set mac addr in fpga
1704 
1705 	printk("%s openwifi_add_interface end with vif idx %d addr %02x:%02x:%02x:%02x:%02x:%02x\n", sdr_compatible_str,vif_priv->idx,
1706 	vif->addr[0],vif->addr[1],vif->addr[2],vif->addr[3],vif->addr[4],vif->addr[5]);
1707 
1708 	return 0;
1709 }
1710 
1711 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1712 				     struct ieee80211_vif *vif)
1713 {
1714 	struct openwifi_vif *vif_priv;
1715 	struct openwifi_priv *priv = dev->priv;
1716 
1717 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1718 	priv->vif[vif_priv->idx] = NULL;
1719 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1720 }
1721 
1722 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1723 {
1724 	struct openwifi_priv *priv = dev->priv;
1725 	struct ieee80211_conf *conf = &dev->conf;
1726 
1727 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
1728 		priv->rf->set_chan(dev, conf);
1729 	else
1730 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1731 
1732 	return 0;
1733 }
1734 
1735 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1736 				     struct ieee80211_vif *vif,
1737 				     struct ieee80211_bss_conf *info,
1738 				     u32 changed)
1739 {
1740 	struct openwifi_priv *priv = dev->priv;
1741 	struct openwifi_vif *vif_priv;
1742 	u32 bssid_low, bssid_high;
1743 
1744 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1745 
1746 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1747 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1748 	if (changed & BSS_CHANGED_BSSID) {
1749 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1750 		// write new bssid to our HW, and do not change bssid filter
1751 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1752 		bssid_low = ( *( (u32*)(info->bssid) ) );
1753 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1754 
1755 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1756 		//bssid_high = (bssid_high|bssid_filter_high);
1757 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1758 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1759 	}
1760 
1761 	if (changed & BSS_CHANGED_BEACON_INT) {
1762 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1763 	}
1764 
1765 	if (changed & BSS_CHANGED_TXPOWER)
1766 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1767 
1768 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1769 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1770 
1771 	if (changed & BSS_CHANGED_BASIC_RATES)
1772 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1773 
1774 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1775 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1776 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1777 		if (info->use_short_slot && priv->use_short_slot==false) {
1778 			priv->use_short_slot=true;
1779 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1780 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1781 			priv->use_short_slot=false;
1782 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1783 		}
1784 	}
1785 
1786 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1787 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1788 		vif_priv->enable_beacon = info->enable_beacon;
1789 	}
1790 
1791 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1792 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1793 		if (vif_priv->enable_beacon) {
1794 			schedule_work(&vif_priv->beacon_work.work);
1795 			printk("%s openwifi_bss_info_changed WARNING enable_beacon\n",sdr_compatible_str);
1796 		}
1797 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1798 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1799 	}
1800 }
1801 // helper function
1802 u32 log2val(u32 val){
1803 	u32 ret_val = 0 ;
1804 	while(val>1){
1805 		val = val >> 1 ;
1806 		ret_val ++ ;
1807 	}
1808 	return ret_val ;
1809 }
1810 
1811 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
1812 	      const struct ieee80211_tx_queue_params *params)
1813 {
1814 	u32 reg_val, cw_min_exp, cw_max_exp;
1815 
1816 	printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
1817 		  sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1818 
1819 	reg_val=xpu_api->XPU_REG_CSMA_CFG_read();
1820 	cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
1821 	cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
1822 	switch(queue){
1823 		case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) );  break;
1824 		case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) );  break;
1825 		case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break;
1826 		case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break;
1827 		default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
1828 	}
1829 	xpu_api->XPU_REG_CSMA_CFG_write(reg_val);
1830 	return(0);
1831 }
1832 
1833 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1834 				     struct netdev_hw_addr_list *mc_list)
1835 {
1836 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1837 	return netdev_hw_addr_list_count(mc_list);
1838 }
1839 
1840 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1841 				     unsigned int changed_flags,
1842 				     unsigned int *total_flags,
1843 				     u64 multicast)
1844 {
1845 	u32 filter_flag;
1846 
1847 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1848 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1849 
1850 	filter_flag = (*total_flags);
1851 
1852 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1853 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1854 
1855 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1856 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1857 		filter_flag = (filter_flag|MONITOR_ALL);
1858 	else
1859 		filter_flag = (filter_flag&(~MONITOR_ALL));
1860 
1861 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1862 		filter_flag = (filter_flag|MY_BEACON);
1863 
1864 	filter_flag = (filter_flag|FIF_PSPOLL);
1865 
1866 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
1867 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
1868 
1869 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
1870 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
1871 }
1872 
1873 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params)
1874 {
1875 	struct ieee80211_sta *sta = params->sta;
1876 	enum ieee80211_ampdu_mlme_action action = params->action;
1877 	// struct openwifi_priv *priv = hw->priv;
1878 	u16 max_tx_bytes, buf_size;
1879 	u32 ampdu_action_config;
1880 
1881 	if (!AGGR_ENABLE) {
1882 		return -EOPNOTSUPP;
1883 	}
1884 
1885 	switch (action)
1886 	{
1887 		case IEEE80211_AMPDU_TX_START:
1888 			ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
1889 			printk("%s openwifi_ampdu_action: start TX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1890 			break;
1891 		case IEEE80211_AMPDU_TX_STOP_CONT:
1892 		case IEEE80211_AMPDU_TX_STOP_FLUSH:
1893 		case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
1894 			ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
1895 			printk("%s openwifi_ampdu_action: stop TX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1896 			break;
1897 		case IEEE80211_AMPDU_TX_OPERATIONAL:
1898 			buf_size = 4;
1899 //			buf_size = (params->buf_size) - 1;
1900 			max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1;
1901 			ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes );
1902 			tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config);
1903 			printk("%s openwifi_ampdu_action: TX operational. tid %d max_tx_bytes %d ampdu_density %d buf_size %d\n",
1904 			sdr_compatible_str, params->tid, max_tx_bytes, sta->ht_cap.ampdu_density, buf_size);
1905 			break;
1906 		case IEEE80211_AMPDU_RX_START:
1907 			printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1908 			break;
1909 		case IEEE80211_AMPDU_RX_STOP:
1910 			printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1911 			break;
1912 		default:
1913 			return -EOPNOTSUPP;
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 static const struct ieee80211_ops openwifi_ops = {
1920 	.tx			       = openwifi_tx,
1921 	.start			   = openwifi_start,
1922 	.stop			   = openwifi_stop,
1923 	.add_interface	   = openwifi_add_interface,
1924 	.remove_interface  = openwifi_remove_interface,
1925 	.config			   = openwifi_config,
1926 	.set_antenna       = openwifi_set_antenna,
1927 	.get_antenna       = openwifi_get_antenna,
1928 	.bss_info_changed  = openwifi_bss_info_changed,
1929 	.conf_tx		   = openwifi_conf_tx,
1930 	.prepare_multicast = openwifi_prepare_multicast,
1931 	.configure_filter  = openwifi_configure_filter,
1932 	.rfkill_poll	   = openwifi_rfkill_poll,
1933 	.get_tsf		   = openwifi_get_tsf,
1934 	.set_tsf		   = openwifi_set_tsf,
1935 	.reset_tsf		   = openwifi_reset_tsf,
1936 	.set_rts_threshold = openwifi_set_rts_threshold,
1937 	.ampdu_action      = openwifi_ampdu_action,
1938 	.testmode_cmd	   = openwifi_testmode_cmd,
1939 };
1940 
1941 static const struct of_device_id openwifi_dev_of_ids[] = {
1942 	{ .compatible = "sdr,sdr", },
1943 	{}
1944 };
1945 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
1946 
1947 static int custom_match_spi_dev(struct device *dev, void *data)
1948 {
1949     const char *name = data;
1950 
1951 	bool ret = sysfs_streq(name, dev->of_node->name);
1952 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
1953 	return ret;
1954 }
1955 
1956 static int custom_match_platform_dev(struct device *dev, void *data)
1957 {
1958 	struct platform_device *plat_dev = to_platform_device(dev);
1959 	const char *name = data;
1960 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
1961 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
1962 
1963 	if (match_flag) {
1964 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
1965 	}
1966 	return(match_flag);
1967 }
1968 
1969 static int openwifi_dev_probe(struct platform_device *pdev)
1970 {
1971 	struct ieee80211_hw *dev;
1972 	struct openwifi_priv *priv;
1973 	int err=1, rand_val;
1974 	const char *chip_name, *fpga_model;
1975 	u32 reg, i;//, reg1;
1976 
1977 	struct device_node *np = pdev->dev.of_node;
1978 
1979 	struct device *tmp_dev;
1980 	struct platform_device *tmp_pdev;
1981 	struct iio_dev *tmp_indio_dev;
1982 	// struct gpio_leds_priv *tmp_led_priv;
1983 
1984 	printk("\n");
1985 
1986 	if (np) {
1987 		const struct of_device_id *match;
1988 
1989 		match = of_match_node(openwifi_dev_of_ids, np);
1990 		if (match) {
1991 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
1992 			err = 0;
1993 		}
1994 	}
1995 
1996 	if (err)
1997 		return err;
1998 
1999 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
2000 	if (!dev) {
2001 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
2002 		err = -ENOMEM;
2003 		goto err_free_dev;
2004 	}
2005 
2006 	priv = dev->priv;
2007 	priv->pdev = pdev;
2008 
2009 	err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
2010 	if(err < 0) {
2011 		printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
2012 		priv->fpga_type = SMALL_FPGA;
2013 	} else {
2014 		// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
2015 		if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
2016 			priv->fpga_type = LARGE_FPGA;
2017 		// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
2018 		else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
2019 			priv->fpga_type = SMALL_FPGA;
2020 	}
2021 
2022 	// //-------------find ad9361-phy driver for lo/channel control---------------
2023 	priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
2024 	priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
2025 	priv->last_tx_quad_cal_lo = 1000;
2026 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
2027 	if (tmp_dev == NULL) {
2028 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
2029 		err = -ENODEV;
2030 		goto err_free_dev;
2031 	}
2032 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
2033 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
2034 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
2035 		err = -ENODEV;
2036 		goto err_free_dev;
2037 	}
2038 
2039 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
2040 	if (!(priv->ad9361_phy)) {
2041 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
2042 		err = -ENODEV;
2043 		goto err_free_dev;
2044 	}
2045 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
2046 
2047 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
2048 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
2049 	if (!tmp_dev) {
2050 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
2051 		err = -ENODEV;
2052 		goto err_free_dev;
2053 	}
2054 
2055 	tmp_pdev = to_platform_device(tmp_dev);
2056 	if (!tmp_pdev) {
2057 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
2058 		err = -ENODEV;
2059 		goto err_free_dev;
2060 	}
2061 
2062 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
2063 	if (!tmp_indio_dev) {
2064 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
2065 		err = -ENODEV;
2066 		goto err_free_dev;
2067 	}
2068 
2069 	priv->dds_st = iio_priv(tmp_indio_dev);
2070 	if (!(priv->dds_st)) {
2071 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
2072 		err = -ENODEV;
2073 		goto err_free_dev;
2074 	}
2075 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
2076 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
2077 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
2078 
2079 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
2080 	// turn off radio by muting tx
2081 	// ad9361_tx_mute(priv->ad9361_phy, 1);
2082 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
2083 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2084 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
2085 	// 	priv->rfkill_off = 0;// 0 off, 1 on
2086 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
2087 	// }
2088 	// else
2089 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
2090 
2091 	// //-----------------------------parse the test_mode input--------------------------------
2092 	if (test_mode&1)
2093 		AGGR_ENABLE = true;
2094 
2095 	// if (test_mode&2)
2096 	// 	TX_OFFSET_TUNING_ENABLE = false;
2097 
2098 	priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel()
2099 	priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized
2100 
2101 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2102 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2103 
2104 	priv->xpu_cfg = XPU_NORMAL;
2105 
2106 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
2107 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
2108 
2109 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
2110 	if (priv->rf_bw == 20000000) { //DO NOT USE. Not used for long time.
2111 		priv->rx_intf_cfg = RX_INTF_BYPASS;
2112 		priv->tx_intf_cfg = TX_INTF_BYPASS;
2113 		//priv->rx_freq_offset_to_lo_MHz = 0;
2114 		//priv->tx_freq_offset_to_lo_MHz = 0;
2115 	} else if (priv->rf_bw == 40000000) {
2116 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
2117 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
2118 
2119 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
2120 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2121 		if (TX_OFFSET_TUNING_ENABLE)
2122 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
2123 		else
2124 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2125 		// // try another antenna option
2126 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
2127 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
2128 
2129 		#if 0
2130 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
2131 			priv->rx_freq_offset_to_lo_MHz = -10;
2132 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
2133 			priv->rx_freq_offset_to_lo_MHz = 10;
2134 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
2135 			priv->rx_freq_offset_to_lo_MHz = 0;
2136 		} else {
2137 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
2138 		}
2139 		#endif
2140 	} else {
2141 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
2142 		err = -EBADRQC;
2143 		goto err_free_dev;
2144 	}
2145 
2146 	printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att);
2147 
2148 	priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2));
2149 	priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2);
2150 
2151 	priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK;
2152 	priv->ctrl_out.index  =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
2153 
2154 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
2155 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
2156 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
2157 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
2158 
2159 	priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att;
2160 
2161 	//let's by default turn radio on when probing
2162 	err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
2163 	if (err) {
2164 		printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err);
2165 		err = -EIO;
2166 		goto err_free_dev;
2167 	}
2168 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
2169 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
2170 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
2171 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
2172 
2173 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
2174 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
2175 		priv->rfkill_off = 1;// 0 off, 1 on
2176 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
2177 	} else
2178 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
2179 
2180 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
2181 
2182 	// //set ad9361 in certain mode
2183 	#if 0
2184 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
2185 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2186 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
2187 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2188 
2189 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
2190 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
2191 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
2192 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
2193 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
2194 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
2195 	#endif
2196 
2197 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
2198 
2199 	SET_IEEE80211_DEV(dev, &pdev->dev);
2200 	platform_set_drvdata(pdev, dev);
2201 
2202 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
2203 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
2204 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
2205 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
2206 
2207 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
2208 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
2209 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
2210 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
2211 
2212 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
2213 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
2214 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
2215 	priv->ampdu_reference = 0;
2216 
2217 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
2218 	priv->band_2GHz.channels = priv->channels_2GHz;
2219 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
2220 	priv->band_2GHz.bitrates = priv->rates_2GHz;
2221 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
2222 	priv->band_2GHz.ht_cap.ht_supported = true;
2223 	// priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
2224 	if (AGGR_ENABLE) {
2225 		priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2226 		priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2227 	}
2228 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
2229 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2230 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2231 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
2232 
2233 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
2234 	priv->band_5GHz.channels = priv->channels_5GHz;
2235 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
2236 	priv->band_5GHz.bitrates = priv->rates_5GHz;
2237 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
2238 	priv->band_5GHz.ht_cap.ht_supported = true;
2239 	// priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
2240 	if (AGGR_ENABLE) {
2241 		priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2242 		priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2243 	}
2244 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
2245 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2246 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2247 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2248 
2249 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2250 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2251 
2252 	// ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); // remove this because we don't want: mac80211.h: host buffers frame for PS and we fetch them via ieee80211_get_buffered_bc()
2253 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2254 	ieee80211_hw_set(dev, BEACON_TX_STATUS);//mac80211.h: The device/driver provides TX status for sent beacons.
2255 
2256 	ieee80211_hw_set(dev, REPORTS_TX_ACK_STATUS);//mac80211.h: Hardware can provide ack status reports of Tx frames to the stack
2257 
2258 	// * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device
2259 	// *	autonomously manages the PS status of connected stations. When
2260 	// *	this flag is set mac80211 will not trigger PS mode for connected
2261 	// *	stations based on the PM bit of incoming frames.
2262 	// *	Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure
2263 	// *	the PS mode of connected stations.
2264 	ieee80211_hw_set(dev, AP_LINK_PS);
2265 
2266 	if (AGGR_ENABLE) {
2267 		ieee80211_hw_set(dev, AMPDU_AGGREGATION);
2268 	}
2269 
2270 	dev->extra_tx_headroom = LEN_MPDU_DELIM;
2271 
2272 	dev->vif_data_size = sizeof(struct openwifi_vif);
2273 	dev->wiphy->interface_modes =
2274 			BIT(NL80211_IFTYPE_MONITOR)|
2275 			BIT(NL80211_IFTYPE_P2P_GO) |
2276 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
2277 			BIT(NL80211_IFTYPE_AP) |
2278 			BIT(NL80211_IFTYPE_STATION) |
2279 			BIT(NL80211_IFTYPE_ADHOC) |
2280 			BIT(NL80211_IFTYPE_MESH_POINT) |
2281 			BIT(NL80211_IFTYPE_OCB);
2282 	dev->wiphy->iface_combinations = &openwifi_if_comb;
2283 	dev->wiphy->n_iface_combinations = 1;
2284 
2285 	dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK;
2286 	dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK;
2287 
2288 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2289 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2290 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2291 
2292 	chip_name = "ZYNQ";
2293 
2294 	/* we declare to MAC80211 all the queues except for beacon queue
2295 	 * that will be eventually handled by DRV.
2296 	 * TX rings are arranged in such a way that lower is the IDX,
2297 	 * higher is the priority, in order to achieve direct mapping
2298 	 * with mac80211, however the beacon queue is an exception and it
2299 	 * is mapped on the highst tx ring IDX.
2300 	 */
2301 	dev->queues = MAX_NUM_HW_QUEUE;
2302 	//dev->queues = 1;
2303 
2304 	ieee80211_hw_set(dev, SIGNAL_DBM);
2305 
2306 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2307 
2308 	priv->rf = &ad9361_rf_ops;
2309 
2310 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2311 	priv->slice_idx = 0xFFFFFFFF;
2312 
2313 	sg_init_table(&(priv->tx_sg), 1);
2314 
2315 	get_random_bytes(&rand_val, sizeof(rand_val));
2316     rand_val%=250;
2317 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
2318 	priv->mac_addr[5]=rand_val+1;
2319 	//priv->mac_addr[5]=0x11;
2320 	if (!is_valid_ether_addr(priv->mac_addr)) {
2321 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2322 		eth_random_addr(priv->mac_addr);
2323 	}
2324 	printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2325 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2326 
2327 	spin_lock_init(&priv->lock);
2328 
2329 	err = ieee80211_register_hw(dev);
2330 	if (err) {
2331 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2332 		err = -EIO;
2333 		goto err_free_dev;
2334 	} else {
2335 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2336 	}
2337 
2338 	// // //--------------------hook leds (not complete yet)--------------------------------
2339 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
2340 	// if (!tmp_dev) {
2341 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2342 	// 	err = -ENOMEM;
2343 	// 	goto err_free_dev;
2344 	// }
2345 
2346 	// tmp_pdev = to_platform_device(tmp_dev);
2347 	// if (!tmp_pdev) {
2348 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2349 	// 	err = -ENOMEM;
2350 	// 	goto err_free_dev;
2351 	// }
2352 
2353 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2354 	// if (!tmp_led_priv) {
2355 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2356 	// 	err = -ENOMEM;
2357 	// 	goto err_free_dev;
2358 	// }
2359 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2360 	// if (tmp_led_priv->num_leds!=4){
2361 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2362 	// 	err = -ENOMEM;
2363 	// 	goto err_free_dev;
2364 	// }
2365 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2366 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2367 	// priv->num_led = tmp_led_priv->num_leds;
2368 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2369 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2370 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2371 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2372 
2373 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2374 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2375 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2376 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2377 
2378 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2379 		   priv->mac_addr, chip_name, priv->rf->name);
2380 
2381 	openwifi_rfkill_init(dev);
2382 	return 0;
2383 
2384  err_free_dev:
2385 	ieee80211_free_hw(dev);
2386 
2387 	return err;
2388 }
2389 
2390 static int openwifi_dev_remove(struct platform_device *pdev)
2391 {
2392 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2393 
2394 	if (!dev) {
2395 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2396 		return(-1);
2397 	}
2398 
2399 	openwifi_rfkill_exit(dev);
2400 	ieee80211_unregister_hw(dev);
2401 	ieee80211_free_hw(dev);
2402 	return(0);
2403 }
2404 
2405 static struct platform_driver openwifi_dev_driver = {
2406 	.driver = {
2407 		.name = "sdr,sdr",
2408 		.owner = THIS_MODULE,
2409 		.of_match_table = openwifi_dev_of_ids,
2410 	},
2411 	.probe = openwifi_dev_probe,
2412 	.remove = openwifi_dev_remove,
2413 };
2414 
2415 module_platform_driver(openwifi_dev_driver);
2416