xref: /openwifi/driver/sdr.c (revision 855b59fd6a93401097234a1948a6fe61b591cced)
1 //Author: Xianjun Jiao. [email protected]; [email protected]
2 
3 #include <linux/bitops.h>
4 #include <linux/dmapool.h>
5 #include <linux/io.h>
6 #include <linux/iopoll.h>
7 #include <linux/of_address.h>
8 #include <linux/of_platform.h>
9 #include <linux/of_irq.h>
10 #include <linux/slab.h>
11 #include <linux/clk.h>
12 #include <linux/io-64-nonatomic-lo-hi.h>
13 
14 #include <linux/delay.h>
15 #include <linux/interrupt.h>
16 
17 #include <linux/dmaengine.h>
18 #include <linux/slab.h>
19 #include <linux/delay.h>
20 #include <linux/etherdevice.h>
21 
22 #include <linux/init.h>
23 #include <linux/kthread.h>
24 #include <linux/module.h>
25 #include <linux/of_dma.h>
26 #include <linux/platform_device.h>
27 #include <linux/random.h>
28 #include <linux/slab.h>
29 #include <linux/wait.h>
30 #include <linux/sched/task.h>
31 #include <linux/dma/xilinx_dma.h>
32 #include <linux/spi/spi.h>
33 #include <net/mac80211.h>
34 
35 #include <linux/clk.h>
36 #include <linux/clkdev.h>
37 #include <linux/clk-provider.h>
38 
39 #include <linux/iio/iio.h>
40 #include <linux/iio/sysfs.h>
41 
42 #include <linux/gpio.h>
43 #include <linux/leds.h>
44 
45 #define IIO_AD9361_USE_PRIVATE_H_
46 #include "ad9361/ad9361_regs.h"
47 #include "ad9361/ad9361.h"
48 #include "ad9361/ad9361_private.h"
49 
50 #include <../../drivers/iio/frequency/cf_axi_dds.h>
51 
52 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
53 #include "hw_def.h"
54 #include "sdr.h"
55 #include "git_rev.h"
56 
57 // driver API of component driver
58 extern struct tx_intf_driver_api *tx_intf_api;
59 extern struct rx_intf_driver_api *rx_intf_api;
60 extern struct openofdm_tx_driver_api *openofdm_tx_api;
61 extern struct openofdm_rx_driver_api *openofdm_rx_api;
62 extern struct xpu_driver_api *xpu_api;
63 
64 static int test_mode = 0; // 0 normal; 1 rx test
65 
66 MODULE_AUTHOR("Xianjun Jiao");
67 MODULE_DESCRIPTION("SDR driver");
68 MODULE_LICENSE("GPL v2");
69 
70 module_param(test_mode, int, 0);
71 MODULE_PARM_DESC(myint, "test_mode. 0 normal; 1 rx test");
72 
73 // ---------------rfkill---------------------------------------
74 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
75 {
76 	int reg;
77 
78 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
79 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
80 	else
81 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
82 
83 	if (reg == AD9361_RADIO_ON_TX_ATT)
84 		return true;// 0 off, 1 on
85 	return false;
86 }
87 
88 void openwifi_rfkill_init(struct ieee80211_hw *hw)
89 {
90 	struct openwifi_priv *priv = hw->priv;
91 
92 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
93 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
94 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
95 	wiphy_rfkill_start_polling(hw->wiphy);
96 }
97 
98 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
99 {
100 	bool enabled;
101 	struct openwifi_priv *priv = hw->priv;
102 
103 	enabled = openwifi_is_radio_enabled(priv);
104 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
105 	if (unlikely(enabled != priv->rfkill_off)) {
106 		priv->rfkill_off = enabled;
107 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
108 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
109 	}
110 }
111 
112 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
113 {
114 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
115 	wiphy_rfkill_stop_polling(hw->wiphy);
116 }
117 //----------------rfkill end-----------------------------------
118 
119 //static void ad9361_rf_init(void);
120 //static void ad9361_rf_stop(void);
121 //static void ad9361_rf_calc_rssi(void);
122 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
123 				  struct ieee80211_conf *conf)
124 {
125 	struct openwifi_priv *priv = dev->priv;
126 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz + priv->drv_rx_reg_val[DRV_RX_REG_IDX_EXTRA_FO];
127 	u32 actual_tx_lo;
128 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
129 
130 	if (change_flag) {
131 		priv->actual_rx_lo = actual_rx_lo;
132 
133 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
134 
135 		ad9361_clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) );
136 		ad9361_clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) );
137 
138 		if (actual_rx_lo<2412) {
139 			priv->rssi_correction = 153;
140 		} else if (actual_rx_lo<=2484) {
141 			priv->rssi_correction = 153;
142 		} else if (actual_rx_lo<5160) {
143 			priv->rssi_correction = 153;
144 		} else if (actual_rx_lo<=5240) {
145 			priv->rssi_correction = 145;
146 		} else if (actual_rx_lo<=5320) {
147 			priv->rssi_correction = 148;
148 		} else {
149 			priv->rssi_correction = 148;
150 		}
151 
152 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
153 		xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44
154 
155 		if (actual_rx_lo < 2500) {
156 			//priv->slot_time = 20; //20 is default slot time in ERP(OFDM)/11g 2.4G; short one is 9.
157 			//xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_2_4GHZ<<16);
158 			if (priv->band != BAND_2_4GHZ) {
159 				priv->band = BAND_2_4GHZ;
160 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
161 			}
162 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2)*10)<<16) | 10 ); // high 16 bits to cover sig valid of ACK packet, low 16 bits is adjustment of fcs valid waiting time.  let's add 2us for those device that is really "slow"!
163 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2+2)*10)<<16) | 10 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
164 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 0 );
165 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((10)*10)<<16);
166 		}
167 		else {
168 			//priv->slot_time = 9; //default slot time of OFDM PHY (OFDM by default means 5GHz)
169 			// xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_5_8GHZ<<16);
170 			if (priv->band != BAND_5_8GHZ) {
171 				priv->band = BAND_5_8GHZ;
172 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
173 			}
174 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2)*10)<<16) | 10 ); // because 5GHz needs longer SIFS (16 instead of 10), we need 58 instead of 48 for XPU low mac setting.  let's add 2us for those device that is really "slow"!
175 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2+2)*10)<<16) | 10 );//add 2us for longer fir.  BUT corrding to FPGA probing test, we do not need this
176 			// //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 60*10 );
177 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 50*10 );// for longer fir we need this delay 1us shorter
178 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((16)*10)<<16);
179 		}
180 		//printk("%s ad9361_rf_set_channel %dM rssi_correction %d\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction);
181 		// //-- use less
182 		//clk_prepare_enable(priv->ad9361_phy->clks[RX_RFPLL]);
183 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
184 		//ad9361_set_trx_clock_chain_default(priv->ad9361_phy);
185 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
186 	}
187 	printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag);
188 }
189 
190 const struct openwifi_rf_ops ad9361_rf_ops = {
191 	.name		= "ad9361",
192 //	.init		= ad9361_rf_init,
193 //	.stop		= ad9361_rf_stop,
194 	.set_chan	= ad9361_rf_set_channel,
195 //	.calc_rssi	= ad9361_rf_calc_rssi,
196 };
197 
198 u16 reverse16(u16 d) {
199 	union u16_byte2 tmp0, tmp1;
200 	tmp0.a = d;
201 	tmp1.c[0] = tmp0.c[1];
202 	tmp1.c[1] = tmp0.c[0];
203 	return(tmp1.a);
204 }
205 
206 u32 reverse32(u32 d) {
207 	union u32_byte4 tmp0, tmp1;
208 	tmp0.a = d;
209 	tmp1.c[0] = tmp0.c[3];
210 	tmp1.c[1] = tmp0.c[2];
211 	tmp1.c[2] = tmp0.c[1];
212 	tmp1.c[3] = tmp0.c[0];
213 	return(tmp1.a);
214 }
215 
216 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
217 {
218 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
219 	int i;
220 
221 	ring->stop_flag = 0;
222 	ring->bd_wr_idx = 0;
223 	ring->bd_rd_idx = 0;
224 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
225 	if (ring->bds==NULL) {
226 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
227 		return -ENOMEM;
228 	}
229 
230 	for (i = 0; i < NUM_TX_BD; i++) {
231 		ring->bds[i].skb_linked=0; // for tx, skb is from upper layer
232 		//at frist right after skb allocated, head, data, tail are the same.
233 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from uppler layer in tx routine
234 	}
235 
236 	return 0;
237 }
238 
239 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
240 {
241 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
242 	int i;
243 
244 	ring->stop_flag = 0;
245 	ring->bd_wr_idx = 0;
246 	ring->bd_rd_idx = 0;
247 	for (i = 0; i < NUM_TX_BD; i++) {
248 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
249 			continue;
250 		if (ring->bds[i].dma_mapping_addr != 0)
251 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
252 //		if (ring->bds[i].skb_linked!=NULL)
253 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
254 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
255 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
256 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08llx\n", sdr_compatible_str,
257 			ring_idx, i, (void*)(ring->bds[i].skb_linked), ring->bds[i].dma_mapping_addr);
258 
259 		ring->bds[i].skb_linked=0;
260 		ring->bds[i].dma_mapping_addr = 0;
261 	}
262 	if (ring->bds)
263 		kfree(ring->bds);
264 	ring->bds = NULL;
265 }
266 
267 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
268 {
269 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
270 	if (!priv->rx_cyclic_buf) {
271 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
272 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
273 		return(-1);
274 	}
275 	return 0;
276 }
277 
278 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
279 {
280 	if (priv->rx_cyclic_buf)
281 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
282 
283 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
284 	priv->rx_cyclic_buf = 0;
285 }
286 
287 static int rx_dma_setup(struct ieee80211_hw *dev){
288 	struct openwifi_priv *priv = dev->priv;
289 	struct dma_device *rx_dev = priv->rx_chan->device;
290 
291 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
292 	if (!(priv->rxd)) {
293 		openwifi_free_rx_ring(priv);
294 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
295 		return(-1);
296 	}
297 	priv->rxd->callback = 0;
298 	priv->rxd->callback_param = 0;
299 
300 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
301 
302 	if (dma_submit_error(priv->rx_cookie)) {
303 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
304 		return(-1);
305 	}
306 
307 	dma_async_issue_pending(priv->rx_chan);
308 	return(0);
309 }
310 
311 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
312 {
313 	struct ieee80211_hw *dev = dev_id;
314 	struct openwifi_priv *priv = dev->priv;
315 	struct ieee80211_rx_status rx_status = {0};
316 	struct sk_buff *skb;
317 	struct ieee80211_hdr *hdr;
318 	u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0, ht_flag, short_gi;//, fc_di;
319 	// u32 dma_driver_buf_idx_mod;
320 	u8 *pdata_tmp, fcs_ok, target_buf_idx;//, phy_rx_sn_hw;
321 	s8 signal;
322 	u16 rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0;
323 	bool content_ok = false, len_overflow = false;
324 	struct dma_tx_state state;
325 	static u8 target_buf_idx_old = 0xFF;
326 
327 	spin_lock(&priv->lock);
328 	priv->rx_chan->device->device_tx_status(priv->rx_chan,priv->rx_cookie,&state);
329 	target_buf_idx = ((state.residue-1)&(NUM_RX_BD-1));
330 
331 	while( target_buf_idx_old!=target_buf_idx ) { // loop all rx buffers that have new rx packets
332 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
333 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
334 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
335 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
336 		rssi_val =     (*((u16*)(pdata_tmp+8 )));
337 		len =          (*((u16*)(pdata_tmp+12)));
338 
339 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
340 
341 		rate_idx =     (*((u16*)(pdata_tmp+14)));
342 		short_gi =     ((rate_idx&0x20)!=0);
343 		rate_idx =     (rate_idx&0xDF);
344 
345 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
346 
347 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
348 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
349 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
350 		fcs_ok = ((fcs_ok&0x80)!=0);
351 		ht_flag = ((rate_idx&0x10)!=0);
352 
353 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
354 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
355 			// 	printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
356 			// }
357 			content_ok = true;
358 		} else {
359 			printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str);
360 			content_ok = false;
361 		}
362 
363 		rssi_val = (rssi_val>>1);
364 		if ( (rssi_val+128)<priv->rssi_correction )
365 			signal = -128;
366 		else
367 			signal = rssi_val - priv->rssi_correction;
368 
369 		// fc_di =        (*((u32*)(pdata_tmp+16)));
370 		// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
371 		// addr1_low32  = (*((u32*)(pdata_tmp+16+4+2)));
372 		// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
373 		// addr2_low32  = (*((u32*)(pdata_tmp+16+6+4+2)));
374 		// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
375 		// addr3_low32  = (*((u32*)(pdata_tmp+16+12+4+2)));
376 		if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) {
377 			hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
378 			addr1_low32  = *((u32*)(hdr->addr1+2));
379 			addr1_high16 = *((u16*)(hdr->addr1));
380 			if (len>=20) {
381 				addr2_low32  = *((u32*)(hdr->addr2+2));
382 				addr2_high16 = *((u16*)(hdr->addr2));
383 			}
384 			if (len>=26) {
385 				addr3_low32  = *((u32*)(hdr->addr3+2));
386 				addr3_high16 = *((u16*)(hdr->addr3));
387 			}
388 			if (len>=28)
389 				sc = hdr->seq_ctrl;
390 
391 			if ( addr1_low32!=0xffffffff || addr1_high16!=0xffff )
392 				printk("%s openwifi_rx_interrupt:%4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
393 					len, ht_flag, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
394 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
395 					sc, fcs_ok, target_buf_idx_old, signal);
396 		}
397 
398 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
399 		if (content_ok) {
400 			skb = dev_alloc_skb(len);
401 			if (skb) {
402 				skb_put_data(skb,pdata_tmp+16,len);
403 
404 				rx_status.antenna = 0;
405 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
406 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
407 				rx_status.signal = signal;
408 				rx_status.freq = dev->conf.chandef.chan->center_freq;
409 				rx_status.band = dev->conf.chandef.chan->band;
410 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
411 				rx_status.flag |= RX_FLAG_MACTIME_START;
412 				if (!fcs_ok)
413 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
414 				if (rate_idx <= 15)
415 					rx_status.encoding = RX_ENC_LEGACY;
416 				else
417 					rx_status.encoding = RX_ENC_HT;
418 				rx_status.bw = RATE_INFO_BW_20;
419 				if (short_gi)
420 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
421 
422 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
423 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
424 			} else
425 				printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
426 		}
427 		loop_count++;
428 	}
429 
430 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) )
431 		printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
432 
433 // openwifi_rx_interrupt_out:
434 	spin_unlock(&priv->lock);
435 	return IRQ_HANDLED;
436 }
437 
438 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
439 {
440 	struct ieee80211_hw *dev = dev_id;
441 	struct openwifi_priv *priv = dev->priv;
442 	struct openwifi_ring *ring;
443 	struct sk_buff *skb;
444 	struct ieee80211_tx_info *info;
445 	u32 reg_val, hw_queue_len, prio, queue_idx, dma_fifo_no_room_flag, loop_count=0;//, i;
446 	u8 tx_result_report;
447 	// u16 prio_rd_idx_store[64]={0};
448 
449 	spin_lock(&priv->lock);
450 
451 	while(1) { // loop all packets that have been sent by FPGA
452 		reg_val = tx_intf_api->TX_INTF_REG_PKT_INFO_read();
453 		if (reg_val!=0x7FFFF) {
454 			prio = (reg_val>>(5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
455 			ring = &(priv->tx_ring[prio]);
456 			ring->bd_rd_idx = ((reg_val>>5)&MAX_PHY_TX_SN);
457 			skb = ring->bds[ring->bd_rd_idx].skb_linked;
458 
459 			dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
460 					skb->len, DMA_MEM_TO_DEV);
461 
462 			if ( ring->stop_flag == 1) {
463 				// Wake up Linux queue if FPGA and driver ring have room
464 				queue_idx = ((reg_val>>(5+NUM_BIT_MAX_PHY_TX_SN))&(MAX_NUM_HW_QUEUE-1));
465 				dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
466 				hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
467 
468 				// printk("%s openwifi_tx_interrupt: WARNING loop %d prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d call %d\n", sdr_compatible_str,
469 				// loop_count, prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, priv->call_counter);
470 
471 				if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) {
472 					// printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter);
473 					printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str,
474 					prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx);
475 					ieee80211_wake_queue(dev, prio);
476 					ring->stop_flag = 0;
477 				}
478 			}
479 
480 			if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) ) {
481 				printk("%s openwifi_tx_interrupt: WARNING %08x %08x %08x %08x\n", sdr_compatible_str, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
482 				continue;
483 			}
484 
485 			skb_pull(skb, LEN_PHY_HEADER);
486 			//skb_trim(skb, num_byte_pad_skb);
487 			info = IEEE80211_SKB_CB(skb);
488 			ieee80211_tx_info_clear_status(info);
489 
490 			tx_result_report = (reg_val&0x1F);
491 			if ( !(info->flags & IEEE80211_TX_CTL_NO_ACK) ) {
492 				if ((tx_result_report&0x10)==0)
493 					info->flags |= IEEE80211_TX_STAT_ACK;
494 
495 				// printk("%s openwifi_tx_interrupt: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
496 				// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
497 				// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
498 				// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
499 				// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
500 			}
501 
502 			info->status.rates[0].count = (tx_result_report&0xF) + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
503 			info->status.rates[1].idx = -1;
504 			info->status.rates[2].idx = -1;
505 			info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
506 
507 			if ( (tx_result_report&0x10) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
508 				printk("%s openwifi_tx_interrupt: WARNING tx_result %02x prio%d wr%d rd%d\n", sdr_compatible_str, tx_result_report, prio, ring->bd_wr_idx, ring->bd_rd_idx);
509 
510 			ieee80211_tx_status_irqsafe(dev, skb);
511 
512 			loop_count++;
513 
514 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
515 
516 		} else
517 			break;
518 	}
519 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
520 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
521 
522 	spin_unlock(&priv->lock);
523 	return IRQ_HANDLED;
524 }
525 
526 u32 gen_parity(u32 v){
527 	v ^= v >> 1;
528 	v ^= v >> 2;
529 	v = (v & 0x11111111U) * 0x11111111U;
530 	return (v >> 28) & 1;
531 }
532 
533 u8 gen_ht_sig_crc(u64 m)
534 {
535 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, ht_sig_crc;
536 
537 	for (i = 0; i < 34; i++)
538 	{
539 		temp = c[7] ^ ((m >> i) & 0x01);
540 
541 		c[7] = c[6];
542 		c[6] = c[5];
543 		c[5] = c[4];
544 		c[4] = c[3];
545 		c[3] = c[2];
546 		c[2] = c[1] ^ temp;
547 		c[1] = c[0] ^ temp;
548 		c[0] = temp;
549 	}
550 	ht_sig_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
551 
552 	return ht_sig_crc;
553 }
554 
555 u32 calc_phy_header(u8 rate_hw_value, bool use_ht_rate, bool use_short_gi, u32 len, u8 *bytes){
556 	//u32 signal_word = 0 ;
557 	u8  SIG_RATE = 0, HT_SIG_RATE;
558 	u8	len_2to0, len_10to3, len_msb,b0,b1,b2, header_parity ;
559 	u32 l_len, ht_len, ht_sig1, ht_sig2;
560 
561 	// printk("rate_hw_value=%u\tuse_ht_rate=%u\tuse_short_gi=%u\tlen=%u\n", rate_hw_value, use_ht_rate, use_short_gi, len);
562 
563 	// HT-mixed mode ht signal
564 
565 	if(use_ht_rate)
566 	{
567 		SIG_RATE = wifi_mcs_table_11b_force_up[4];
568 		HT_SIG_RATE = rate_hw_value;
569 		l_len  = 24 * len / wifi_n_dbps_ht_table[rate_hw_value];
570 		ht_len = len;
571 	}
572 	else
573 	{
574 		// rate_hw_value = (rate_hw_value<=4?0:(rate_hw_value-4));
575 		// SIG_RATE = wifi_mcs_table_phy_tx[rate_hw_value];
576 		SIG_RATE = wifi_mcs_table_11b_force_up[rate_hw_value];
577 		l_len = len;
578 	}
579 
580 	len_2to0 = l_len & 0x07 ;
581 	len_10to3 = (l_len >> 3 ) & 0xFF ;
582 	len_msb = (l_len >> 11) & 0x01 ;
583 
584 	b0=SIG_RATE | (len_2to0 << 5) ;
585 	b1 = len_10to3 ;
586 	header_parity = gen_parity((len_msb << 16)| (b1<<8) | b0) ;
587 	b2 = ( len_msb | (header_parity << 1) ) ;
588 
589 	memset(bytes,0,16);
590 	bytes[0] = b0 ;
591 	bytes[1] = b1 ;
592     bytes[2] = b2;
593 
594 	// HT-mixed mode signal
595 	if(use_ht_rate)
596 	{
597 		ht_sig1 = (HT_SIG_RATE & 0x7F) | ((ht_len << 8) & 0xFFFF00);
598 		ht_sig2 = 0x04 | (use_short_gi << 7);
599 		ht_sig2 = ht_sig2 | (gen_ht_sig_crc(ht_sig1 | ht_sig2 << 24) << 10);
600 
601 	    bytes[3]  = 1;
602 	    bytes[8]  = (ht_sig1 & 0xFF);
603 	    bytes[9]  = (ht_sig1 >> 8)  & 0xFF;
604 	    bytes[10] = (ht_sig1 >> 16) & 0xFF;
605 	    bytes[11] = (ht_sig2 & 0xFF);
606 	    bytes[12] = (ht_sig2 >> 8)  & 0xFF;
607 	    bytes[13] = (ht_sig2 >> 16) & 0xFF;
608 
609 		return(HT_SIG_RATE);
610 	}
611 	else
612 	{
613 		//signal_word = b0+(b1<<8)+(b2<<16) ;
614 		//return signal_word;
615 		return(SIG_RATE);
616 	}
617 }
618 
619 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
620 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
621 {
622 	return container_of(led_cdev, struct gpio_led_data, cdev);
623 }
624 
625 static void openwifi_tx(struct ieee80211_hw *dev,
626 		       struct ieee80211_tx_control *control,
627 		       struct sk_buff *skb)
628 {
629 	struct openwifi_priv *priv = dev->priv;
630 	unsigned long flags;
631 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
632 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
633 	struct openwifi_ring *ring;
634 	dma_addr_t dma_mapping_addr;
635 	unsigned int prio, i;
636 	u32 num_dma_symbol, len_mac_pdu, num_dma_byte, len_phy_packet, num_byte_pad;
637 	u32 rate_signal_value,rate_hw_value,ack_flag;
638 	u32 pkt_need_ack, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, dma_reg, cts_reg;//, openofdm_state_history;
639 	u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value = 0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration;
640 	u8 fc_flag,fc_type,fc_subtype,retry_limit_raw,*dma_buf,retry_limit_hw_value,rc_flags;
641 	bool use_rts_cts, use_cts_protect, use_ht_rate=false, use_short_gi, addr_flag, cts_use_traffic_rate=false, force_use_cts_protect=false;
642 	__le16 frame_control,duration_id;
643 	u32 dma_fifo_no_room_flag, hw_queue_len;
644 	enum dma_status status;
645 	// static bool led_status=0;
646 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
647 
648 	// if ( (priv->phy_tx_sn&7) ==0 ) {
649 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
650 	// 	if (openofdm_state_history!=openofdm_state_history_old){
651 	// 		led_status = (~led_status);
652 	// 		openofdm_state_history_old = openofdm_state_history;
653 	// 		gpiod_set_value(led_dat->gpiod, led_status);
654 	// 	}
655 	// }
656 
657 	if (test_mode==1){
658 		printk("%s openwifi_tx: WARNING test_mode==1\n", sdr_compatible_str);
659 		goto openwifi_tx_early_out;
660 	}
661 
662 	if (skb->data_len>0) {// more data are not in linear data area skb->data
663 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
664 		goto openwifi_tx_early_out;
665 	}
666 
667 	len_mac_pdu = skb->len;
668 	len_phy_packet = len_mac_pdu + LEN_PHY_HEADER;
669 	num_dma_symbol = (len_phy_packet>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_phy_packet&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
670 
671 	// get Linux priority/queue setting info and target mac address
672 	prio = skb_get_queue_mapping(skb);
673 	addr1_low32  = *((u32*)(hdr->addr1+2));
674 	ring = &(priv->tx_ring[prio]);
675 
676 	// -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" -----------
677 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
678 		queue_idx = prio;
679 	} else {// customized prio to queue_idx mapping
680 		//if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only
681 		// check current packet belonging to which slice/hw-queue
682 			for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
683 				if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
684 					break;
685 				}
686 			}
687 		//}
688 		queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. becuase the queue 2 is the longest.
689 	}
690 	// -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------
691 
692 	// check whether the packet is bigger than DMA buffer size
693 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
694 	if (num_dma_byte > TX_BD_BUF_SIZE) {
695 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING num_dma_byte > TX_BD_BUF_SIZE\n");
696 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
697 		goto openwifi_tx_early_out;
698 	}
699 	num_byte_pad = num_dma_byte-len_phy_packet;
700 
701 	// get other info from packet header
702 	addr1_high16 = *((u16*)(hdr->addr1));
703 	if (len_mac_pdu>=20) {
704 		addr2_low32  = *((u32*)(hdr->addr2+2));
705 		addr2_high16 = *((u16*)(hdr->addr2));
706 	}
707 	if (len_mac_pdu>=26) {
708 		addr3_low32  = *((u32*)(hdr->addr3+2));
709 		addr3_high16 = *((u16*)(hdr->addr3));
710 	}
711 
712 	duration_id = hdr->duration_id;
713 	frame_control=hdr->frame_control;
714 	ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK);
715 	fc_type = ((frame_control)>>2)&3;
716 	fc_subtype = ((frame_control)>>4)&0xf;
717 	fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) );
718 	//if it is broadcasting or multicasting addr
719 	addr_flag = ( (addr1_low32==0 && addr1_high16==0) ||
720 	              (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) ||
721 				  (addr1_high16==0x3333) ||
722 				  (addr1_high16==0x0001 && hdr->addr1[2]==0x5E)  );
723 	if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame
724 		pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent
725 	} else {
726 		pkt_need_ack = 0;
727 	}
728 
729 	// get Linux rate (MCS) setting
730 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
731 	//rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
732 	if (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0 && fc_type==2 && (!addr_flag)) //rate override command
733 		rate_hw_value = priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE];
734 
735 	retry_limit_raw = info->control.rates[0].count;
736 
737 	rc_flags = info->control.rates[0].flags;
738 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
739 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
740 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
741 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
742 
743 	if (use_rts_cts)
744 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
745 
746 	if (use_cts_protect) {
747 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
748 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mac_pdu,info));
749 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
750 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
751 		sifs = (priv->actual_rx_lo<2500?10:16);
752 		if (pkt_need_ack)
753 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
754 		traffic_pkt_duration = 20 + 4*(((22+len_mac_pdu*8)/wifi_n_dbps_table[rate_hw_value])+1);
755 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
756 	}
757 
758 // this is 11b stuff
759 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
760 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
761 
762 	if (len_mac_pdu>=28) {
763 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
764 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
765 				priv->seqno += 0x10;
766 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
767 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
768 		}
769 		sc = hdr->seq_ctrl;
770 	}
771 
772 	if ( (!addr_flag) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) )
773 		printk("%s openwifi_tx: %4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
774 			len_mac_pdu, (use_ht_rate == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
775 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
776 			sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx,
777 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
778 			ring->bd_wr_idx,ring->bd_rd_idx);
779 
780 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
781 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
782 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
783 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
784 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
785 
786 	// -----------end of preprocess some info from header and skb----------------
787 
788 	// /* HW will perform RTS-CTS when only RTS flags is set.
789 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
790 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
791 	//  */
792 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
793 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
794 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
795 	// 					len_mac_pdu, info);
796 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
797 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
798 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
799 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
800 	// 					len_mac_pdu, info);
801 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
802 	// }
803 
804 	// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
805 	if (skb_headroom(skb)<LEN_PHY_HEADER) {
806 		struct sk_buff *skb_new; // in case original skb headroom is not enough to host phy header needed by FPGA IP core
807 		printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_PHY_HEADER\n", sdr_compatible_str, ring->bd_wr_idx);
808 		if ((skb_new = skb_realloc_headroom(skb, LEN_PHY_HEADER)) == NULL) {
809 			printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
810 			goto openwifi_tx_early_out;
811 		}
812 		if (skb->sk != NULL)
813 			skb_set_owner_w(skb_new, skb->sk);
814 		dev_kfree_skb(skb);
815 		skb = skb_new;
816 	}
817 
818 	skb_push( skb, LEN_PHY_HEADER );
819 	rate_signal_value = calc_phy_header(rate_hw_value, use_ht_rate, use_short_gi, len_mac_pdu+LEN_PHY_CRC, skb->data); //fill the phy header
820 
821 
822 	//make sure dma length is integer times of DDC_NUM_BYTE_PER_DMA_SYMBOL
823 	if (skb_tailroom(skb)<num_byte_pad) {
824 		printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
825 		// skb_pull(skb, LEN_PHY_HEADER);
826 		goto openwifi_tx_early_out;
827 	}
828 	skb_put( skb, num_byte_pad );
829 
830 	retry_limit_hw_value = (retry_limit_raw - 1)&0xF;
831 	dma_buf = skb->data;
832 
833 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
834 	cts_reg = (((use_cts_protect|force_use_cts_protect)<<31)|(cts_use_traffic_rate<<30)|(cts_duration<<8)|(cts_rate_signal_value<<4)|rate_signal_value);
835 	dma_reg = ( (( ((prio<<(NUM_BIT_MAX_NUM_HW_QUEUE+NUM_BIT_MAX_PHY_TX_SN))|(ring->bd_wr_idx<<NUM_BIT_MAX_NUM_HW_QUEUE)|queue_idx) )<<18)|(retry_limit_hw_value<<14)|(pkt_need_ack<<13)|num_dma_symbol );
836 
837 	/* We must be sure that tx_flags is written last because the HW
838 	 * looks at it to check if the rest of data is valid or not
839 	 */
840 	//wmb();
841 	// entry->flags = cpu_to_le32(tx_flags);
842 	/* We must be sure this has been written before followings HW
843 	 * register write, because this write will made the HW attempts
844 	 * to DMA the just-written data
845 	 */
846 	//wmb();
847 
848 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
849 
850 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
851 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
852 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
853 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD)  || ring->stop_flag==1 ) {
854 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
855 		printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str,
856 		prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
857 		ring->stop_flag = 1;
858 		goto openwifi_tx_early_out_after_lock;
859 	}
860 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
861 
862 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
863 	if (status!=DMA_COMPLETE) {
864 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
865 		goto openwifi_tx_early_out_after_lock;
866 	}
867 
868 	if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) ) {
869 		printk("%s openwifi_tx: WARNING 1 %d %08x %08x %08x %08x\n", sdr_compatible_str, num_byte_pad, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
870 		goto openwifi_tx_early_out_after_lock;
871 	}
872 
873 //-------------------------fire skb DMA to hardware----------------------------------
874 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
875 				 num_dma_byte, DMA_MEM_TO_DEV);
876 
877 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
878 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
879 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
880 		goto openwifi_tx_early_out_after_lock;
881 	}
882 
883 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
884 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
885 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
886 
887 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
888 	tx_intf_api->TX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(dma_reg);
889 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
890 	if (!(priv->txd)) {
891 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
892 		goto openwifi_tx_after_dma_mapping;
893 	}
894 
895 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
896 
897 	if (dma_submit_error(priv->tx_cookie)) {
898 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
899 		goto openwifi_tx_after_dma_mapping;
900 	}
901 
902 	// seems everything ok. let's mark this pkt in bd descriptor ring
903 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
904 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
905 
906 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
907 
908 	dma_async_issue_pending(priv->tx_chan);
909 
910 	if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) )
911 		printk("%s openwifi_tx: WARNING 2 %08x %08x %08x %08x\n", sdr_compatible_str, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
912 
913 	spin_unlock_irqrestore(&priv->lock, flags);
914 
915 	return;
916 
917 openwifi_tx_after_dma_mapping:
918 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
919 
920 openwifi_tx_early_out_after_lock:
921 	// skb_pull(skb, LEN_PHY_HEADER);
922 	dev_kfree_skb(skb);
923 	spin_unlock_irqrestore(&priv->lock, flags);
924 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
925 	return;
926 
927 openwifi_tx_early_out:
928 	dev_kfree_skb(skb);
929 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
930 }
931 
932 static int openwifi_start(struct ieee80211_hw *dev)
933 {
934 	struct openwifi_priv *priv = dev->priv;
935 	int ret, i, rssi_half_db_offset, agc_gain_delay;//rssi_half_db_th,
936 	u32 reg;
937 
938 	for (i=0; i<MAX_NUM_VIF; i++) {
939 		priv->vif[i] = NULL;
940 	}
941 
942 	memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
943 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
944 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
945 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
946 
947 	//turn on radio
948 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
949 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
950 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
951 	} else {
952 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
953 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
954 	}
955 	if (reg == AD9361_RADIO_ON_TX_ATT) {
956 		priv->rfkill_off = 1;// 0 off, 1 on
957 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
958 	}
959 	else
960 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
961 
962 	if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
963 		priv->ctrl_out.index=0x16;
964 	else
965 		priv->ctrl_out.index=0x17;
966 
967 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
968 	if (ret < 0) {
969 		printk("%s openwifi_start: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, ret);
970 	} else {
971 		printk("%s openwifi_start: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
972 	}
973 
974 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
975 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
976 
977 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
978 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8);
979 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
980 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
981 	xpu_api->hw_init(priv->xpu_cfg);
982 
983 	agc_gain_delay = 50; //samples
984 	rssi_half_db_offset = 150;
985 	xpu_api->XPU_REG_RSSI_DB_CFG_write(0x80000000|((rssi_half_db_offset<<16)|agc_gain_delay) );
986 	xpu_api->XPU_REG_RSSI_DB_CFG_write((~0x80000000)&((rssi_half_db_offset<<16)|agc_gain_delay) );
987 
988 	openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write(0);
989 	// rssi_half_db_th = 87<<1; // -62dBm // will settup in runtime in _rf_set_channel
990 	// xpu_api->XPU_REG_LBT_TH_write(rssi_half_db_th); // set IQ rssi th step .5dB to xxx and enable it
991 
992 	// xpu_api->XPU_REG_CSMA_CFG_write(3); // cw_min -- already set in xpu.c
993 
994 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((40)<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz (Attention, current tx core has around 1.19us starting delay that makes the ack fall behind 10us SIFS in 2.4GHz! Need to improve TX in 2.4GHz!)
995 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51)<<16)|0 );//now our tx send out I/Q immediately
996 	xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51+23)<<16)|(0+23) );//we have more time when we use FIR in AD9361
997 
998 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP0_write( (((45+2+2)*10 + 15)<<16) | 10 );//2.4GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
999 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP1_write( (((51+2+2)*10 + 15)<<16) | 10 );//5GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1000 
1001 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write( ((16*10)<<16)|(10*10) );//high 16bit 5GHz; low 16 bit 2.4GHz. counter speed 10MHz is assumed
1002 
1003 	// //xpu_api->XPU_REG_BB_RF_DELAY_write(51); // fine tuned value at 0.005us. old: dac-->ant port: 0.6us, 57 taps fir at 40MHz: 1.425us; round trip: 2*(0.6+1.425)=4.05us; 4.05*10=41
1004 	// xpu_api->XPU_REG_BB_RF_DELAY_write(47);//add .5us for slightly longer fir -- already in xpu.c
1005 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1006 
1007 	// setup time schedule of 4 slices
1008 	// slice 0
1009 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write(50000-1); // total 50ms
1010 	xpu_api->XPU_REG_SLICE_COUNT_START_write(0); //start 0ms
1011 	xpu_api->XPU_REG_SLICE_COUNT_END_write(50000-1); //end 50ms
1012 
1013 	// slice 1
1014 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((1<<20)|(50000-1)); // total 50ms
1015 	xpu_api->XPU_REG_SLICE_COUNT_START_write((1<<20)|(0)); //start 0ms
1016 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(20000-1)); //end 20ms
1017 	xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(50000-1)); //end 20ms
1018 
1019 	// slice 2
1020 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((2<<20)|(50000-1)); // total 50ms
1021 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(20000)); //start 20ms
1022 	xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(0)); //start 20ms
1023 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(40000-1)); //end 20ms
1024 	xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(50000-1)); //end 20ms
1025 
1026 	// slice 3
1027 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((3<<20)|(50000-1)); // total 50ms
1028 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(40000)); //start 40ms
1029 	xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(0)); //start 40ms
1030 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1031 	xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1032 
1033 	// all slice sync rest
1034 	xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1035 	xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1036 
1037 	//xpu_api->XPU_REG_MAC_ADDR_HIGH_write( (*( (u16*)(priv->mac_addr + 4) )) );
1038 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1039 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1040 
1041 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1042 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1043 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1044 
1045 	if (test_mode==1) {
1046 		printk("%s openwifi_start: test_mode==1\n",sdr_compatible_str);
1047 		goto normal_out;
1048 	}
1049 
1050 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1051 	if (IS_ERR(priv->rx_chan)) {
1052 		ret = PTR_ERR(priv->rx_chan);
1053 		pr_err("%s openwifi_start: No Rx channel %d\n",sdr_compatible_str,ret);
1054 		goto err_dma;
1055 	}
1056 
1057 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1058 	if (IS_ERR(priv->tx_chan)) {
1059 		ret = PTR_ERR(priv->tx_chan);
1060 		pr_err("%s openwifi_start: No Tx channel %d\n",sdr_compatible_str,ret);
1061 		goto err_dma;
1062 	}
1063 	printk("%s openwifi_start: DMA channel setup successfully.\n",sdr_compatible_str);
1064 
1065 	ret = openwifi_init_rx_ring(priv);
1066 	if (ret) {
1067 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1068 		goto err_free_rings;
1069 	}
1070 
1071 	priv->seqno=0;
1072 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1073 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1074 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1075 			goto err_free_rings;
1076 		}
1077 	}
1078 
1079 	if ( (ret = rx_dma_setup(dev)) ) {
1080 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1081 		goto err_free_rings;
1082 	}
1083 
1084 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1085 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1086 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1087 	if (ret) {
1088 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1089 		goto err_free_rings;
1090 	} else {
1091 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1092 	}
1093 
1094 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1095 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1096 			IRQF_SHARED, "sdr,tx_itrpt1", dev);
1097 	if (ret) {
1098 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1099 		goto err_free_rings;
1100 	} else {
1101 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1102 	}
1103 
1104 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1105 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1106 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1107 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1108 
1109 	//ieee80211_wake_queue(dev, 0);
1110 
1111 normal_out:
1112 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1113 	return 0;
1114 
1115 err_free_rings:
1116 	openwifi_free_rx_ring(priv);
1117 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1118 		openwifi_free_tx_ring(priv, i);
1119 
1120 err_dma:
1121 	ret = -1;
1122 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1123 	return ret;
1124 }
1125 
1126 static void openwifi_stop(struct ieee80211_hw *dev)
1127 {
1128 	struct openwifi_priv *priv = dev->priv;
1129 	u32 reg, reg1;
1130 	int i;
1131 
1132 	if (test_mode==1){
1133 		pr_info("%s openwifi_stop: test_mode==1\n", sdr_compatible_str);
1134 		goto normal_out;
1135 	}
1136 
1137 	//turn off radio
1138 	#if 1
1139 	ad9361_tx_mute(priv->ad9361_phy, 1);
1140 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1141 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1142 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1143 		priv->rfkill_off = 0;// 0 off, 1 on
1144 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1145 	}
1146 	else
1147 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1148 	#endif
1149 
1150 	//ieee80211_stop_queue(dev, 0);
1151 
1152 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1153 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1154 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1155 
1156 	for (i=0; i<MAX_NUM_VIF; i++) {
1157 		priv->vif[i] = NULL;
1158 	}
1159 
1160 	openwifi_free_rx_ring(priv);
1161 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1162 		openwifi_free_tx_ring(priv, i);
1163 
1164 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1165 	dmaengine_terminate_all(priv->rx_chan);
1166 	dma_release_channel(priv->rx_chan);
1167 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1168 	dmaengine_terminate_all(priv->tx_chan);
1169 	dma_release_channel(priv->tx_chan);
1170 
1171 	//priv->rf->stop(dev);
1172 
1173 	free_irq(priv->irq_rx, dev);
1174 	free_irq(priv->irq_tx, dev);
1175 
1176 normal_out:
1177 	printk("%s openwifi_stop\n", sdr_compatible_str);
1178 }
1179 
1180 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1181 			   struct ieee80211_vif *vif)
1182 {
1183 	u32 tsft_low, tsft_high;
1184 
1185 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1186 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1187 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1188 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1189 }
1190 
1191 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1192 {
1193 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1194 	u32 tsft_low  = (tsf&0xffffffff);
1195 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1196 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1197 }
1198 
1199 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1200 {
1201 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1202 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1203 }
1204 
1205 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1206 {
1207 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1208 	return(0);
1209 }
1210 
1211 static void openwifi_beacon_work(struct work_struct *work)
1212 {
1213 	struct openwifi_vif *vif_priv =
1214 		container_of(work, struct openwifi_vif, beacon_work.work);
1215 	struct ieee80211_vif *vif =
1216 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1217 	struct ieee80211_hw *dev = vif_priv->dev;
1218 	struct ieee80211_mgmt *mgmt;
1219 	struct sk_buff *skb;
1220 
1221 	/* don't overflow the tx ring */
1222 	if (ieee80211_queue_stopped(dev, 0))
1223 		goto resched;
1224 
1225 	/* grab a fresh beacon */
1226 	skb = ieee80211_beacon_get(dev, vif);
1227 	if (!skb)
1228 		goto resched;
1229 
1230 	/*
1231 	 * update beacon timestamp w/ TSF value
1232 	 * TODO: make hardware update beacon timestamp
1233 	 */
1234 	mgmt = (struct ieee80211_mgmt *)skb->data;
1235 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1236 
1237 	/* TODO: use actual beacon queue */
1238 	skb_set_queue_mapping(skb, 0);
1239 	openwifi_tx(dev, NULL, skb);
1240 
1241 resched:
1242 	/*
1243 	 * schedule next beacon
1244 	 * TODO: use hardware support for beacon timing
1245 	 */
1246 	schedule_delayed_work(&vif_priv->beacon_work,
1247 			usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1248 }
1249 
1250 static int openwifi_add_interface(struct ieee80211_hw *dev,
1251 				 struct ieee80211_vif *vif)
1252 {
1253 	int i;
1254 	struct openwifi_priv *priv = dev->priv;
1255 	struct openwifi_vif *vif_priv;
1256 
1257 	switch (vif->type) {
1258 	case NL80211_IFTYPE_AP:
1259 	case NL80211_IFTYPE_STATION:
1260 	case NL80211_IFTYPE_ADHOC:
1261 	case NL80211_IFTYPE_MONITOR:
1262 	case NL80211_IFTYPE_MESH_POINT:
1263 		break;
1264 	default:
1265 		return -EOPNOTSUPP;
1266 	}
1267 	// let's support more than 1 interface
1268 	for (i=0; i<MAX_NUM_VIF; i++) {
1269 		if (priv->vif[i] == NULL)
1270 			break;
1271 	}
1272 
1273 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1274 
1275 	if (i==MAX_NUM_VIF)
1276 		return -EBUSY;
1277 
1278 	priv->vif[i] = vif;
1279 
1280 	/* Initialize driver private area */
1281 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1282 	vif_priv->idx = i;
1283 
1284 	vif_priv->dev = dev;
1285 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1286 	vif_priv->enable_beacon = false;
1287 
1288 	printk("%s openwifi_add_interface end with vif idx %d\n", sdr_compatible_str,vif_priv->idx);
1289 
1290 	return 0;
1291 }
1292 
1293 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1294 				     struct ieee80211_vif *vif)
1295 {
1296 	struct openwifi_vif *vif_priv;
1297 	struct openwifi_priv *priv = dev->priv;
1298 
1299 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1300 	priv->vif[vif_priv->idx] = NULL;
1301 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1302 }
1303 
1304 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1305 {
1306 	struct openwifi_priv *priv = dev->priv;
1307 	struct ieee80211_conf *conf = &dev->conf;
1308 
1309 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
1310 		priv->rf->set_chan(dev, conf);
1311 	else
1312 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1313 
1314 	return 0;
1315 }
1316 
1317 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1318 				     struct ieee80211_vif *vif,
1319 				     struct ieee80211_bss_conf *info,
1320 				     u32 changed)
1321 {
1322 	struct openwifi_priv *priv = dev->priv;
1323 	struct openwifi_vif *vif_priv;
1324 	u32 bssid_low, bssid_high;
1325 
1326 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1327 
1328 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1329 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1330 	if (changed & BSS_CHANGED_BSSID) {
1331 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1332 		// write new bssid to our HW, and do not change bssid filter
1333 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1334 		bssid_low = ( *( (u32*)(info->bssid) ) );
1335 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1336 
1337 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1338 		//bssid_high = (bssid_high|bssid_filter_high);
1339 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1340 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1341 	}
1342 
1343 	if (changed & BSS_CHANGED_BEACON_INT) {
1344 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1345 	}
1346 
1347 	if (changed & BSS_CHANGED_TXPOWER)
1348 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1349 
1350 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1351 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1352 
1353 	if (changed & BSS_CHANGED_BASIC_RATES)
1354 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1355 
1356 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1357 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1358 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1359 		if (info->use_short_slot && priv->use_short_slot==false) {
1360 			priv->use_short_slot=true;
1361 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1362 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1363 			priv->use_short_slot=false;
1364 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1365 		}
1366 	}
1367 
1368 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1369 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1370 		vif_priv->enable_beacon = info->enable_beacon;
1371 	}
1372 
1373 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1374 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1375 		if (vif_priv->enable_beacon)
1376 			schedule_work(&vif_priv->beacon_work.work);
1377 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1378 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1379 	}
1380 }
1381 
1382 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
1383 	      const struct ieee80211_tx_queue_params *params)
1384 {
1385 	printk("%s openwifi_conf_tx: WARNING [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
1386 		  sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1387 	return(0);
1388 }
1389 
1390 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1391 				     struct netdev_hw_addr_list *mc_list)
1392 {
1393 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1394 	return netdev_hw_addr_list_count(mc_list);
1395 }
1396 
1397 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1398 				     unsigned int changed_flags,
1399 				     unsigned int *total_flags,
1400 				     u64 multicast)
1401 {
1402 	u32 filter_flag;
1403 
1404 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1405 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1406 
1407 	filter_flag = (*total_flags);
1408 
1409 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1410 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1411 
1412 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1413 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1414 		filter_flag = (filter_flag|MONITOR_ALL);
1415 	else
1416 		filter_flag = (filter_flag&(~MONITOR_ALL));
1417 
1418 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1419 		filter_flag = (filter_flag|MY_BEACON);
1420 
1421 	filter_flag = (filter_flag|FIF_PSPOLL);
1422 
1423 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
1424 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
1425 
1426 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
1427 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
1428 }
1429 
1430 static int openwifi_testmode_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void *data, int len)
1431 {
1432 	struct openwifi_priv *priv = hw->priv;
1433 	struct nlattr *tb[OPENWIFI_ATTR_MAX + 1];
1434 	struct sk_buff *skb;
1435 	int err;
1436 	u32 tmp=-1, reg_cat, reg_addr, reg_val, reg_addr_idx, tsft_high, tsft_low;
1437 
1438 	err = nla_parse(tb, OPENWIFI_ATTR_MAX, data, len, openwifi_testmode_policy, NULL);
1439 	if (err)
1440 		return err;
1441 
1442 	if (!tb[OPENWIFI_ATTR_CMD])
1443 		return -EINVAL;
1444 
1445 	switch (nla_get_u32(tb[OPENWIFI_ATTR_CMD])) {
1446 	case OPENWIFI_CMD_SET_GAP:
1447 		if (!tb[OPENWIFI_ATTR_GAP])
1448 			return -EINVAL;
1449 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_GAP]);
1450 		printk("%s openwifi radio inter frame gap set to %d usec\n", sdr_compatible_str, tmp);
1451 		xpu_api->XPU_REG_CSMA_CFG_write(tmp); // unit us
1452 		return 0;
1453 	case OPENWIFI_CMD_GET_GAP:
1454 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1455 		if (!skb)
1456 			return -ENOMEM;
1457 		tmp = xpu_api->XPU_REG_CSMA_CFG_read();
1458 		if (nla_put_u32(skb, OPENWIFI_ATTR_GAP, tmp))
1459 			goto nla_put_failure;
1460 		return cfg80211_testmode_reply(skb);
1461 	case OPENWIFI_CMD_SET_SLICE_IDX:
1462 		if (!tb[OPENWIFI_ATTR_SLICE_IDX])
1463 			return -EINVAL;
1464 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_IDX]);
1465 		printk("%s set openwifi slice_idx in hex: %08x\n", sdr_compatible_str, tmp);
1466 		if (tmp == MAX_NUM_HW_QUEUE) {
1467 			printk("%s set openwifi slice_idx reset all queue counter.\n", sdr_compatible_str);
1468 			xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1469 			xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1470 		} else {
1471 			priv->slice_idx = tmp;
1472 		}
1473 		return 0;
1474 	case OPENWIFI_CMD_GET_SLICE_IDX:
1475 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1476 		if (!skb)
1477 			return -ENOMEM;
1478 		tmp = priv->slice_idx;
1479 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_IDX, tmp))
1480 			goto nla_put_failure;
1481 		printk("%s get openwifi slice_idx in hex: %08x\n", sdr_compatible_str, tmp);
1482 		return cfg80211_testmode_reply(skb);
1483 	case OPENWIFI_CMD_SET_ADDR:
1484 		if (!tb[OPENWIFI_ATTR_ADDR])
1485 			return -EINVAL;
1486 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_ADDR]);
1487 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1488 			printk("%s set openwifi slice_target_mac_addr(low32) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1489 		} else {
1490 			printk("%s set openwifi slice_target_mac_addr(low32) in hex: %08x to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1491 			priv->dest_mac_addr_queue_map[priv->slice_idx] = reverse32(tmp);
1492 		}
1493 		return 0;
1494 	case OPENWIFI_CMD_GET_ADDR:
1495 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1496 		if (!skb)
1497 			return -ENOMEM;
1498 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1499 			tmp = -1;
1500 		} else {
1501 			tmp = reverse32(priv->dest_mac_addr_queue_map[priv->slice_idx]);
1502 		}
1503 		if (nla_put_u32(skb, OPENWIFI_ATTR_ADDR, tmp))
1504 			goto nla_put_failure;
1505 		printk("%s get openwifi slice_target_mac_addr(low32) in hex: %08x of slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1506 		return cfg80211_testmode_reply(skb);
1507 
1508 	case OPENWIFI_CMD_SET_SLICE_TOTAL:
1509 		if (!tb[OPENWIFI_ATTR_SLICE_TOTAL])
1510 			return -EINVAL;
1511 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL]);
1512 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1513 			printk("%s set SLICE_TOTAL(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1514 		} else {
1515 			printk("%s set SLICE_TOTAL(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1516 			xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((priv->slice_idx<<20)|tmp);
1517 		}
1518 		return 0;
1519 	case OPENWIFI_CMD_GET_SLICE_TOTAL:
1520 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1521 		if (!skb)
1522 			return -ENOMEM;
1523 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL_read());
1524 		printk("%s get SLICE_TOTAL(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1525 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL, tmp))
1526 			goto nla_put_failure;
1527 		return cfg80211_testmode_reply(skb);
1528 
1529 	case OPENWIFI_CMD_SET_SLICE_START:
1530 		if (!tb[OPENWIFI_ATTR_SLICE_START])
1531 			return -EINVAL;
1532 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START]);
1533 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1534 			printk("%s set SLICE_START(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1535 		} else {
1536 			printk("%s set SLICE_START(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1537 			xpu_api->XPU_REG_SLICE_COUNT_START_write((priv->slice_idx<<20)|tmp);
1538 		}
1539 		return 0;
1540 	case OPENWIFI_CMD_GET_SLICE_START:
1541 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1542 		if (!skb)
1543 			return -ENOMEM;
1544 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_START_read());
1545 		printk("%s get SLICE_START(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1546 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START, tmp))
1547 			goto nla_put_failure;
1548 		return cfg80211_testmode_reply(skb);
1549 
1550 	case OPENWIFI_CMD_SET_SLICE_END:
1551 		if (!tb[OPENWIFI_ATTR_SLICE_END])
1552 			return -EINVAL;
1553 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END]);
1554 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1555 			printk("%s set SLICE_END(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1556 		} else {
1557 			printk("%s set SLICE_END(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1558 			xpu_api->XPU_REG_SLICE_COUNT_END_write((priv->slice_idx<<20)|tmp);
1559 		}
1560 		return 0;
1561 	case OPENWIFI_CMD_GET_SLICE_END:
1562 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1563 		if (!skb)
1564 			return -ENOMEM;
1565 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_END_read());
1566 		printk("%s get SLICE_END(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1567 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END, tmp))
1568 			goto nla_put_failure;
1569 		return cfg80211_testmode_reply(skb);
1570 
1571 	// case OPENWIFI_CMD_SET_SLICE_TOTAL1:
1572 	// 	if (!tb[OPENWIFI_ATTR_SLICE_TOTAL1])
1573 	// 		return -EINVAL;
1574 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL1]);
1575 	// 	printk("%s set SLICE_TOTAL1(duration) to %d usec\n", sdr_compatible_str, tmp);
1576 	// 	// xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_write(tmp);
1577 	// 	return 0;
1578 	// case OPENWIFI_CMD_GET_SLICE_TOTAL1:
1579 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1580 	// 	if (!skb)
1581 	// 		return -ENOMEM;
1582 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_read());
1583 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL1, tmp))
1584 	// 		goto nla_put_failure;
1585 	// 	return cfg80211_testmode_reply(skb);
1586 
1587 	// case OPENWIFI_CMD_SET_SLICE_START1:
1588 	// 	if (!tb[OPENWIFI_ATTR_SLICE_START1])
1589 	// 		return -EINVAL;
1590 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START1]);
1591 	// 	printk("%s set SLICE_START1(duration) to %d usec\n", sdr_compatible_str, tmp);
1592 	// 	// xpu_api->XPU_REG_SLICE_COUNT_START1_write(tmp);
1593 	// 	return 0;
1594 	// case OPENWIFI_CMD_GET_SLICE_START1:
1595 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1596 	// 	if (!skb)
1597 	// 		return -ENOMEM;
1598 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_START1_read());
1599 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START1, tmp))
1600 	// 		goto nla_put_failure;
1601 	// 	return cfg80211_testmode_reply(skb);
1602 
1603 	// case OPENWIFI_CMD_SET_SLICE_END1:
1604 	// 	if (!tb[OPENWIFI_ATTR_SLICE_END1])
1605 	// 		return -EINVAL;
1606 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END1]);
1607 	// 	printk("%s set SLICE_END1(duration) to %d usec\n", sdr_compatible_str, tmp);
1608 	// 	// xpu_api->XPU_REG_SLICE_COUNT_END1_write(tmp);
1609 	// 	return 0;
1610 	// case OPENWIFI_CMD_GET_SLICE_END1:
1611 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1612 	// 	if (!skb)
1613 	// 		return -ENOMEM;
1614 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_END1_read());
1615 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END1, tmp))
1616 	// 		goto nla_put_failure;
1617 	// 	return cfg80211_testmode_reply(skb);
1618 
1619 	case OPENWIFI_CMD_SET_RSSI_TH:
1620 		if (!tb[OPENWIFI_ATTR_RSSI_TH])
1621 			return -EINVAL;
1622 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_RSSI_TH]);
1623 		printk("%s set RSSI_TH to %d\n", sdr_compatible_str, tmp);
1624 		xpu_api->XPU_REG_LBT_TH_write(tmp);
1625 		return 0;
1626 	case OPENWIFI_CMD_GET_RSSI_TH:
1627 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1628 		if (!skb)
1629 			return -ENOMEM;
1630 		tmp = xpu_api->XPU_REG_LBT_TH_read();
1631 		if (nla_put_u32(skb, OPENWIFI_ATTR_RSSI_TH, tmp))
1632 			goto nla_put_failure;
1633 		return cfg80211_testmode_reply(skb);
1634 
1635 	case OPENWIFI_CMD_SET_TSF:
1636 		printk("openwifi_set_tsf_1");
1637 		if ( (!tb[OPENWIFI_ATTR_HIGH_TSF]) || (!tb[OPENWIFI_ATTR_LOW_TSF]) )
1638 				return -EINVAL;
1639 		printk("openwifi_set_tsf_2");
1640 		tsft_high = nla_get_u32(tb[OPENWIFI_ATTR_HIGH_TSF]);
1641 		tsft_low  = nla_get_u32(tb[OPENWIFI_ATTR_LOW_TSF]);
1642 		xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1643 		printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1644 		return 0;
1645 
1646 	case REG_CMD_SET:
1647 		if ( (!tb[REG_ATTR_ADDR]) || (!tb[REG_ATTR_VAL]) )
1648 			return -EINVAL;
1649 		reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
1650 		reg_val  = nla_get_u32(tb[REG_ATTR_VAL]);
1651 		reg_cat = ((reg_addr>>16)&0xFFFF);
1652 		reg_addr = (reg_addr&0xFFFF);
1653 		reg_addr_idx = (reg_addr>>2);
1654 		printk("%s recv set cmd reg cat %d addr %08x val %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_val, reg_addr_idx);
1655 		if (reg_cat==1)
1656 			printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
1657 		else if (reg_cat==2)
1658 			rx_intf_api->reg_write(reg_addr,reg_val);
1659 		else if (reg_cat==3)
1660 			tx_intf_api->reg_write(reg_addr,reg_val);
1661 		else if (reg_cat==4)
1662 			openofdm_rx_api->reg_write(reg_addr,reg_val);
1663 		else if (reg_cat==5)
1664 			openofdm_tx_api->reg_write(reg_addr,reg_val);
1665 		else if (reg_cat==6)
1666 			xpu_api->reg_write(reg_addr,reg_val);
1667 		else if (reg_cat==7) {
1668 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1669 				priv->drv_rx_reg_val[reg_addr_idx]=reg_val;
1670 				if (reg_addr_idx==DRV_RX_REG_IDX_FREQ_BW_CFG) {
1671 					if (reg_val==0)
1672 						priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1673 					else
1674 						priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
1675 
1676 					priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1677 					//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1678 				}
1679 			} else
1680 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1681 		}
1682 		else if (reg_cat==8) {
1683 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1684 				priv->drv_tx_reg_val[reg_addr_idx]=reg_val;
1685 				if (reg_addr_idx==DRV_TX_REG_IDX_FREQ_BW_CFG) {
1686 					if (reg_val==0) {
1687 						priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
1688 						ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true);
1689 					} else {
1690 						priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1;
1691 						ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true);
1692 					}
1693 
1694 					//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1695 					priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1696 				}
1697 			} else
1698 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1699 		}
1700 		else if (reg_cat==9) {
1701 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG)
1702 				priv->drv_xpu_reg_val[reg_addr_idx]=reg_val;
1703 			else
1704 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1705 		}
1706 		else
1707 			printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
1708 
1709 		return 0;
1710 	case REG_CMD_GET:
1711 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1712 		if (!skb)
1713 			return -ENOMEM;
1714 		reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
1715 		reg_cat = ((reg_addr>>16)&0xFFFF);
1716 		reg_addr = (reg_addr&0xFFFF);
1717 		reg_addr_idx = (reg_addr>>2);
1718 		printk("%s recv get cmd reg cat %d addr %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_addr_idx);
1719 		if (reg_cat==1) {
1720 			printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
1721 			tmp = 0xFFFFFFFF;
1722 		}
1723 		else if (reg_cat==2)
1724 			tmp = rx_intf_api->reg_read(reg_addr);
1725 		else if (reg_cat==3)
1726 			tmp = tx_intf_api->reg_read(reg_addr);
1727 		else if (reg_cat==4)
1728 			tmp = openofdm_rx_api->reg_read(reg_addr);
1729 		else if (reg_cat==5)
1730 			tmp = openofdm_tx_api->reg_read(reg_addr);
1731 		else if (reg_cat==6)
1732 			tmp = xpu_api->reg_read(reg_addr);
1733 		else if (reg_cat==7) {
1734 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1735 				if (reg_addr_idx==DRV_RX_REG_IDX_FREQ_BW_CFG) {
1736 					priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1737 					//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1738 
1739 					if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
1740 						priv->drv_rx_reg_val[reg_addr_idx]=0;
1741 					else if	(priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT1)
1742 						priv->drv_rx_reg_val[reg_addr_idx]=1;
1743 				}
1744 				tmp = priv->drv_rx_reg_val[reg_addr_idx];
1745 			} else
1746 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1747 		}
1748 		else if (reg_cat==8) {
1749 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1750 				if (reg_addr_idx==DRV_TX_REG_IDX_FREQ_BW_CFG) {
1751 					//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1752 					priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1753 					if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)
1754 						priv->drv_tx_reg_val[reg_addr_idx]=0;
1755 					else if	(priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
1756 						priv->drv_tx_reg_val[reg_addr_idx]=1;
1757 				}
1758 				tmp = priv->drv_tx_reg_val[reg_addr_idx];
1759 			} else
1760 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1761 		}
1762 		else if (reg_cat==9) {
1763 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG)
1764 				tmp = priv->drv_xpu_reg_val[reg_addr_idx];
1765 			else
1766 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1767 		}
1768 		else
1769 			printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
1770 
1771 		if (nla_put_u32(skb, REG_ATTR_VAL, tmp))
1772 			goto nla_put_failure;
1773 		return cfg80211_testmode_reply(skb);
1774 
1775 	default:
1776 		return -EOPNOTSUPP;
1777 	}
1778 
1779  nla_put_failure:
1780 	dev_kfree_skb(skb);
1781 	return -ENOBUFS;
1782 }
1783 
1784 static const struct ieee80211_ops openwifi_ops = {
1785 	.tx			       = openwifi_tx,
1786 	.start			   = openwifi_start,
1787 	.stop			   = openwifi_stop,
1788 	.add_interface	   = openwifi_add_interface,
1789 	.remove_interface  = openwifi_remove_interface,
1790 	.config			   = openwifi_config,
1791 	.bss_info_changed  = openwifi_bss_info_changed,
1792 	.conf_tx		   = openwifi_conf_tx,
1793 	.prepare_multicast = openwifi_prepare_multicast,
1794 	.configure_filter  = openwifi_configure_filter,
1795 	.rfkill_poll	   = openwifi_rfkill_poll,
1796 	.get_tsf		   = openwifi_get_tsf,
1797 	.set_tsf		   = openwifi_set_tsf,
1798 	.reset_tsf		   = openwifi_reset_tsf,
1799 	.set_rts_threshold = openwifi_set_rts_threshold,
1800 	.testmode_cmd	   = openwifi_testmode_cmd,
1801 };
1802 
1803 static const struct of_device_id openwifi_dev_of_ids[] = {
1804 	{ .compatible = "sdr,sdr", },
1805 	{}
1806 };
1807 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
1808 
1809 static int custom_match_spi_dev(struct device *dev, void *data)
1810 {
1811     const char *name = data;
1812 
1813 	bool ret = sysfs_streq(name, dev->of_node->name);
1814 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
1815 	return ret;
1816 }
1817 
1818 static int custom_match_platform_dev(struct device *dev, void *data)
1819 {
1820 	struct platform_device *plat_dev = to_platform_device(dev);
1821 	const char *name = data;
1822 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
1823 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
1824 
1825 	if (match_flag) {
1826 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
1827 	}
1828 	return(match_flag);
1829 }
1830 
1831 static int openwifi_dev_probe(struct platform_device *pdev)
1832 {
1833 	struct ieee80211_hw *dev;
1834 	struct openwifi_priv *priv;
1835 	int err=1, rand_val;
1836 	const char *chip_name;
1837 	u32 reg;//, reg1;
1838 
1839 	struct device_node *np = pdev->dev.of_node;
1840 
1841 	struct device *tmp_dev;
1842 	struct platform_device *tmp_pdev;
1843 	struct iio_dev *tmp_indio_dev;
1844 	// struct gpio_leds_priv *tmp_led_priv;
1845 
1846 	printk("\n");
1847 
1848 	if (np) {
1849 		const struct of_device_id *match;
1850 
1851 		match = of_match_node(openwifi_dev_of_ids, np);
1852 		if (match) {
1853 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
1854 			err = 0;
1855 		}
1856 	}
1857 
1858 	if (err)
1859 		return err;
1860 
1861 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
1862 	if (!dev) {
1863 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
1864 		err = -ENOMEM;
1865 		goto err_free_dev;
1866 	}
1867 
1868 	priv = dev->priv;
1869 	priv->pdev = pdev;
1870 
1871 	// //-------------find ad9361-phy driver for lo/channel control---------------
1872 	priv->actual_rx_lo = 0;
1873 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
1874 	if (tmp_dev == NULL) {
1875 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
1876 		err = -ENOMEM;
1877 		goto err_free_dev;
1878 	}
1879 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
1880 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
1881 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
1882 		err = -ENOMEM;
1883 		goto err_free_dev;
1884 	}
1885 
1886 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
1887 	if (!(priv->ad9361_phy)) {
1888 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
1889 		err = -ENOMEM;
1890 		goto err_free_dev;
1891 	}
1892 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
1893 
1894 	priv->ctrl_out.en_mask=0xFF;
1895 	priv->ctrl_out.index=0x16;
1896 	err = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
1897 	if (err < 0) {
1898 		printk("%s openwifi_dev_probe: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, err);
1899 	} else {
1900 		printk("%s openwifi_dev_probe: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
1901 	}
1902 
1903 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
1904 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
1905 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
1906 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
1907 
1908 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
1909 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
1910 	if (!tmp_dev) {
1911 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
1912 		err = -ENOMEM;
1913 		goto err_free_dev;
1914 	}
1915 
1916 	tmp_pdev = to_platform_device(tmp_dev);
1917 	if (!tmp_pdev) {
1918 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
1919 		err = -ENOMEM;
1920 		goto err_free_dev;
1921 	}
1922 
1923 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
1924 	if (!tmp_indio_dev) {
1925 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
1926 		err = -ENOMEM;
1927 		goto err_free_dev;
1928 	}
1929 
1930 	priv->dds_st = iio_priv(tmp_indio_dev);
1931 	if (!(priv->dds_st)) {
1932 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
1933 		err = -ENOMEM;
1934 		goto err_free_dev;
1935 	}
1936 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
1937 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
1938 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
1939 
1940 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
1941 	// turn off radio by muting tx
1942 	// ad9361_tx_mute(priv->ad9361_phy, 1);
1943 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1944 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1945 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1946 	// 	priv->rfkill_off = 0;// 0 off, 1 on
1947 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
1948 	// }
1949 	// else
1950 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1951 
1952 	priv->rssi_correction = 43;//this will be set in real-time by _rf_set_channel()
1953 
1954 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1955 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1956 
1957 	priv->xpu_cfg = XPU_NORMAL;
1958 
1959 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
1960 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
1961 
1962 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
1963 	if (priv->rf_bw == 20000000) {
1964 		priv->rx_intf_cfg = RX_INTF_BYPASS;
1965 		priv->tx_intf_cfg = TX_INTF_BYPASS;
1966 		//priv->rx_freq_offset_to_lo_MHz = 0;
1967 		//priv->tx_freq_offset_to_lo_MHz = 0;
1968 	} else if (priv->rf_bw == 40000000) {
1969 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
1970 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
1971 
1972 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
1973 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1974 		priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
1975 		// // try another antenna option
1976 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
1977 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
1978 
1979 		#if 0
1980 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
1981 			priv->rx_freq_offset_to_lo_MHz = -10;
1982 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
1983 			priv->rx_freq_offset_to_lo_MHz = 10;
1984 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
1985 			priv->rx_freq_offset_to_lo_MHz = 0;
1986 		} else {
1987 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
1988 		}
1989 		#endif
1990 	} else {
1991 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
1992 	}
1993 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1994 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1995 	printk("%s openwifi_dev_probe: test_mode %d\n", sdr_compatible_str, test_mode);
1996 
1997 	//let's by default turn radio on when probing
1998 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
1999 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
2000 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
2001 	} else {
2002 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
2003 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2004 	}
2005 	if (reg == AD9361_RADIO_ON_TX_ATT) {
2006 		priv->rfkill_off = 1;// 0 off, 1 on
2007 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
2008 	}
2009 	else
2010 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
2011 
2012 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
2013 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
2014 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
2015 
2016 	// //set ad9361 in certain mode
2017 	#if 0
2018 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
2019 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2020 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
2021 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2022 
2023 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
2024 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8);
2025 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
2026 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
2027 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
2028 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
2029 	#endif
2030 
2031 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
2032 
2033 	SET_IEEE80211_DEV(dev, &pdev->dev);
2034 	platform_set_drvdata(pdev, dev);
2035 
2036 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
2037 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
2038 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
2039 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
2040 
2041 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
2042 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
2043 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
2044 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
2045 
2046 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
2047 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
2048 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
2049 
2050 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
2051 	priv->band_2GHz.channels = priv->channels_2GHz;
2052 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
2053 	priv->band_2GHz.bitrates = priv->rates_2GHz;
2054 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
2055 	priv->band_2GHz.ht_cap.ht_supported = true;
2056 	priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
2057 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
2058 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2059 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2060 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
2061 
2062 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
2063 	priv->band_5GHz.channels = priv->channels_5GHz;
2064 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
2065 	priv->band_5GHz.bitrates = priv->rates_5GHz;
2066 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
2067 	priv->band_5GHz.ht_cap.ht_supported = true;
2068 	priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
2069 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
2070 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2071 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2072 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2073 
2074 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2075 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2076 
2077 	ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING);
2078 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2079 	ieee80211_hw_set(dev, BEACON_TX_STATUS);
2080 
2081 	dev->vif_data_size = sizeof(struct openwifi_vif);
2082 	dev->wiphy->interface_modes =
2083 			BIT(NL80211_IFTYPE_MONITOR)|
2084 			BIT(NL80211_IFTYPE_P2P_GO) |
2085 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
2086 			BIT(NL80211_IFTYPE_AP) |
2087 			BIT(NL80211_IFTYPE_STATION) |
2088 			BIT(NL80211_IFTYPE_ADHOC) |
2089 			BIT(NL80211_IFTYPE_MESH_POINT) |
2090 			BIT(NL80211_IFTYPE_OCB);
2091 	dev->wiphy->iface_combinations = &openwifi_if_comb;
2092 	dev->wiphy->n_iface_combinations = 1;
2093 
2094 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2095 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2096 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2097 
2098 	chip_name = "ZYNQ";
2099 
2100 	/* we declare to MAC80211 all the queues except for beacon queue
2101 	 * that will be eventually handled by DRV.
2102 	 * TX rings are arranged in such a way that lower is the IDX,
2103 	 * higher is the priority, in order to achieve direct mapping
2104 	 * with mac80211, however the beacon queue is an exception and it
2105 	 * is mapped on the highst tx ring IDX.
2106 	 */
2107 	dev->queues = MAX_NUM_HW_QUEUE;
2108 	//dev->queues = 1;
2109 
2110 	ieee80211_hw_set(dev, SIGNAL_DBM);
2111 
2112 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2113 
2114 	priv->rf = &ad9361_rf_ops;
2115 
2116 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2117 	priv->slice_idx = 0xFFFFFFFF;
2118 
2119 	sg_init_table(&(priv->tx_sg), 1);
2120 
2121 	get_random_bytes(&rand_val, sizeof(rand_val));
2122     rand_val%=250;
2123 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
2124 	priv->mac_addr[5]=rand_val+1;
2125 	//priv->mac_addr[5]=0x11;
2126 	if (!is_valid_ether_addr(priv->mac_addr)) {
2127 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2128 		eth_random_addr(priv->mac_addr);
2129 	} else {
2130 		printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2131 	}
2132 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2133 
2134 	spin_lock_init(&priv->lock);
2135 
2136 	err = ieee80211_register_hw(dev);
2137 	if (err) {
2138 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2139 		goto err_free_dev;
2140 	} else {
2141 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2142 	}
2143 
2144 	// // //--------------------hook leds (not complete yet)--------------------------------
2145 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatiable" field
2146 	// if (!tmp_dev) {
2147 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2148 	// 	err = -ENOMEM;
2149 	// 	goto err_free_dev;
2150 	// }
2151 
2152 	// tmp_pdev = to_platform_device(tmp_dev);
2153 	// if (!tmp_pdev) {
2154 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2155 	// 	err = -ENOMEM;
2156 	// 	goto err_free_dev;
2157 	// }
2158 
2159 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2160 	// if (!tmp_led_priv) {
2161 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2162 	// 	err = -ENOMEM;
2163 	// 	goto err_free_dev;
2164 	// }
2165 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2166 	// if (tmp_led_priv->num_leds!=4){
2167 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2168 	// 	err = -ENOMEM;
2169 	// 	goto err_free_dev;
2170 	// }
2171 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2172 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2173 	// priv->num_led = tmp_led_priv->num_leds;
2174 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2175 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2176 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2177 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2178 
2179 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2180 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2181 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2182 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2183 
2184 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2185 		   priv->mac_addr, chip_name, priv->rf->name);
2186 
2187 	openwifi_rfkill_init(dev);
2188 	return 0;
2189 
2190  err_free_dev:
2191 	ieee80211_free_hw(dev);
2192 
2193 	return err;
2194 }
2195 
2196 static int openwifi_dev_remove(struct platform_device *pdev)
2197 {
2198 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2199 
2200 	if (!dev) {
2201 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2202 		return(-1);
2203 	}
2204 
2205 	openwifi_rfkill_exit(dev);
2206 	ieee80211_unregister_hw(dev);
2207 	ieee80211_free_hw(dev);
2208 	return(0);
2209 }
2210 
2211 static struct platform_driver openwifi_dev_driver = {
2212 	.driver = {
2213 		.name = "sdr,sdr",
2214 		.owner = THIS_MODULE,
2215 		.of_match_table = openwifi_dev_of_ids,
2216 	},
2217 	.probe = openwifi_dev_probe,
2218 	.remove = openwifi_dev_remove,
2219 };
2220 
2221 module_platform_driver(openwifi_dev_driver);
2222