1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos 2 // SPDX-FileCopyrightText: 2022 UGent 3 // SPDX-License-Identifier: AGPL-3.0-or-later 4 5 #include <linux/bitops.h> 6 #include <linux/dmapool.h> 7 #include <linux/io.h> 8 #include <linux/iopoll.h> 9 #include <linux/of_address.h> 10 #include <linux/of_platform.h> 11 #include <linux/of_irq.h> 12 #include <linux/slab.h> 13 #include <linux/clk.h> 14 #include <linux/io-64-nonatomic-lo-hi.h> 15 16 #include <linux/delay.h> 17 #include <linux/interrupt.h> 18 19 #include <linux/dmaengine.h> 20 #include <linux/slab.h> 21 #include <linux/delay.h> 22 #include <linux/etherdevice.h> 23 24 #include <linux/init.h> 25 #include <linux/kthread.h> 26 #include <linux/module.h> 27 #include <linux/of_dma.h> 28 #include <linux/platform_device.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/wait.h> 32 #include <linux/sched/task.h> 33 #include <linux/dma/xilinx_dma.h> 34 #include <linux/spi/spi.h> 35 #include <net/mac80211.h> 36 37 #include <linux/clk.h> 38 #include <linux/clkdev.h> 39 #include <linux/clk-provider.h> 40 41 #include <linux/iio/iio.h> 42 #include <linux/iio/sysfs.h> 43 44 #include <linux/gpio.h> 45 #include <linux/leds.h> 46 47 #define IIO_AD9361_USE_PRIVATE_H_ 48 #include <../../drivers/iio/adc/ad9361_regs.h> 49 #include <../../drivers/iio/adc/ad9361.h> 50 #include <../../drivers/iio/adc/ad9361_private.h> 51 52 #include <../../drivers/iio/frequency/cf_axi_dds.h> 53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num); 54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb, 55 bool tx1, bool tx2, bool immed); 56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy, 57 struct ctrl_outs_control *ctrl); 58 extern int ad9361_do_calib_run(struct ad9361_rf_phy *phy, u32 cal, int arg); 59 60 #include "../user_space/sdrctl_src/nl80211_testmode_def.h" 61 #include "hw_def.h" 62 #include "sdr.h" 63 #include "git_rev.h" 64 65 // driver API of component driver 66 extern struct tx_intf_driver_api *tx_intf_api; 67 extern struct rx_intf_driver_api *rx_intf_api; 68 extern struct openofdm_tx_driver_api *openofdm_tx_api; 69 extern struct openofdm_rx_driver_api *openofdm_rx_api; 70 extern struct xpu_driver_api *xpu_api; 71 72 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes); 73 u8 gen_mpdu_delim_crc(u16 m); 74 u32 reverse32(u32 d); 75 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant); 76 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant); 77 int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction); 78 int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction); 79 int rssi_correction_lookup_table(u32 freq_MHz); 80 void ad9361_tx_calibration(struct openwifi_priv *priv, u32 actual_tx_lo); 81 void openwifi_rf_rx_update_after_tuning(struct openwifi_priv *priv, u32 actual_rx_lo); 82 83 #include "sdrctl_intf.c" 84 #include "sysfs_intf.c" 85 86 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1) 87 // Internal indication variables after parsing test_mode 88 static bool AGGR_ENABLE = false; 89 static bool TX_OFFSET_TUNING_ENABLE = false; 90 91 static int init_tx_att = 0; 92 93 MODULE_AUTHOR("Xianjun Jiao"); 94 MODULE_DESCRIPTION("SDR driver"); 95 MODULE_LICENSE("GPL v2"); 96 97 module_param(test_mode, int, 0); 98 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)"); 99 100 module_param(init_tx_att, int, 0); 101 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000 example: set to 3000 for 3dB attenuation"); 102 103 // ---------------rfkill--------------------------------------- 104 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv) 105 { 106 int reg; 107 108 if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH) 109 reg = ad9361_get_tx_atten(priv->ad9361_phy, 1); 110 else 111 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 112 113 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) 114 return true;// 0 off, 1 on 115 return false; 116 } 117 118 void openwifi_rfkill_init(struct ieee80211_hw *hw) 119 { 120 struct openwifi_priv *priv = hw->priv; 121 122 priv->rfkill_off = openwifi_is_radio_enabled(priv); 123 printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off"); 124 wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off); 125 wiphy_rfkill_start_polling(hw->wiphy); 126 } 127 128 void openwifi_rfkill_poll(struct ieee80211_hw *hw) 129 { 130 bool enabled; 131 struct openwifi_priv *priv = hw->priv; 132 133 enabled = openwifi_is_radio_enabled(priv); 134 // printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); 135 if (unlikely(enabled != priv->rfkill_off)) { 136 priv->rfkill_off = enabled; 137 printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); 138 wiphy_rfkill_set_hw_state(hw->wiphy, !enabled); 139 } 140 } 141 142 void openwifi_rfkill_exit(struct ieee80211_hw *hw) 143 { 144 printk("%s openwifi_rfkill_exit\n", sdr_compatible_str); 145 wiphy_rfkill_stop_polling(hw->wiphy); 146 } 147 //----------------rfkill end----------------------------------- 148 149 inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction) 150 { 151 return ((rssi_correction+rssi_dbm)<<1); 152 } 153 154 inline int rssi_correction_lookup_table(u32 freq_MHz) 155 { 156 int rssi_correction; 157 158 if (freq_MHz<2412) { 159 rssi_correction = 153; 160 } else if (freq_MHz<=2484) { 161 rssi_correction = 153; 162 } else if (freq_MHz<5160) { 163 rssi_correction = 153; 164 } else if (freq_MHz<=5240) { 165 rssi_correction = 145; 166 } else if (freq_MHz<=5320) { 167 rssi_correction = 148; 168 } else { 169 rssi_correction = 148; 170 } 171 172 return rssi_correction; 173 } 174 175 inline void ad9361_tx_calibration(struct openwifi_priv *priv, u32 actual_tx_lo) 176 { 177 struct timeval tv; 178 unsigned long time_before = 0; 179 unsigned long time_after = 0; 180 u32 spi_disable; 181 182 priv->last_tx_quad_cal_lo = actual_tx_lo; 183 do_gettimeofday(&tv); 184 time_before = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec ); 185 spi_disable = xpu_api->XPU_REG_SPI_DISABLE_read(); // backup current fpga spi disable state 186 xpu_api->XPU_REG_SPI_DISABLE_write(1); // disable FPGA SPI module 187 ad9361_do_calib_run(priv->ad9361_phy, TX_QUAD_CAL, (int)priv->ad9361_phy->state->last_tx_quad_cal_phase); 188 xpu_api->XPU_REG_SPI_DISABLE_write(spi_disable); // restore original SPI disable state 189 do_gettimeofday(&tv); 190 time_after = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec ); 191 192 printk("%s ad9361_tx_calibration %dMHz tx_quad_cal duration %lu us\n", sdr_compatible_str, actual_tx_lo, time_after-time_before); 193 } 194 195 inline void openwifi_rf_rx_update_after_tuning(struct openwifi_priv *priv, u32 actual_rx_lo) 196 { 197 int static_lbt_th, auto_lbt_th, fpga_lbt_th, receiver_rssi_dbm_th, receiver_rssi_th; 198 199 // get rssi correction value from lookup table 200 priv->rssi_correction = rssi_correction_lookup_table(actual_rx_lo); 201 202 // set appropriate lbt threshold 203 // xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm 204 // xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44 205 // auto_lbt_th = ((priv->rssi_correction-62-16)<<1); 206 auto_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction); // -78dBm, the same as above ((priv->rssi_correction-62-16)<<1) 207 static_lbt_th = rssi_dbm_to_rssi_half_db(-(priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]), priv->rssi_correction); 208 fpga_lbt_th = (priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]==0?auto_lbt_th:static_lbt_th); 209 xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th); 210 priv->last_auto_fpga_lbt_th = auto_lbt_th; 211 212 // Set rssi_half_db threshold (-85dBm equivalent) to receiver. Receiver will not react to signal lower than this rssi. See test records (OPENOFDM_RX_POWER_THRES_INIT in hw_def.h) 213 receiver_rssi_dbm_th = (priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]==0?OPENOFDM_RX_RSSI_DBM_TH_DEFAULT:(-priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH])); 214 receiver_rssi_th = rssi_dbm_to_rssi_half_db(receiver_rssi_dbm_th, priv->rssi_correction); 215 openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write((OPENOFDM_RX_DC_RUNNING_SUM_TH_INIT<<16)|receiver_rssi_th); 216 217 if (actual_rx_lo < 2500) { 218 if (priv->band != BAND_2_4GHZ) { 219 priv->band = BAND_2_4GHZ; 220 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 221 } 222 } else { 223 if (priv->band != BAND_5_8GHZ) { 224 priv->band = BAND_5_8GHZ; 225 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 226 } 227 } 228 printk("%s openwifi_rf_rx_update_after_tuning %dMHz rssi_correction %d fpga_lbt_th %d(%ddBm) auto %d static %d receiver th %d(%ddBm)\n", sdr_compatible_str, 229 actual_rx_lo, priv->rssi_correction, fpga_lbt_th, rssi_half_db_to_rssi_dbm(fpga_lbt_th, priv->rssi_correction), auto_lbt_th, static_lbt_th, receiver_rssi_th, receiver_rssi_dbm_th); 230 } 231 232 static void ad9361_rf_set_channel(struct ieee80211_hw *dev, 233 struct ieee80211_conf *conf) 234 { 235 struct openwifi_priv *priv = dev->priv; 236 u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz; 237 u32 actual_tx_lo; 238 u32 diff_tx_lo; 239 bool change_flag = (actual_rx_lo != priv->actual_rx_lo); 240 241 if (change_flag && priv->rf_reg_val[RF_TX_REG_IDX_FREQ_MHZ]==0 && priv->rf_reg_val[RF_RX_REG_IDX_FREQ_MHZ]==0) { 242 actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz; 243 diff_tx_lo = priv->last_tx_quad_cal_lo > actual_tx_lo ? priv->last_tx_quad_cal_lo - actual_tx_lo : actual_tx_lo - priv->last_tx_quad_cal_lo; 244 245 // -------------------Tx Lo tuning------------------- 246 clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo) )>>1); 247 priv->actual_tx_lo = actual_tx_lo; 248 249 // -------------------Rx Lo tuning------------------- 250 clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo) )>>1); 251 priv->actual_rx_lo = actual_rx_lo; 252 253 // call Tx Quadrature calibration if frequency change is more than 100MHz 254 if (diff_tx_lo > 100) 255 ad9361_tx_calibration(priv, actual_tx_lo); 256 257 openwifi_rf_rx_update_after_tuning(priv, actual_rx_lo); 258 printk("%s ad9361_rf_set_channel %dMHz done\n", sdr_compatible_str,conf->chandef.chan->center_freq); 259 } 260 } 261 262 const struct openwifi_rf_ops ad9361_rf_ops = { 263 .name = "ad9361", 264 // .init = ad9361_rf_init, 265 // .stop = ad9361_rf_stop, 266 .set_chan = ad9361_rf_set_channel, 267 // .calc_rssi = ad9361_rf_calc_rssi, 268 }; 269 270 u16 reverse16(u16 d) { 271 union u16_byte2 tmp0, tmp1; 272 tmp0.a = d; 273 tmp1.c[0] = tmp0.c[1]; 274 tmp1.c[1] = tmp0.c[0]; 275 return(tmp1.a); 276 } 277 278 u32 reverse32(u32 d) { 279 union u32_byte4 tmp0, tmp1; 280 tmp0.a = d; 281 tmp1.c[0] = tmp0.c[3]; 282 tmp1.c[1] = tmp0.c[2]; 283 tmp1.c[2] = tmp0.c[1]; 284 tmp1.c[3] = tmp0.c[0]; 285 return(tmp1.a); 286 } 287 288 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx) 289 { 290 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); 291 int i; 292 293 ring->stop_flag = -1; 294 ring->bd_wr_idx = 0; 295 ring->bd_rd_idx = 0; 296 ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL); 297 if (ring->bds==NULL) { 298 printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str); 299 return -ENOMEM; 300 } 301 302 for (i = 0; i < NUM_TX_BD; i++) { 303 ring->bds[i].skb_linked=NULL; // for tx, skb is from upper layer 304 //at first right after skb allocated, head, data, tail are the same. 305 ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine 306 ring->bds[i].seq_no = 0xffff; // invalid value 307 ring->bds[i].prio = 0xff; // invalid value 308 ring->bds[i].len_mpdu = 0; // invalid value 309 } 310 311 return 0; 312 } 313 314 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx) 315 { 316 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); 317 int i; 318 319 ring->stop_flag = -1; 320 ring->bd_wr_idx = 0; 321 ring->bd_rd_idx = 0; 322 for (i = 0; i < NUM_TX_BD; i++) { 323 if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0) 324 continue; 325 if (ring->bds[i].dma_mapping_addr != 0) 326 dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV); 327 // if (ring->bds[i].skb_linked!=NULL) 328 // dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception 329 if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) || 330 (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0)) 331 printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str, 332 ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr)); 333 334 ring->bds[i].skb_linked=NULL; 335 ring->bds[i].dma_mapping_addr = 0; 336 ring->bds[i].seq_no = 0xffff; // invalid value 337 ring->bds[i].prio = 0xff; // invalid value 338 ring->bds[i].len_mpdu = 0; // invalid value 339 } 340 if (ring->bds) 341 kfree(ring->bds); 342 ring->bds = NULL; 343 } 344 345 static int openwifi_init_rx_ring(struct openwifi_priv *priv) 346 { 347 int i; 348 u8 *pdata_tmp; 349 350 priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL); 351 if (!priv->rx_cyclic_buf) { 352 printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str); 353 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); 354 return(-1); 355 } 356 357 // Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA 358 for (i=0; i<NUM_RX_BD; i++) { 359 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning 360 (*((u16*)(pdata_tmp+10))) = 0; 361 } 362 printk("%s openwifi_init_rx_ring: NUM_RX_BD %d RX_BD_BUF_SIZE %d pkt existing flag are cleared!\n", sdr_compatible_str, 363 NUM_RX_BD, RX_BD_BUF_SIZE); 364 365 return 0; 366 } 367 368 static void openwifi_free_rx_ring(struct openwifi_priv *priv) 369 { 370 if (priv->rx_cyclic_buf) 371 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); 372 373 priv->rx_cyclic_buf_dma_mapping_addr = 0; 374 priv->rx_cyclic_buf = 0; 375 } 376 377 static int rx_dma_setup(struct ieee80211_hw *dev){ 378 struct openwifi_priv *priv = dev->priv; 379 struct dma_device *rx_dev = priv->rx_chan->device; 380 381 priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT); 382 if (!(priv->rxd)) { 383 openwifi_free_rx_ring(priv); 384 printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd)); 385 return(-1); 386 } 387 priv->rxd->callback = 0; 388 priv->rxd->callback_param = 0; 389 390 priv->rx_cookie = priv->rxd->tx_submit(priv->rxd); 391 392 if (dma_submit_error(priv->rx_cookie)) { 393 printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie)); 394 return(-1); 395 } 396 397 dma_async_issue_pending(priv->rx_chan); 398 return(0); 399 } 400 401 inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction) 402 { 403 int rssi_db, rssi_dbm; 404 405 rssi_db = (rssi_half_db>>1); 406 407 rssi_dbm = rssi_db - rssi_correction; 408 409 rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm); 410 411 return rssi_dbm; 412 } 413 414 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id) 415 { 416 struct ieee80211_hw *dev = dev_id; 417 struct openwifi_priv *priv = dev->priv; 418 struct ieee80211_rx_status rx_status = {0}; 419 struct sk_buff *skb; 420 struct ieee80211_hdr *hdr; 421 u32 addr1_low32, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di; 422 bool ht_flag, short_gi, ht_aggr, ht_aggr_last; 423 // u32 dma_driver_buf_idx_mod; 424 u8 *pdata_tmp; 425 u8 fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw; 426 s8 signal; 427 u16 agc_status_and_pkt_exist_flag, rssi_half_db, addr1_high16, addr2_high16=0, addr3_high16=0, seq_no=0; 428 bool content_ok, len_overflow, is_unicast; 429 430 #ifdef USE_NEW_RX_INTERRUPT 431 int i; 432 spin_lock(&priv->lock); 433 for (i=0; i<NUM_RX_BD; i++) { 434 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; 435 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid 436 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer 437 continue; 438 #else 439 static u8 target_buf_idx_old = 0; 440 spin_lock(&priv->lock); 441 while(1) { // loop all rx buffers that have new rx packets 442 pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning 443 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); 444 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer 445 break; 446 #endif 447 448 tsft_low = (*((u32*)(pdata_tmp+0 ))); 449 tsft_high = (*((u32*)(pdata_tmp+4 ))); 450 rssi_half_db = (*((u16*)(pdata_tmp+8 ))); 451 len = (*((u16*)(pdata_tmp+12))); 452 453 len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false); 454 455 rate_idx = (*((u16*)(pdata_tmp+14))); 456 ht_flag = ((rate_idx&0x10)!=0); 457 short_gi = ((rate_idx&0x20)!=0); 458 ht_aggr = (ht_flag & ((rate_idx&0x40)!=0)); 459 ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0)); 460 rate_idx = (rate_idx&0x1F); 461 462 fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) ); 463 464 //phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1)); 465 // phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation 466 // dma_driver_buf_idx_mod = (state.residue&0x7f); 467 fcs_ok = ((fcs_ok&0x80)!=0); 468 469 if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) { 470 // if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) { 471 // printk("%s openwifi_rx: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod); 472 // } 473 content_ok = true; 474 } else { 475 printk("%s openwifi_rx: WARNING content! len%d overflow%d rate_idx%d\n", sdr_compatible_str, 476 len, len_overflow, rate_idx); 477 content_ok = false; 478 } 479 480 signal = rssi_half_db_to_rssi_dbm(rssi_half_db, priv->rssi_correction); 481 482 hdr = (struct ieee80211_hdr *)(pdata_tmp+16); 483 if (len>=20) { 484 addr2_low32 = *((u32*)(hdr->addr2+2)); 485 addr2_high16 = *((u16*)(hdr->addr2)); 486 } 487 488 addr1_low32 = *((u32*)(hdr->addr1+2)); 489 addr1_high16 = *((u16*)(hdr->addr1)); 490 491 if ( priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ANY ) { 492 if (len>=26) { 493 addr3_low32 = *((u32*)(hdr->addr3+2)); 494 addr3_high16 = *((u16*)(hdr->addr3)); 495 } 496 if (len>=28) 497 seq_no = ( (hdr->seq_ctrl&IEEE80211_SCTL_SEQ)>>4 ); 498 499 is_unicast = (addr1_low32!=0xffffffff || addr1_high16!=0xffff); 500 501 if ( (( is_unicast)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST)) || 502 ((!is_unicast)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST)) || 503 (( fcs_ok==0)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ERROR)) ) 504 printk("%s openwifi_rx: %dB ht%daggr%d/%d sgi%d %dM FC%04x DI%04x ADDR%04x%08x/%04x%08x/%04x%08x SC%d fcs%d buf_idx%d %ddBm\n", sdr_compatible_str, 505 len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id, 506 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), 507 #ifdef USE_NEW_RX_INTERRUPT 508 seq_no, fcs_ok, i, signal); 509 #else 510 seq_no, fcs_ok, target_buf_idx_old, signal); 511 #endif 512 } 513 514 // priv->phy_rx_sn_hw_old = phy_rx_sn_hw; 515 if (content_ok) { 516 skb = dev_alloc_skb(len); 517 if (skb) { 518 skb_put_data(skb,pdata_tmp+16,len); 519 520 rx_status.antenna = priv->runtime_rx_ant_cfg; 521 // def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M) 522 rx_status.rate_idx = wifi_rate_table_mapping[rate_idx]; 523 rx_status.signal = signal; 524 525 // rx_status.freq = dev->conf.chandef.chan->center_freq; 526 rx_status.freq = priv->actual_rx_lo; 527 // rx_status.band = dev->conf.chandef.chan->band; 528 rx_status.band = (rx_status.freq<2500?NL80211_BAND_2GHZ:NL80211_BAND_5GHZ); 529 530 rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); 531 rx_status.flag |= RX_FLAG_MACTIME_START; 532 if (!fcs_ok) 533 rx_status.flag |= RX_FLAG_FAILED_FCS_CRC; 534 if (rate_idx <= 15) 535 rx_status.encoding = RX_ENC_LEGACY; 536 else 537 rx_status.encoding = RX_ENC_HT; 538 rx_status.bw = RATE_INFO_BW_20; 539 if (short_gi) 540 rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI; 541 if(ht_aggr) 542 { 543 rx_status.ampdu_reference = priv->ampdu_reference; 544 rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 545 if (ht_aggr_last) 546 rx_status.flag |= RX_FLAG_AMPDU_IS_LAST; 547 } 548 549 memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more. 550 ieee80211_rx_irqsafe(dev, skb); // call mac80211 function 551 552 // printk("%s openwifi_rx: addr1_low32 %08x self addr %08x\n", sdr_compatible_str, addr1_low32, ( *( (u32*)(priv->mac_addr+2) ) )); 553 if (addr1_low32 == ( *( (u32*)(priv->mac_addr+2) ) ) && priv->stat.stat_enable) { 554 agc_status_and_pkt_exist_flag = (agc_status_and_pkt_exist_flag&0x7f); 555 if (len>=20) {// rx stat 556 if (addr2_low32 == priv->stat.rx_target_sender_mac_addr || priv->stat.rx_target_sender_mac_addr==0) { 557 if ( ieee80211_is_data(hdr->frame_control) ) { 558 priv->stat.rx_data_pkt_mcs_realtime = rate_idx; 559 priv->stat.rx_data_pkt_num_total++; 560 if (!fcs_ok) { 561 priv->stat.rx_data_pkt_num_fail++; 562 priv->stat.rx_data_pkt_fail_mcs_realtime = rate_idx; 563 priv->stat.rx_data_fail_agc_gain_value_realtime = agc_status_and_pkt_exist_flag; 564 } else { 565 priv->stat.rx_data_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag; 566 } 567 } else if ( ieee80211_is_mgmt(hdr->frame_control) ) { 568 priv->stat.rx_mgmt_pkt_mcs_realtime = rate_idx; 569 priv->stat.rx_mgmt_pkt_num_total++; 570 if (!fcs_ok) { 571 priv->stat.rx_mgmt_pkt_num_fail++; 572 priv->stat.rx_mgmt_pkt_fail_mcs_realtime = rate_idx; 573 priv->stat.rx_mgmt_fail_agc_gain_value_realtime = agc_status_and_pkt_exist_flag; 574 } else { 575 priv->stat.rx_mgmt_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag; 576 } 577 } 578 } 579 } else if ( ieee80211_is_ack(hdr->frame_control) ) { 580 priv->stat.rx_ack_pkt_mcs_realtime = rate_idx; 581 priv->stat.rx_ack_pkt_num_total++; 582 if (!fcs_ok) { 583 priv->stat.rx_ack_pkt_num_fail++; 584 } else { 585 priv->stat.rx_ack_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag; 586 } 587 } 588 } 589 } else 590 printk("%s openwifi_rx: WARNING dev_alloc_skb failed!\n", sdr_compatible_str); 591 592 if(ht_aggr_last) 593 priv->ampdu_reference++; 594 } 595 (*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed 596 loop_count++; 597 #ifndef USE_NEW_RX_INTERRUPT 598 target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1)); 599 #endif 600 } 601 602 if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ERROR) ) 603 printk("%s openwifi_rx: WARNING loop_count %d\n", sdr_compatible_str,loop_count); 604 605 // openwifi_rx_out: 606 spin_unlock(&priv->lock); 607 return IRQ_HANDLED; 608 } 609 610 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id) 611 { 612 struct ieee80211_hw *dev = dev_id; 613 struct openwifi_priv *priv = dev->priv; 614 struct openwifi_ring *ring, *drv_ring_tmp; 615 struct sk_buff *skb; 616 struct ieee80211_tx_info *info; 617 struct ieee80211_hdr *hdr; 618 u32 reg_val1, hw_queue_len, reg_val2, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0, addr1_low32, mcs_for_sysfs; 619 u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx; 620 u8 nof_retx=-1, last_bd_rd_idx, i, prio, queue_idx, nof_retx_stat; 621 u64 blk_ack_bitmap; 622 // u16 prio_rd_idx_store[64]={0}; 623 bool tx_fail=false, fpga_queue_has_room=false; 624 bool use_ht_aggr, pkt_need_ack, use_ht_rate, prio_wake_up_flag = false; 625 626 spin_lock(&priv->lock); 627 628 while(1) { // loop all packets that have been sent by FPGA 629 reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read(); 630 reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read(); 631 blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32); 632 633 if (reg_val1!=0xFFFFFFFF) { 634 nof_retx = (reg_val1&0xF); 635 last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1)); 636 prio = ((reg_val1>>17)&0x3); 637 num_slot_random = ((reg_val1>>19)&0x1FF); 638 //num_slot_random = ((0xFF80000 ®_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE)); 639 cw = ((reg_val1>>28)&0xF); 640 //cw = ((0xF0000000 & reg_val1) >> 28); 641 if(cw > 10) { 642 cw = 10 ; 643 num_slot_random += 512 ; 644 } 645 pkt_cnt = (reg_val2&0x3F); 646 blk_ack_ssn = ((reg_val2>>6)&0xFFF); 647 648 queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1)); 649 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); 650 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 651 // check which linux prio is stopped by this queue (queue_idx) 652 for (i=0; i<MAX_NUM_SW_QUEUE; i++) { 653 drv_ring_tmp = &(priv->tx_ring[i]); 654 if ( drv_ring_tmp->stop_flag == prio ) { 655 656 if ( ((dma_fifo_no_room_flag>>i)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(i*8))&0xFF))>=RING_ROOM_THRESHOLD ) 657 fpga_queue_has_room=true; 658 else 659 fpga_queue_has_room=false; 660 661 // Wake up Linux queue due to the current fpga queue releases some room 662 if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP ) 663 printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio%d i%d queue%d no room flag%x hwq len%08x wr%d rd%d\n", sdr_compatible_str, 664 prio, i, queue_idx, dma_fifo_no_room_flag, hw_queue_len, drv_ring_tmp->bd_wr_idx, last_bd_rd_idx); 665 666 if (fpga_queue_has_room) { 667 prio_wake_up_flag = true; 668 drv_ring_tmp->stop_flag = -1; 669 670 if (priv->stat.stat_enable) { 671 priv->stat.tx_prio_wakeup_num[prio]++; 672 priv->stat.tx_queue_wakeup_num[i]++; 673 } 674 } else { 675 if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP ) 676 printk("%s openwifi_tx_interrupt: WARNING no room! prio_wake_up_flag%d\n", sdr_compatible_str, prio_wake_up_flag); 677 } 678 } 679 } 680 if (prio_wake_up_flag) 681 ieee80211_wake_queue(dev, prio); 682 683 if (priv->stat.stat_enable) { 684 priv->stat.tx_prio_interrupt_num[prio] = priv->stat.tx_prio_interrupt_num[prio] + pkt_cnt; 685 priv->stat.tx_queue_interrupt_num[queue_idx] = priv->stat.tx_queue_interrupt_num[queue_idx] + pkt_cnt; 686 } 687 688 ring = &(priv->tx_ring[queue_idx]); 689 for(i = 1; i <= pkt_cnt; i++) 690 { 691 ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64; 692 seq_no = ring->bds[ring->bd_rd_idx].seq_no; 693 694 if (seq_no == 0xffff) {// it has been forced cleared by the openwifi_tx (due to out-of-order Tx of different queues to the air?) 695 printk("%s openwifi_tx_interrupt: WARNING wr%d rd%d last_bd_rd_idx%d i%d pkt_cnt%d prio%d fpga q%d hwq len%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str, 696 ring->bd_wr_idx, ring->bd_rd_idx, last_bd_rd_idx, i, pkt_cnt, prio, queue_idx, hw_queue_len, ring->bds[ring->bd_rd_idx].prio, ring->bds[ring->bd_rd_idx].len_mpdu, seq_no, ring->bds[ring->bd_rd_idx].skb_linked, ring->bds[ring->bd_rd_idx].dma_mapping_addr); 697 continue; 698 } 699 700 skb = ring->bds[ring->bd_rd_idx].skb_linked; 701 702 dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr, 703 skb->len, DMA_MEM_TO_DEV); 704 705 info = IEEE80211_SKB_CB(skb); 706 use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0); 707 ieee80211_tx_info_clear_status(info); 708 709 // Aggregation packet 710 if (use_ht_aggr) 711 { 712 start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF)); 713 tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0); 714 info->flags |= IEEE80211_TX_STAT_AMPDU; 715 info->status.ampdu_len = 1; 716 info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1; 717 718 skb_pull(skb, LEN_MPDU_DELIM); 719 //skb_trim(skb, num_byte_pad_skb); 720 } 721 // Normal packet 722 else 723 { 724 tx_fail = ((blk_ack_bitmap&0x1)==0); 725 info->flags &= (~IEEE80211_TX_CTL_AMPDU); 726 } 727 728 pkt_need_ack = (!(info->flags & IEEE80211_TX_CTL_NO_ACK)); 729 // do statistics for data packet that needs ack 730 hdr = (struct ieee80211_hdr *)skb->data; 731 addr1_low32 = *((u32*)(hdr->addr1+2)); 732 if ( priv->stat.stat_enable && pkt_need_ack && (addr1_low32 == priv->stat.rx_target_sender_mac_addr || priv->stat.rx_target_sender_mac_addr==0) ) { 733 use_ht_rate = (((info->control.rates[0].flags)&IEEE80211_TX_RC_MCS)!=0); 734 mcs_for_sysfs = ieee80211_get_tx_rate(dev, info)->hw_value; 735 if (use_ht_rate) 736 mcs_for_sysfs = (mcs_for_sysfs | 0x80000000); 737 738 if ( ieee80211_is_data(hdr->frame_control) ) { 739 nof_retx_stat = (nof_retx<=5?nof_retx:5); 740 741 priv->stat.tx_data_pkt_need_ack_num_total++; 742 priv->stat.tx_data_pkt_mcs_realtime = mcs_for_sysfs; 743 priv->stat.tx_data_pkt_need_ack_num_retx[nof_retx_stat]++; 744 if (tx_fail) { 745 priv->stat.tx_data_pkt_need_ack_num_total_fail++; 746 priv->stat.tx_data_pkt_fail_mcs_realtime = mcs_for_sysfs; 747 priv->stat.tx_data_pkt_need_ack_num_retx_fail[nof_retx_stat]++; 748 } 749 } else if ( ieee80211_is_mgmt(hdr->frame_control) ) { 750 nof_retx_stat = (nof_retx<=2?nof_retx:2); 751 752 priv->stat.tx_mgmt_pkt_need_ack_num_total++; 753 priv->stat.tx_mgmt_pkt_mcs_realtime = mcs_for_sysfs; 754 priv->stat.tx_mgmt_pkt_need_ack_num_retx[nof_retx_stat]++; 755 if (tx_fail) { 756 priv->stat.tx_mgmt_pkt_need_ack_num_total_fail++; 757 priv->stat.tx_mgmt_pkt_fail_mcs_realtime = mcs_for_sysfs; 758 priv->stat.tx_mgmt_pkt_need_ack_num_retx_fail[nof_retx_stat]++; 759 } 760 } 761 } 762 763 if ( tx_fail == false ) 764 info->flags |= IEEE80211_TX_STAT_ACK; 765 766 info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate 767 info->status.rates[1].idx = -1; 768 // info->status.rates[2].idx = -1; 769 // info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES 4 770 info->status.antenna = priv->runtime_tx_ant_cfg; 771 772 if ( ( (!pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST) ) || ( (pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST) ) ){ 773 printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] SC%d prio%d q%d wr%d rd%d num_slot%d cw%d hwq len%08x no_room_flag%x\n", sdr_compatible_str, 774 nof_retx+1, !tx_fail, seq_no, prio, queue_idx, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw, hw_queue_len, dma_fifo_no_room_flag); 775 } 776 777 ieee80211_tx_status_irqsafe(dev, skb); 778 779 ring->bds[ring->bd_rd_idx].prio = 0xff; // invalid value 780 ring->bds[ring->bd_rd_idx].len_mpdu = 0; // invalid value 781 ring->bds[ring->bd_rd_idx].seq_no = 0xffff; 782 ring->bds[ring->bd_rd_idx].skb_linked = NULL; 783 ring->bds[ring->bd_rd_idx].dma_mapping_addr = 0; 784 } 785 786 loop_count++; 787 788 // printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx); 789 790 } else 791 break; 792 } 793 if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&DMESG_LOG_ERROR) ) 794 printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count); 795 796 spin_unlock(&priv->lock); 797 return IRQ_HANDLED; 798 } 799 800 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000}; 801 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes) 802 { 803 u32 i, crc = 0; 804 u8 idx; 805 for( i = 0; i < num_bytes; i++) 806 { 807 idx = (crc & 0x0F) ^ (data_in[i] & 0x0F); 808 crc = (crc >> 4) ^ crc_table[idx]; 809 810 idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F); 811 crc = (crc >> 4) ^ crc_table[idx]; 812 } 813 814 return crc; 815 } 816 817 u8 gen_mpdu_delim_crc(u16 m) 818 { 819 u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc; 820 821 for (i = 0; i < 16; i++) 822 { 823 temp = c[7] ^ ((m >> i) & 0x01); 824 825 c[7] = c[6]; 826 c[6] = c[5]; 827 c[5] = c[4]; 828 c[4] = c[3]; 829 c[3] = c[2]; 830 c[2] = c[1] ^ temp; 831 c[1] = c[0] ^ temp; 832 c[0] = temp; 833 } 834 mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7); 835 836 return mpdu_delim_crc; 837 } 838 839 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c 840 cdev_to_gpio_led_data(struct led_classdev *led_cdev) 841 { 842 return container_of(led_cdev, struct gpio_led_data, cdev); 843 } 844 845 inline int calc_n_ofdm(int num_octet, int n_dbps) 846 { 847 int num_bit, num_ofdm_sym; 848 849 num_bit = 22+num_octet*8; 850 num_ofdm_sym = (num_bit/n_dbps) + ((num_bit%n_dbps)!=0); 851 852 return (num_ofdm_sym); 853 } 854 855 inline __le16 gen_ht_duration_id(__le16 frame_control, __le16 aid, u8 qos_hdr, bool use_ht_aggr, u16 rate_hw_value, u16 sifs) 856 { 857 // COTS wifi ht QoS data duration field analysis (lots of capture): 858 859 // ht non-aggr QoS data: 44, type 2 (data frame) sub-type 8 (1000) 21.7/52/57.8/58.5/65Mbps 860 // ack ht 36 + 4*[(22+14*8)/78] = 36 + 4*2 = 44 861 // ack legacy 20 + 4*[(22+14*8)/72] = 20 + 4*2 = 28 862 863 // ht non-aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 6.5Mbps 864 // ack ht 36 + 4*[(22+14*8)/26] = 36 + 4*6 = 60 865 // ack legacy 20 + 4*[(22+14*8)/24] = 20 + 4*6 = 44 866 867 // ht aggr QoS data: 52, type 2 (data frame) sub-type 8 (1000) 19.5/28.9/39/57.8/65/72.2Mbps 868 // ack ht 36 + 4*[(22+32*8)/78] = 36 + 4*4 = 52 869 // ack legacy 20 + 4*[(22+32*8)/72] = 20 + 4*4 = 36 870 871 // ht aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 13/14.4Mbps 872 // ack ht 36 + 4*[(22+32*8)/52] = 36 + 4*6 = 60 873 // ack legacy 20 + 4*[(22+32*8)/48] = 20 + 4*6 = 44 874 875 // ht and legacy rate mapping is ont one on one, instead it is modulation combined with coding rate 876 // modulate coding ht-mcs ht-n_dbps legacy-mcs legacy-n_dbps 877 // BPSK 1/2 0 26 4 24 878 // QPSK 1/2 1 52 6 48 879 // QPSK 3/4 2 78 7 72 880 // 16QAM 1/2 3 104 8 96 881 // 16QAM 3/4 4 156 9 144 882 // 64QAM 2/3 5 208 10 192 883 // 64QAM 3/4 6 234 11 216 884 885 // conclusion: duration is: assume ack/blk-ack uses legacy, plus SIFS 886 887 // other observation: ht always use QoS data, not data (sub-type) 888 // other observation: management/control frame always in non-ht 889 890 __le16 dur = 0; 891 u16 n_dbps; 892 int num_octet, num_ofdm_sym; 893 894 if (ieee80211_is_pspoll(frame_control)) { 895 dur = (aid|0xc000); 896 } else if (ieee80211_is_data_qos(frame_control) && (~(qos_hdr&IEEE80211_QOS_CTL_ACK_POLICY_NOACK))) { 897 rate_hw_value = (rate_hw_value>6?6:rate_hw_value); 898 n_dbps = (rate_hw_value==0?wifi_n_dbps_table[4]:wifi_n_dbps_table[rate_hw_value+5]); 899 num_octet = (use_ht_aggr?32:14); //32 bytes for compressed block ack; 14 bytes for normal ack 900 num_ofdm_sym = calc_n_ofdm(num_octet, n_dbps); 901 dur = sifs + 20 + 4*num_ofdm_sym; // 20us legacy preamble 902 // printk("%s gen_ht_duration_id: num_octet %d n_dbps %d num_ofdm_sym %d dur %d\n", sdr_compatible_str, 903 // num_octet, n_dbps, num_ofdm_sym, dur); 904 } else { 905 printk("%s openwifi_tx: WARNING gen_ht_duration_id wrong pkt type!\n", sdr_compatible_str); 906 } 907 908 return dur; 909 } 910 911 inline void report_pkt_loss_due_to_driver_drop(struct ieee80211_hw *dev, struct sk_buff *skb) 912 { 913 struct openwifi_priv *priv = dev->priv; 914 struct ieee80211_tx_info *info; 915 916 info = IEEE80211_SKB_CB(skb); 917 ieee80211_tx_info_clear_status(info); 918 info->status.rates[0].count = 1; 919 info->status.rates[1].idx = -1; 920 info->status.antenna = priv->runtime_tx_ant_cfg; 921 ieee80211_tx_status_irqsafe(dev, skb); 922 } 923 924 static void openwifi_tx(struct ieee80211_hw *dev, 925 struct ieee80211_tx_control *control, 926 struct sk_buff *skb) 927 { 928 struct openwifi_priv *priv = dev->priv; 929 unsigned long flags; 930 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 931 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 932 struct openwifi_ring *ring = NULL; 933 struct sk_buff *skb_new; // temp skb for internal use 934 struct ieee80211_tx_info *info_skipped; 935 dma_addr_t dma_mapping_addr; 936 unsigned int i, j, empty_bd_idx = 0; 937 u16 rate_signal_value, rate_hw_value, len_mpdu, len_psdu, num_dma_symbol, len_mpdu_delim_pad=0, num_byte_pad; 938 u32 num_dma_byte, addr1_low32, addr2_low32=0, addr3_low32=0, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history; 939 u16 addr1_high16, addr2_high16=0, addr3_high16=0, sc, seq_no=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration, n_dbps; 940 u8 pkt_need_ack, retry_limit_raw,use_short_gi,*dma_buf,retry_limit_hw_value,rc_flags,qos_hdr,prio,queue_idx,drv_ring_idx; 941 bool drv_seqno=false, use_rts_cts, use_cts_protect, ht_aggr_start=false, use_ht_rate, use_ht_aggr, cts_use_traffic_rate=false, force_use_cts_protect=false; 942 __le16 frame_control,duration_id; 943 u32 dma_fifo_no_room_flag, hw_queue_len, delay_count=0; 944 enum dma_status status; 945 946 static u32 addr1_low32_prev = -1; 947 static u16 rate_hw_value_prev = -1; 948 static u8 pkt_need_ack_prev = -1; 949 static u16 addr1_high16_prev = -1; 950 static __le16 duration_id_prev = -1; 951 static u8 prio_prev = -1; 952 static u8 retry_limit_raw_prev = -1; 953 static u8 use_short_gi_prev = -1; 954 955 // static bool led_status=0; 956 // struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]); 957 958 // if ( (priv->phy_tx_sn&7) ==0 ) { 959 // openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read(); 960 // if (openofdm_state_history!=openofdm_state_history_old){ 961 // led_status = (~led_status); 962 // openofdm_state_history_old = openofdm_state_history; 963 // gpiod_set_value(led_dat->gpiod, led_status); 964 // } 965 // } 966 967 if (skb->data_len>0) {// more data are not in linear data area skb->data 968 printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str); 969 goto openwifi_tx_early_out; 970 } 971 972 len_mpdu = skb->len; 973 974 // get Linux priority/queue setting info and target mac address 975 prio = skb_get_queue_mapping(skb); 976 if (prio >= MAX_NUM_HW_QUEUE) { 977 printk("%s openwifi_tx: WARNING prio%d\n", sdr_compatible_str, prio); 978 goto openwifi_tx_early_out; 979 } 980 981 addr1_low32 = *((u32*)(hdr->addr1+2)); 982 983 // ---- DO your idea here! Map Linux/SW "prio" to driver "drv_ring_idx" (then 1on1 to FPGA queue_idx) --- 984 if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config 985 drv_ring_idx = prio; 986 } else {// customized prio to drv_ring_idx mapping 987 // check current packet belonging to which slice/hw-queue 988 for (i=0; i<MAX_NUM_HW_QUEUE; i++) { 989 if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) { 990 break; 991 } 992 } 993 drv_ring_idx = (i>=MAX_NUM_HW_QUEUE?prio:i); // if no address is hit 994 } 995 996 ring = &(priv->tx_ring[drv_ring_idx]); 997 998 spin_lock_irqsave(&priv->lock, flags); 999 if (ring->bds[ring->bd_wr_idx].seq_no != 0xffff) { // not cleared yet by interrupt 1000 for (i=1; i<NUM_TX_BD; i++) { 1001 if (ring->bds[(ring->bd_wr_idx+i)&(NUM_TX_BD-1)].seq_no == 0xffff) { 1002 empty_bd_idx = i; 1003 break; 1004 } 1005 } 1006 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 1007 if (empty_bd_idx) { // clear all bds before the empty bd and report failure to Linux 1008 if (priv->stat.stat_enable) { 1009 priv->stat.tx_prio_stop0_fake_num[prio]++; 1010 priv->stat.tx_queue_stop0_fake_num[drv_ring_idx]++; 1011 } 1012 for (i=0; i<empty_bd_idx; i++) { 1013 j = ( (ring->bd_wr_idx+i)&(NUM_TX_BD-1) ); 1014 printk("%s openwifi_tx: WARNING fake stop queue empty_bd_idx%d i%d lnx prio%d map to q%d stop%d hwq len%d wr%d rd%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str, 1015 empty_bd_idx, i, prio, drv_ring_idx, ring->stop_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, ring->bds[j].prio, ring->bds[j].len_mpdu, ring->bds[j].seq_no, ring->bds[j].skb_linked, ring->bds[j].dma_mapping_addr); 1016 // tell Linux this skb failed 1017 skb_new = ring->bds[j].skb_linked; 1018 dma_unmap_single(priv->tx_chan->device->dev,ring->bds[j].dma_mapping_addr, 1019 skb_new->len, DMA_MEM_TO_DEV); 1020 info_skipped = IEEE80211_SKB_CB(skb_new); 1021 ieee80211_tx_info_clear_status(info_skipped); 1022 info_skipped->status.rates[0].count = 1; 1023 info_skipped->status.rates[1].idx = -1; 1024 info_skipped->status.antenna = priv->runtime_tx_ant_cfg; 1025 ieee80211_tx_status_irqsafe(dev, skb_new); 1026 1027 ring->bds[j].prio = 0xff; // invalid value 1028 ring->bds[j].len_mpdu = 0; // invalid value 1029 ring->bds[j].seq_no = 0xffff; 1030 ring->bds[j].skb_linked = NULL; 1031 ring->bds[j].dma_mapping_addr = 0; 1032 1033 } 1034 if (ring->stop_flag != -1) { //the interrupt seems will never come, we need to wake up the queue in case the interrupt will never wake it up 1035 ieee80211_wake_queue(dev, ring->stop_flag); 1036 ring->stop_flag = -1; 1037 } 1038 } else { 1039 j = ring->bd_wr_idx; 1040 printk("%s openwifi_tx: WARNING real stop queue lnx prio%d map to q%d stop%d hwq len%d wr%d rd%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str, 1041 prio, drv_ring_idx, ring->stop_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, ring->bds[j].prio, ring->bds[j].len_mpdu, ring->bds[j].seq_no, ring->bds[j].skb_linked, ring->bds[j].dma_mapping_addr); 1042 1043 ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read 1044 ring->stop_flag = prio; 1045 if (priv->stat.stat_enable) { 1046 priv->stat.tx_prio_stop0_real_num[prio]++; 1047 priv->stat.tx_queue_stop0_real_num[drv_ring_idx]++; 1048 } 1049 1050 spin_unlock_irqrestore(&priv->lock, flags); 1051 goto openwifi_tx_early_out; 1052 } 1053 } 1054 spin_unlock_irqrestore(&priv->lock, flags); 1055 // -------------------- end of Map Linux/SW "prio" to driver "drv_ring_idx" ------------------ 1056 1057 // get other info from packet header 1058 addr1_high16 = *((u16*)(hdr->addr1)); 1059 if (len_mpdu>=20) { 1060 addr2_low32 = *((u32*)(hdr->addr2+2)); 1061 addr2_high16 = *((u16*)(hdr->addr2)); 1062 } 1063 if (len_mpdu>=26) { 1064 addr3_low32 = *((u32*)(hdr->addr3+2)); 1065 addr3_high16 = *((u16*)(hdr->addr3)); 1066 } 1067 1068 frame_control=hdr->frame_control; 1069 pkt_need_ack = (!(info->flags&IEEE80211_TX_CTL_NO_ACK)); 1070 1071 retry_limit_raw = info->control.rates[0].count; 1072 1073 rc_flags = info->control.rates[0].flags; 1074 use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0); 1075 use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0); 1076 use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0); 1077 use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0); 1078 use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0); 1079 qos_hdr = (*(ieee80211_get_qos_ctl(hdr))); 1080 1081 // get Linux rate (MCS) setting 1082 rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value; 1083 // drv_tx_reg_val[DRV_TX_REG_IDX_RATE] 1084 // override rate legacy: 4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M 1085 // drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT] 1086 // override rate ht: 4:6.5M, 5:13M, 6:19.5M,7:26M, 8:39M, 9:52M, 10:58.5M, 11:65M 1087 if ( ieee80211_is_data(hdr->frame_control) ) {//rate override command 1088 if (use_ht_rate && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]>0) { 1089 rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0xF)-4; 1090 use_short_gi = ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0x10)==0x10); 1091 } else if ((!use_ht_rate) && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0) 1092 rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]&0xF); 1093 // TODO: need to map rate_hw_value back to info->control.rates[0].idx!!! 1094 } 1095 1096 // Workaround for a FPGA bug: if aggr happens on ht mcs 0, the tx core will never end, running eneless and stuck the low MAC! 1097 if (use_ht_aggr && rate_hw_value==0) 1098 rate_hw_value = 1; 1099 1100 sifs = (priv->actual_rx_lo<2500?10:16); 1101 1102 if (use_ht_rate) { 1103 // printk("%s openwifi_tx: rate_hw_value %d aggr %d sifs %d\n", sdr_compatible_str, rate_hw_value, use_ht_aggr, sifs); 1104 hdr->duration_id = gen_ht_duration_id(frame_control, control->sta->aid, qos_hdr, use_ht_aggr, rate_hw_value, sifs); //linux only do it for 11a/g, not for 11n and later 1105 } 1106 duration_id = hdr->duration_id; 1107 1108 if (use_rts_cts) 1109 printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx); 1110 1111 if (use_cts_protect) { 1112 cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value; 1113 cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info)); 1114 } else if (force_use_cts_protect) { // could override mac80211 setting here. 1115 cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M) 1116 if (pkt_need_ack) 1117 ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL) 1118 1119 n_dbps = (use_ht_rate?wifi_n_dbps_ht_table[rate_hw_value+4]:wifi_n_dbps_table[rate_hw_value]); 1120 traffic_pkt_duration = (use_ht_rate?36:20) + 4*calc_n_ofdm(len_mpdu, n_dbps); 1121 cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration); 1122 } 1123 1124 // this is 11b stuff 1125 // if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1126 // printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str); 1127 1128 if (len_mpdu>=28) { 1129 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 1130 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) { 1131 priv->seqno += 0x10; 1132 drv_seqno = true; 1133 } 1134 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 1135 hdr->seq_ctrl |= cpu_to_le16(priv->seqno); 1136 } 1137 sc = hdr->seq_ctrl; 1138 seq_no = (sc&IEEE80211_SCTL_SEQ)>>4; 1139 } 1140 1141 // printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str, 1142 // info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags, 1143 // info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags, 1144 // info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags, 1145 // info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags); 1146 1147 // -----------end of preprocess some info from header and skb---------------- 1148 1149 // /* HW will perform RTS-CTS when only RTS flags is set. 1150 // * HW will perform CTS-to-self when both RTS and CTS flags are set. 1151 // * RTS rate and RTS duration will be used also for CTS-to-self. 1152 // */ 1153 // if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1154 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; 1155 // rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config 1156 // len_mpdu, info); 1157 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str); 1158 // } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1159 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; 1160 // rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config 1161 // len_mpdu, info); 1162 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str); 1163 // } 1164 1165 if(use_ht_aggr) 1166 { 1167 if(ieee80211_is_data_qos(frame_control) == false) 1168 { 1169 printk("%s openwifi_tx: WARNING packet is not QoS packet!\n", sdr_compatible_str); 1170 goto openwifi_tx_early_out; 1171 } 1172 1173 // psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ] 1174 len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4); 1175 len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad; 1176 1177 if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) || 1178 (rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) || 1179 (prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) ) 1180 { 1181 addr1_low32_prev = addr1_low32; 1182 addr1_high16_prev = addr1_high16; 1183 duration_id_prev = duration_id; 1184 rate_hw_value_prev = rate_hw_value; 1185 use_short_gi_prev = use_short_gi; 1186 prio_prev = prio; 1187 retry_limit_raw_prev = retry_limit_raw; 1188 pkt_need_ack_prev = pkt_need_ack; 1189 1190 ht_aggr_start = true; 1191 } 1192 } 1193 else 1194 { 1195 // psdu = [ MPDU ] 1196 len_psdu = len_mpdu; 1197 1198 // // Don't need to reset _prev variables every time when it is not ht aggr qos data. Reason: 1199 // // 1. In 99.9999% cases, the ht always use qos data and goes to prio/queue_idx 2. By not resetting the variable to -1, we can have continuous aggregation packet operation in FPGA queue 2. 1200 // // 2. In other words, the aggregation operation for queue 2 in FPGA won't be interrupted by other non aggregation packets (control/management/beacon/etc.) that go to queue 0 (or other queues than 2). 1201 // // 3. From wired domain and upper level ( DSCP, AC (0~3), WMM management, 802.11D service classes and user priority (UP) ) to chip/FPGA queue index, thre should be some (complicated) mapping relationship. 1202 // // 4. More decent design is setting these aggregation flags (ht_aggr_start) per queue/prio here in driver. But since now only queue 2 and 0 are used (data goes to queue 2, others go to queue 0) in normal (most) cases, let's not go to the decent (complicated) solution immediately. 1203 // addr1_low32_prev = -1; 1204 // addr1_high16_prev = -1; 1205 // duration_id_prev = -1; 1206 // use_short_gi_prev = -1; 1207 // rate_hw_value_prev = -1; 1208 // prio_prev = -1; 1209 // retry_limit_raw_prev = -1; 1210 // pkt_need_ack_prev = -1; 1211 } 1212 num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0); 1213 1214 if ( ( (!pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST) ) || ( (pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST) ) ) 1215 printk("%s openwifi_tx: %dB RC%x %dM FC%04x DI%04x ADDR%04x%08x/%04x%08x/%04x%08x flag%08x QoS%02x SC%d_%d retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str, 1216 len_mpdu, rc_flags, (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id, 1217 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), 1218 info->flags, qos_hdr, seq_no, drv_seqno, retry_limit_raw, pkt_need_ack, prio, drv_ring_idx, 1219 // use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration, 1220 ring->bd_wr_idx,ring->bd_rd_idx); 1221 1222 // check whether the packet is bigger than DMA buffer size 1223 num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS); 1224 if (num_dma_byte > TX_BD_BUF_SIZE) { 1225 printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx); 1226 goto openwifi_tx_early_out; 1227 } 1228 1229 // Copy MPDU delimiter and padding into sk_buff 1230 if(use_ht_aggr) 1231 { 1232 // when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary 1233 if (skb_headroom(skb)<LEN_MPDU_DELIM) {// in case original skb headroom is not enough to host MPDU delimiter 1234 printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_headroom(skb) %d < LEN_MPDU_DELIM %d\n", sdr_compatible_str, ring->bd_wr_idx, skb_headroom(skb), LEN_MPDU_DELIM); 1235 if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) { 1236 printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx); 1237 goto openwifi_tx_early_out; 1238 } 1239 if (skb->sk != NULL) 1240 skb_set_owner_w(skb_new, skb->sk); 1241 dev_kfree_skb(skb); 1242 skb = skb_new; 1243 } 1244 skb_push( skb, LEN_MPDU_DELIM ); 1245 dma_buf = skb->data; 1246 1247 // fill in MPDU delimiter 1248 *((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0; 1249 *((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf)); 1250 *((u8 *)(dma_buf+3)) = 0x4e; 1251 1252 // Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter 1253 num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu); 1254 if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad 1255 printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad); 1256 if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) { 1257 printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx); 1258 goto openwifi_tx_early_out; 1259 } 1260 if (skb->sk != NULL) 1261 skb_set_owner_w(skb_new, skb->sk); 1262 dev_kfree_skb(skb); 1263 skb = skb_new; 1264 } 1265 skb_put( skb, num_byte_pad ); 1266 1267 // fill in MPDU CRC 1268 *((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu); 1269 1270 // fill in MPDU delimiter padding 1271 memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad); 1272 1273 // num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary. 1274 // If they have different lengths, add "empty MPDU delimiter" for alignment 1275 if(num_dma_byte == len_psdu + 4) 1276 { 1277 *((u32*)(dma_buf+len_psdu)) = 0x4e140000; 1278 len_psdu = num_dma_byte; 1279 } 1280 } 1281 else 1282 { 1283 // Extend sk_buff to hold padding 1284 num_byte_pad = num_dma_byte - len_mpdu; 1285 if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad 1286 printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad); 1287 if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) { 1288 printk("%s openwifi_tx: WARNING sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx); 1289 goto openwifi_tx_early_out; 1290 } 1291 if (skb->sk != NULL) 1292 skb_set_owner_w(skb_new, skb->sk); 1293 dev_kfree_skb(skb); 1294 skb = skb_new; 1295 } 1296 skb_put( skb, num_byte_pad ); 1297 1298 dma_buf = skb->data; 1299 } 1300 // for(i = 0; i <= num_dma_symbol; i++) 1301 // printk("%16llx\n", (*(u64*)(&(dma_buf[i*8])))); 1302 1303 rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]); 1304 1305 retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) ); 1306 1307 queue_idx = drv_ring_idx; // from driver ring idx to FPGA queue_idx mapping 1308 1309 cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value]; 1310 cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value); 1311 tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | num_dma_symbol ); 1312 phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu ); 1313 1314 /* We must be sure that tx_flags is written last because the HW 1315 * looks at it to check if the rest of data is valid or not 1316 */ 1317 //wmb(); 1318 // entry->flags = cpu_to_le32(tx_flags); 1319 /* We must be sure this has been written before following HW 1320 * register write, because this write will make the HW attempts 1321 * to DMA the just-written data 1322 */ 1323 //wmb(); 1324 1325 spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt 1326 1327 // -------------check whether FPGA dma fifo and queue (queue_idx) has enough room------------- 1328 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); 1329 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 1330 if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<=RING_ROOM_THRESHOLD) || ring->stop_flag>=0 ) { 1331 if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP ) 1332 printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio%d queue%d no room flag%x hwq len%08x request%d wr%d rd%d\n", sdr_compatible_str, 1333 prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx); 1334 1335 ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read 1336 ring->stop_flag = prio; 1337 if (priv->stat.stat_enable) { 1338 priv->stat.tx_prio_stop1_num[prio]++; 1339 priv->stat.tx_queue_stop1_num[queue_idx]++; 1340 } 1341 // goto openwifi_tx_early_out_after_lock; 1342 } 1343 // --------end of check whether FPGA fifo (queue_idx) has enough room------------ 1344 1345 status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL); 1346 while(delay_count<100 && status!=DMA_COMPLETE) { 1347 status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL); 1348 delay_count++; 1349 udelay(4); 1350 // udelay(priv->stat.dbg_ch1); 1351 } 1352 if (status!=DMA_COMPLETE) { 1353 printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str); 1354 goto openwifi_tx_early_out_after_lock; 1355 } 1356 1357 //-------------------------fire skb DMA to hardware---------------------------------- 1358 dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf, 1359 num_dma_byte, DMA_MEM_TO_DEV); 1360 1361 if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) { 1362 // dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n"); 1363 printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx); 1364 goto openwifi_tx_early_out_after_lock; 1365 } 1366 1367 sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start 1368 sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr; 1369 sg_dma_len( &(priv->tx_sg) ) = num_dma_byte; 1370 1371 tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg); 1372 tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config); 1373 tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config); 1374 priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL); 1375 if (!(priv->txd)) { 1376 printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd)); 1377 goto openwifi_tx_after_dma_mapping; 1378 } 1379 1380 priv->tx_cookie = priv->txd->tx_submit(priv->txd); 1381 1382 if (dma_submit_error(priv->tx_cookie)) { 1383 printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie)); 1384 goto openwifi_tx_after_dma_mapping; 1385 } 1386 1387 // seems everything is ok. let's mark this pkt in bd descriptor ring 1388 ring->bds[ring->bd_wr_idx].prio = prio; 1389 ring->bds[ring->bd_wr_idx].len_mpdu = len_mpdu; 1390 ring->bds[ring->bd_wr_idx].seq_no = seq_no; 1391 ring->bds[ring->bd_wr_idx].skb_linked = skb; 1392 ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr; 1393 1394 ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1)); 1395 1396 dma_async_issue_pending(priv->tx_chan); 1397 1398 spin_unlock_irqrestore(&priv->lock, flags); 1399 1400 if (priv->stat.stat_enable) { 1401 priv->stat.tx_prio_num[prio]++; 1402 priv->stat.tx_queue_num[queue_idx]++; 1403 } 1404 1405 return; 1406 1407 openwifi_tx_after_dma_mapping: 1408 dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV); 1409 1410 openwifi_tx_early_out_after_lock: 1411 spin_unlock_irqrestore(&priv->lock, flags); 1412 report_pkt_loss_due_to_driver_drop(dev, skb); 1413 // dev_kfree_skb(skb); 1414 // printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); 1415 return; 1416 1417 openwifi_tx_early_out: 1418 report_pkt_loss_due_to_driver_drop(dev, skb); 1419 // dev_kfree_skb(skb); 1420 // printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); 1421 } 1422 1423 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant) 1424 { 1425 struct openwifi_priv *priv = dev->priv; 1426 u8 fpga_tx_ant_setting, target_rx_ant; 1427 u32 atten_mdb_tx0, atten_mdb_tx1; 1428 struct ctrl_outs_control ctrl_out; 1429 int ret; 1430 1431 printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant); 1432 1433 if (tx_ant >= 4 || tx_ant == 0) { 1434 return -EINVAL; 1435 } else if (rx_ant >= 3 || rx_ant == 0) { 1436 return -EINVAL; 1437 } 1438 1439 fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16)); 1440 target_rx_ant = ((rx_ant&1)?0:1); 1441 1442 // try rf chip setting firstly, only update internal state variable when rf chip succeed 1443 atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); 1444 atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); 1445 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true); 1446 if (ret < 0) { 1447 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0); 1448 return -EINVAL; 1449 } else { 1450 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0); 1451 } 1452 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true); 1453 if (ret < 0) { 1454 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1); 1455 return -EINVAL; 1456 } else { 1457 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1); 1458 } 1459 1460 ctrl_out.en_mask = priv->ctrl_out.en_mask; 1461 ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); 1462 ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out)); 1463 if (ret < 0) { 1464 printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); 1465 return -EINVAL; 1466 } else { 1467 printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); 1468 } 1469 1470 tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting); 1471 ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read(); 1472 if (ret != fpga_tx_ant_setting) { 1473 printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret); 1474 return -EINVAL; 1475 } else { 1476 printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); 1477 } 1478 1479 rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant); 1480 ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read(); 1481 if (ret != target_rx_ant) { 1482 printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret); 1483 return -EINVAL; 1484 } else { 1485 printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); 1486 } 1487 1488 // update internal state variable 1489 priv->runtime_tx_ant_cfg = tx_ant; 1490 priv->runtime_rx_ant_cfg = rx_ant; 1491 1492 if (TX_OFFSET_TUNING_ENABLE) 1493 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE 1494 else { 1495 if (tx_ant == 3) 1496 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH; 1497 else 1498 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1); 1499 } 1500 1501 priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1); 1502 priv->ctrl_out.index=ctrl_out.index; 1503 1504 priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg]; 1505 priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg]; 1506 1507 return 0; 1508 } 1509 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant) 1510 { 1511 struct openwifi_priv *priv = dev->priv; 1512 1513 *tx_ant = priv->runtime_tx_ant_cfg; 1514 *rx_ant = priv->runtime_rx_ant_cfg; 1515 1516 printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant); 1517 1518 printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str, 1519 priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index); 1520 1521 printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str, 1522 tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read()); 1523 1524 printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str, 1525 ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER)); 1526 1527 return 0; 1528 } 1529 1530 static int openwifi_start(struct ieee80211_hw *dev) 1531 { 1532 struct openwifi_priv *priv = dev->priv; 1533 int ret, i; 1534 u32 reg; 1535 1536 for (i=0; i<MAX_NUM_VIF; i++) { 1537 priv->vif[i] = NULL; 1538 } 1539 1540 // //keep software registers persistent between NIC down and up for multiple times 1541 /*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val)); 1542 memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val)); 1543 memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val)); 1544 memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val)); 1545 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/ 1546 1547 //turn on radio 1548 openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); 1549 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); 1550 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { 1551 priv->rfkill_off = 1;// 0 off, 1 on 1552 printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str); 1553 } 1554 else 1555 printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); 1556 1557 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); 1558 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); 1559 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); 1560 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); 1561 xpu_api->hw_init(priv->xpu_cfg); 1562 1563 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); 1564 1565 printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); 1566 printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); 1567 1568 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt 1569 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode 1570 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status 1571 1572 priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm"); 1573 if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) { 1574 ret = PTR_ERR(priv->rx_chan); 1575 pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan); 1576 goto err_dma; 1577 } 1578 1579 priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s"); 1580 if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) { 1581 ret = PTR_ERR(priv->tx_chan); 1582 pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan); 1583 goto err_dma; 1584 } 1585 printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan); 1586 1587 ret = openwifi_init_rx_ring(priv); 1588 if (ret) { 1589 printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret); 1590 goto err_free_rings; 1591 } 1592 1593 priv->seqno=0; 1594 for (i=0; i<MAX_NUM_SW_QUEUE; i++) { 1595 if ((ret = openwifi_init_tx_ring(priv, i))) { 1596 printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret); 1597 goto err_free_rings; 1598 } 1599 } 1600 1601 if ( (ret = rx_dma_setup(dev)) ) { 1602 printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret); 1603 goto err_free_rings; 1604 } 1605 1606 priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1); 1607 ret = request_irq(priv->irq_rx, openwifi_rx_interrupt, 1608 IRQF_SHARED, "sdr,rx_pkt_intr", dev); 1609 if (ret) { 1610 wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n"); 1611 goto err_free_rings; 1612 } else { 1613 printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx); 1614 } 1615 1616 priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3); 1617 ret = request_irq(priv->irq_tx, openwifi_tx_interrupt, 1618 IRQF_SHARED, "sdr,tx_itrpt", dev); 1619 if (ret) { 1620 wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n"); 1621 goto err_free_rings; 1622 } else { 1623 printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx); 1624 } 1625 1626 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM 1627 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt 1628 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS 1629 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer 1630 1631 priv->stat.csma_cfg0 = xpu_api->XPU_REG_FORCE_IDLE_MISC_read(); 1632 1633 // disable ad9361 auto calibration and enable openwifi fpga spi control 1634 priv->ad9361_phy->state->auto_cal_en = false; // turn off auto Tx quadrature calib. 1635 priv->ad9361_phy->state->manual_tx_quad_cal_en = true; // turn on manual Tx quadrature calib. 1636 xpu_api->XPU_REG_SPI_DISABLE_write(0); 1637 1638 // normal_out: 1639 printk("%s openwifi_start: normal end\n", sdr_compatible_str); 1640 return 0; 1641 1642 err_free_rings: 1643 openwifi_free_rx_ring(priv); 1644 for (i=0; i<MAX_NUM_SW_QUEUE; i++) 1645 openwifi_free_tx_ring(priv, i); 1646 1647 err_dma: 1648 ret = -1; 1649 printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret); 1650 return ret; 1651 } 1652 1653 static void openwifi_stop(struct ieee80211_hw *dev) 1654 { 1655 struct openwifi_priv *priv = dev->priv; 1656 u32 reg, reg1; 1657 int i; 1658 1659 // enable ad9361 auto calibration and disable openwifi fpga spi control 1660 priv->ad9361_phy->state->auto_cal_en = true; // turn on auto Tx quadrature calib. 1661 priv->ad9361_phy->state->manual_tx_quad_cal_en = false; // turn off manual Tx quadrature calib. 1662 xpu_api->XPU_REG_SPI_DISABLE_write(1); 1663 1664 //turn off radio 1665 #if 1 1666 ad9361_tx_mute(priv->ad9361_phy, 1); 1667 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 1668 reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); 1669 if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { 1670 priv->rfkill_off = 0;// 0 off, 1 on 1671 printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str); 1672 } 1673 else 1674 printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); 1675 #endif 1676 1677 //ieee80211_stop_queue(dev, 0); 1678 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt 1679 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode 1680 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status 1681 1682 for (i=0; i<MAX_NUM_VIF; i++) { 1683 priv->vif[i] = NULL; 1684 } 1685 1686 openwifi_free_rx_ring(priv); 1687 for (i=0; i<MAX_NUM_SW_QUEUE; i++) 1688 openwifi_free_tx_ring(priv, i); 1689 1690 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan)); 1691 dmaengine_terminate_all(priv->rx_chan); 1692 dma_release_channel(priv->rx_chan); 1693 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan)); 1694 dmaengine_terminate_all(priv->tx_chan); 1695 dma_release_channel(priv->tx_chan); 1696 1697 //priv->rf->stop(dev); 1698 1699 free_irq(priv->irq_rx, dev); 1700 free_irq(priv->irq_tx, dev); 1701 1702 // normal_out: 1703 printk("%s openwifi_stop\n", sdr_compatible_str); 1704 } 1705 1706 static u64 openwifi_get_tsf(struct ieee80211_hw *dev, 1707 struct ieee80211_vif *vif) 1708 { 1709 u32 tsft_low, tsft_high; 1710 1711 tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read(); 1712 tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read(); 1713 //printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); 1714 return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); 1715 } 1716 1717 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf) 1718 { 1719 u32 tsft_high = ((tsf >> 32)&0xffffffff); 1720 u32 tsft_low = (tsf&0xffffffff); 1721 xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low); 1722 printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); 1723 } 1724 1725 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 1726 { 1727 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); 1728 printk("%s openwifi_reset_tsf\n", sdr_compatible_str); 1729 } 1730 1731 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value) 1732 { 1733 printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value); 1734 return(0); 1735 } 1736 1737 static void openwifi_beacon_work(struct work_struct *work) 1738 { 1739 struct openwifi_vif *vif_priv = 1740 container_of(work, struct openwifi_vif, beacon_work.work); 1741 struct ieee80211_vif *vif = 1742 container_of((void *)vif_priv, struct ieee80211_vif, drv_priv); 1743 struct ieee80211_hw *dev = vif_priv->dev; 1744 struct ieee80211_mgmt *mgmt; 1745 struct sk_buff *skb; 1746 1747 /* don't overflow the tx ring */ 1748 if (ieee80211_queue_stopped(dev, 0)) 1749 goto resched; 1750 1751 /* grab a fresh beacon */ 1752 skb = ieee80211_beacon_get(dev, vif); 1753 if (!skb) 1754 goto resched; 1755 1756 /* 1757 * update beacon timestamp w/ TSF value 1758 * TODO: make hardware update beacon timestamp 1759 */ 1760 mgmt = (struct ieee80211_mgmt *)skb->data; 1761 mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif)); 1762 1763 /* TODO: use actual beacon queue */ 1764 skb_set_queue_mapping(skb, 0); 1765 openwifi_tx(dev, NULL, skb); 1766 1767 resched: 1768 /* 1769 * schedule next beacon 1770 * TODO: use hardware support for beacon timing 1771 */ 1772 schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int)); 1773 // printk("%s openwifi_beacon_work beacon_int %d\n", sdr_compatible_str, vif->bss_conf.beacon_int); 1774 } 1775 1776 static int openwifi_add_interface(struct ieee80211_hw *dev, 1777 struct ieee80211_vif *vif) 1778 { 1779 int i; 1780 struct openwifi_priv *priv = dev->priv; 1781 struct openwifi_vif *vif_priv; 1782 1783 switch (vif->type) { 1784 case NL80211_IFTYPE_AP: 1785 case NL80211_IFTYPE_STATION: 1786 case NL80211_IFTYPE_ADHOC: 1787 case NL80211_IFTYPE_MONITOR: 1788 case NL80211_IFTYPE_MESH_POINT: 1789 break; 1790 default: 1791 return -EOPNOTSUPP; 1792 } 1793 // let's support more than 1 interface 1794 for (i=0; i<MAX_NUM_VIF; i++) { 1795 if (priv->vif[i] == NULL) 1796 break; 1797 } 1798 1799 printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i); 1800 1801 if (i==MAX_NUM_VIF) 1802 return -EBUSY; 1803 1804 priv->vif[i] = vif; 1805 1806 /* Initialize driver private area */ 1807 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1808 vif_priv->idx = i; 1809 1810 vif_priv->dev = dev; 1811 INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work); 1812 vif_priv->enable_beacon = false; 1813 1814 priv->mac_addr[0] = vif->addr[0]; 1815 priv->mac_addr[1] = vif->addr[1]; 1816 priv->mac_addr[2] = vif->addr[2]; 1817 priv->mac_addr[3] = vif->addr[3]; 1818 priv->mac_addr[4] = vif->addr[4]; 1819 priv->mac_addr[5] = vif->addr[5]; 1820 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); // set mac addr in fpga 1821 1822 printk("%s openwifi_add_interface end with vif idx %d addr %02x:%02x:%02x:%02x:%02x:%02x\n", sdr_compatible_str,vif_priv->idx, 1823 vif->addr[0],vif->addr[1],vif->addr[2],vif->addr[3],vif->addr[4],vif->addr[5]); 1824 1825 return 0; 1826 } 1827 1828 static void openwifi_remove_interface(struct ieee80211_hw *dev, 1829 struct ieee80211_vif *vif) 1830 { 1831 struct openwifi_vif *vif_priv; 1832 struct openwifi_priv *priv = dev->priv; 1833 1834 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1835 priv->vif[vif_priv->idx] = NULL; 1836 printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx); 1837 } 1838 1839 static int openwifi_config(struct ieee80211_hw *dev, u32 changed) 1840 { 1841 struct openwifi_priv *priv = dev->priv; 1842 struct ieee80211_conf *conf = &dev->conf; 1843 1844 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { 1845 if ( priv->stat.restrict_freq_mhz>0 && (conf->chandef.chan->center_freq != priv->stat.restrict_freq_mhz) ) { 1846 printk("%s openwifi_config avoid Linux requested freq %dMHz (restrict freq %dMHz)\n", sdr_compatible_str, 1847 conf->chandef.chan->center_freq, priv->stat.restrict_freq_mhz); 1848 return -EINVAL; 1849 } 1850 priv->rf->set_chan(dev, conf); 1851 } else 1852 printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed); 1853 1854 return 0; 1855 } 1856 1857 static void openwifi_bss_info_changed(struct ieee80211_hw *dev, 1858 struct ieee80211_vif *vif, 1859 struct ieee80211_bss_conf *info, 1860 u32 changed) 1861 { 1862 struct openwifi_priv *priv = dev->priv; 1863 struct openwifi_vif *vif_priv; 1864 u32 bssid_low, bssid_high; 1865 1866 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1867 1868 //be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it! 1869 //printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]); 1870 if (changed & BSS_CHANGED_BSSID) { 1871 printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]); 1872 // write new bssid to our HW, and do not change bssid filter 1873 //u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read(); 1874 bssid_low = ( *( (u32*)(info->bssid) ) ); 1875 bssid_high = ( *( (u16*)(info->bssid+4) ) ); 1876 1877 //bssid_filter_high = (bssid_filter_high&0x80000000); 1878 //bssid_high = (bssid_high|bssid_filter_high); 1879 xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low); 1880 xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high); 1881 } 1882 1883 if (changed & BSS_CHANGED_BEACON_INT) { 1884 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int); 1885 } 1886 1887 if (changed & BSS_CHANGED_TXPOWER) 1888 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower); 1889 1890 if (changed & BSS_CHANGED_ERP_CTS_PROT) 1891 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot); 1892 1893 if (changed & BSS_CHANGED_BASIC_RATES) 1894 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates); 1895 1896 if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) { 1897 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str, 1898 changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot); 1899 if (info->use_short_slot && priv->use_short_slot==false) { 1900 priv->use_short_slot=true; 1901 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 1902 } else if ((!info->use_short_slot) && priv->use_short_slot==true) { 1903 priv->use_short_slot=false; 1904 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 1905 } 1906 } 1907 1908 if (changed & BSS_CHANGED_BEACON_ENABLED) { 1909 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str); 1910 vif_priv->enable_beacon = info->enable_beacon; 1911 } 1912 1913 if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) { 1914 cancel_delayed_work_sync(&vif_priv->beacon_work); 1915 if (vif_priv->enable_beacon) { 1916 schedule_work(&vif_priv->beacon_work.work); 1917 printk("%s openwifi_bss_info_changed WARNING enable_beacon\n",sdr_compatible_str); 1918 } 1919 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str, 1920 changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON); 1921 } 1922 } 1923 // helper function 1924 u32 log2val(u32 val){ 1925 u32 ret_val = 0 ; 1926 while(val>1){ 1927 val = val >> 1 ; 1928 ret_val ++ ; 1929 } 1930 return ret_val ; 1931 } 1932 1933 static int openwifi_conf_tx(struct ieee80211_hw *dev, struct ieee80211_vif *vif, u16 queue, 1934 const struct ieee80211_tx_queue_params *params) 1935 { 1936 struct openwifi_priv *priv = dev->priv; 1937 u32 reg_val, cw_min_exp, cw_max_exp; 1938 1939 if (priv->stat.cw_max_min_cfg == 0) { 1940 printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n", 1941 sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop); 1942 1943 reg_val=xpu_api->XPU_REG_CSMA_CFG_read(); 1944 cw_min_exp = (log2val(params->cw_min + 1) & 0x0F); 1945 cw_max_exp = (log2val(params->cw_max + 1) & 0x0F); 1946 switch(queue){ 1947 case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) ); break; 1948 case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) ); break; 1949 case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break; 1950 case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break; 1951 default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0); 1952 } 1953 } else { 1954 reg_val = priv->stat.cw_max_min_cfg; 1955 printk("%s openwifi_conf_tx: override cw max min for q3 to q0: %d %d; %d %d; %d %d; %d %d\n", 1956 sdr_compatible_str, 1957 (1<<((reg_val>>28)&0xF))-1, 1958 (1<<((reg_val>>24)&0xF))-1, 1959 (1<<((reg_val>>20)&0xF))-1, 1960 (1<<((reg_val>>16)&0xF))-1, 1961 (1<<((reg_val>>12)&0xF))-1, 1962 (1<<((reg_val>> 8)&0xF))-1, 1963 (1<<((reg_val>> 4)&0xF))-1, 1964 (1<<((reg_val>> 0)&0xF))-1); 1965 } 1966 xpu_api->XPU_REG_CSMA_CFG_write(reg_val); 1967 return(0); 1968 } 1969 1970 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev, 1971 struct netdev_hw_addr_list *mc_list) 1972 { 1973 printk("%s openwifi_prepare_multicast\n", sdr_compatible_str); 1974 return netdev_hw_addr_list_count(mc_list); 1975 } 1976 1977 static void openwifi_configure_filter(struct ieee80211_hw *dev, 1978 unsigned int changed_flags, 1979 unsigned int *total_flags, 1980 u64 multicast) 1981 { 1982 struct openwifi_priv *priv = dev->priv; 1983 u32 filter_flag; 1984 1985 (*total_flags) &= SDR_SUPPORTED_FILTERS; 1986 (*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer 1987 1988 filter_flag = (*total_flags); 1989 1990 filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO); 1991 //filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm 1992 1993 //if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR) 1994 if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode 1995 filter_flag = (filter_flag|MONITOR_ALL); 1996 else 1997 filter_flag = (filter_flag&(~MONITOR_ALL)); 1998 1999 if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) ) 2000 filter_flag = (filter_flag|MY_BEACON); 2001 2002 filter_flag = (filter_flag|FIF_PSPOLL); 2003 2004 if (priv->stat.rx_monitor_all) 2005 filter_flag = (filter_flag|MONITOR_ALL); 2006 2007 xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG); 2008 //xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt 2009 2010 printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str, 2011 (filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1); 2012 } 2013 2014 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) 2015 { 2016 struct ieee80211_sta *sta = params->sta; 2017 enum ieee80211_ampdu_mlme_action action = params->action; 2018 // struct openwifi_priv *priv = hw->priv; 2019 u16 max_tx_bytes, buf_size; 2020 u32 ampdu_action_config; 2021 2022 if (!AGGR_ENABLE) { 2023 return -EOPNOTSUPP; 2024 } 2025 2026 switch (action) 2027 { 2028 case IEEE80211_AMPDU_TX_START: 2029 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); 2030 printk("%s openwifi_ampdu_action: start TX aggregation. tid %d\n", sdr_compatible_str, params->tid); 2031 break; 2032 case IEEE80211_AMPDU_TX_STOP_CONT: 2033 case IEEE80211_AMPDU_TX_STOP_FLUSH: 2034 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: 2035 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); 2036 printk("%s openwifi_ampdu_action: stop TX aggregation. tid %d\n", sdr_compatible_str, params->tid); 2037 break; 2038 case IEEE80211_AMPDU_TX_OPERATIONAL: 2039 buf_size = 4; 2040 // buf_size = (params->buf_size) - 1; 2041 max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1; 2042 ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes ); 2043 tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config); 2044 printk("%s openwifi_ampdu_action: TX operational. tid %d max_tx_bytes %d ampdu_density %d buf_size %d\n", 2045 sdr_compatible_str, params->tid, max_tx_bytes, sta->ht_cap.ampdu_density, buf_size); 2046 break; 2047 case IEEE80211_AMPDU_RX_START: 2048 printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid); 2049 break; 2050 case IEEE80211_AMPDU_RX_STOP: 2051 printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid); 2052 break; 2053 default: 2054 return -EOPNOTSUPP; 2055 } 2056 2057 return 0; 2058 } 2059 2060 static const struct ieee80211_ops openwifi_ops = { 2061 .tx = openwifi_tx, 2062 .start = openwifi_start, 2063 .stop = openwifi_stop, 2064 .add_interface = openwifi_add_interface, 2065 .remove_interface = openwifi_remove_interface, 2066 .config = openwifi_config, 2067 .set_antenna = openwifi_set_antenna, 2068 .get_antenna = openwifi_get_antenna, 2069 .bss_info_changed = openwifi_bss_info_changed, 2070 .conf_tx = openwifi_conf_tx, 2071 .prepare_multicast = openwifi_prepare_multicast, 2072 .configure_filter = openwifi_configure_filter, 2073 .rfkill_poll = openwifi_rfkill_poll, 2074 .get_tsf = openwifi_get_tsf, 2075 .set_tsf = openwifi_set_tsf, 2076 .reset_tsf = openwifi_reset_tsf, 2077 .set_rts_threshold = openwifi_set_rts_threshold, 2078 .ampdu_action = openwifi_ampdu_action, 2079 .testmode_cmd = openwifi_testmode_cmd, 2080 }; 2081 2082 static const struct of_device_id openwifi_dev_of_ids[] = { 2083 { .compatible = "sdr,sdr", }, 2084 {} 2085 }; 2086 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids); 2087 2088 static int custom_match_spi_dev(struct device *dev, void *data) 2089 { 2090 const char *name = data; 2091 2092 bool ret = sysfs_streq(name, dev->of_node->name); 2093 printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret); 2094 return ret; 2095 } 2096 2097 static int custom_match_platform_dev(struct device *dev, void *data) 2098 { 2099 struct platform_device *plat_dev = to_platform_device(dev); 2100 const char *name = data; 2101 char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name); 2102 bool match_flag = (name_in_sys_bus_platform_devices != NULL); 2103 2104 if (match_flag) { 2105 printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name); 2106 } 2107 return(match_flag); 2108 } 2109 2110 static int openwifi_dev_probe(struct platform_device *pdev) 2111 { 2112 struct ieee80211_hw *dev; 2113 struct openwifi_priv *priv; 2114 int err=1, rand_val; 2115 const char *chip_name, *fpga_model; 2116 u32 reg, i;//, reg1; 2117 2118 struct device_node *np = pdev->dev.of_node; 2119 2120 struct device *tmp_dev; 2121 struct platform_device *tmp_pdev; 2122 struct iio_dev *tmp_indio_dev; 2123 // struct gpio_leds_priv *tmp_led_priv; 2124 2125 printk("\n"); 2126 2127 if (np) { 2128 const struct of_device_id *match; 2129 2130 match = of_match_node(openwifi_dev_of_ids, np); 2131 if (match) { 2132 printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str); 2133 err = 0; 2134 } 2135 } 2136 2137 if (err) 2138 return err; 2139 2140 dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops); 2141 if (!dev) { 2142 printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str); 2143 err = -ENOMEM; 2144 goto err_free_dev; 2145 } 2146 2147 priv = dev->priv; 2148 priv->pdev = pdev; 2149 2150 err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model); 2151 if(err < 0) { 2152 printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err); 2153 priv->fpga_type = SMALL_FPGA; 2154 } else { 2155 // LARGE FPGAs (i.e. ZCU102, Z7035, ZC706) 2156 if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL) 2157 priv->fpga_type = LARGE_FPGA; 2158 // SMALL FPGA: (i.e. ZED, ZC702, Z7020) 2159 else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL) 2160 priv->fpga_type = SMALL_FPGA; 2161 } 2162 2163 // //-------------find ad9361-phy driver for lo/channel control--------------- 2164 priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux 2165 priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux 2166 priv->last_tx_quad_cal_lo = 1000; 2167 tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev ); 2168 if (tmp_dev == NULL) { 2169 printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str); 2170 err = -ENODEV; 2171 goto err_free_dev; 2172 } 2173 printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data)); 2174 if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) { 2175 printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str); 2176 err = -ENODEV; 2177 goto err_free_dev; 2178 } 2179 2180 priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev); 2181 if (!(priv->ad9361_phy)) { 2182 printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str); 2183 err = -ENODEV; 2184 goto err_free_dev; 2185 } 2186 printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias); 2187 2188 // //-------------find driver: axi_ad9361 hdl ref design module, dac channel--------------- 2189 tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev ); 2190 if (!tmp_dev) { 2191 printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str); 2192 err = -ENODEV; 2193 goto err_free_dev; 2194 } 2195 2196 tmp_pdev = to_platform_device(tmp_dev); 2197 if (!tmp_pdev) { 2198 printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str); 2199 err = -ENODEV; 2200 goto err_free_dev; 2201 } 2202 2203 tmp_indio_dev = platform_get_drvdata(tmp_pdev); 2204 if (!tmp_indio_dev) { 2205 printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str); 2206 err = -ENODEV; 2207 goto err_free_dev; 2208 } 2209 2210 priv->dds_st = iio_priv(tmp_indio_dev); 2211 if (!(priv->dds_st)) { 2212 printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str); 2213 err = -ENODEV; 2214 goto err_free_dev; 2215 } 2216 printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name); 2217 cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA); 2218 printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str); 2219 2220 // //-------------find driver: axi_ad9361 hdl ref design module, adc channel--------------- 2221 // turn off radio by muting tx 2222 // ad9361_tx_mute(priv->ad9361_phy, 1); 2223 // reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 2224 // reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); 2225 // if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { 2226 // priv->rfkill_off = 0;// 0 off, 1 on 2227 // printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str); 2228 // } 2229 // else 2230 // printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); 2231 2232 // //-----------------------------parse the test_mode input-------------------------------- 2233 if (test_mode&1) 2234 AGGR_ENABLE = true; 2235 2236 // if (test_mode&2) 2237 // TX_OFFSET_TUNING_ENABLE = false; 2238 2239 priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel() 2240 priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized 2241 2242 //priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode 2243 priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode 2244 2245 priv->xpu_cfg = XPU_NORMAL; 2246 2247 priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL; 2248 priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL; 2249 2250 printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) ); 2251 if (priv->rf_bw == 20000000) { //DO NOT USE. Not used for long time. 2252 priv->rx_intf_cfg = RX_INTF_BYPASS; 2253 priv->tx_intf_cfg = TX_INTF_BYPASS; 2254 //priv->rx_freq_offset_to_lo_MHz = 0; 2255 //priv->tx_freq_offset_to_lo_MHz = 0; 2256 } else if (priv->rf_bw == 40000000) { 2257 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work 2258 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work 2259 2260 // // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps 2261 priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0; 2262 if (TX_OFFSET_TUNING_ENABLE) 2263 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364 2264 else 2265 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT0; 2266 // // try another antenna option 2267 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1; 2268 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; 2269 2270 #if 0 2271 if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) { 2272 priv->rx_freq_offset_to_lo_MHz = -10; 2273 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) { 2274 priv->rx_freq_offset_to_lo_MHz = 10; 2275 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) { 2276 priv->rx_freq_offset_to_lo_MHz = 0; 2277 } else { 2278 printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg); 2279 } 2280 #endif 2281 } else { 2282 printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw); 2283 err = -EBADRQC; 2284 goto err_free_dev; 2285 } 2286 2287 printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att); 2288 2289 priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2)); 2290 priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2); 2291 2292 priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK; 2293 priv->ctrl_out.index =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); 2294 2295 memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val)); 2296 memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val)); 2297 memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val)); 2298 memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val)); 2299 2300 priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att; 2301 2302 //let's by default turn radio on when probing 2303 err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); 2304 if (err) { 2305 printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err); 2306 err = -EIO; 2307 goto err_free_dev; 2308 } 2309 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER); 2310 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg); 2311 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE); 2312 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg); 2313 2314 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); 2315 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { 2316 priv->rfkill_off = 1;// 0 off, 1 on 2317 printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str); 2318 } else 2319 printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); 2320 2321 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV; 2322 2323 // //set ad9361 in certain mode 2324 #if 0 2325 err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw); 2326 printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); 2327 err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw); 2328 printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); 2329 2330 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); 2331 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); 2332 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); 2333 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); 2334 printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); 2335 printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); 2336 #endif 2337 2338 dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle. 2339 2340 SET_IEEE80211_DEV(dev, &pdev->dev); 2341 platform_set_drvdata(pdev, dev); 2342 2343 BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates)); 2344 BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates)); 2345 BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels)); 2346 BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels)); 2347 2348 memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates)); 2349 memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates)); 2350 memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels)); 2351 memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels)); 2352 2353 priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM) 2354 priv->channel = 44; //currently useless. this can be changed by band _rf_set_channel() 2355 priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT 2356 priv->ampdu_reference = 0; 2357 2358 priv->band_2GHz.band = NL80211_BAND_2GHZ; 2359 priv->band_2GHz.channels = priv->channels_2GHz; 2360 priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz); 2361 priv->band_2GHz.bitrates = priv->rates_2GHz; 2362 priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz); 2363 priv->band_2GHz.ht_cap.ht_supported = true; 2364 // priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue 2365 if (AGGR_ENABLE) { 2366 priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; 2367 priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; 2368 } 2369 memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs)); 2370 priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff; 2371 priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 2372 dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz); 2373 2374 priv->band_5GHz.band = NL80211_BAND_5GHZ; 2375 priv->band_5GHz.channels = priv->channels_5GHz; 2376 priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz); 2377 priv->band_5GHz.bitrates = priv->rates_5GHz; 2378 priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz); 2379 priv->band_5GHz.ht_cap.ht_supported = true; 2380 // priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue 2381 if (AGGR_ENABLE) { 2382 priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; 2383 priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; 2384 } 2385 memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs)); 2386 priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff; 2387 priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 2388 dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz); 2389 2390 printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str, 2391 priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates); 2392 2393 // ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); // remove this because we don't want: mac80211.h: host buffers frame for PS and we fetch them via ieee80211_get_buffered_bc() 2394 ieee80211_hw_set(dev, RX_INCLUDES_FCS); 2395 ieee80211_hw_set(dev, BEACON_TX_STATUS);//mac80211.h: The device/driver provides TX status for sent beacons. 2396 2397 ieee80211_hw_set(dev, REPORTS_TX_ACK_STATUS);//mac80211.h: Hardware can provide ack status reports of Tx frames to the stack 2398 2399 // * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device 2400 // * autonomously manages the PS status of connected stations. When 2401 // * this flag is set mac80211 will not trigger PS mode for connected 2402 // * stations based on the PM bit of incoming frames. 2403 // * Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure 2404 // * the PS mode of connected stations. 2405 ieee80211_hw_set(dev, AP_LINK_PS); 2406 2407 if (AGGR_ENABLE) { 2408 ieee80211_hw_set(dev, AMPDU_AGGREGATION); 2409 } 2410 2411 dev->extra_tx_headroom = LEN_MPDU_DELIM; 2412 2413 dev->vif_data_size = sizeof(struct openwifi_vif); 2414 dev->wiphy->interface_modes = 2415 BIT(NL80211_IFTYPE_MONITOR)| 2416 BIT(NL80211_IFTYPE_P2P_GO) | 2417 BIT(NL80211_IFTYPE_P2P_CLIENT) | 2418 BIT(NL80211_IFTYPE_AP) | 2419 BIT(NL80211_IFTYPE_STATION) | 2420 BIT(NL80211_IFTYPE_ADHOC) | 2421 BIT(NL80211_IFTYPE_MESH_POINT) | 2422 BIT(NL80211_IFTYPE_OCB); 2423 dev->wiphy->iface_combinations = &openwifi_if_comb; 2424 dev->wiphy->n_iface_combinations = 1; 2425 2426 dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK; 2427 dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK; 2428 2429 dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation 2430 //dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config 2431 wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd); 2432 2433 chip_name = "ZYNQ"; 2434 2435 /* we declare to MAC80211 all the queues except for beacon queue 2436 * that will be eventually handled by DRV. 2437 * TX rings are arranged in such a way that lower is the IDX, 2438 * higher is the priority, in order to achieve direct mapping 2439 * with mac80211, however the beacon queue is an exception and it 2440 * is mapped on the highst tx ring IDX. 2441 */ 2442 dev->queues = MAX_NUM_HW_QUEUE; 2443 //dev->queues = 1; 2444 2445 ieee80211_hw_set(dev, SIGNAL_DBM); 2446 2447 wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 2448 2449 priv->rf = &ad9361_rf_ops; 2450 2451 memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map)); 2452 priv->slice_idx = 0xFFFFFFFF; 2453 2454 sg_init_table(&(priv->tx_sg), 1); 2455 2456 get_random_bytes(&rand_val, sizeof(rand_val)); 2457 rand_val%=250; 2458 priv->mac_addr[0]=0x66; priv->mac_addr[1]=0x55; priv->mac_addr[2]=0x44; priv->mac_addr[3]=0x33; priv->mac_addr[4]=0x22; 2459 priv->mac_addr[5]=rand_val+1; 2460 //priv->mac_addr[5]=0x11; 2461 if (!is_valid_ether_addr(priv->mac_addr)) { 2462 printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str); 2463 eth_random_addr(priv->mac_addr); 2464 } 2465 printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]); 2466 SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr); 2467 2468 spin_lock_init(&priv->lock); 2469 2470 err = ieee80211_register_hw(dev); 2471 if (err) { 2472 pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str); 2473 err = -EIO; 2474 goto err_free_dev; 2475 } else { 2476 printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err); 2477 } 2478 2479 // create sysfs for arbitrary iq setting 2480 sysfs_bin_attr_init(&priv->bin_iq); 2481 priv->bin_iq.attr.name = "tx_intf_iq_data"; 2482 priv->bin_iq.attr.mode = S_IWUSR | S_IRUGO; 2483 priv->bin_iq.write = openwifi_tx_intf_bin_iq_write; 2484 priv->bin_iq.read = openwifi_tx_intf_bin_iq_read; 2485 priv->bin_iq.size = 4096; 2486 err = sysfs_create_bin_file(&pdev->dev.kobj, &priv->bin_iq); 2487 printk("%s openwifi_dev_probe: sysfs_create_bin_file %d\n",sdr_compatible_str, err); 2488 if (err < 0) 2489 goto err_free_dev; 2490 2491 priv->tx_intf_arbitrary_iq_num = 0; 2492 // priv->tx_intf_arbitrary_iq[0] = 1; 2493 // priv->tx_intf_arbitrary_iq[1] = 2; 2494 2495 err = sysfs_create_group(&pdev->dev.kobj, &tx_intf_attribute_group); 2496 printk("%s openwifi_dev_probe: sysfs_create_group tx_intf_attribute_group %d\n",sdr_compatible_str, err); 2497 if (err < 0) 2498 goto err_free_dev; 2499 priv->tx_intf_iq_ctl = 0; 2500 2501 // create sysfs for stat 2502 err = sysfs_create_group(&pdev->dev.kobj, &stat_attribute_group); 2503 printk("%s openwifi_dev_probe: sysfs_create_group stat_attribute_group %d\n",sdr_compatible_str, err); 2504 if (err < 0) 2505 goto err_free_dev; 2506 2507 priv->stat.stat_enable = 0; // by default disable 2508 2509 for (i=0; i<MAX_NUM_SW_QUEUE; i++) { 2510 priv->stat.tx_prio_num[i] = 0; 2511 priv->stat.tx_prio_interrupt_num[i] = 0; 2512 priv->stat.tx_prio_stop0_fake_num[i] = 0; 2513 priv->stat.tx_prio_stop0_real_num[i] = 0; 2514 priv->stat.tx_prio_stop1_num[i] = 0; 2515 priv->stat.tx_prio_wakeup_num[i] = 0; 2516 } 2517 for (i=0; i<MAX_NUM_HW_QUEUE; i++) { 2518 priv->stat.tx_queue_num[i] = 0; 2519 priv->stat.tx_queue_interrupt_num[i] = 0; 2520 priv->stat.tx_queue_stop0_fake_num[i] = 0; 2521 priv->stat.tx_queue_stop0_real_num[i] = 0; 2522 priv->stat.tx_queue_stop1_num[i] = 0; 2523 priv->stat.tx_queue_wakeup_num[i] = 0; 2524 } 2525 2526 priv->stat.tx_data_pkt_need_ack_num_total = 0; 2527 priv->stat.tx_data_pkt_need_ack_num_total_fail = 0; 2528 for (i=0; i<6; i++) { 2529 priv->stat.tx_data_pkt_need_ack_num_retx[i] = 0; 2530 priv->stat.tx_data_pkt_need_ack_num_retx_fail[i] = 0; 2531 } 2532 priv->stat.tx_data_pkt_mcs_realtime = 0; 2533 priv->stat.tx_data_pkt_fail_mcs_realtime = 0; 2534 2535 priv->stat.tx_mgmt_pkt_need_ack_num_total = 0; 2536 priv->stat.tx_mgmt_pkt_need_ack_num_total_fail = 0; 2537 for (i=0; i<3; i++) { 2538 priv->stat.tx_mgmt_pkt_need_ack_num_retx[i] = 0; 2539 priv->stat.tx_mgmt_pkt_need_ack_num_retx_fail[i] = 0; 2540 } 2541 priv->stat.tx_mgmt_pkt_mcs_realtime = 0; 2542 priv->stat.tx_mgmt_pkt_fail_mcs_realtime = 0; 2543 2544 priv->stat.rx_monitor_all = 0; 2545 priv->stat.rx_target_sender_mac_addr = 0; 2546 priv->stat.rx_data_ok_agc_gain_value_realtime = 0; 2547 priv->stat.rx_data_fail_agc_gain_value_realtime = 0; 2548 priv->stat.rx_mgmt_ok_agc_gain_value_realtime = 0; 2549 priv->stat.rx_mgmt_fail_agc_gain_value_realtime = 0; 2550 priv->stat.rx_ack_ok_agc_gain_value_realtime = 0; 2551 2552 priv->stat.rx_monitor_all = 0; 2553 priv->stat.rx_data_pkt_num_total = 0; 2554 priv->stat.rx_data_pkt_num_fail = 0; 2555 priv->stat.rx_mgmt_pkt_num_total = 0; 2556 priv->stat.rx_mgmt_pkt_num_fail = 0; 2557 priv->stat.rx_ack_pkt_num_total = 0; 2558 priv->stat.rx_ack_pkt_num_fail = 0; 2559 2560 priv->stat.rx_data_pkt_mcs_realtime = 0; 2561 priv->stat.rx_data_pkt_fail_mcs_realtime = 0; 2562 priv->stat.rx_mgmt_pkt_mcs_realtime = 0; 2563 priv->stat.rx_mgmt_pkt_fail_mcs_realtime = 0; 2564 priv->stat.rx_ack_pkt_mcs_realtime = 0; 2565 2566 priv->stat.restrict_freq_mhz = 0; 2567 2568 priv->stat.csma_cfg0 = 0; 2569 priv->stat.cw_max_min_cfg = 0; 2570 2571 priv->stat.dbg_ch0 = 0; 2572 priv->stat.dbg_ch1 = 0; 2573 priv->stat.dbg_ch2 = 0; 2574 2575 // // //--------------------hook leds (not complete yet)-------------------------------- 2576 // tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field 2577 // if (!tmp_dev) { 2578 // printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str); 2579 // err = -ENOMEM; 2580 // goto err_free_dev; 2581 // } 2582 2583 // tmp_pdev = to_platform_device(tmp_dev); 2584 // if (!tmp_pdev) { 2585 // printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str); 2586 // err = -ENOMEM; 2587 // goto err_free_dev; 2588 // } 2589 2590 // tmp_led_priv = platform_get_drvdata(tmp_pdev); 2591 // if (!tmp_led_priv) { 2592 // printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str); 2593 // err = -ENOMEM; 2594 // goto err_free_dev; 2595 // } 2596 // printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds); 2597 // if (tmp_led_priv->num_leds!=4){ 2598 // printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds); 2599 // err = -ENOMEM; 2600 // goto err_free_dev; 2601 // } 2602 // gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it 2603 // gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it 2604 // priv->num_led = tmp_led_priv->num_leds; 2605 // priv->led[0] = &(tmp_led_priv->leds[0].cdev); 2606 // priv->led[1] = &(tmp_led_priv->leds[1].cdev); 2607 // priv->led[2] = &(tmp_led_priv->leds[2].cdev); 2608 // priv->led[3] = &(tmp_led_priv->leds[3].cdev); 2609 2610 // snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy)); 2611 // snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy)); 2612 // snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy)); 2613 // snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy)); 2614 2615 wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n", 2616 priv->mac_addr, chip_name, priv->rf->name); 2617 2618 openwifi_rfkill_init(dev); 2619 return 0; 2620 2621 err_free_dev: 2622 ieee80211_free_hw(dev); 2623 2624 return err; 2625 } 2626 2627 static int openwifi_dev_remove(struct platform_device *pdev) 2628 { 2629 struct ieee80211_hw *dev = platform_get_drvdata(pdev); 2630 struct openwifi_priv *priv = dev->priv; 2631 2632 if (!dev) { 2633 pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev); 2634 return(-1); 2635 } 2636 2637 sysfs_remove_bin_file(&pdev->dev.kobj, &priv->bin_iq); 2638 sysfs_remove_group(&pdev->dev.kobj, &tx_intf_attribute_group); 2639 sysfs_remove_group(&pdev->dev.kobj, &stat_attribute_group); 2640 2641 openwifi_rfkill_exit(dev); 2642 ieee80211_unregister_hw(dev); 2643 ieee80211_free_hw(dev); 2644 return(0); 2645 } 2646 2647 static struct platform_driver openwifi_dev_driver = { 2648 .driver = { 2649 .name = "sdr,sdr", 2650 .owner = THIS_MODULE, 2651 .of_match_table = openwifi_dev_of_ids, 2652 }, 2653 .probe = openwifi_dev_probe, 2654 .remove = openwifi_dev_remove, 2655 }; 2656 2657 module_platform_driver(openwifi_dev_driver); 2658