xref: /openwifi/driver/sdr.c (revision 7b2f8bdfff4a4b21b49417fffecf284fe9508924)
1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos
2 // SPDX-FileCopyrightText: 2022 UGent
3 // SPDX-License-Identifier: AGPL-3.0-or-later
4 
5 #include <linux/bitops.h>
6 #include <linux/dmapool.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/of_address.h>
10 #include <linux/of_platform.h>
11 #include <linux/of_irq.h>
12 #include <linux/slab.h>
13 #include <linux/clk.h>
14 #include <linux/io-64-nonatomic-lo-hi.h>
15 
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 
24 #include <linux/init.h>
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/of_dma.h>
28 #include <linux/platform_device.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/wait.h>
32 #include <linux/sched/task.h>
33 #include <linux/dma/xilinx_dma.h>
34 #include <linux/spi/spi.h>
35 #include <net/mac80211.h>
36 
37 #include <linux/clk.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk-provider.h>
40 
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43 
44 #include <linux/gpio.h>
45 #include <linux/leds.h>
46 
47 #define IIO_AD9361_USE_PRIVATE_H_
48 #include <../../drivers/iio/adc/ad9361_regs.h>
49 #include <../../drivers/iio/adc/ad9361.h>
50 #include <../../drivers/iio/adc/ad9361_private.h>
51 
52 #include <../../drivers/iio/frequency/cf_axi_dds.h>
53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num);
54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb,
55 			       bool tx1, bool tx2, bool immed);
56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy,
57 				  struct ctrl_outs_control *ctrl);
58 
59 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
60 #include "hw_def.h"
61 #include "sdr.h"
62 #include "git_rev.h"
63 
64 // driver API of component driver
65 extern struct tx_intf_driver_api *tx_intf_api;
66 extern struct rx_intf_driver_api *rx_intf_api;
67 extern struct openofdm_tx_driver_api *openofdm_tx_api;
68 extern struct openofdm_rx_driver_api *openofdm_rx_api;
69 extern struct xpu_driver_api *xpu_api;
70 
71 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes);
72 u8 gen_mpdu_delim_crc(u16 m);
73 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant);
74 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant);
75 
76 #include "sdrctl_intf.c"
77 #include "sysfs_intf.c"
78 
79 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1)
80 // Internal indication variables after parsing test_mode
81 static bool AGGR_ENABLE = false;
82 static bool TX_OFFSET_TUNING_ENABLE = false;
83 
84 static int init_tx_att = 0;
85 
86 MODULE_AUTHOR("Xianjun Jiao");
87 MODULE_DESCRIPTION("SDR driver");
88 MODULE_LICENSE("GPL v2");
89 
90 module_param(test_mode, int, 0);
91 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)");
92 
93 module_param(init_tx_att, int, 0);
94 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000	example: set to 3000 for 3dB attenuation");
95 
96 // ---------------rfkill---------------------------------------
97 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
98 {
99 	int reg;
100 
101 	if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH)
102 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
103 	else
104 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
105 
106 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]))
107 		return true;// 0 off, 1 on
108 	return false;
109 }
110 
111 void openwifi_rfkill_init(struct ieee80211_hw *hw)
112 {
113 	struct openwifi_priv *priv = hw->priv;
114 
115 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
116 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
117 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
118 	wiphy_rfkill_start_polling(hw->wiphy);
119 }
120 
121 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
122 {
123 	bool enabled;
124 	struct openwifi_priv *priv = hw->priv;
125 
126 	enabled = openwifi_is_radio_enabled(priv);
127 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
128 	if (unlikely(enabled != priv->rfkill_off)) {
129 		priv->rfkill_off = enabled;
130 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
131 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
132 	}
133 }
134 
135 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
136 {
137 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
138 	wiphy_rfkill_stop_polling(hw->wiphy);
139 }
140 //----------------rfkill end-----------------------------------
141 
142 //static void ad9361_rf_init(void);
143 //static void ad9361_rf_stop(void);
144 //static void ad9361_rf_calc_rssi(void);
145 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
146 				  struct ieee80211_conf *conf)
147 {
148 	struct openwifi_priv *priv = dev->priv;
149 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz + priv->drv_rx_reg_val[DRV_RX_REG_IDX_EXTRA_FO];
150 	u32 actual_tx_lo;
151 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
152 	int static_lbt_th, auto_lbt_th, fpga_lbt_th;
153 
154 	if (change_flag) {
155 		priv->actual_rx_lo = actual_rx_lo;
156 		priv->actual_tx_lo = actual_tx_lo;
157 
158 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
159 
160 		clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) );
161 		clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) );
162 
163 		if (actual_rx_lo<2412) {
164 			priv->rssi_correction = 153;
165 		} else if (actual_rx_lo<=2484) {
166 			priv->rssi_correction = 153;
167 		} else if (actual_rx_lo<5160) {
168 			priv->rssi_correction = 153;
169 		} else if (actual_rx_lo<=5240) {
170 			priv->rssi_correction = 145;
171 		} else if (actual_rx_lo<=5320) {
172 			priv->rssi_correction = 148;
173 		} else {
174 			priv->rssi_correction = 148;
175 		}
176 
177 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
178 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44
179 		auto_lbt_th = ((priv->rssi_correction-62-16)<<1);
180 		static_lbt_th = priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH];
181 		fpga_lbt_th = (static_lbt_th==0?auto_lbt_th:static_lbt_th);
182 		xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th);
183 
184 		priv->last_auto_fpga_lbt_th = auto_lbt_th;
185 
186 		if (actual_rx_lo < 2500) {
187 			//priv->slot_time = 20; //20 is default slot time in ERP(OFDM)/11g 2.4G; short one is 9.
188 			//xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_2_4GHZ<<16);
189 			if (priv->band != BAND_2_4GHZ) {
190 				priv->band = BAND_2_4GHZ;
191 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
192 			}
193 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2)*10)<<16) | 10 ); // high 16 bits to cover sig valid of ACK packet, low 16 bits is adjustment of fcs valid waiting time.  let's add 2us for those device that is really "slow"!
194 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2+2)*10)<<16) | 10 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
195 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 0 );
196 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((10)*10)<<16);
197 		}
198 		else {
199 			//priv->slot_time = 9; //default slot time of OFDM PHY (OFDM by default means 5GHz)
200 			// xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_5_8GHZ<<16);
201 			if (priv->band != BAND_5_8GHZ) {
202 				priv->band = BAND_5_8GHZ;
203 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
204 			}
205 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2)*10)<<16) | 10 ); // because 5GHz needs longer SIFS (16 instead of 10), we need 58 instead of 48 for XPU low mac setting.  let's add 2us for those device that is really "slow"!
206 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2+2)*10)<<16) | 10 );//add 2us for longer fir.  BUT corrding to FPGA probing test, we do not need this
207 			// //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 60*10 );
208 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 50*10 );// for longer fir we need this delay 1us shorter
209 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((16)*10)<<16);
210 		}
211 		//printk("%s ad9361_rf_set_channel %dM rssi_correction %d\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction);
212 		// //-- use less
213 		//clk_prepare_enable(priv->ad9361_phy->clks[RX_RFPLL]);
214 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
215 		//ad9361_set_trx_clock_chain_default(priv->ad9361_phy);
216 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
217 		printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d (auto %d static %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,auto_lbt_th,static_lbt_th);
218 	}
219 }
220 
221 const struct openwifi_rf_ops ad9361_rf_ops = {
222 	.name		= "ad9361",
223 //	.init		= ad9361_rf_init,
224 //	.stop		= ad9361_rf_stop,
225 	.set_chan	= ad9361_rf_set_channel,
226 //	.calc_rssi	= ad9361_rf_calc_rssi,
227 };
228 
229 u16 reverse16(u16 d) {
230 	union u16_byte2 tmp0, tmp1;
231 	tmp0.a = d;
232 	tmp1.c[0] = tmp0.c[1];
233 	tmp1.c[1] = tmp0.c[0];
234 	return(tmp1.a);
235 }
236 
237 u32 reverse32(u32 d) {
238 	union u32_byte4 tmp0, tmp1;
239 	tmp0.a = d;
240 	tmp1.c[0] = tmp0.c[3];
241 	tmp1.c[1] = tmp0.c[2];
242 	tmp1.c[2] = tmp0.c[1];
243 	tmp1.c[3] = tmp0.c[0];
244 	return(tmp1.a);
245 }
246 
247 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
248 {
249 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
250 	int i;
251 
252 	ring->stop_flag = 0;
253 	ring->bd_wr_idx = 0;
254 	ring->bd_rd_idx = 0;
255 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
256 	if (ring->bds==NULL) {
257 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
258 		return -ENOMEM;
259 	}
260 
261 	for (i = 0; i < NUM_TX_BD; i++) {
262 		ring->bds[i].skb_linked=0; // for tx, skb is from upper layer
263 		//at first right after skb allocated, head, data, tail are the same.
264 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine
265 		ring->bds[i].seq_no = 0;
266 	}
267 
268 	return 0;
269 }
270 
271 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
272 {
273 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
274 	int i;
275 
276 	ring->stop_flag = 0;
277 	ring->bd_wr_idx = 0;
278 	ring->bd_rd_idx = 0;
279 	for (i = 0; i < NUM_TX_BD; i++) {
280 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
281 			continue;
282 		if (ring->bds[i].dma_mapping_addr != 0)
283 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
284 //		if (ring->bds[i].skb_linked!=NULL)
285 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
286 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
287 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
288 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str,
289 			ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr));
290 
291 		ring->bds[i].skb_linked=0;
292 		ring->bds[i].dma_mapping_addr = 0;
293 		ring->bds[i].seq_no = 0;
294 	}
295 	if (ring->bds)
296 		kfree(ring->bds);
297 	ring->bds = NULL;
298 }
299 
300 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
301 {
302 	int i;
303 	u8 *pdata_tmp;
304 
305 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
306 	if (!priv->rx_cyclic_buf) {
307 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
308 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
309 		return(-1);
310 	}
311 
312 	// Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
313 	for (i=0; i<NUM_RX_BD; i++) {
314 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning
315 		(*((u32*)(pdata_tmp+0 ))) = 0;
316 		(*((u32*)(pdata_tmp+4 ))) = 0;
317 	}
318 	printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str);
319 
320 	return 0;
321 }
322 
323 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
324 {
325 	if (priv->rx_cyclic_buf)
326 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
327 
328 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
329 	priv->rx_cyclic_buf = 0;
330 }
331 
332 static int rx_dma_setup(struct ieee80211_hw *dev){
333 	struct openwifi_priv *priv = dev->priv;
334 	struct dma_device *rx_dev = priv->rx_chan->device;
335 
336 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
337 	if (!(priv->rxd)) {
338 		openwifi_free_rx_ring(priv);
339 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
340 		return(-1);
341 	}
342 	priv->rxd->callback = 0;
343 	priv->rxd->callback_param = 0;
344 
345 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
346 
347 	if (dma_submit_error(priv->rx_cookie)) {
348 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
349 		return(-1);
350 	}
351 
352 	dma_async_issue_pending(priv->rx_chan);
353 	return(0);
354 }
355 
356 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
357 {
358 	struct ieee80211_hw *dev = dev_id;
359 	struct openwifi_priv *priv = dev->priv;
360 	struct ieee80211_rx_status rx_status = {0};
361 	struct sk_buff *skb;
362 	struct ieee80211_hdr *hdr;
363 	u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di;
364 	bool ht_flag, short_gi, ht_aggr, ht_aggr_last;
365 	// u32 dma_driver_buf_idx_mod;
366 	u8 *pdata_tmp, fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw;
367 	s8 signal;
368 	u16 agc_status_and_pkt_exist_flag, rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0;
369 	bool content_ok = false, len_overflow = false;
370 
371 #ifdef USE_NEW_RX_INTERRUPT
372 	int i;
373 	spin_lock(&priv->lock);
374 	for (i=0; i<NUM_RX_BD; i++) {
375 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE;
376 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid
377 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
378 			continue;
379 #else
380 	static u8 target_buf_idx_old = 0;
381 	spin_lock(&priv->lock);
382 	while(1) { // loop all rx buffers that have new rx packets
383 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
384 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10)));
385 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
386 			break;
387 #endif
388 
389 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
390 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
391 		rssi_val =     (*((u16*)(pdata_tmp+8 )));
392 		len =          (*((u16*)(pdata_tmp+12)));
393 
394 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
395 
396 		rate_idx =     (*((u16*)(pdata_tmp+14)));
397 		ht_flag  =     ((rate_idx&0x10)!=0);
398 		short_gi =     ((rate_idx&0x20)!=0);
399 		ht_aggr  =     (ht_flag & ((rate_idx&0x40)!=0));
400 		ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0));
401 		rate_idx =     (rate_idx&0x1F);
402 
403 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
404 
405 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
406 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
407 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
408 		fcs_ok = ((fcs_ok&0x80)!=0);
409 
410 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
411 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
412 			// 	printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
413 			// }
414 			content_ok = true;
415 		} else {
416 			printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str);
417 			content_ok = false;
418 		}
419 
420 		rssi_val = (rssi_val>>1);
421 		if ( (rssi_val+128)<priv->rssi_correction )
422 			signal = -128;
423 		else
424 			signal = rssi_val - priv->rssi_correction;
425 
426 		// fc_di =        (*((u32*)(pdata_tmp+16)));
427 		// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
428 		// addr1_low32  = (*((u32*)(pdata_tmp+16+4+2)));
429 		// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
430 		// addr2_low32  = (*((u32*)(pdata_tmp+16+6+4+2)));
431 		// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
432 		// addr3_low32  = (*((u32*)(pdata_tmp+16+12+4+2)));
433 		if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) {
434 			hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
435 			addr1_low32  = *((u32*)(hdr->addr1+2));
436 			addr1_high16 = *((u16*)(hdr->addr1));
437 			if (len>=20) {
438 				addr2_low32  = *((u32*)(hdr->addr2+2));
439 				addr2_high16 = *((u16*)(hdr->addr2));
440 			}
441 			if (len>=26) {
442 				addr3_low32  = *((u32*)(hdr->addr3+2));
443 				addr3_high16 = *((u16*)(hdr->addr3));
444 			}
445 			if (len>=28)
446 				sc = hdr->seq_ctrl;
447 
448 			if ( (addr1_low32!=0xffffffff || addr1_high16!=0xffff) || (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&4) )
449 				printk("%s openwifi_rx_interrupt:%4dbytes ht%d aggr%d/%d sgi%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
450 					len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
451 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
452 #ifdef USE_NEW_RX_INTERRUPT
453 					sc, fcs_ok, i, signal);
454 #else
455 					sc, fcs_ok, target_buf_idx_old, signal);
456 #endif
457 		}
458 
459 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
460 		if (content_ok) {
461 			skb = dev_alloc_skb(len);
462 			if (skb) {
463 				skb_put_data(skb,pdata_tmp+16,len);
464 
465 				rx_status.antenna = priv->runtime_rx_ant_cfg;
466 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
467 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
468 				rx_status.signal = signal;
469 				rx_status.freq = dev->conf.chandef.chan->center_freq;
470 				rx_status.band = dev->conf.chandef.chan->band;
471 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
472 				rx_status.flag |= RX_FLAG_MACTIME_START;
473 				if (!fcs_ok)
474 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
475 				if (rate_idx <= 15)
476 					rx_status.encoding = RX_ENC_LEGACY;
477 				else
478 					rx_status.encoding = RX_ENC_HT;
479 				rx_status.bw = RATE_INFO_BW_20;
480 				if (short_gi)
481 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
482 				if(ht_aggr)
483 				{
484 					rx_status.ampdu_reference = priv->ampdu_reference;
485 					rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
486 					if (ht_aggr_last)
487 						rx_status.flag |= RX_FLAG_AMPDU_IS_LAST;
488 				}
489 
490 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
491 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
492 			} else
493 				printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
494 
495 			if(ht_aggr_last)
496 				priv->ampdu_reference++;
497 		}
498 		(*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed
499 		loop_count++;
500 #ifndef USE_NEW_RX_INTERRUPT
501 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
502 #endif
503 	}
504 
505 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) )
506 		printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
507 
508 // openwifi_rx_interrupt_out:
509 	spin_unlock(&priv->lock);
510 	return IRQ_HANDLED;
511 }
512 
513 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
514 {
515 	struct ieee80211_hw *dev = dev_id;
516 	struct openwifi_priv *priv = dev->priv;
517 	struct openwifi_ring *ring;
518 	struct sk_buff *skb;
519 	struct ieee80211_tx_info *info;
520 	u32 reg_val1, hw_queue_len, reg_val2, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0;
521 	u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx;
522 	u8 nof_retx=-1, last_bd_rd_idx, i;
523 	u64 blk_ack_bitmap;
524 	// u16 prio_rd_idx_store[64]={0};
525 	bool tx_fail=false;
526 
527 	spin_lock(&priv->lock);
528 
529 	while(1) { // loop all packets that have been sent by FPGA
530 		reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read();
531         reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read();
532 		blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32);
533 
534 		if (reg_val1!=0xFFFFFFFF) {
535 			nof_retx = (reg_val1&0xF);
536 			last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1));
537 			prio = ((reg_val1>>17)&0x3);
538 			num_slot_random = ((reg_val1>>19)&0x1FF);
539 			//num_slot_random = ((0xFF80000 &reg_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
540 			cw = ((reg_val1>>28)&0xF);
541 			//cw = ((0xF0000000 & reg_val1) >> 28);
542 			if(cw > 10) {
543 				cw = 10 ;
544 				num_slot_random += 512 ;
545 			}
546 			pkt_cnt = (reg_val2&0x3F);
547 			blk_ack_ssn = ((reg_val2>>6)&0xFFF);
548 
549 			ring = &(priv->tx_ring[prio]);
550 
551 			if ( ring->stop_flag == 1) {
552 				// Wake up Linux queue if FPGA and driver ring have room
553 				queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1));
554 				dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
555 				hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
556 
557 				if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) {
558 					// printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter);
559 					printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str,
560 					prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, last_bd_rd_idx);
561 					ieee80211_wake_queue(dev, prio);
562 					ring->stop_flag = 0;
563 				}
564 			}
565 
566 			for(i = 1; i <= pkt_cnt; i++)
567 			{
568 				ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64;
569 				seq_no = ring->bds[ring->bd_rd_idx].seq_no;
570 				skb = ring->bds[ring->bd_rd_idx].skb_linked;
571 
572 				dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
573 						skb->len, DMA_MEM_TO_DEV);
574 
575 				info = IEEE80211_SKB_CB(skb);
576 				ieee80211_tx_info_clear_status(info);
577 
578 				// Aggregation packet
579 				if(pkt_cnt > 1)
580 				{
581 					start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF));
582 					tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0);
583 					info->flags |= IEEE80211_TX_STAT_AMPDU;
584 					info->status.ampdu_len = 1;
585 					info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1;
586 
587 					skb_pull(skb, LEN_MPDU_DELIM);
588 					//skb_trim(skb, num_byte_pad_skb);
589 				}
590 				// Normal packet
591 				else
592 				{
593 					tx_fail = ((blk_ack_bitmap&0x1)==0);
594 					info->flags &= (~IEEE80211_TX_CTL_AMPDU);
595 				}
596 
597 				if (tx_fail == false)
598 					info->flags |= IEEE80211_TX_STAT_ACK;
599 
600 				info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
601 				info->status.rates[1].idx = -1;
602 				info->status.rates[2].idx = -1;
603 				info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
604 				info->status.antenna = priv->runtime_tx_ant_cfg;
605 
606 				if ( tx_fail && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
607 					printk("%s openwifi_tx_interrupt: WARNING pkt_no %d/%d tx_result [nof_retx %d pass %d] prio%d wr%d rd%d\n", sdr_compatible_str, i, pkt_cnt, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx);
608 				if ( ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK))||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) )
609 					printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw);
610 
611 				ieee80211_tx_status_irqsafe(dev, skb);
612 			}
613 
614 			loop_count++;
615 
616 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
617 
618 		} else
619 			break;
620 	}
621 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
622 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
623 
624 	spin_unlock(&priv->lock);
625 	return IRQ_HANDLED;
626 }
627 
628 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000};
629 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes)
630 {
631 	u32 i, crc = 0;
632 	u8 idx;
633 	for( i = 0; i < num_bytes; i++)
634 	{
635 		idx = (crc & 0x0F) ^ (data_in[i] & 0x0F);
636 		crc = (crc >> 4) ^ crc_table[idx];
637 
638 		idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F);
639 		crc = (crc >> 4) ^ crc_table[idx];
640 	}
641 
642 	return crc;
643 }
644 
645 u8 gen_mpdu_delim_crc(u16 m)
646 {
647 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc;
648 
649 	for (i = 0; i < 16; i++)
650 	{
651 		temp = c[7] ^ ((m >> i) & 0x01);
652 
653 		c[7] = c[6];
654 		c[6] = c[5];
655 		c[5] = c[4];
656 		c[4] = c[3];
657 		c[3] = c[2];
658 		c[2] = c[1] ^ temp;
659 		c[1] = c[0] ^ temp;
660 		c[0] = temp;
661 	}
662 	mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
663 
664 	return mpdu_delim_crc;
665 }
666 
667 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
668 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
669 {
670 	return container_of(led_cdev, struct gpio_led_data, cdev);
671 }
672 
673 static void openwifi_tx(struct ieee80211_hw *dev,
674 		       struct ieee80211_tx_control *control,
675 		       struct sk_buff *skb)
676 {
677 	struct openwifi_priv *priv = dev->priv;
678 	unsigned long flags;
679 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
680 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
681 	struct openwifi_ring *ring = NULL;
682 	dma_addr_t dma_mapping_addr;
683 	unsigned int prio=0, i;
684 	u32 num_dma_symbol, len_mpdu = 0, len_mpdu_delim_pad = 0, num_dma_byte, len_psdu, num_byte_pad;
685 	u32 rate_signal_value,rate_hw_value=0,ack_flag;
686 	u32 pkt_need_ack=0, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history;
687 	u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration;
688 	u8 fc_flag,fc_type,fc_subtype,retry_limit_raw=0,use_short_gi=0,*dma_buf,retry_limit_hw_value,rc_flags,*qos_hdr;
689 	bool use_rts_cts, use_cts_protect=false, ht_aggr_start=false, use_ht_rate=false, use_ht_aggr=false, addr_flag, cts_use_traffic_rate=false, force_use_cts_protect=false;
690 	__le16 frame_control,duration_id;
691 	u32 dma_fifo_no_room_flag, hw_queue_len;
692 	enum dma_status status;
693 
694 	static u32 addr1_low32_prev = -1, rate_hw_value_prev = -1, pkt_need_ack_prev = -1;
695 	static u16 addr1_high16_prev = -1;
696 	static __le16 duration_id_prev = -1;
697 	static unsigned int prio_prev = -1;
698 	static u8 retry_limit_raw_prev = -1;
699 	static u8 use_short_gi_prev = -1;
700 
701 	// static bool led_status=0;
702 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
703 
704 	// if ( (priv->phy_tx_sn&7) ==0 ) {
705 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
706 	// 	if (openofdm_state_history!=openofdm_state_history_old){
707 	// 		led_status = (~led_status);
708 	// 		openofdm_state_history_old = openofdm_state_history;
709 	// 		gpiod_set_value(led_dat->gpiod, led_status);
710 	// 	}
711 	// }
712 
713 	if (test_mode==1){
714 		printk("%s openwifi_tx: WARNING test_mode==1\n", sdr_compatible_str);
715 		goto openwifi_tx_early_out;
716 	}
717 
718 	if (skb->data_len>0) {// more data are not in linear data area skb->data
719 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
720 		goto openwifi_tx_early_out;
721 	}
722 
723 	len_mpdu = skb->len;
724 
725 	// get Linux priority/queue setting info and target mac address
726 	prio = skb_get_queue_mapping(skb);
727 	addr1_low32  = *((u32*)(hdr->addr1+2));
728 	ring = &(priv->tx_ring[prio]);
729 
730 	// -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" -----------
731 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
732 		queue_idx = prio;
733 	} else {// customized prio to queue_idx mapping
734 		//if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only
735 		// check current packet belonging to which slice/hw-queue
736 			for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
737 				if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
738 					break;
739 				}
740 			}
741 		//}
742 		queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest.
743 	}
744 	// -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------
745 	// get other info from packet header
746 	addr1_high16 = *((u16*)(hdr->addr1));
747 	if (len_mpdu>=20) {
748 		addr2_low32  = *((u32*)(hdr->addr2+2));
749 		addr2_high16 = *((u16*)(hdr->addr2));
750 	}
751 	if (len_mpdu>=26) {
752 		addr3_low32  = *((u32*)(hdr->addr3+2));
753 		addr3_high16 = *((u16*)(hdr->addr3));
754 	}
755 
756 	duration_id = hdr->duration_id;
757 	frame_control=hdr->frame_control;
758 	ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK);
759 	fc_type = ((frame_control)>>2)&3;
760 	fc_subtype = ((frame_control)>>4)&0xf;
761 	fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) );
762 	//if it is broadcasting or multicasting addr
763 	addr_flag = ( (addr1_low32==0 && addr1_high16==0) ||
764 	              (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) ||
765 				  (addr1_high16==0x3333) ||
766 				  (addr1_high16==0x0001 && hdr->addr1[2]==0x5E)  );
767 	if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame
768 		pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent
769 	} else {
770 		pkt_need_ack = 0;
771 	}
772 
773 	// get Linux rate (MCS) setting
774 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
775 	//rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
776 	if (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0 && fc_type==2 && (!addr_flag)) //rate override command
777 		rate_hw_value = priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE];
778 
779 	retry_limit_raw = info->control.rates[0].count;
780 
781 	rc_flags = info->control.rates[0].flags;
782 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
783 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
784 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
785 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
786 	use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0);
787 
788 	if (use_rts_cts)
789 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
790 
791 	if (use_cts_protect) {
792 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
793 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info));
794 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
795 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
796 		sifs = (priv->actual_rx_lo<2500?10:16);
797 		if (pkt_need_ack)
798 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
799 		traffic_pkt_duration = 20 + 4*(((22+len_mpdu*8)/wifi_n_dbps_table[rate_hw_value])+1);
800 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
801 	}
802 
803 // this is 11b stuff
804 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
805 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
806 
807 	if (len_mpdu>=28) {
808 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
809 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
810 				priv->seqno += 0x10;
811 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
812 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
813 		}
814 		sc = hdr->seq_ctrl;
815 	}
816 
817 	if ( ( (!addr_flag)||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) )
818 		printk("%s openwifi_tx: %4dbytes ht%d aggr%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
819 			len_mpdu, (use_ht_rate == false ? 0 : 1), (use_ht_aggr == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
820 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
821 			sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx,
822 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
823 			ring->bd_wr_idx,ring->bd_rd_idx);
824 
825 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
826 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
827 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
828 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
829 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
830 
831 	// -----------end of preprocess some info from header and skb----------------
832 
833 	// /* HW will perform RTS-CTS when only RTS flags is set.
834 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
835 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
836 	//  */
837 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
838 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
839 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
840 	// 					len_mpdu, info);
841 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
842 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
843 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
844 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
845 	// 					len_mpdu, info);
846 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
847 	// }
848 
849 	if(use_ht_aggr)
850 	{
851 		qos_hdr = ieee80211_get_qos_ctl(hdr);
852 		if(ieee80211_is_data_qos(frame_control) == false || qos_hdr[0] != priv->tid)
853 		{
854 			printk("%s openwifi_tx: WARNING packet is either not qos or tid %u does not match registered tid %u\n", sdr_compatible_str, qos_hdr[0], priv->tid);
855 			goto openwifi_tx_early_out;
856 		}
857 
858 		// psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ]
859 		len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4);
860 		len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad;
861 
862 		if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) ||
863 			(rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) ||
864 			(prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) )
865 		{
866 			addr1_low32_prev = addr1_low32;
867 			addr1_high16_prev = addr1_high16;
868 			duration_id_prev = duration_id;
869 			rate_hw_value_prev = rate_hw_value;
870 			use_short_gi_prev = use_short_gi;
871 			prio_prev = prio;
872 			retry_limit_raw_prev = retry_limit_raw;
873 			pkt_need_ack_prev = pkt_need_ack;
874 
875 			ht_aggr_start = true;
876 		}
877 	}
878 	else
879 	{
880 		// psdu = [ MPDU ]
881 		len_psdu = len_mpdu;
882 
883 		addr1_low32_prev = -1;
884 		addr1_high16_prev = -1;
885 		duration_id_prev = -1;
886 		use_short_gi_prev = -1;
887 		rate_hw_value_prev = -1;
888 		prio_prev = -1;
889 		retry_limit_raw_prev = -1;
890 		pkt_need_ack_prev = -1;
891 	}
892 	num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
893 
894 	// check whether the packet is bigger than DMA buffer size
895 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
896 	if (num_dma_byte > TX_BD_BUF_SIZE) {
897 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
898 		goto openwifi_tx_early_out;
899 	}
900 
901 	// Copy MPDU delimiter and padding into sk_buff
902 	if(use_ht_aggr)
903 	{
904 		// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
905 		if (skb_headroom(skb)<LEN_MPDU_DELIM) {
906 			struct sk_buff *skb_new; // in case original skb headroom is not enough to host MPDU delimiter
907 			printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_MPDU_DELIM\n", sdr_compatible_str, ring->bd_wr_idx);
908 			if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) {
909 				printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
910 				goto openwifi_tx_early_out;
911 			}
912 			if (skb->sk != NULL)
913 				skb_set_owner_w(skb_new, skb->sk);
914 			dev_kfree_skb(skb);
915 			skb = skb_new;
916 		}
917 		skb_push( skb, LEN_MPDU_DELIM );
918 		dma_buf = skb->data;
919 
920 		// fill in MPDU delimiter
921 		*((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0;
922 		*((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf));
923 		*((u8 *)(dma_buf+3)) = 0x4e;
924 
925 		// Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter
926 		num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu);
927 		if (skb_tailroom(skb)<num_byte_pad) {
928 			printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
929 			goto openwifi_tx_early_out;
930 		}
931 		skb_put( skb, num_byte_pad );
932 
933 		// fill in MPDU CRC
934 		*((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu);
935 
936 		// fill in MPDU delimiter padding
937 		memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad);
938 
939 		// num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary.
940 		// If they have different lengths, add "empty MPDU delimiter" for alignment
941 		if(num_dma_byte == len_psdu + 4)
942 		{
943 			*((u32*)(dma_buf+len_psdu)) = 0x4e140000;
944 			len_psdu = num_dma_byte;
945 		}
946 	}
947 	else
948 	{
949 		// Extend sk_buff to hold padding
950 		num_byte_pad = num_dma_byte - len_mpdu;
951 		if (skb_tailroom(skb)<num_byte_pad) {
952 			printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
953 			goto openwifi_tx_early_out;
954 		}
955 		skb_put( skb, num_byte_pad );
956 
957 		dma_buf = skb->data;
958 	}
959 //	for(i = 0; i <= num_dma_symbol; i++)
960 //		printk("%16llx\n", (*(u64*)(&(dma_buf[i*8]))));
961 
962 	rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]);
963 
964 	retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) );
965 
966 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
967 	cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value);
968 	tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | (len_mpdu+LEN_PHY_CRC) );
969 	phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu );
970 
971 	/* We must be sure that tx_flags is written last because the HW
972 	 * looks at it to check if the rest of data is valid or not
973 	 */
974 	//wmb();
975 	// entry->flags = cpu_to_le32(tx_flags);
976 	/* We must be sure this has been written before following HW
977 	 * register write, because this write will make the HW attempts
978 	 * to DMA the just-written data
979 	 */
980 	//wmb();
981 
982 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
983 
984 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
985 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
986 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
987 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD)  || ring->stop_flag==1 ) {
988 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
989 		printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str,
990 		prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
991 		ring->stop_flag = 1;
992 		goto openwifi_tx_early_out_after_lock;
993 	}
994 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
995 
996 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
997 	if (status!=DMA_COMPLETE) {
998 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
999 		goto openwifi_tx_early_out_after_lock;
1000 	}
1001 
1002 //-------------------------fire skb DMA to hardware----------------------------------
1003 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
1004 				 num_dma_byte, DMA_MEM_TO_DEV);
1005 
1006 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
1007 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
1008 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
1009 		goto openwifi_tx_early_out_after_lock;
1010 	}
1011 
1012 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
1013 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
1014 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
1015 
1016 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
1017 	tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config);
1018 	tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config);
1019 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
1020 	if (!(priv->txd)) {
1021 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
1022 		goto openwifi_tx_after_dma_mapping;
1023 	}
1024 
1025 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
1026 
1027 	if (dma_submit_error(priv->tx_cookie)) {
1028 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
1029 		goto openwifi_tx_after_dma_mapping;
1030 	}
1031 
1032 	// seems everything is ok. let's mark this pkt in bd descriptor ring
1033 	ring->bds[ring->bd_wr_idx].seq_no = (sc&IEEE80211_SCTL_SEQ)>>4;
1034 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
1035 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
1036 
1037 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
1038 
1039 	dma_async_issue_pending(priv->tx_chan);
1040 
1041 	spin_unlock_irqrestore(&priv->lock, flags);
1042 
1043 	return;
1044 
1045 openwifi_tx_after_dma_mapping:
1046 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
1047 
1048 openwifi_tx_early_out_after_lock:
1049 	dev_kfree_skb(skb);
1050 	spin_unlock_irqrestore(&priv->lock, flags);
1051 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1052 	return;
1053 
1054 openwifi_tx_early_out:
1055 	dev_kfree_skb(skb);
1056 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1057 }
1058 
1059 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant)
1060 {
1061 	struct openwifi_priv *priv = dev->priv;
1062 	u8 fpga_tx_ant_setting, target_rx_ant;
1063 	u32 atten_mdb_tx0, atten_mdb_tx1;
1064 	struct ctrl_outs_control ctrl_out;
1065 	int ret;
1066 
1067 	printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant);
1068 
1069 	if (tx_ant >= 4 || tx_ant == 0) {
1070 		return -EINVAL;
1071 	} else if (rx_ant >= 3 || rx_ant == 0) {
1072 		return -EINVAL;
1073 	}
1074 
1075 	fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16));
1076 	target_rx_ant = ((rx_ant&1)?0:1);
1077 
1078 	// try rf chip setting firstly, only update internal state variable when rf chip succeed
1079 	atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1080 	atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1081 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true);
1082 	if (ret < 0) {
1083 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0);
1084 		return -EINVAL;
1085 	} else {
1086 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0);
1087 	}
1088 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true);
1089 	if (ret < 0) {
1090 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1);
1091 		return -EINVAL;
1092 	} else {
1093 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1);
1094 	}
1095 
1096 	ctrl_out.en_mask = priv->ctrl_out.en_mask;
1097 	ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
1098 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out));
1099 	if (ret < 0) {
1100 		printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1101 		return -EINVAL;
1102 	} else {
1103 		printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1104 	}
1105 
1106 	tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting);
1107 	ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read();
1108 	if (ret != fpga_tx_ant_setting) {
1109 		printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret);
1110 		return -EINVAL;
1111 	} else {
1112 		printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1113 	}
1114 
1115 	rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant);
1116 	ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read();
1117 	if (ret != target_rx_ant) {
1118 		printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret);
1119 		return -EINVAL;
1120 	} else {
1121 		printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1122 	}
1123 
1124 	// update internal state variable
1125 	priv->runtime_tx_ant_cfg = tx_ant;
1126 	priv->runtime_rx_ant_cfg = rx_ant;
1127 
1128 	if (TX_OFFSET_TUNING_ENABLE)
1129 		priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE
1130 	else {
1131 		if (tx_ant == 3)
1132 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH;
1133 		else
1134 			priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1135 	}
1136 
1137 	priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1138 	priv->ctrl_out.index=ctrl_out.index;
1139 
1140 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1141 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1142 
1143 	return 0;
1144 }
1145 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant)
1146 {
1147 	struct openwifi_priv *priv = dev->priv;
1148 
1149 	*tx_ant = priv->runtime_tx_ant_cfg;
1150 	*rx_ant = priv->runtime_rx_ant_cfg;
1151 
1152 	printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant);
1153 
1154 	printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str,
1155 	priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index);
1156 
1157 	printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str,
1158 	tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read());
1159 
1160 	printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str,
1161 	ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER));
1162 
1163 	return 0;
1164 }
1165 
1166 static int openwifi_start(struct ieee80211_hw *dev)
1167 {
1168 	struct openwifi_priv *priv = dev->priv;
1169 	int ret, i, rssi_half_db_offset, agc_gain_delay;//rssi_half_db_th,
1170 	u32 reg;
1171 
1172 	for (i=0; i<MAX_NUM_VIF; i++) {
1173 		priv->vif[i] = NULL;
1174 	}
1175 
1176 	// //keep software registers persistent between NIC down and up for multiple times
1177 	/*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
1178 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
1179 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
1180 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
1181 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/
1182 
1183 	//turn on radio
1184 	openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
1185 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
1186 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
1187 		priv->rfkill_off = 1;// 0 off, 1 on
1188 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
1189 	}
1190 	else
1191 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
1192 
1193 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1194 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1195 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1196 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1197 	xpu_api->hw_init(priv->xpu_cfg);
1198 
1199 	agc_gain_delay = 50; //samples
1200 	rssi_half_db_offset = 150; // to be consistent
1201 	xpu_api->XPU_REG_RSSI_DB_CFG_write(0x80000000|((rssi_half_db_offset<<16)|agc_gain_delay) );
1202 	xpu_api->XPU_REG_RSSI_DB_CFG_write((~0x80000000)&((rssi_half_db_offset<<16)|agc_gain_delay) );
1203 
1204 	openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write(0);
1205 	// rssi_half_db_th = 87<<1; // -62dBm // will setup in runtime in _rf_set_channel
1206 	// xpu_api->XPU_REG_LBT_TH_write(rssi_half_db_th); // set IQ rssi th step .5dB to xxx and enable it
1207 	xpu_api->XPU_REG_FORCE_IDLE_MISC_write(75); //control the duration to force ch_idle after decoding a packet due to imperfection of agc and signals
1208 
1209 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((40)<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz (Attention, current tx core has around 1.19us starting delay that makes the ack fall behind 10us SIFS in 2.4GHz! Need to improve TX in 2.4GHz!)
1210 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51)<<16)|0 );//now our tx send out I/Q immediately
1211 	xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51+23)<<16)|(0+23) );//we have more time when we use FIR in AD9361
1212 
1213 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP0_write( (1<<31) | (((45+2+2)*10 + 15)<<16) | 10 );//2.4GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1214 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP1_write( (1<<31) | (((51+2+2)*10 + 15)<<16) | 10 );//5GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1215 
1216 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write( ((16*10)<<16)|(10*10) );//high 16bit 5GHz; low 16 bit 2.4GHz. counter speed 10MHz is assumed
1217 
1218 	// //xpu_api->XPU_REG_BB_RF_DELAY_write(51); // fine tuned value at 0.005us. old: dac-->ant port: 0.6us, 57 taps fir at 40MHz: 1.425us; round trip: 2*(0.6+1.425)=4.05us; 4.05*10=41
1219 	// xpu_api->XPU_REG_BB_RF_DELAY_write(47);//add .5us for slightly longer fir -- already in xpu.c
1220 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1221 
1222 	// setup time schedule of 4 slices
1223 	// slice 0
1224 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write(50000-1); // total 50ms
1225 	xpu_api->XPU_REG_SLICE_COUNT_START_write(0); //start 0ms
1226 	xpu_api->XPU_REG_SLICE_COUNT_END_write(50000-1); //end 50ms
1227 
1228 	// slice 1
1229 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((1<<20)|(50000-1)); // total 50ms
1230 	xpu_api->XPU_REG_SLICE_COUNT_START_write((1<<20)|(0)); //start 0ms
1231 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(20000-1)); //end 20ms
1232 	xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(50000-1)); //end 20ms
1233 
1234 	// slice 2
1235 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((2<<20)|(50000-1)); // total 50ms
1236 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(20000)); //start 20ms
1237 	xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(0)); //start 20ms
1238 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(40000-1)); //end 20ms
1239 	xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(50000-1)); //end 20ms
1240 
1241 	// slice 3
1242 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((3<<20)|(50000-1)); // total 50ms
1243 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(40000)); //start 40ms
1244 	xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(0)); //start 40ms
1245 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1246 	xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1247 
1248 	// all slice sync rest
1249 	xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1250 	xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1251 
1252 	//xpu_api->XPU_REG_MAC_ADDR_HIGH_write( (*( (u16*)(priv->mac_addr + 4) )) );
1253 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1254 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1255 
1256 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1257 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1258 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1259 
1260 	if (test_mode==1) {
1261 		printk("%s openwifi_start: test_mode==1\n",sdr_compatible_str);
1262 		goto normal_out;
1263 	}
1264 
1265 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1266 	if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) {
1267 		ret = PTR_ERR(priv->rx_chan);
1268 		pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan);
1269 		goto err_dma;
1270 	}
1271 
1272 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1273 	if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) {
1274 		ret = PTR_ERR(priv->tx_chan);
1275 		pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan);
1276 		goto err_dma;
1277 	}
1278 	printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan);
1279 
1280 	ret = openwifi_init_rx_ring(priv);
1281 	if (ret) {
1282 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1283 		goto err_free_rings;
1284 	}
1285 
1286 	priv->seqno=0;
1287 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1288 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1289 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1290 			goto err_free_rings;
1291 		}
1292 	}
1293 
1294 	if ( (ret = rx_dma_setup(dev)) ) {
1295 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1296 		goto err_free_rings;
1297 	}
1298 
1299 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1300 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1301 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1302 	if (ret) {
1303 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1304 		goto err_free_rings;
1305 	} else {
1306 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1307 	}
1308 
1309 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1310 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1311 			IRQF_SHARED, "sdr,tx_itrpt", dev);
1312 	if (ret) {
1313 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1314 		goto err_free_rings;
1315 	} else {
1316 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1317 	}
1318 
1319 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1320 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1321 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1322 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1323 
1324 	//ieee80211_wake_queue(dev, 0);
1325 
1326 normal_out:
1327 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1328 	return 0;
1329 
1330 err_free_rings:
1331 	openwifi_free_rx_ring(priv);
1332 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1333 		openwifi_free_tx_ring(priv, i);
1334 
1335 err_dma:
1336 	ret = -1;
1337 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1338 	return ret;
1339 }
1340 
1341 static void openwifi_stop(struct ieee80211_hw *dev)
1342 {
1343 	struct openwifi_priv *priv = dev->priv;
1344 	u32 reg, reg1;
1345 	int i;
1346 
1347 	if (test_mode==1){
1348 		pr_info("%s openwifi_stop: test_mode==1\n", sdr_compatible_str);
1349 		goto normal_out;
1350 	}
1351 
1352 	//turn off radio
1353 	#if 1
1354 	ad9361_tx_mute(priv->ad9361_phy, 1);
1355 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1356 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1357 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1358 		priv->rfkill_off = 0;// 0 off, 1 on
1359 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1360 	}
1361 	else
1362 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1363 	#endif
1364 
1365 	//ieee80211_stop_queue(dev, 0);
1366 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1367 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1368 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1369 
1370 	for (i=0; i<MAX_NUM_VIF; i++) {
1371 		priv->vif[i] = NULL;
1372 	}
1373 
1374 	openwifi_free_rx_ring(priv);
1375 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1376 		openwifi_free_tx_ring(priv, i);
1377 
1378 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1379 	dmaengine_terminate_all(priv->rx_chan);
1380 	dma_release_channel(priv->rx_chan);
1381 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1382 	dmaengine_terminate_all(priv->tx_chan);
1383 	dma_release_channel(priv->tx_chan);
1384 
1385 	//priv->rf->stop(dev);
1386 
1387 	free_irq(priv->irq_rx, dev);
1388 	free_irq(priv->irq_tx, dev);
1389 
1390 normal_out:
1391 	printk("%s openwifi_stop\n", sdr_compatible_str);
1392 }
1393 
1394 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1395 			   struct ieee80211_vif *vif)
1396 {
1397 	u32 tsft_low, tsft_high;
1398 
1399 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1400 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1401 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1402 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1403 }
1404 
1405 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1406 {
1407 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1408 	u32 tsft_low  = (tsf&0xffffffff);
1409 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1410 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1411 }
1412 
1413 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1414 {
1415 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1416 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1417 }
1418 
1419 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1420 {
1421 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1422 	return(0);
1423 }
1424 
1425 static void openwifi_beacon_work(struct work_struct *work)
1426 {
1427 	struct openwifi_vif *vif_priv =
1428 		container_of(work, struct openwifi_vif, beacon_work.work);
1429 	struct ieee80211_vif *vif =
1430 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1431 	struct ieee80211_hw *dev = vif_priv->dev;
1432 	struct ieee80211_mgmt *mgmt;
1433 	struct sk_buff *skb;
1434 
1435 	/* don't overflow the tx ring */
1436 	if (ieee80211_queue_stopped(dev, 0))
1437 		goto resched;
1438 
1439 	/* grab a fresh beacon */
1440 	skb = ieee80211_beacon_get(dev, vif);
1441 	if (!skb)
1442 		goto resched;
1443 
1444 	/*
1445 	 * update beacon timestamp w/ TSF value
1446 	 * TODO: make hardware update beacon timestamp
1447 	 */
1448 	mgmt = (struct ieee80211_mgmt *)skb->data;
1449 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1450 
1451 	/* TODO: use actual beacon queue */
1452 	skb_set_queue_mapping(skb, 0);
1453 	openwifi_tx(dev, NULL, skb);
1454 
1455 resched:
1456 	/*
1457 	 * schedule next beacon
1458 	 * TODO: use hardware support for beacon timing
1459 	 */
1460 	schedule_delayed_work(&vif_priv->beacon_work,
1461 			usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1462 }
1463 
1464 static int openwifi_add_interface(struct ieee80211_hw *dev,
1465 				 struct ieee80211_vif *vif)
1466 {
1467 	int i;
1468 	struct openwifi_priv *priv = dev->priv;
1469 	struct openwifi_vif *vif_priv;
1470 
1471 	switch (vif->type) {
1472 	case NL80211_IFTYPE_AP:
1473 	case NL80211_IFTYPE_STATION:
1474 	case NL80211_IFTYPE_ADHOC:
1475 	case NL80211_IFTYPE_MONITOR:
1476 	case NL80211_IFTYPE_MESH_POINT:
1477 		break;
1478 	default:
1479 		return -EOPNOTSUPP;
1480 	}
1481 	// let's support more than 1 interface
1482 	for (i=0; i<MAX_NUM_VIF; i++) {
1483 		if (priv->vif[i] == NULL)
1484 			break;
1485 	}
1486 
1487 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1488 
1489 	if (i==MAX_NUM_VIF)
1490 		return -EBUSY;
1491 
1492 	priv->vif[i] = vif;
1493 
1494 	/* Initialize driver private area */
1495 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1496 	vif_priv->idx = i;
1497 
1498 	vif_priv->dev = dev;
1499 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1500 	vif_priv->enable_beacon = false;
1501 
1502 	printk("%s openwifi_add_interface end with vif idx %d\n", sdr_compatible_str,vif_priv->idx);
1503 
1504 	return 0;
1505 }
1506 
1507 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1508 				     struct ieee80211_vif *vif)
1509 {
1510 	struct openwifi_vif *vif_priv;
1511 	struct openwifi_priv *priv = dev->priv;
1512 
1513 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1514 	priv->vif[vif_priv->idx] = NULL;
1515 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1516 }
1517 
1518 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1519 {
1520 	struct openwifi_priv *priv = dev->priv;
1521 	struct ieee80211_conf *conf = &dev->conf;
1522 
1523 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
1524 		priv->rf->set_chan(dev, conf);
1525 	else
1526 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1527 
1528 	return 0;
1529 }
1530 
1531 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1532 				     struct ieee80211_vif *vif,
1533 				     struct ieee80211_bss_conf *info,
1534 				     u32 changed)
1535 {
1536 	struct openwifi_priv *priv = dev->priv;
1537 	struct openwifi_vif *vif_priv;
1538 	u32 bssid_low, bssid_high;
1539 
1540 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1541 
1542 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1543 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1544 	if (changed & BSS_CHANGED_BSSID) {
1545 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1546 		// write new bssid to our HW, and do not change bssid filter
1547 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1548 		bssid_low = ( *( (u32*)(info->bssid) ) );
1549 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1550 
1551 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1552 		//bssid_high = (bssid_high|bssid_filter_high);
1553 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1554 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1555 	}
1556 
1557 	if (changed & BSS_CHANGED_BEACON_INT) {
1558 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1559 	}
1560 
1561 	if (changed & BSS_CHANGED_TXPOWER)
1562 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1563 
1564 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1565 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1566 
1567 	if (changed & BSS_CHANGED_BASIC_RATES)
1568 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1569 
1570 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1571 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1572 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1573 		if (info->use_short_slot && priv->use_short_slot==false) {
1574 			priv->use_short_slot=true;
1575 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1576 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1577 			priv->use_short_slot=false;
1578 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1579 		}
1580 	}
1581 
1582 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1583 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1584 		vif_priv->enable_beacon = info->enable_beacon;
1585 	}
1586 
1587 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1588 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1589 		if (vif_priv->enable_beacon)
1590 			schedule_work(&vif_priv->beacon_work.work);
1591 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1592 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1593 	}
1594 }
1595 // helper function
1596 u32 log2val(u32 val){
1597 	u32 ret_val = 0 ;
1598 	while(val>1){
1599 		val = val >> 1 ;
1600 		ret_val ++ ;
1601 	}
1602 	return ret_val ;
1603 }
1604 
1605 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
1606 	      const struct ieee80211_tx_queue_params *params)
1607 {
1608 	u32 reg_val, cw_min_exp, cw_max_exp;
1609 
1610 	printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
1611 		  sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1612 
1613 	reg_val=xpu_api->XPU_REG_CSMA_CFG_read();
1614 	cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
1615 	cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
1616 	switch(queue){
1617 		case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) );  break;
1618 		case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) );  break;
1619 		case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break;
1620 		case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break;
1621 		default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
1622 	}
1623 	xpu_api->XPU_REG_CSMA_CFG_write(reg_val);
1624 	return(0);
1625 }
1626 
1627 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1628 				     struct netdev_hw_addr_list *mc_list)
1629 {
1630 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1631 	return netdev_hw_addr_list_count(mc_list);
1632 }
1633 
1634 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1635 				     unsigned int changed_flags,
1636 				     unsigned int *total_flags,
1637 				     u64 multicast)
1638 {
1639 	u32 filter_flag;
1640 
1641 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1642 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1643 
1644 	filter_flag = (*total_flags);
1645 
1646 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1647 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1648 
1649 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1650 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1651 		filter_flag = (filter_flag|MONITOR_ALL);
1652 	else
1653 		filter_flag = (filter_flag&(~MONITOR_ALL));
1654 
1655 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1656 		filter_flag = (filter_flag|MY_BEACON);
1657 
1658 	filter_flag = (filter_flag|FIF_PSPOLL);
1659 
1660 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
1661 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
1662 
1663 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
1664 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
1665 }
1666 
1667 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params)
1668 {
1669 	struct ieee80211_sta *sta = params->sta;
1670 	enum ieee80211_ampdu_mlme_action action = params->action;
1671 	// struct openwifi_priv *priv = hw->priv;
1672 	u16 max_tx_bytes, buf_size;
1673 	u32 ampdu_action_config;
1674 
1675 	if (!AGGR_ENABLE) {
1676 		return -EOPNOTSUPP;
1677 	}
1678 
1679 	switch (action)
1680 	{
1681 		case IEEE80211_AMPDU_TX_START:
1682 			ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
1683 			break;
1684 		case IEEE80211_AMPDU_TX_STOP_CONT:
1685 		case IEEE80211_AMPDU_TX_STOP_FLUSH:
1686 		case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
1687 			ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
1688 			break;
1689 		case IEEE80211_AMPDU_TX_OPERATIONAL:
1690 			buf_size = 4;
1691 //			buf_size = (params->buf_size) - 1;
1692 			max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1;
1693 			ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes );
1694 			tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config);
1695 			break;
1696 		case IEEE80211_AMPDU_RX_START:
1697 			printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1698 			break;
1699 		case IEEE80211_AMPDU_RX_STOP:
1700 			printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1701 			break;
1702 		default:
1703 			return -EOPNOTSUPP;
1704 	}
1705 
1706 	return 0;
1707 }
1708 
1709 static const struct ieee80211_ops openwifi_ops = {
1710 	.tx			       = openwifi_tx,
1711 	.start			   = openwifi_start,
1712 	.stop			   = openwifi_stop,
1713 	.add_interface	   = openwifi_add_interface,
1714 	.remove_interface  = openwifi_remove_interface,
1715 	.config			   = openwifi_config,
1716 	.set_antenna       = openwifi_set_antenna,
1717 	.get_antenna       = openwifi_get_antenna,
1718 	.bss_info_changed  = openwifi_bss_info_changed,
1719 	.conf_tx		   = openwifi_conf_tx,
1720 	.prepare_multicast = openwifi_prepare_multicast,
1721 	.configure_filter  = openwifi_configure_filter,
1722 	.rfkill_poll	   = openwifi_rfkill_poll,
1723 	.get_tsf		   = openwifi_get_tsf,
1724 	.set_tsf		   = openwifi_set_tsf,
1725 	.reset_tsf		   = openwifi_reset_tsf,
1726 	.set_rts_threshold = openwifi_set_rts_threshold,
1727 	.ampdu_action      = openwifi_ampdu_action,
1728 	.testmode_cmd	   = openwifi_testmode_cmd,
1729 };
1730 
1731 static const struct of_device_id openwifi_dev_of_ids[] = {
1732 	{ .compatible = "sdr,sdr", },
1733 	{}
1734 };
1735 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
1736 
1737 static int custom_match_spi_dev(struct device *dev, void *data)
1738 {
1739     const char *name = data;
1740 
1741 	bool ret = sysfs_streq(name, dev->of_node->name);
1742 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
1743 	return ret;
1744 }
1745 
1746 static int custom_match_platform_dev(struct device *dev, void *data)
1747 {
1748 	struct platform_device *plat_dev = to_platform_device(dev);
1749 	const char *name = data;
1750 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
1751 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
1752 
1753 	if (match_flag) {
1754 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
1755 	}
1756 	return(match_flag);
1757 }
1758 
1759 static int openwifi_dev_probe(struct platform_device *pdev)
1760 {
1761 	struct ieee80211_hw *dev;
1762 	struct openwifi_priv *priv;
1763 	int err=1, rand_val;
1764 	const char *chip_name, *fpga_model;
1765 	u32 reg;//, reg1;
1766 
1767 	struct device_node *np = pdev->dev.of_node;
1768 
1769 	struct device *tmp_dev;
1770 	struct platform_device *tmp_pdev;
1771 	struct iio_dev *tmp_indio_dev;
1772 	// struct gpio_leds_priv *tmp_led_priv;
1773 
1774 	printk("\n");
1775 
1776 	if (np) {
1777 		const struct of_device_id *match;
1778 
1779 		match = of_match_node(openwifi_dev_of_ids, np);
1780 		if (match) {
1781 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
1782 			err = 0;
1783 		}
1784 	}
1785 
1786 	if (err)
1787 		return err;
1788 
1789 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
1790 	if (!dev) {
1791 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
1792 		err = -ENOMEM;
1793 		goto err_free_dev;
1794 	}
1795 
1796 	priv = dev->priv;
1797 	priv->pdev = pdev;
1798 
1799 	err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
1800 	if(err < 0) {
1801 		printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
1802 		priv->fpga_type = SMALL_FPGA;
1803 	} else {
1804 		// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
1805 		if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
1806 			priv->fpga_type = LARGE_FPGA;
1807 		// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
1808 		else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
1809 			priv->fpga_type = SMALL_FPGA;
1810 	}
1811 
1812 	// //-------------find ad9361-phy driver for lo/channel control---------------
1813 	priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
1814 	priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
1815 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
1816 	if (tmp_dev == NULL) {
1817 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
1818 		err = -ENODEV;
1819 		goto err_free_dev;
1820 	}
1821 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
1822 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
1823 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
1824 		err = -ENODEV;
1825 		goto err_free_dev;
1826 	}
1827 
1828 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
1829 	if (!(priv->ad9361_phy)) {
1830 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
1831 		err = -ENODEV;
1832 		goto err_free_dev;
1833 	}
1834 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
1835 
1836 	priv->ctrl_out.en_mask=0xFF;
1837 	priv->ctrl_out.index=0x16;
1838 	err = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
1839 	if (err < 0) {
1840 		printk("%s openwifi_dev_probe: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, err);
1841 	} else {
1842 		printk("%s openwifi_dev_probe: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
1843 	}
1844 
1845 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
1846 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
1847 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
1848 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
1849 
1850 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
1851 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
1852 	if (!tmp_dev) {
1853 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
1854 		err = -ENODEV;
1855 		goto err_free_dev;
1856 	}
1857 
1858 	tmp_pdev = to_platform_device(tmp_dev);
1859 	if (!tmp_pdev) {
1860 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
1861 		err = -ENODEV;
1862 		goto err_free_dev;
1863 	}
1864 
1865 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
1866 	if (!tmp_indio_dev) {
1867 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
1868 		err = -ENODEV;
1869 		goto err_free_dev;
1870 	}
1871 
1872 	priv->dds_st = iio_priv(tmp_indio_dev);
1873 	if (!(priv->dds_st)) {
1874 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
1875 		err = -ENODEV;
1876 		goto err_free_dev;
1877 	}
1878 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
1879 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
1880 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
1881 
1882 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
1883 	// turn off radio by muting tx
1884 	// ad9361_tx_mute(priv->ad9361_phy, 1);
1885 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1886 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1887 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1888 	// 	priv->rfkill_off = 0;// 0 off, 1 on
1889 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
1890 	// }
1891 	// else
1892 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1893 
1894 	// //-----------------------------parse the test_mode input--------------------------------
1895 	if (test_mode&1)
1896 		AGGR_ENABLE = true;
1897 
1898 	// if (test_mode&2)
1899 	// 	TX_OFFSET_TUNING_ENABLE = false;
1900 
1901 	priv->last_auto_fpga_lbt_th = 134;//just to avoid uninitialized
1902 	priv->rssi_correction = 43;//this will be set in real-time by _rf_set_channel()
1903 
1904 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1905 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1906 
1907 	priv->xpu_cfg = XPU_NORMAL;
1908 
1909 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
1910 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
1911 
1912 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
1913 	if (priv->rf_bw == 20000000) {
1914 		priv->rx_intf_cfg = RX_INTF_BYPASS;
1915 		priv->tx_intf_cfg = TX_INTF_BYPASS;
1916 		//priv->rx_freq_offset_to_lo_MHz = 0;
1917 		//priv->tx_freq_offset_to_lo_MHz = 0;
1918 	} else if (priv->rf_bw == 40000000) {
1919 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
1920 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
1921 
1922 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
1923 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1924 		priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
1925 		// // try another antenna option
1926 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
1927 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
1928 
1929 		#if 0
1930 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
1931 			priv->rx_freq_offset_to_lo_MHz = -10;
1932 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
1933 			priv->rx_freq_offset_to_lo_MHz = 10;
1934 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
1935 			priv->rx_freq_offset_to_lo_MHz = 0;
1936 		} else {
1937 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
1938 		}
1939 		#endif
1940 	} else {
1941 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
1942 		err = -EBADRQC;
1943 		goto err_free_dev;
1944 	}
1945 
1946 	printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att);
1947 
1948 	priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2));
1949 	priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2);
1950 
1951 	priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK;
1952 	priv->ctrl_out.index  =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
1953 
1954 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
1955 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
1956 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
1957 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
1958 
1959 	priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att;
1960 
1961 	//let's by default turn radio on when probing
1962 	err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
1963 	if (err) {
1964 		printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err);
1965 		err = -EIO;
1966 		goto err_free_dev;
1967 	}
1968 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
1969 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
1970 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
1971 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
1972 
1973 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
1974 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
1975 		priv->rfkill_off = 1;// 0 off, 1 on
1976 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
1977 	} else
1978 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
1979 
1980 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
1981 
1982 	// //set ad9361 in certain mode
1983 	#if 0
1984 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
1985 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
1986 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
1987 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
1988 
1989 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1990 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1991 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1992 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1993 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1994 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1995 	#endif
1996 
1997 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
1998 
1999 	SET_IEEE80211_DEV(dev, &pdev->dev);
2000 	platform_set_drvdata(pdev, dev);
2001 
2002 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
2003 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
2004 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
2005 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
2006 
2007 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
2008 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
2009 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
2010 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
2011 
2012 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
2013 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
2014 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
2015 	priv->ampdu_reference = 0;
2016 
2017 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
2018 	priv->band_2GHz.channels = priv->channels_2GHz;
2019 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
2020 	priv->band_2GHz.bitrates = priv->rates_2GHz;
2021 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
2022 	priv->band_2GHz.ht_cap.ht_supported = true;
2023 	// priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
2024 	if (AGGR_ENABLE) {
2025 		priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2026 		priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2027 	}
2028 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
2029 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2030 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2031 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
2032 
2033 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
2034 	priv->band_5GHz.channels = priv->channels_5GHz;
2035 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
2036 	priv->band_5GHz.bitrates = priv->rates_5GHz;
2037 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
2038 	priv->band_5GHz.ht_cap.ht_supported = true;
2039 	// priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
2040 	if (AGGR_ENABLE) {
2041 		priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2042 		priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2043 	}
2044 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
2045 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2046 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2047 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2048 
2049 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2050 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2051 
2052 	ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING);
2053 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2054 	ieee80211_hw_set(dev, BEACON_TX_STATUS);
2055 	if (AGGR_ENABLE) {
2056 		ieee80211_hw_set(dev, AMPDU_AGGREGATION);
2057 	}
2058 
2059 
2060 	dev->vif_data_size = sizeof(struct openwifi_vif);
2061 	dev->wiphy->interface_modes =
2062 			BIT(NL80211_IFTYPE_MONITOR)|
2063 			BIT(NL80211_IFTYPE_P2P_GO) |
2064 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
2065 			BIT(NL80211_IFTYPE_AP) |
2066 			BIT(NL80211_IFTYPE_STATION) |
2067 			BIT(NL80211_IFTYPE_ADHOC) |
2068 			BIT(NL80211_IFTYPE_MESH_POINT) |
2069 			BIT(NL80211_IFTYPE_OCB);
2070 	dev->wiphy->iface_combinations = &openwifi_if_comb;
2071 	dev->wiphy->n_iface_combinations = 1;
2072 
2073 	dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK;
2074 	dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK;
2075 
2076 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2077 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2078 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2079 
2080 	chip_name = "ZYNQ";
2081 
2082 	/* we declare to MAC80211 all the queues except for beacon queue
2083 	 * that will be eventually handled by DRV.
2084 	 * TX rings are arranged in such a way that lower is the IDX,
2085 	 * higher is the priority, in order to achieve direct mapping
2086 	 * with mac80211, however the beacon queue is an exception and it
2087 	 * is mapped on the highst tx ring IDX.
2088 	 */
2089 	dev->queues = MAX_NUM_HW_QUEUE;
2090 	//dev->queues = 1;
2091 
2092 	ieee80211_hw_set(dev, SIGNAL_DBM);
2093 
2094 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2095 
2096 	priv->rf = &ad9361_rf_ops;
2097 
2098 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2099 	priv->slice_idx = 0xFFFFFFFF;
2100 
2101 	sg_init_table(&(priv->tx_sg), 1);
2102 
2103 	get_random_bytes(&rand_val, sizeof(rand_val));
2104     rand_val%=250;
2105 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
2106 	priv->mac_addr[5]=rand_val+1;
2107 	//priv->mac_addr[5]=0x11;
2108 	if (!is_valid_ether_addr(priv->mac_addr)) {
2109 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2110 		eth_random_addr(priv->mac_addr);
2111 	}
2112 	printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2113 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2114 
2115 	spin_lock_init(&priv->lock);
2116 
2117 	err = ieee80211_register_hw(dev);
2118 	if (err) {
2119 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2120 		err = -EIO;
2121 		goto err_free_dev;
2122 	} else {
2123 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2124 	}
2125 
2126 	// // //--------------------hook leds (not complete yet)--------------------------------
2127 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
2128 	// if (!tmp_dev) {
2129 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2130 	// 	err = -ENOMEM;
2131 	// 	goto err_free_dev;
2132 	// }
2133 
2134 	// tmp_pdev = to_platform_device(tmp_dev);
2135 	// if (!tmp_pdev) {
2136 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2137 	// 	err = -ENOMEM;
2138 	// 	goto err_free_dev;
2139 	// }
2140 
2141 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2142 	// if (!tmp_led_priv) {
2143 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2144 	// 	err = -ENOMEM;
2145 	// 	goto err_free_dev;
2146 	// }
2147 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2148 	// if (tmp_led_priv->num_leds!=4){
2149 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2150 	// 	err = -ENOMEM;
2151 	// 	goto err_free_dev;
2152 	// }
2153 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2154 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2155 	// priv->num_led = tmp_led_priv->num_leds;
2156 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2157 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2158 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2159 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2160 
2161 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2162 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2163 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2164 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2165 
2166 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2167 		   priv->mac_addr, chip_name, priv->rf->name);
2168 
2169 	openwifi_rfkill_init(dev);
2170 	return 0;
2171 
2172  err_free_dev:
2173 	ieee80211_free_hw(dev);
2174 
2175 	return err;
2176 }
2177 
2178 static int openwifi_dev_remove(struct platform_device *pdev)
2179 {
2180 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2181 
2182 	if (!dev) {
2183 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2184 		return(-1);
2185 	}
2186 
2187 	openwifi_rfkill_exit(dev);
2188 	ieee80211_unregister_hw(dev);
2189 	ieee80211_free_hw(dev);
2190 	return(0);
2191 }
2192 
2193 static struct platform_driver openwifi_dev_driver = {
2194 	.driver = {
2195 		.name = "sdr,sdr",
2196 		.owner = THIS_MODULE,
2197 		.of_match_table = openwifi_dev_of_ids,
2198 	},
2199 	.probe = openwifi_dev_probe,
2200 	.remove = openwifi_dev_remove,
2201 };
2202 
2203 module_platform_driver(openwifi_dev_driver);
2204