xref: /openwifi/driver/sdr.c (revision 75042a307386ea726b3b1d0f9ed065f672de22e5)
1 //Author: Xianjun Jiao. [email protected]; [email protected]
2 
3 #include <linux/bitops.h>
4 #include <linux/dmapool.h>
5 #include <linux/io.h>
6 #include <linux/iopoll.h>
7 #include <linux/of_address.h>
8 #include <linux/of_platform.h>
9 #include <linux/of_irq.h>
10 #include <linux/slab.h>
11 #include <linux/clk.h>
12 #include <linux/io-64-nonatomic-lo-hi.h>
13 
14 #include <linux/delay.h>
15 #include <linux/interrupt.h>
16 
17 #include <linux/dmaengine.h>
18 #include <linux/slab.h>
19 #include <linux/delay.h>
20 #include <linux/etherdevice.h>
21 
22 #include <linux/init.h>
23 #include <linux/kthread.h>
24 #include <linux/module.h>
25 #include <linux/of_dma.h>
26 #include <linux/platform_device.h>
27 #include <linux/random.h>
28 #include <linux/slab.h>
29 #include <linux/wait.h>
30 #include <linux/sched/task.h>
31 #include <linux/dma/xilinx_dma.h>
32 #include <linux/spi/spi.h>
33 #include <net/mac80211.h>
34 
35 #include <linux/clk.h>
36 #include <linux/clkdev.h>
37 #include <linux/clk-provider.h>
38 
39 #include <linux/iio/iio.h>
40 #include <linux/iio/sysfs.h>
41 
42 #include <linux/gpio.h>
43 #include <linux/leds.h>
44 
45 #define IIO_AD9361_USE_PRIVATE_H_
46 #include "ad9361/ad9361_regs.h"
47 #include "ad9361/ad9361.h"
48 #include "ad9361/ad9361_private.h"
49 
50 #include <../../drivers/iio/frequency/cf_axi_dds.h>
51 
52 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
53 #include "hw_def.h"
54 #include "sdr.h"
55 
56 // driver API of component driver
57 extern struct tx_intf_driver_api *tx_intf_api;
58 extern struct rx_intf_driver_api *rx_intf_api;
59 extern struct openofdm_tx_driver_api *openofdm_tx_api;
60 extern struct openofdm_rx_driver_api *openofdm_rx_api;
61 extern struct xpu_driver_api *xpu_api;
62 
63 static int test_mode = 0; // 0 normal; 1 rx test
64 
65 MODULE_AUTHOR("Xianjun Jiao");
66 MODULE_DESCRIPTION("SDR driver");
67 MODULE_LICENSE("GPL v2");
68 
69 module_param(test_mode, int, 0);
70 MODULE_PARM_DESC(myint, "test_mode. 0 normal; 1 rx test");
71 
72 // ---------------rfkill---------------------------------------
73 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
74 {
75 	int reg;
76 
77 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
78 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
79 	else
80 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
81 
82 	if (reg == AD9361_RADIO_ON_TX_ATT)
83 		return true;// 0 off, 1 on
84 	return false;
85 }
86 
87 void openwifi_rfkill_init(struct ieee80211_hw *hw)
88 {
89 	struct openwifi_priv *priv = hw->priv;
90 
91 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
92 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
93 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
94 	wiphy_rfkill_start_polling(hw->wiphy);
95 }
96 
97 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
98 {
99 	bool enabled;
100 	struct openwifi_priv *priv = hw->priv;
101 
102 	enabled = openwifi_is_radio_enabled(priv);
103 	printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
104 	if (unlikely(enabled != priv->rfkill_off)) {
105 		priv->rfkill_off = enabled;
106 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
107 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
108 	}
109 }
110 
111 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
112 {
113 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
114 	wiphy_rfkill_stop_polling(hw->wiphy);
115 }
116 //----------------rfkill end-----------------------------------
117 
118 //static void ad9361_rf_init(void);
119 //static void ad9361_rf_stop(void);
120 //static void ad9361_rf_calc_rssi(void);
121 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
122 				  struct ieee80211_conf *conf)
123 {
124 	struct openwifi_priv *priv = dev->priv;
125 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz;
126 	u32 actual_tx_lo;
127 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
128 
129 	if (change_flag) {
130 		priv->actual_rx_lo = actual_rx_lo;
131 
132 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
133 
134 		ad9361_clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) );
135 		ad9361_clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) );
136 
137 		if (actual_rx_lo<2412) {
138 			priv->rssi_correction = 153;
139 		} else if (actual_rx_lo<=2484) {
140 			priv->rssi_correction = 153;
141 		} else if (actual_rx_lo<5160) {
142 			priv->rssi_correction = 153;
143 		} else if (actual_rx_lo<=5240) {
144 			priv->rssi_correction = 145;
145 		} else if (actual_rx_lo<=5320) {
146 			priv->rssi_correction = 148;
147 		} else {
148 			priv->rssi_correction = 148;
149 		}
150 		xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1);
151 
152 		if (actual_rx_lo < 2500) {
153 			//priv->slot_time = 20; //20 is default slot time in ERP(OFDM)/11g 2.4G; short one is 9.
154 			//xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_2_4GHZ<<16);
155 			if (priv->band != BAND_2_4GHZ) {
156 				priv->band = BAND_2_4GHZ;
157 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
158 			}
159 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2)*200)<<16) | 200 ); // high 16 bits to cover sig valid of ACK packet, low 16 bits is adjustment of fcs valid waiting time.  let's add 2us for those device that is really "slow"!
160 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2+2)*200)<<16) | 200 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
161 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 0 );
162 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((10)*200)<<16);
163 		}
164 		else {
165 			//priv->slot_time = 9; //default slot time of OFDM PHY (OFDM by default means 5GHz)
166 			// xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_5_8GHZ<<16);
167 			if (priv->band != BAND_5_8GHZ) {
168 				priv->band = BAND_5_8GHZ;
169 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
170 			}
171 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2)*200)<<16) | 200 ); // because 5GHz needs longer SIFS (16 instead of 10), we need 58 instead of 48 for XPU low mac setting.  let's add 2us for those device that is really "slow"!
172 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2+2)*200)<<16) | 200 );//add 2us for longer fir.  BUT corrding to FPGA probing test, we do not need this
173 			// //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 1200 );
174 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 1000 );// for longer fir we need this delay 1us shorter
175 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((16)*200)<<16);
176 		}
177 		//printk("%s ad9361_rf_set_channel %dM rssi_correction %d\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction);
178 		// //-- use less
179 		//clk_prepare_enable(priv->ad9361_phy->clks[RX_RFPLL]);
180 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
181 		//ad9361_set_trx_clock_chain_default(priv->ad9361_phy);
182 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
183 	}
184 	printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag);
185 }
186 
187 const struct openwifi_rf_ops ad9361_rf_ops = {
188 	.name		= "ad9361",
189 //	.init		= ad9361_rf_init,
190 //	.stop		= ad9361_rf_stop,
191 	.set_chan	= ad9361_rf_set_channel,
192 //	.calc_rssi	= ad9361_rf_calc_rssi,
193 };
194 
195 u16 reverse16(u16 d) {
196 	union u16_byte2 tmp0, tmp1;
197 	tmp0.a = d;
198 	tmp1.c[0] = tmp0.c[1];
199 	tmp1.c[1] = tmp0.c[0];
200 	return(tmp1.a);
201 }
202 
203 u32 reverse32(u32 d) {
204 	union u32_byte4 tmp0, tmp1;
205 	tmp0.a = d;
206 	tmp1.c[0] = tmp0.c[3];
207 	tmp1.c[1] = tmp0.c[2];
208 	tmp1.c[2] = tmp0.c[1];
209 	tmp1.c[3] = tmp0.c[0];
210 	return(tmp1.a);
211 }
212 
213 static int openwifi_init_tx_ring(struct openwifi_priv *priv)
214 {
215 	struct openwifi_ring *ring = &(priv->tx_ring);
216 	int i;
217 
218 	priv->tx_queue_stopped = false;
219 	ring->bd_wr_idx = 0;
220 	ring->bd_rd_idx = 0;
221 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
222 	if (ring->bds==NULL) {
223 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
224 		return -ENOMEM;
225 	}
226 
227 	for (i = 0; i < NUM_TX_BD; i++) {
228 		ring->bds[i].num_dma_byte=0;
229 		ring->bds[i].sn=0;
230 		ring->bds[i].hw_queue_idx=0;
231 		ring->bds[i].retry_limit=0;
232 		ring->bds[i].need_ack=0;
233 
234 		ring->bds[i].skb_linked=0; // for tx, skb is from upper layer
235 		//at frist right after skb allocated, head, data, tail are the same.
236 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from uppler layer in tx routine
237 	}
238 
239 	return 0;
240 }
241 
242 static void openwifi_free_tx_ring(struct openwifi_priv *priv)
243 {
244 	struct openwifi_ring *ring = &(priv->tx_ring);
245 	int i;
246 
247 	ring->bd_wr_idx = 0;
248 	ring->bd_rd_idx = 0;
249 	for (i = 0; i < NUM_TX_BD; i++) {
250 		ring->bds[i].num_dma_byte=0;
251 		ring->bds[i].sn=0;
252 		ring->bds[i].hw_queue_idx=0;
253 		ring->bds[i].retry_limit=0;
254 		ring->bds[i].need_ack=0;
255 
256 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
257 			continue;
258 		if (ring->bds[i].dma_mapping_addr != 0)
259 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].num_dma_byte, DMA_MEM_TO_DEV);
260 //		if (ring->bds[i].skb_linked!=NULL)
261 //			dev_kfree_skb(ring->bds[i].skb_linked);
262 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
263 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
264 			printk("%s openwifi_free_tx_ring: WARNING %d skb_linked %08x dma_mapping_addr %08x\n", sdr_compatible_str, i, (u32)(ring->bds[i].skb_linked), ring->bds[i].dma_mapping_addr);
265 
266 		ring->bds[i].skb_linked=0;
267 		ring->bds[i].dma_mapping_addr = 0;
268 	}
269 	if (ring->bds)
270 		kfree(ring->bds);
271 	ring->bds = NULL;
272 }
273 
274 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
275 {
276 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
277 	if (!priv->rx_cyclic_buf) {
278 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
279 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
280 		return(-1);
281 	}
282 	return 0;
283 }
284 
285 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
286 {
287 	if (priv->rx_cyclic_buf)
288 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
289 
290 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
291 	priv->rx_cyclic_buf = 0;
292 }
293 
294 static int rx_dma_setup(struct ieee80211_hw *dev){
295 	struct openwifi_priv *priv = dev->priv;
296 	struct dma_device *rx_dev = priv->rx_chan->device;
297 
298 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
299 	if (!(priv->rxd)) {
300 		openwifi_free_rx_ring(priv);
301 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %d\n", sdr_compatible_str, (u32)(priv->rxd));
302 		return(-1);
303 	}
304 	priv->rxd->callback = 0;
305 	priv->rxd->callback_param = 0;
306 
307 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
308 
309 	if (dma_submit_error(priv->rx_cookie)) {
310 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
311 		return(-1);
312 	}
313 
314 	dma_async_issue_pending(priv->rx_chan);
315 	return(0);
316 }
317 
318 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
319 {
320 	struct ieee80211_hw *dev = dev_id;
321 	struct openwifi_priv *priv = dev->priv;
322 	struct ieee80211_rx_status rx_status = {0};
323 	struct sk_buff *skb;
324 	struct ieee80211_hdr *hdr;
325 	u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, ht_flag, tsft_low, tsft_high;//, fc_di;
326 	u32 dma_driver_buf_idx_mod;
327 	u8 *pdata_tmp, fcs_ok, phy_rx_sn_hw, target_buf_idx;
328 	s8 signal;
329 	u16 rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0;
330 	bool content_ok = false, len_overflow = false;
331 	struct dma_tx_state state;
332 	static u8 target_buf_idx_old = 0xFF;
333 
334 	spin_lock(&priv->lock);
335 	priv->rx_chan->device->device_tx_status(priv->rx_chan,priv->rx_cookie,&state);
336 	target_buf_idx = ((state.residue-1)&(NUM_RX_BD-1));
337 	if (target_buf_idx==target_buf_idx_old) {
338 		//printk("%s openwifi_rx_interrupt: WARNING same idx %d\n", sdr_compatible_str,target_buf_idx);
339 		goto openwifi_rx_interrupt_out;
340 	}
341 	if ( ((target_buf_idx-target_buf_idx_old)&(NUM_RX_BD-1))!=1 )
342 		printk("%s openwifi_rx_interrupt: WARNING jump idx target %d old %d diff %02x\n", sdr_compatible_str,target_buf_idx,target_buf_idx_old,((target_buf_idx-target_buf_idx_old)&(NUM_RX_BD-1)));
343 	target_buf_idx_old = target_buf_idx;
344 
345 	pdata_tmp = priv->rx_cyclic_buf + target_buf_idx*RX_BD_BUF_SIZE; // our header insertion is at the beginning
346 	tsft_low =     (*((u32*)(pdata_tmp+0 )));
347 	tsft_high =    (*((u32*)(pdata_tmp+4 )));
348 	rssi_val =     (*((u16*)(pdata_tmp+8 )));
349 	len =          (*((u16*)(pdata_tmp+12)));
350 
351 	len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
352 
353 	rate_idx =     (*((u16*)(pdata_tmp+14)));
354 
355 	// fc_di =        (*((u32*)(pdata_tmp+16)));
356 	// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
357 	// addr1_low32  = (*((u32*)(pdata_tmp+16+4+2)));
358 	// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
359 	// addr2_low32  = (*((u32*)(pdata_tmp+16+6+4+2)));
360 	// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
361 	// addr3_low32  = (*((u32*)(pdata_tmp+16+12+4+2)));
362 	hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
363 	addr1_low32  = *((u32*)(hdr->addr1+2));
364 	addr1_high16 = *((u16*)(hdr->addr1));
365 	if (len>=20) {
366 		addr2_low32  = *((u32*)(hdr->addr2+2));
367 		addr2_high16 = *((u16*)(hdr->addr2));
368 	}
369 	if (len>=26) {
370 		addr3_low32  = *((u32*)(hdr->addr3+2));
371 		addr3_high16 = *((u16*)(hdr->addr3));
372 	}
373 	if (len>=28)
374 		sc = hdr->seq_ctrl;
375 
376 	fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
377 
378 	//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
379 	phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
380 	dma_driver_buf_idx_mod = (state.residue&0x7f);
381 	fcs_ok = ((fcs_ok&0x80)!=0);
382 	ht_flag = ((rate_idx&0x10)!=0);
383 	rate_idx = (rate_idx&0xF);
384 
385 	if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=15)) {
386 		// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
387 		// 	printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
388 		// }
389 		content_ok = true;
390 	} else {
391 		printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str);
392 		content_ok = false;
393 	}
394 
395 	rssi_val = (rssi_val>>1);
396 	if ( (rssi_val+128)<priv->rssi_correction )
397 		signal = -128;
398 	else
399 		signal = rssi_val - priv->rssi_correction;
400 
401 	if (addr1_low32!=0xffffffff && addr1_high16!=0xffff)
402 		printk("%s openwifi_rx_interrupt:%4dbytes ht%d %2dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d sn%d i%d %ddBm\n", sdr_compatible_str,
403 			len, ht_flag, wifi_rate_table[rate_idx], hdr->frame_control,hdr->duration_id,
404 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
405 			sc,fcs_ok, phy_rx_sn_hw,dma_driver_buf_idx_mod,signal);
406 
407 	// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
408 	if (content_ok) {
409 		skb = dev_alloc_skb(len);
410 		if (skb) {
411 			skb_put_data(skb,pdata_tmp+16,len);
412 
413 			rx_status.antenna = 0;
414 			// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
415 			rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
416 			rx_status.signal = signal;
417 			rx_status.freq = dev->conf.chandef.chan->center_freq;
418 			rx_status.band = dev->conf.chandef.chan->band;
419 			rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
420 			rx_status.flag |= RX_FLAG_MACTIME_START;
421 			if (!fcs_ok)
422 				rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
423 			rx_status.encoding = RX_ENC_LEGACY;
424 			rx_status.bw = RATE_INFO_BW_20;
425 
426 			memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
427 			ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
428 		} else
429 			printk("%s openwifi_rx_interrupt: WARNING skb!\n", sdr_compatible_str);
430 	}
431 openwifi_rx_interrupt_out:
432 	spin_unlock(&priv->lock);
433 	return IRQ_HANDLED;
434 }
435 
436 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
437 {
438 	struct ieee80211_hw *dev = dev_id;
439 	struct openwifi_priv *priv = dev->priv;
440 	struct openwifi_ring *ring = &(priv->tx_ring);
441 	struct sk_buff *skb;
442 	struct ieee80211_tx_info *info;
443 	u32 reg_val,ring_len, ring_room_left, just_wr_idx, current_rd_idx; //queue_idx_hw, ;
444 	u32 num_dma_byte_hw;
445 	u32 phy_tx_sn_hw;
446 	u8 tx_result;
447 
448 	spin_lock(&priv->lock);
449 
450 	tx_result = xpu_api->XPU_REG_TX_RESULT_read();
451 	reg_val = tx_intf_api->TX_INTF_REG_PKT_INFO_read();// current interrupt is the end of phy_tx_sn_hw pkt transmitting.
452 	num_dma_byte_hw = (reg_val&0xFFFF);
453 	phy_tx_sn_hw = ((reg_val>>16)&MAX_PHY_TX_SN);
454 	//queue_idx_hw = (reg_val&(MAX_NUM_HW_QUEUE-1));
455 
456 	//just_wr_idx = (ring->bd_wr_idx==0?(NUM_TX_BD-1):(ring->bd_wr_idx-1));
457 	just_wr_idx = ((ring->bd_wr_idx-1)&(NUM_TX_BD-1));
458 	while(1) {
459 		current_rd_idx = ring->bd_rd_idx;
460 
461 		dma_unmap_single(priv->tx_chan->device->dev,ring->bds[current_rd_idx].dma_mapping_addr,
462 				ring->bds[current_rd_idx].num_dma_byte, DMA_MEM_TO_DEV);
463 
464 		if (phy_tx_sn_hw != ring->bds[current_rd_idx].sn) {
465 			ring->bd_rd_idx = ((ring->bd_rd_idx+1)&(NUM_TX_BD-1));
466 			if (current_rd_idx == just_wr_idx) {
467 				printk("%s openwifi_tx_interrupt: WARNING can not find hw sn %d in driver! curr rd %d just wr %d\n", sdr_compatible_str,phy_tx_sn_hw,current_rd_idx,just_wr_idx);
468 				break;
469 			} else
470 				continue;
471 		}
472 
473 		// a know bd has just been sent to the air
474 		if (num_dma_byte_hw!=ring->bds[current_rd_idx].num_dma_byte) {
475 			ring->bd_rd_idx = ((ring->bd_rd_idx+1)&(NUM_TX_BD-1));
476 			printk("%s openwifi_tx_interrupt: WARNING num_dma_byte is different %d VS %d at sn %d curr rd %d just wr %d\n", sdr_compatible_str,num_dma_byte_hw,ring->bds[current_rd_idx].num_dma_byte,phy_tx_sn_hw,current_rd_idx,just_wr_idx);
477 			if (current_rd_idx == just_wr_idx)
478 				break;
479 			else
480 				continue;
481 		}
482 
483 		// num_dma_byte_hw is correct
484 		skb = ring->bds[current_rd_idx].skb_linked;
485 		// dma_buf = skb->data;
486 		//phy_tx_sn_skb = (*((u16*)(dma_buf+6)));
487 		//num_dma_byte_skb = (*((u32*)(dma_buf+8)));
488 		//num_byte_pad_skb = (*((u32*)(dma_buf+12)));
489 
490 		//if ( phy_tx_sn_hw!=phy_tx_sn_entry || phy_tx_sn_hw!=phy_tx_sn_skb || phy_tx_sn_entry!=phy_tx_sn_skb )
491 		//	printk("%s openwifi_tx_interrupt: WARNING hw/entry/skb num byte %d/%d/%d pkt sn %d/%d/%d pad %d\n", sdr_compatible_str,
492 		//	num_dma_byte_hw, num_dma_byte_entry, num_dma_byte_skb, phy_tx_sn_hw, phy_tx_sn_entry, phy_tx_sn_skb, num_byte_pad_skb);
493 
494 		skb_pull(skb, LEN_PHY_HEADER);
495 		//skb_trim(skb, num_byte_pad_skb);
496 		info = IEEE80211_SKB_CB(skb);
497 		ieee80211_tx_info_clear_status(info);
498 
499 		if ( !(info->flags & IEEE80211_TX_CTL_NO_ACK) ) {
500 			if ((tx_result&0x10)==0)
501 				info->flags |= IEEE80211_TX_STAT_ACK;
502 
503 			// printk("%s openwifi_tx_interrupt: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
504 			// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
505 			// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
506 			// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
507 			// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
508 		}
509 
510 		info->status.rates[0].count = (tx_result&0xF) + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
511 		info->status.rates[1].idx = -1;
512 		info->status.rates[2].idx = -1;
513 		info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
514 		if (tx_result&0x10)
515 			printk("%s openwifi_tx_interrupt: WARNING tx_result %02x phy_tx_sn_hw %d. curr rd %d just wr %d\n", sdr_compatible_str,tx_result,phy_tx_sn_hw,current_rd_idx,just_wr_idx);
516 
517 		ieee80211_tx_status_irqsafe(dev, skb);
518 		//ring_len = (just_wr_idx>=current_rd_idx)?(just_wr_idx-current_rd_idx):(just_wr_idx+NUM_TX_BD-current_rd_idx);
519 		ring_len = ((just_wr_idx-current_rd_idx)&(NUM_TX_BD-1));
520 		ring_room_left = NUM_TX_BD - ring_len;
521 		if (ring_room_left > 2 && priv->tx_queue_stopped) {
522 			unsigned int prio = skb_get_queue_mapping(skb);
523 			ieee80211_wake_queue(dev, prio);
524 			printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue. ring_room_left %d prio %d curr rd %d just wr %d\n", sdr_compatible_str,ring_room_left,prio,current_rd_idx,just_wr_idx);
525 			priv->tx_queue_stopped = false;
526 		}
527 
528 		ring->bd_rd_idx = ((ring->bd_rd_idx+1)&(NUM_TX_BD-1));
529 
530 		//if (current_rd_idx == just_wr_idx)
531 			break; // we have hit the sn, we should break
532 	}
533 
534 	spin_unlock(&priv->lock);
535 
536 	return IRQ_HANDLED;
537 }
538 
539 u32 gen_parity(u32 v){
540 	v ^= v >> 1;
541 	v ^= v >> 2;
542 	v = (v & 0x11111111U) * 0x11111111U;
543 	return (v >> 28) & 1;
544 }
545 
546 u32 calc_phy_header(u8 rate_hw_value, u32 len, u8 *bytes){
547 	//u32 signal_word = 0 ;
548 	u8  SIG_RATE = 0 ;
549 	u8	len_2to0, len_10to3, len_msb,b0,b1,b2, header_parity ;
550 
551 	// rate_hw_value = (rate_hw_value<=4?0:(rate_hw_value-4));
552 	// SIG_RATE = wifi_mcs_table_phy_tx[rate_hw_value];
553 	SIG_RATE = wifi_mcs_table_11b_force_up[rate_hw_value];
554 
555 	len_2to0 = len & 0x07 ;
556 	len_10to3 = (len >> 3 ) & 0xFF ;
557 	len_msb = (len >> 11) & 0x01 ;
558 
559 	b0=SIG_RATE | (len_2to0 << 5) ;
560 	b1 = len_10to3 ;
561 	header_parity = gen_parity((len_msb << 16)| (b1<<8) | b0) ;
562 	b2 = ( len_msb | (header_parity << 1) ) ;
563 
564 	memset(bytes,0,16);
565 	bytes[0] = b0 ;
566 	bytes[1] = b1 ;
567     bytes[2] = b2;
568 	//signal_word = b0+(b1<<8)+(b2<<16) ;
569 	//return signal_word;
570 	return(SIG_RATE);
571 }
572 
573 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
574 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
575 {
576 	return container_of(led_cdev, struct gpio_led_data, cdev);
577 }
578 
579 static void openwifi_tx(struct ieee80211_hw *dev,
580 		       struct ieee80211_tx_control *control,
581 		       struct sk_buff *skb)
582 {
583 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
584 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
585 	struct openwifi_priv *priv = dev->priv;
586 	struct openwifi_ring *ring = &(priv->tx_ring);
587 	dma_addr_t dma_mapping_addr;
588 	unsigned long flags;
589 	unsigned int prio, i;
590 	u32 num_dma_symbol, len_mac_pdu, num_dma_byte, len_phy_packet, num_byte_pad;
591 	u32 rate_signal_value,rate_hw_value,ack_flag;
592 	u32 pkt_need_ack, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, ring_len, ring_room_left, dma_reg, cts_reg;//, openofdm_state_history;
593 	u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value = 0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration;
594 	u8 fc_flag,fc_type,fc_subtype,retry_limit_raw,*dma_buf,retry_limit_hw_value,rc_flags;
595 	bool use_rts_cts, use_cts_protect, force_use_cts_protect=false, addr_flag, cts_use_traffic_rate;
596 	__le16 frame_control,duration_id;
597 	// static u32 openofdm_state_history_old=0;
598 	// static bool led_status=0;
599 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
600 
601 	// if ( (priv->phy_tx_sn&7) ==0 ) {
602 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
603 	// 	if (openofdm_state_history!=openofdm_state_history_old){
604 	// 		led_status = (~led_status);
605 	// 		openofdm_state_history_old = openofdm_state_history;
606 	// 		gpiod_set_value(led_dat->gpiod, led_status);
607 	// 	}
608 	// }
609 
610 	if (test_mode==1){
611 		printk("%s openwifi_tx: test_mode==1\n", sdr_compatible_str);
612 		goto openwifi_tx_early_out;
613 	}
614 	if (skb->data_len>0)// more data are not in linear data area skb->data
615 		goto openwifi_tx_early_out;
616 
617 	len_mac_pdu = skb->len;
618 	len_phy_packet = len_mac_pdu + LEN_PHY_HEADER;
619 	num_dma_symbol = (len_phy_packet>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_phy_packet&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
620 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
621 	if (num_dma_byte > TX_BD_BUF_SIZE) {
622 		dev_err(priv->tx_chan->device->dev, "WARNING num_dma_byte > TX_BD_BUF_SIZE\n");
623 		goto openwifi_tx_early_out;
624 	}
625 	num_byte_pad = num_dma_byte-len_phy_packet;
626 
627 	// -----------preprocess some info from header and skb----------------
628 	prio = skb_get_queue_mapping(skb);
629 	if (prio) {
630 		printk("%s openwifi_tx: WARNING prio %d\n", sdr_compatible_str, prio);
631 	}
632 
633 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
634 
635 	addr1_low32  = *((u32*)(hdr->addr1+2));
636 	addr1_high16 = *((u16*)(hdr->addr1));
637 	if (len_mac_pdu>=20) {
638 		addr2_low32  = *((u32*)(hdr->addr2+2));
639 		addr2_high16 = *((u16*)(hdr->addr2));
640 	}
641 	if (len_mac_pdu>=26) {
642 		addr3_low32  = *((u32*)(hdr->addr3+2));
643 		addr3_high16 = *((u16*)(hdr->addr3));
644 	}
645 	if (len_mac_pdu>=28)
646 		sc = hdr->seq_ctrl;
647 
648 	duration_id = hdr->duration_id;
649 	frame_control=hdr->frame_control;
650 	ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK);
651 	fc_type = ((frame_control)>>2)&3;
652 	fc_subtype = ((frame_control)>>4)&0xf;
653 	fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) );
654 	//if it is broadcasting or multicasting addr
655 	addr_flag = ( (addr1_low32==0 && addr1_high16==0) ||
656 	              (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) ||
657 				  (addr1_high16==0x3333) ||
658 				  (addr1_high16==0x0001 && hdr->addr1[2]==0x5E)  );
659 	if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame
660 		pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent
661 	} else {
662 		pkt_need_ack = 0;
663 	}
664 
665 	//rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
666 	if (priv->drv_tx_reg_val[0]>0 && fc_type==2 && (!addr_flag))
667 		rate_hw_value = priv->drv_tx_reg_val[0];
668 
669 	// check current packet belonging to which slice/hw-queue
670 	i=0;
671 	if (fc_type==2 && fc_subtype==0 && (!addr_flag)) {
672 		for (; i<MAX_NUM_HW_QUEUE; i++) {
673 			if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
674 				break;
675 			}
676 		}
677 	}
678 	queue_idx = i;
679 	if (i>=MAX_NUM_HW_QUEUE)
680 		queue_idx = 0;
681 
682 	retry_limit_raw = info->control.rates[0].count;
683 
684 	rc_flags = info->control.rates[0].flags;
685 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
686 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
687 
688 	if (use_rts_cts)
689 		printk("%s openwifi_tx: WARNING use_rts_cts is not supported!\n", sdr_compatible_str);
690 
691 	cts_use_traffic_rate = false;
692 	force_use_cts_protect = false;
693 	if (use_cts_protect) {
694 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
695 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mac_pdu,info));
696 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
697 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
698 		sifs = (priv->actual_rx_lo<2500?10:16);
699 		if (pkt_need_ack)
700 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
701 		traffic_pkt_duration = 20 + 4*(((22+len_mac_pdu*8)/wifi_n_dbps_table[rate_hw_value])+1);
702 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
703 	}
704 
705 	if ( !addr_flag )
706 		printk("%s openwifi_tx: %4dbytes %2dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retry%d ack%d q%d sn%04d R/CTS %d%d %dM %dus wr/rd %d/%d\n", sdr_compatible_str,
707 			len_mac_pdu, wifi_rate_all[rate_hw_value],frame_control,duration_id,
708 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
709 			sc,info->flags,retry_limit_raw,pkt_need_ack,queue_idx,priv->phy_tx_sn,
710 			use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
711 			ring->bd_wr_idx,ring->bd_rd_idx);
712 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
713 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
714 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
715 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
716 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
717 
718 // this is 11b stuff
719 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
720 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
721 
722 	if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
723 		if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
724 			priv->seqno += 0x10;
725 		hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
726 		hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
727 	}
728 	// -----------end of preprocess some info from header and skb----------------
729 
730 	// /* HW will perform RTS-CTS when only RTS flags is set.
731 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
732 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
733 	//  */
734 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
735 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
736 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
737 	// 					len_mac_pdu, info);
738 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
739 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
740 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
741 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
742 	// 					len_mac_pdu, info);
743 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
744 	// }
745 
746 	// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
747 	if (skb_headroom(skb)<LEN_PHY_HEADER) {
748 		struct sk_buff *skb_new; // in case original skb headroom is not enough to host phy header needed by FPGA IP core
749 		if ((skb_new = skb_realloc_headroom(skb, LEN_PHY_HEADER)) == NULL) {
750 			printk("%s openwifi_tx: WARNING skb_realloc_headroom failed!\n", sdr_compatible_str);
751 			goto openwifi_tx_early_out;
752 		}
753 		if (skb->sk != NULL)
754 			skb_set_owner_w(skb_new, skb->sk);
755 		dev_kfree_skb(skb);
756 		skb = skb_new;
757 	}
758 
759 	skb_push( skb, LEN_PHY_HEADER );
760 	rate_signal_value = calc_phy_header(rate_hw_value, len_mac_pdu+LEN_PHY_CRC, skb->data); //fill the phy header
761 	//make sure dma length is integer times of DDC_NUM_BYTE_PER_DMA_SYMBOL
762 	if (skb_tailroom(skb)<num_byte_pad) {
763 		printk("%s openwifi_tx: WARNING skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str);
764 		goto openwifi_tx_early_out;
765 	}
766 	skb_put( skb, num_byte_pad );
767 
768 	retry_limit_hw_value = (retry_limit_raw - 1)&0xF;
769 	dma_buf = skb->data;
770 	//(*((u16*)(dma_buf+6))) = priv->phy_tx_sn;
771 	//(*((u32*)(dma_buf+8))) = num_dma_byte;
772 	//(*((u32*)(dma_buf+12))) = num_byte_pad;
773 
774 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
775 	cts_reg = (((use_cts_protect|force_use_cts_protect)<<31)|(cts_use_traffic_rate<<30)|(cts_duration<<8)|(cts_rate_signal_value<<4)|rate_signal_value);
776 	dma_reg = ( (( ((priv->phy_tx_sn<<NUM_BIT_MAX_NUM_HW_QUEUE)|queue_idx) )<<18)|(retry_limit_hw_value<<14)|(pkt_need_ack<<13)|num_dma_symbol );
777 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because wr/rd idx will matter
778 
779 	//ring_len = (ring->bd_wr_idx>=ring->bd_rd_idx)?(ring->bd_wr_idx-ring->bd_rd_idx):(ring->bd_wr_idx+NUM_TX_BD-ring->bd_rd_idx);
780 	ring_len = ((ring->bd_wr_idx-ring->bd_rd_idx)&(NUM_TX_BD-1));
781 	ring_room_left = NUM_TX_BD - ring_len;
782 	if (ring_len>28)
783 		printk("%s openwifi_tx: WARNING ring len %d\n", sdr_compatible_str,ring_len);
784 //		printk("%s openwifi_tx: WARNING ring len %d HW fifo %d q %d\n", sdr_compatible_str,ring_len,tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_DATA_COUNT_read()&0xFFFF, ((tx_intf_api->TX_INTF_REG_PHY_QUEUE_TX_SN_read())>>16)&0xFF );
785 
786 	if (ring_room_left <= 2 && priv->tx_queue_stopped == false) {
787 		ieee80211_stop_queue(dev, prio);
788 		printk("%s openwifi_tx: WARNING ieee80211_stop_queue. ring_room_left %d!\n", sdr_compatible_str,ring_room_left);
789 		priv->tx_queue_stopped = true;
790 		spin_unlock_irqrestore(&priv->lock, flags);
791 		goto openwifi_tx_early_out;
792 	}
793 
794 	/* We must be sure that tx_flags is written last because the HW
795 	 * looks at it to check if the rest of data is valid or not
796 	 */
797 	//wmb();
798 	// entry->flags = cpu_to_le32(tx_flags);
799 	/* We must be sure this has been written before followings HW
800 	 * register write, because this write will made the HW attempts
801 	 * to DMA the just-written data
802 	 */
803 	//wmb();
804 
805 	//__skb_queue_tail(&ring->queue, skb);
806 
807 //-------------------------fire skb DMA to hardware----------------------------------
808 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
809 				 num_dma_byte, DMA_MEM_TO_DEV);
810 
811 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
812 		dev_err(priv->tx_chan->device->dev, "WARNING TX DMA mapping error\n");
813 		goto openwifi_tx_skb_drop_out;
814 	}
815 
816 	sg_init_table(&(priv->tx_sg), 1);
817 
818 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
819 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
820 
821 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
822 	tx_intf_api->TX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(dma_reg);
823 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
824 	if (!(priv->txd)) {
825 		printk("%s openwifi_tx: WARNING device_prep_slave_sg %d\n", sdr_compatible_str, (u32)(priv->txd));
826 		goto openwifi_tx_after_dma_mapping;
827 	}
828 
829 	//we use interrupt instead of dma callback
830 	priv->txd->callback = 0;
831 	priv->txd->callback_param = 0;
832 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
833 
834 	if (dma_submit_error(priv->tx_cookie)) {
835 		printk("%s openwifi_tx: WARNING dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, (u32)(priv->tx_cookie));
836 		goto openwifi_tx_after_dma_mapping;
837 	}
838 
839 	// seems everything ok. let's mark this pkt in bd descriptor ring
840 	ring->bds[ring->bd_wr_idx].num_dma_byte=num_dma_byte;
841 	ring->bds[ring->bd_wr_idx].sn=priv->phy_tx_sn;
842 	// ring->bds[ring->bd_wr_idx].hw_queue_idx=queue_idx;
843 	// ring->bds[ring->bd_wr_idx].retry_limit=retry_limit_hw_value;
844 	// ring->bds[ring->bd_wr_idx].need_ack=pkt_need_ack;
845 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
846 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
847 
848 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
849 	priv->phy_tx_sn = ( (priv->phy_tx_sn+1)&MAX_PHY_TX_SN );
850 
851 	dma_async_issue_pending(priv->tx_chan);
852 
853 	spin_unlock_irqrestore(&priv->lock, flags);
854 
855 	return;
856 
857 openwifi_tx_after_dma_mapping:
858 	printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
859 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
860 	spin_unlock_irqrestore(&priv->lock, flags);
861 
862 openwifi_tx_skb_drop_out:
863 	printk("%s openwifi_tx: WARNING openwifi_tx_skb_drop_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
864 	spin_unlock_irqrestore(&priv->lock, flags);
865 
866 openwifi_tx_early_out:
867 	dev_kfree_skb(skb);
868 	printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
869 }
870 
871 static int openwifi_start(struct ieee80211_hw *dev)
872 {
873 	struct openwifi_priv *priv = dev->priv;
874 	int ret, i, rssi_half_db_offset, agc_gain_delay;//rssi_half_db_th,
875 	u32 reg;
876 
877 	for (i=0; i<MAX_NUM_VIF; i++) {
878 		priv->vif[i] = NULL;
879 	}
880 
881 	//turn on radio
882 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
883 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
884 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
885 	} else {
886 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
887 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
888 	}
889 	if (reg == AD9361_RADIO_ON_TX_ATT) {
890 		priv->rfkill_off = 1;// 0 off, 1 on
891 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
892 	}
893 	else
894 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
895 
896 	if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
897 		priv->ctrl_out.index=0x16;
898 	else
899 		priv->ctrl_out.index=0x17;
900 
901 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
902 	if (ret < 0) {
903 		printk("%s openwifi_start: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, ret);
904 	} else {
905 		printk("%s openwifi_start: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
906 	}
907 
908 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
909 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
910 
911 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
912 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8);
913 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
914 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
915 	xpu_api->hw_init(priv->xpu_cfg);
916 
917 	agc_gain_delay = 50; //samples
918 	rssi_half_db_offset = 150;
919 	xpu_api->XPU_REG_RSSI_DB_CFG_write(0x80000000|((rssi_half_db_offset<<16)|agc_gain_delay) );
920 	xpu_api->XPU_REG_RSSI_DB_CFG_write((~0x80000000)&((rssi_half_db_offset<<16)|agc_gain_delay) );
921 
922 	openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write(0);
923 	// rssi_half_db_th = 87<<1; // -62dBm // will settup in runtime in _rf_set_channel
924 	// xpu_api->XPU_REG_LBT_TH_write(rssi_half_db_th); // set IQ rssi th step .5dB to xxx and enable it
925 
926 	// // xpu_api->XPU_REG_CSMA_CFG_write(3); // cw_min
927 	// xpu_api->XPU_REG_CSMA_CFG_write(3);
928 
929 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((1030-238)<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz (Attention, current tx core has around 1.19us starting delay that makes the ack fall behind 10us SIFS in 2.4GHz! Need to improve TX in 2.4GHz!)
930 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((1030)<<16)|0 );//now our tx send out I/Q immediately
931 	xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((1030+450)<<16)|(0+450) );//we have more time when we use FIR in AD9361
932 
933 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP0_write( (((45+2+2)*200 + 300)<<16) | 200 );//2.4GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
934 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP1_write( (((51+2+2)*200 + 300)<<16) | 200 );//5GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
935 
936 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write( ((16*200)<<16)|(10*200) );//high 16bit 5GHz; low 16 bit 2.4GHz
937 
938 	//xpu_api->XPU_REG_BB_RF_DELAY_write(1020); // fine tuned value at 0.005us. old: dac-->ant port: 0.6us, 57 taps fir at 40MHz: 1.425us; round trip: 2*(0.6+1.425)=4.05us; 4.05*200=810
939 	xpu_api->XPU_REG_BB_RF_DELAY_write(975);//add .5us for slightly longer fir
940 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
941 
942 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL0_write(50000-1); // total 50ms.
943 	xpu_api->XPU_REG_SLICE_COUNT_START0_write(0); //start 0ms
944 	xpu_api->XPU_REG_SLICE_COUNT_END0_write(50000-1); //end 50ms
945 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_write(50000-1); // total 50ms
946 	xpu_api->XPU_REG_SLICE_COUNT_START1_write(49000); //start 49ms
947 	xpu_api->XPU_REG_SLICE_COUNT_END1_write(50000-1); //end 50ms
948 
949 	//xpu_api->XPU_REG_MAC_ADDR_HIGH_write( (*( (u16*)(priv->mac_addr + 4) )) );
950 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
951 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
952 
953 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30040); //disable tx interrupt
954 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
955 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
956 
957 	if (test_mode==1) {
958 		printk("%s openwifi_start: test_mode==1\n",sdr_compatible_str);
959 		goto normal_out;
960 	}
961 
962 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
963 	if (IS_ERR(priv->rx_chan)) {
964 		ret = PTR_ERR(priv->rx_chan);
965 		pr_err("%s openwifi_start: No Rx channel %d\n",sdr_compatible_str,ret);
966 		goto err_dma;
967 		//goto err_free_reg;
968 		//goto err_free_dev;
969 	}
970 
971 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
972 	if (IS_ERR(priv->tx_chan)) {
973 		ret = PTR_ERR(priv->tx_chan);
974 		pr_err("%s openwifi_start: No Tx channel %d\n",sdr_compatible_str,ret);
975 		goto err_dma;
976 		//goto err_free_reg;
977 		//goto err_free_dev;
978 	}
979 	printk("%s openwifi_start: DMA channel setup successfully.\n",sdr_compatible_str);
980 
981 	ret = openwifi_init_rx_ring(priv);
982 	if (ret) {
983 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
984 		goto err_free_rings;
985 	}
986 
987 	priv->seqno=0;
988 	priv->phy_tx_sn=0;
989 	if ((ret = openwifi_init_tx_ring(priv))) {
990 		printk("%s openwifi_start: openwifi_init_tx_ring ret %d\n", sdr_compatible_str,ret);
991 		goto err_free_rings;
992 	}
993 
994 	if ( (ret = rx_dma_setup(dev)) ) {
995 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
996 		goto err_free_rings;
997 	}
998 
999 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1000 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1001 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1002 	if (ret) {
1003 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1004 		goto err_free_rings;
1005 	} else {
1006 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1007 	}
1008 
1009 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1010 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1011 			IRQF_SHARED, "sdr,tx_itrpt1", dev);
1012 	if (ret) {
1013 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1014 		goto err_free_rings;
1015 	} else {
1016 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1017 	}
1018 
1019 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1020 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x40); //enable tx interrupt
1021 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1022 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1023 
1024 	//ieee80211_wake_queue(dev, 0);
1025 
1026 normal_out:
1027 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1028 	return 0;
1029 
1030 err_free_rings:
1031 	openwifi_free_rx_ring(priv);
1032 	openwifi_free_tx_ring(priv);
1033 
1034 err_dma:
1035 	ret = -1;
1036 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1037 	return ret;
1038 }
1039 
1040 static void openwifi_stop(struct ieee80211_hw *dev)
1041 {
1042 	struct openwifi_priv *priv = dev->priv;
1043 	u32 reg, reg1;
1044 	int i;
1045 
1046 	if (test_mode==1){
1047 		pr_info("%s openwifi_stop: test_mode==1\n", sdr_compatible_str);
1048 		goto normal_out;
1049 	}
1050 
1051 	//turn off radio
1052 	#if 1
1053 	ad9361_tx_mute(priv->ad9361_phy, 1);
1054 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1055 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1056 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1057 		priv->rfkill_off = 0;// 0 off, 1 on
1058 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1059 	}
1060 	else
1061 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1062 	#endif
1063 
1064 	//ieee80211_stop_queue(dev, 0);
1065 
1066 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30040); //disable tx interrupt
1067 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1068 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1069 
1070 	for (i=0; i<MAX_NUM_VIF; i++) {
1071 		priv->vif[i] = NULL;
1072 	}
1073 
1074 	openwifi_free_rx_ring(priv);
1075 	openwifi_free_tx_ring(priv);
1076 
1077 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1078 	dmaengine_terminate_all(priv->rx_chan);
1079 	dma_release_channel(priv->rx_chan);
1080 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1081 	dmaengine_terminate_all(priv->tx_chan);
1082 	dma_release_channel(priv->tx_chan);
1083 
1084 	//priv->rf->stop(dev);
1085 
1086 	free_irq(priv->irq_rx, dev);
1087 	free_irq(priv->irq_tx, dev);
1088 
1089 normal_out:
1090 	printk("%s openwifi_stop\n", sdr_compatible_str);
1091 }
1092 
1093 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1094 			   struct ieee80211_vif *vif)
1095 {
1096 	u32 tsft_low, tsft_high;
1097 
1098 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1099 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1100 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1101 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1102 }
1103 
1104 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1105 {
1106 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1107 	u32 tsft_low  = (tsf&0xffffffff);
1108 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1109 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1110 }
1111 
1112 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1113 {
1114 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1115 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1116 }
1117 
1118 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1119 {
1120 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1121 	return(0);
1122 }
1123 
1124 static void openwifi_beacon_work(struct work_struct *work)
1125 {
1126 	struct openwifi_vif *vif_priv =
1127 		container_of(work, struct openwifi_vif, beacon_work.work);
1128 	struct ieee80211_vif *vif =
1129 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1130 	struct ieee80211_hw *dev = vif_priv->dev;
1131 	struct ieee80211_mgmt *mgmt;
1132 	struct sk_buff *skb;
1133 
1134 	/* don't overflow the tx ring */
1135 	if (ieee80211_queue_stopped(dev, 0))
1136 		goto resched;
1137 
1138 	/* grab a fresh beacon */
1139 	skb = ieee80211_beacon_get(dev, vif);
1140 	if (!skb)
1141 		goto resched;
1142 
1143 	/*
1144 	 * update beacon timestamp w/ TSF value
1145 	 * TODO: make hardware update beacon timestamp
1146 	 */
1147 	mgmt = (struct ieee80211_mgmt *)skb->data;
1148 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1149 
1150 	/* TODO: use actual beacon queue */
1151 	skb_set_queue_mapping(skb, 0);
1152 	openwifi_tx(dev, NULL, skb);
1153 
1154 resched:
1155 	/*
1156 	 * schedule next beacon
1157 	 * TODO: use hardware support for beacon timing
1158 	 */
1159 	schedule_delayed_work(&vif_priv->beacon_work,
1160 			usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1161 }
1162 
1163 static int openwifi_add_interface(struct ieee80211_hw *dev,
1164 				 struct ieee80211_vif *vif)
1165 {
1166 	int i;
1167 	struct openwifi_priv *priv = dev->priv;
1168 	struct openwifi_vif *vif_priv;
1169 
1170 	switch (vif->type) {
1171 	case NL80211_IFTYPE_AP:
1172 	case NL80211_IFTYPE_STATION:
1173 	case NL80211_IFTYPE_ADHOC:
1174 	case NL80211_IFTYPE_MONITOR:
1175 	case NL80211_IFTYPE_MESH_POINT:
1176 		break;
1177 	default:
1178 		return -EOPNOTSUPP;
1179 	}
1180 	// let's support more than 1 interface
1181 	for (i=0; i<MAX_NUM_VIF; i++) {
1182 		if (priv->vif[i] == NULL)
1183 			break;
1184 	}
1185 
1186 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1187 
1188 	if (i==MAX_NUM_VIF)
1189 		return -EBUSY;
1190 
1191 	priv->vif[i] = vif;
1192 
1193 	/* Initialize driver private area */
1194 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1195 	vif_priv->idx = i;
1196 
1197 	vif_priv->dev = dev;
1198 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1199 	vif_priv->enable_beacon = false;
1200 
1201 	printk("%s openwifi_add_interface end with vif idx %d\n", sdr_compatible_str,vif_priv->idx);
1202 
1203 	return 0;
1204 }
1205 
1206 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1207 				     struct ieee80211_vif *vif)
1208 {
1209 	struct openwifi_vif *vif_priv;
1210 	struct openwifi_priv *priv = dev->priv;
1211 
1212 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1213 	priv->vif[vif_priv->idx] = NULL;
1214 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1215 }
1216 
1217 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1218 {
1219 	struct openwifi_priv *priv = dev->priv;
1220 	struct ieee80211_conf *conf = &dev->conf;
1221 
1222 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
1223 		priv->rf->set_chan(dev, conf);
1224 	else
1225 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1226 
1227 	return 0;
1228 }
1229 
1230 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1231 				     struct ieee80211_vif *vif,
1232 				     struct ieee80211_bss_conf *info,
1233 				     u32 changed)
1234 {
1235 	struct openwifi_priv *priv = dev->priv;
1236 	struct openwifi_vif *vif_priv;
1237 	u32 bssid_low, bssid_high;
1238 
1239 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1240 
1241 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1242 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1243 	if (changed & BSS_CHANGED_BSSID) {
1244 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1245 		// write new bssid to our HW, and do not change bssid filter
1246 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1247 		bssid_low = ( *( (u32*)(info->bssid) ) );
1248 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1249 
1250 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1251 		//bssid_high = (bssid_high|bssid_filter_high);
1252 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1253 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1254 	}
1255 
1256 	if (changed & BSS_CHANGED_BEACON_INT) {
1257 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1258 	}
1259 
1260 	if (changed & BSS_CHANGED_TXPOWER)
1261 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1262 
1263 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1264 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1265 
1266 	if (changed & BSS_CHANGED_BASIC_RATES)
1267 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1268 
1269 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1270 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1271 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1272 		if (info->use_short_slot && priv->use_short_slot==false) {
1273 			priv->use_short_slot=true;
1274 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1275 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1276 			priv->use_short_slot=false;
1277 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1278 		}
1279 	}
1280 
1281 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1282 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1283 		vif_priv->enable_beacon = info->enable_beacon;
1284 	}
1285 
1286 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1287 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1288 		if (vif_priv->enable_beacon)
1289 			schedule_work(&vif_priv->beacon_work.work);
1290 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1291 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1292 	}
1293 }
1294 
1295 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
1296 	      const struct ieee80211_tx_queue_params *params)
1297 {
1298 	printk("%s openwifi_conf_tx: WARNING [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
1299 		  sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1300 	return(0);
1301 }
1302 
1303 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1304 				     struct netdev_hw_addr_list *mc_list)
1305 {
1306 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1307 	return netdev_hw_addr_list_count(mc_list);
1308 }
1309 
1310 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1311 				     unsigned int changed_flags,
1312 				     unsigned int *total_flags,
1313 				     u64 multicast)
1314 {
1315 	u32 filter_flag;
1316 
1317 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1318 //	(*total_flags) |= FIF_ALLMULTI; //because we always pass all multicast (no matter it is for us or not) to upper layer
1319 
1320 	filter_flag = (*total_flags);
1321 
1322 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1323 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1324 
1325 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1326 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1327 		filter_flag = (filter_flag|MONITOR_ALL);
1328 	else
1329 		filter_flag = (filter_flag&(~MONITOR_ALL));
1330 
1331 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1332 		filter_flag = (filter_flag|MY_BEACON);
1333 
1334 	filter_flag = (filter_flag|FIF_PSPOLL);
1335 
1336 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
1337 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
1338 
1339 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
1340 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
1341 }
1342 
1343 static int openwifi_testmode_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void *data, int len)
1344 {
1345 	struct openwifi_priv *priv = hw->priv;
1346 	struct nlattr *tb[OPENWIFI_ATTR_MAX + 1];
1347 	struct sk_buff *skb;
1348 	int err;
1349 	u32 tmp=-1, reg_cat, reg_addr, reg_val, reg_addr_idx, tsft_high, tsft_low;
1350 
1351 	err = nla_parse(tb, OPENWIFI_ATTR_MAX, data, len, openwifi_testmode_policy, NULL);
1352 	if (err)
1353 		return err;
1354 
1355 	if (!tb[OPENWIFI_ATTR_CMD])
1356 		return -EINVAL;
1357 
1358 	switch (nla_get_u32(tb[OPENWIFI_ATTR_CMD])) {
1359 	case OPENWIFI_CMD_SET_GAP:
1360 		if (!tb[OPENWIFI_ATTR_GAP])
1361 			return -EINVAL;
1362 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_GAP]);
1363 		printk("%s openwifi radio inter frame gap set to %d usec\n", sdr_compatible_str, tmp);
1364 		xpu_api->XPU_REG_CSMA_CFG_write(tmp); // unit us
1365 		return 0;
1366 	case OPENWIFI_CMD_GET_GAP:
1367 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1368 		if (!skb)
1369 			return -ENOMEM;
1370 		tmp = xpu_api->XPU_REG_CSMA_CFG_read();
1371 		if (nla_put_u32(skb, OPENWIFI_ATTR_GAP, tmp))
1372 			goto nla_put_failure;
1373 		return cfg80211_testmode_reply(skb);
1374 	case OPENWIFI_CMD_SET_ADDR0:
1375 		if (!tb[OPENWIFI_ATTR_ADDR0])
1376 			return -EINVAL;
1377 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_ADDR0]);
1378 		printk("%s set openwifi slice0_target_mac_addr(low32) in hex: %08x\n", sdr_compatible_str, tmp);
1379 		priv->dest_mac_addr_queue_map[0] = reverse32(tmp);
1380 		return 0;
1381 	case OPENWIFI_CMD_GET_ADDR0:
1382 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1383 		if (!skb)
1384 			return -ENOMEM;
1385 		tmp = reverse32(priv->dest_mac_addr_queue_map[0]);
1386 		if (nla_put_u32(skb, OPENWIFI_ATTR_ADDR0, tmp))
1387 			goto nla_put_failure;
1388 		printk("%s get openwifi slice0_target_mac_addr(low32) in hex: %08x\n", sdr_compatible_str, tmp);
1389 		return cfg80211_testmode_reply(skb);
1390 	case OPENWIFI_CMD_SET_ADDR1:
1391 		if (!tb[OPENWIFI_ATTR_ADDR1])
1392 			return -EINVAL;
1393 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_ADDR1]);
1394 		printk("%s set openwifi slice1_target_mac_addr(low32) in hex: %08x\n", sdr_compatible_str, tmp);
1395 		priv->dest_mac_addr_queue_map[1] = reverse32(tmp);
1396 		return 0;
1397 	case OPENWIFI_CMD_GET_ADDR1:
1398 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1399 		if (!skb)
1400 			return -ENOMEM;
1401 		tmp = reverse32(priv->dest_mac_addr_queue_map[1]);
1402 		if (nla_put_u32(skb, OPENWIFI_ATTR_ADDR1, tmp))
1403 			goto nla_put_failure;
1404 		printk("%s get openwifi slice1_target_mac_addr(low32) in hex: %08x\n", sdr_compatible_str, tmp);
1405 		return cfg80211_testmode_reply(skb);
1406 
1407 	case OPENWIFI_CMD_SET_SLICE_TOTAL0:
1408 		if (!tb[OPENWIFI_ATTR_SLICE_TOTAL0])
1409 			return -EINVAL;
1410 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL0]);
1411 		printk("%s set SLICE_TOTAL0(duration) to %d usec\n", sdr_compatible_str, tmp);
1412 		xpu_api->XPU_REG_SLICE_COUNT_TOTAL0_write(tmp);
1413 		return 0;
1414 	case OPENWIFI_CMD_GET_SLICE_TOTAL0:
1415 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1416 		if (!skb)
1417 			return -ENOMEM;
1418 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL0_read());
1419 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL0, tmp))
1420 			goto nla_put_failure;
1421 		return cfg80211_testmode_reply(skb);
1422 
1423 	case OPENWIFI_CMD_SET_SLICE_START0:
1424 		if (!tb[OPENWIFI_ATTR_SLICE_START0])
1425 			return -EINVAL;
1426 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START0]);
1427 		printk("%s set SLICE_START0(duration) to %d usec\n", sdr_compatible_str, tmp);
1428 		xpu_api->XPU_REG_SLICE_COUNT_START0_write(tmp);
1429 		return 0;
1430 	case OPENWIFI_CMD_GET_SLICE_START0:
1431 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1432 		if (!skb)
1433 			return -ENOMEM;
1434 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_START0_read());
1435 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START0, tmp))
1436 			goto nla_put_failure;
1437 		return cfg80211_testmode_reply(skb);
1438 
1439 	case OPENWIFI_CMD_SET_SLICE_END0:
1440 		if (!tb[OPENWIFI_ATTR_SLICE_END0])
1441 			return -EINVAL;
1442 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END0]);
1443 		printk("%s set SLICE_END0(duration) to %d usec\n", sdr_compatible_str, tmp);
1444 		xpu_api->XPU_REG_SLICE_COUNT_END0_write(tmp);
1445 		return 0;
1446 	case OPENWIFI_CMD_GET_SLICE_END0:
1447 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1448 		if (!skb)
1449 			return -ENOMEM;
1450 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_END0_read());
1451 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END0, tmp))
1452 			goto nla_put_failure;
1453 		return cfg80211_testmode_reply(skb);
1454 
1455 	case OPENWIFI_CMD_SET_SLICE_TOTAL1:
1456 		if (!tb[OPENWIFI_ATTR_SLICE_TOTAL1])
1457 			return -EINVAL;
1458 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL1]);
1459 		printk("%s set SLICE_TOTAL1(duration) to %d usec\n", sdr_compatible_str, tmp);
1460 		xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_write(tmp);
1461 		return 0;
1462 	case OPENWIFI_CMD_GET_SLICE_TOTAL1:
1463 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1464 		if (!skb)
1465 			return -ENOMEM;
1466 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_read());
1467 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL1, tmp))
1468 			goto nla_put_failure;
1469 		return cfg80211_testmode_reply(skb);
1470 
1471 	case OPENWIFI_CMD_SET_SLICE_START1:
1472 		if (!tb[OPENWIFI_ATTR_SLICE_START1])
1473 			return -EINVAL;
1474 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START1]);
1475 		printk("%s set SLICE_START1(duration) to %d usec\n", sdr_compatible_str, tmp);
1476 		xpu_api->XPU_REG_SLICE_COUNT_START1_write(tmp);
1477 		return 0;
1478 	case OPENWIFI_CMD_GET_SLICE_START1:
1479 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1480 		if (!skb)
1481 			return -ENOMEM;
1482 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_START1_read());
1483 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START1, tmp))
1484 			goto nla_put_failure;
1485 		return cfg80211_testmode_reply(skb);
1486 
1487 	case OPENWIFI_CMD_SET_SLICE_END1:
1488 		if (!tb[OPENWIFI_ATTR_SLICE_END1])
1489 			return -EINVAL;
1490 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END1]);
1491 		printk("%s set SLICE_END1(duration) to %d usec\n", sdr_compatible_str, tmp);
1492 		xpu_api->XPU_REG_SLICE_COUNT_END1_write(tmp);
1493 		return 0;
1494 	case OPENWIFI_CMD_GET_SLICE_END1:
1495 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1496 		if (!skb)
1497 			return -ENOMEM;
1498 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_END1_read());
1499 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END1, tmp))
1500 			goto nla_put_failure;
1501 		return cfg80211_testmode_reply(skb);
1502 
1503 	case OPENWIFI_CMD_SET_RSSI_TH:
1504 		if (!tb[OPENWIFI_ATTR_RSSI_TH])
1505 			return -EINVAL;
1506 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_RSSI_TH]);
1507 		printk("%s set RSSI_TH to %d\n", sdr_compatible_str, tmp);
1508 		xpu_api->XPU_REG_LBT_TH_write(tmp);
1509 		return 0;
1510 	case OPENWIFI_CMD_GET_RSSI_TH:
1511 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1512 		if (!skb)
1513 			return -ENOMEM;
1514 		tmp = xpu_api->XPU_REG_LBT_TH_read();
1515 		if (nla_put_u32(skb, OPENWIFI_ATTR_RSSI_TH, tmp))
1516 			goto nla_put_failure;
1517 		return cfg80211_testmode_reply(skb);
1518        case OPENWIFI_CMD_SET_TSF:
1519                printk("openwifi_set_tsf_1");
1520                if ( (!tb[OPENWIFI_ATTR_HIGH_TSF]) || (!tb[OPENWIFI_ATTR_LOW_TSF]) )
1521                        return -EINVAL;
1522                printk("openwifi_set_tsf_2");
1523                tsft_high = nla_get_u32(tb[OPENWIFI_ATTR_HIGH_TSF]);
1524                tsft_low  = nla_get_u32(tb[OPENWIFI_ATTR_LOW_TSF]);
1525                xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1526                printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1527                return 0;
1528 
1529 	case REG_CMD_SET:
1530 		if ( (!tb[REG_ATTR_ADDR]) || (!tb[REG_ATTR_VAL]) )
1531 			return -EINVAL;
1532 		reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
1533 		reg_val  = nla_get_u32(tb[REG_ATTR_VAL]);
1534 		reg_cat = ((reg_addr>>16)&0xFFFF);
1535 		reg_addr = (reg_addr&0xFFFF);
1536 		reg_addr_idx = (reg_addr>>2);
1537 		printk("%s recv set cmd reg cat %d addr %08x val %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_val, reg_addr_idx);
1538 		if (reg_cat==1)
1539 			printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
1540 		else if (reg_cat==2)
1541 			rx_intf_api->reg_write(reg_addr,reg_val);
1542 		else if (reg_cat==3)
1543 			tx_intf_api->reg_write(reg_addr,reg_val);
1544 		else if (reg_cat==4)
1545 			openofdm_rx_api->reg_write(reg_addr,reg_val);
1546 		else if (reg_cat==5)
1547 			openofdm_tx_api->reg_write(reg_addr,reg_val);
1548 		else if (reg_cat==6)
1549 			xpu_api->reg_write(reg_addr,reg_val);
1550 		else if (reg_cat==7) {
1551 			priv->drv_rx_reg_val[reg_addr_idx]=reg_val;
1552 			if (reg_addr_idx==1) {
1553 				if (reg_val==0)
1554 					priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1555 				else
1556 					priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
1557 
1558 				priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1559 				//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1560 			}
1561 		}
1562 		else if (reg_cat==8) {
1563 			priv->drv_tx_reg_val[reg_addr_idx]=reg_val;
1564 			if (reg_addr_idx==1) {
1565 				if (reg_val==0) {
1566 					priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
1567 					ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true);
1568 				} else {
1569 					priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1;
1570 					ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true);
1571 				}
1572 
1573 				//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1574 				priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1575 			}
1576 		}
1577 		else if (reg_cat==9) {
1578 			priv->drv_xpu_reg_val[reg_addr_idx]=reg_val;
1579 		}
1580 		else
1581 			printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
1582 
1583 		return 0;
1584 	case REG_CMD_GET:
1585 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1586 		if (!skb)
1587 			return -ENOMEM;
1588 		reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
1589 		reg_cat = ((reg_addr>>16)&0xFFFF);
1590 		reg_addr = (reg_addr&0xFFFF);
1591 		reg_addr_idx = (reg_addr>>2);
1592 		printk("%s recv get cmd reg cat %d addr %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_addr_idx);
1593 		if (reg_cat==1) {
1594 			printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
1595 			tmp = 0xFFFFFFFF;
1596 		}
1597 		else if (reg_cat==2)
1598 			tmp = rx_intf_api->reg_read(reg_addr);
1599 		else if (reg_cat==3)
1600 			tmp = tx_intf_api->reg_read(reg_addr);
1601 		else if (reg_cat==4)
1602 			tmp = openofdm_rx_api->reg_read(reg_addr);
1603 		else if (reg_cat==5)
1604 			tmp = openofdm_tx_api->reg_read(reg_addr);
1605 		else if (reg_cat==6)
1606 			tmp = xpu_api->reg_read(reg_addr);
1607 		else if (reg_cat==7) {
1608 			if (reg_addr_idx==1) {
1609 				priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1610 				//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1611 
1612 				if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
1613 					priv->drv_rx_reg_val[reg_addr_idx]=0;
1614 				else if	(priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT1)
1615 					priv->drv_rx_reg_val[reg_addr_idx]=1;
1616 			}
1617 			tmp = priv->drv_rx_reg_val[reg_addr_idx];
1618 		}
1619 		else if (reg_cat==8) {
1620 			if (reg_addr_idx==1) {
1621 				//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1622 				priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1623 				if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)
1624 					priv->drv_tx_reg_val[reg_addr_idx]=0;
1625 				else if	(priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
1626 					priv->drv_tx_reg_val[reg_addr_idx]=1;
1627 			}
1628 			tmp = priv->drv_tx_reg_val[reg_addr_idx];
1629 		}
1630 		else if (reg_cat==9) {
1631 			tmp = priv->drv_xpu_reg_val[reg_addr_idx];
1632 		}
1633 		else
1634 			printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
1635 
1636 		if (nla_put_u32(skb, REG_ATTR_VAL, tmp))
1637 			goto nla_put_failure;
1638 		return cfg80211_testmode_reply(skb);
1639 
1640 	default:
1641 		return -EOPNOTSUPP;
1642 	}
1643 
1644  nla_put_failure:
1645 	dev_kfree_skb(skb);
1646 	return -ENOBUFS;
1647 }
1648 
1649 static const struct ieee80211_ops openwifi_ops = {
1650 	.tx			       = openwifi_tx,
1651 	.start			   = openwifi_start,
1652 	.stop			   = openwifi_stop,
1653 	.add_interface	   = openwifi_add_interface,
1654 	.remove_interface  = openwifi_remove_interface,
1655 	.config			   = openwifi_config,
1656 	.bss_info_changed  = openwifi_bss_info_changed,
1657 	.conf_tx		   = openwifi_conf_tx,
1658 	.prepare_multicast = openwifi_prepare_multicast,
1659 	.configure_filter  = openwifi_configure_filter,
1660 	.rfkill_poll	   = openwifi_rfkill_poll,
1661 	.get_tsf		   = openwifi_get_tsf,
1662 	.set_tsf		   = openwifi_set_tsf,
1663 	.reset_tsf		   = openwifi_reset_tsf,
1664 	.set_rts_threshold = openwifi_set_rts_threshold,
1665 	.testmode_cmd	   = openwifi_testmode_cmd,
1666 };
1667 
1668 static const struct of_device_id openwifi_dev_of_ids[] = {
1669 	{ .compatible = "sdr,sdr", },
1670 	{}
1671 };
1672 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
1673 
1674 static int custom_match_spi_dev(struct device *dev, void *data)
1675 {
1676     const char *name = data;
1677 
1678 	bool ret = sysfs_streq(name, dev->of_node->name);
1679 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
1680 	return ret;
1681 }
1682 
1683 static int custom_match_platform_dev(struct device *dev, void *data)
1684 {
1685 	struct platform_device *plat_dev = to_platform_device(dev);
1686 	const char *name = data;
1687 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
1688 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
1689 
1690 	if (match_flag) {
1691 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
1692 	}
1693 	return(match_flag);
1694 }
1695 
1696 static int openwifi_dev_probe(struct platform_device *pdev)
1697 {
1698 	struct ieee80211_hw *dev;
1699 	struct openwifi_priv *priv;
1700 	int err=1, rand_val;
1701 	const char *chip_name;
1702 	u32 reg;//, reg1;
1703 
1704 	struct device_node *np = pdev->dev.of_node;
1705 
1706 	struct device *tmp_dev;
1707 	struct platform_device *tmp_pdev;
1708 	struct iio_dev *tmp_indio_dev;
1709 	// struct gpio_leds_priv *tmp_led_priv;
1710 
1711 	printk("\n");
1712 
1713 	if (np) {
1714 		const struct of_device_id *match;
1715 
1716 		match = of_match_node(openwifi_dev_of_ids, np);
1717 		if (match) {
1718 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
1719 			err = 0;
1720 		}
1721 	}
1722 
1723 	if (err)
1724 		return err;
1725 
1726 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
1727 	if (!dev) {
1728 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
1729 		err = -ENOMEM;
1730 		goto err_free_dev;
1731 	}
1732 
1733 	priv = dev->priv;
1734 	priv->pdev = pdev;
1735 
1736 	// //-------------find ad9361-phy driver for lo/channel control---------------
1737 	priv->actual_rx_lo = 0;
1738 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
1739 	if (!tmp_dev) {
1740 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
1741 		err = -ENOMEM;
1742 		goto err_free_dev;
1743 	}
1744 	printk("%s bus_find_device ad9361-phy: %s\n", sdr_compatible_str, tmp_dev->init_name);
1745 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
1746 	if (!(priv->ad9361_phy)) {
1747 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
1748 		err = -ENOMEM;
1749 		goto err_free_dev;
1750 	}
1751 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
1752 
1753 	priv->ctrl_out.en_mask=0xFF;
1754 	priv->ctrl_out.index=0x16;
1755 	err = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
1756 	if (err < 0) {
1757 		printk("%s openwifi_dev_probe: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, err);
1758 	} else {
1759 		printk("%s openwifi_dev_probe: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
1760 	}
1761 
1762 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
1763 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
1764 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
1765 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
1766 
1767 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
1768 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
1769 	if (!tmp_dev) {
1770 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
1771 		err = -ENOMEM;
1772 		goto err_free_dev;
1773 	}
1774 
1775 	tmp_pdev = to_platform_device(tmp_dev);
1776 	if (!tmp_pdev) {
1777 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
1778 		err = -ENOMEM;
1779 		goto err_free_dev;
1780 	}
1781 
1782 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
1783 	if (!tmp_indio_dev) {
1784 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
1785 		err = -ENOMEM;
1786 		goto err_free_dev;
1787 	}
1788 
1789 	priv->dds_st = iio_priv(tmp_indio_dev);
1790 	if (!(priv->dds_st)) {
1791 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
1792 		err = -ENOMEM;
1793 		goto err_free_dev;
1794 	}
1795 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
1796 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
1797 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
1798 
1799 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
1800 	// turn off radio by muting tx
1801 	// ad9361_tx_mute(priv->ad9361_phy, 1);
1802 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1803 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1804 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1805 	// 	priv->rfkill_off = 0;// 0 off, 1 on
1806 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
1807 	// }
1808 	// else
1809 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1810 
1811 	priv->rssi_correction = 43;//this will be set in real-time by _rf_set_channel()
1812 
1813 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1814 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1815 
1816 	priv->xpu_cfg = XPU_NORMAL;
1817 
1818 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
1819 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
1820 
1821 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
1822 	if (priv->rf_bw == 20000000) {
1823 		priv->rx_intf_cfg = RX_INTF_BYPASS;
1824 		priv->tx_intf_cfg = TX_INTF_BYPASS;
1825 		//priv->rx_freq_offset_to_lo_MHz = 0;
1826 		//priv->tx_freq_offset_to_lo_MHz = 0;
1827 	} else if (priv->rf_bw == 40000000) {
1828 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
1829 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
1830 
1831 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
1832 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1833 		priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
1834 		// // try another antenna option
1835 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
1836 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
1837 
1838 		#if 0
1839 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
1840 			priv->rx_freq_offset_to_lo_MHz = -10;
1841 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
1842 			priv->rx_freq_offset_to_lo_MHz = 10;
1843 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
1844 			priv->rx_freq_offset_to_lo_MHz = 0;
1845 		} else {
1846 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
1847 		}
1848 		#endif
1849 	} else {
1850 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
1851 	}
1852 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1853 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1854 	printk("%s openwifi_dev_probe: test_mode %d\n", sdr_compatible_str, test_mode);
1855 
1856 	//let's by default turn radio on when probing
1857 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
1858 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
1859 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1860 	} else {
1861 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
1862 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1863 	}
1864 	if (reg == AD9361_RADIO_ON_TX_ATT) {
1865 		priv->rfkill_off = 1;// 0 off, 1 on
1866 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
1867 	}
1868 	else
1869 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
1870 
1871 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
1872 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
1873 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
1874 
1875 	// //set ad9361 in certain mode
1876 	#if 0
1877 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
1878 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
1879 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
1880 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
1881 
1882 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1883 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8);
1884 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1885 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1886 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1887 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1888 	#endif
1889 
1890 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
1891 
1892 	SET_IEEE80211_DEV(dev, &pdev->dev);
1893 	platform_set_drvdata(pdev, dev);
1894 
1895 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
1896 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
1897 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
1898 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
1899 
1900 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
1901 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
1902 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
1903 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
1904 
1905 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
1906 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
1907 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
1908 
1909 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
1910 	priv->band_2GHz.channels = priv->channels_2GHz;
1911 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
1912 	priv->band_2GHz.bitrates = priv->rates_2GHz;
1913 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
1914 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
1915 
1916 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
1917 	priv->band_5GHz.channels = priv->channels_5GHz;
1918 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
1919 	priv->band_5GHz.bitrates = priv->rates_5GHz;
1920 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
1921 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
1922 
1923 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
1924 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
1925 
1926 	ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING);
1927 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
1928 	ieee80211_hw_set(dev, BEACON_TX_STATUS);
1929 
1930 	dev->vif_data_size = sizeof(struct openwifi_vif);
1931 	dev->wiphy->interface_modes =
1932 			BIT(NL80211_IFTYPE_MONITOR)|
1933 			BIT(NL80211_IFTYPE_P2P_GO) |
1934 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
1935 			BIT(NL80211_IFTYPE_AP) |
1936 			BIT(NL80211_IFTYPE_STATION) |
1937 			BIT(NL80211_IFTYPE_ADHOC) |
1938 			BIT(NL80211_IFTYPE_MESH_POINT) |
1939 			BIT(NL80211_IFTYPE_OCB);
1940 	dev->wiphy->iface_combinations = &openwifi_if_comb;
1941 	dev->wiphy->n_iface_combinations = 1;
1942 
1943 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
1944 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
1945 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
1946 
1947 	chip_name = "ZYNQ";
1948 
1949 	/* we declare to MAC80211 all the queues except for beacon queue
1950 	 * that will be eventually handled by DRV.
1951 	 * TX rings are arranged in such a way that lower is the IDX,
1952 	 * higher is the priority, in order to achieve direct mapping
1953 	 * with mac80211, however the beacon queue is an exception and it
1954 	 * is mapped on the highst tx ring IDX.
1955 	 */
1956 	dev->queues = 1;
1957 
1958 	ieee80211_hw_set(dev, SIGNAL_DBM);
1959 
1960 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1961 
1962 	priv->rf = &ad9361_rf_ops;
1963 
1964 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
1965 
1966 	get_random_bytes(&rand_val, sizeof(rand_val));
1967     rand_val%=250;
1968 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
1969 	priv->mac_addr[5]=rand_val+1;
1970 	//priv->mac_addr[5]=0x11;
1971 	if (!is_valid_ether_addr(priv->mac_addr)) {
1972 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
1973 		eth_random_addr(priv->mac_addr);
1974 	} else {
1975 		printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
1976 	}
1977 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
1978 
1979 	spin_lock_init(&priv->lock);
1980 
1981 	err = ieee80211_register_hw(dev);
1982 	if (err) {
1983 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
1984 		goto err_free_dev;
1985 	} else {
1986 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
1987 	}
1988 
1989 	// // //--------------------hook leds (not complete yet)--------------------------------
1990 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatiable" field
1991 	// if (!tmp_dev) {
1992 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
1993 	// 	err = -ENOMEM;
1994 	// 	goto err_free_dev;
1995 	// }
1996 
1997 	// tmp_pdev = to_platform_device(tmp_dev);
1998 	// if (!tmp_pdev) {
1999 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2000 	// 	err = -ENOMEM;
2001 	// 	goto err_free_dev;
2002 	// }
2003 
2004 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2005 	// if (!tmp_led_priv) {
2006 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2007 	// 	err = -ENOMEM;
2008 	// 	goto err_free_dev;
2009 	// }
2010 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2011 	// if (tmp_led_priv->num_leds!=4){
2012 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2013 	// 	err = -ENOMEM;
2014 	// 	goto err_free_dev;
2015 	// }
2016 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2017 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2018 	// priv->num_led = tmp_led_priv->num_leds;
2019 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2020 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2021 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2022 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2023 
2024 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2025 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2026 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2027 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2028 
2029 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2030 		   priv->mac_addr, chip_name, priv->rf->name);
2031 
2032 	openwifi_rfkill_init(dev);
2033 	return 0;
2034 
2035  err_free_dev:
2036 	ieee80211_free_hw(dev);
2037 
2038 	return err;
2039 }
2040 
2041 static int openwifi_dev_remove(struct platform_device *pdev)
2042 {
2043 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2044 
2045 	if (!dev) {
2046 		pr_info("%s openwifi_dev_remove: dev %d\n", sdr_compatible_str, (u32)dev);
2047 		return(-1);
2048 	}
2049 
2050 	openwifi_rfkill_exit(dev);
2051 	ieee80211_unregister_hw(dev);
2052 	ieee80211_free_hw(dev);
2053 	return(0);
2054 }
2055 
2056 static struct platform_driver openwifi_dev_driver = {
2057 	.driver = {
2058 		.name = "sdr,sdr",
2059 		.owner = THIS_MODULE,
2060 		.of_match_table = openwifi_dev_of_ids,
2061 	},
2062 	.probe = openwifi_dev_probe,
2063 	.remove = openwifi_dev_remove,
2064 };
2065 
2066 module_platform_driver(openwifi_dev_driver);
2067