xref: /openwifi/driver/sdr.c (revision 6bb9ef71e9acf399e0f3b439aab49c06e669979b)
1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos
2 // SPDX-FileCopyrightText: 2022 UGent
3 // SPDX-License-Identifier: AGPL-3.0-or-later
4 
5 #include <linux/bitops.h>
6 #include <linux/dmapool.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/of_address.h>
10 #include <linux/of_platform.h>
11 #include <linux/of_irq.h>
12 #include <linux/slab.h>
13 #include <linux/clk.h>
14 #include <linux/io-64-nonatomic-lo-hi.h>
15 
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 
24 #include <linux/init.h>
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/of_dma.h>
28 #include <linux/platform_device.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/wait.h>
32 #include <linux/sched/task.h>
33 #include <linux/dma/xilinx_dma.h>
34 #include <linux/spi/spi.h>
35 #include <net/mac80211.h>
36 
37 #include <linux/clk.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk-provider.h>
40 
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43 
44 #include <linux/gpio.h>
45 #include <linux/leds.h>
46 
47 #define IIO_AD9361_USE_PRIVATE_H_
48 #include <../../drivers/iio/adc/ad9361_regs.h>
49 #include <../../drivers/iio/adc/ad9361.h>
50 #include <../../drivers/iio/adc/ad9361_private.h>
51 
52 #include <../../drivers/iio/frequency/cf_axi_dds.h>
53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num);
54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb,
55 			       bool tx1, bool tx2, bool immed);
56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy,
57 				  struct ctrl_outs_control *ctrl);
58 extern int ad9361_do_calib_run(struct ad9361_rf_phy *phy, u32 cal, int arg);
59 
60 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
61 #include "hw_def.h"
62 #include "sdr.h"
63 #include "git_rev.h"
64 
65 // driver API of component driver
66 extern struct tx_intf_driver_api *tx_intf_api;
67 extern struct rx_intf_driver_api *rx_intf_api;
68 extern struct openofdm_tx_driver_api *openofdm_tx_api;
69 extern struct openofdm_rx_driver_api *openofdm_rx_api;
70 extern struct xpu_driver_api *xpu_api;
71 
72 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes);
73 u8 gen_mpdu_delim_crc(u16 m);
74 u32 reverse32(u32 d);
75 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant);
76 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant);
77 int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction);
78 int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction);
79 int rssi_correction_lookup_table(u32 freq_MHz);
80 
81 #include "sdrctl_intf.c"
82 #include "sysfs_intf.c"
83 
84 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1)
85 // Internal indication variables after parsing test_mode
86 static bool AGGR_ENABLE = false;
87 static bool TX_OFFSET_TUNING_ENABLE = false;
88 
89 static int init_tx_att = 0;
90 
91 MODULE_AUTHOR("Xianjun Jiao");
92 MODULE_DESCRIPTION("SDR driver");
93 MODULE_LICENSE("GPL v2");
94 
95 module_param(test_mode, int, 0);
96 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)");
97 
98 module_param(init_tx_att, int, 0);
99 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000	example: set to 3000 for 3dB attenuation");
100 
101 // ---------------rfkill---------------------------------------
102 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
103 {
104 	int reg;
105 
106 	if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH)
107 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
108 	else
109 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
110 
111 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]))
112 		return true;// 0 off, 1 on
113 	return false;
114 }
115 
116 void openwifi_rfkill_init(struct ieee80211_hw *hw)
117 {
118 	struct openwifi_priv *priv = hw->priv;
119 
120 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
121 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
122 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
123 	wiphy_rfkill_start_polling(hw->wiphy);
124 }
125 
126 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
127 {
128 	bool enabled;
129 	struct openwifi_priv *priv = hw->priv;
130 
131 	enabled = openwifi_is_radio_enabled(priv);
132 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
133 	if (unlikely(enabled != priv->rfkill_off)) {
134 		priv->rfkill_off = enabled;
135 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
136 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
137 	}
138 }
139 
140 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
141 {
142 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
143 	wiphy_rfkill_stop_polling(hw->wiphy);
144 }
145 //----------------rfkill end-----------------------------------
146 
147 inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction)
148 {
149 	return ((rssi_correction+rssi_dbm)<<1);
150 }
151 
152 inline int rssi_correction_lookup_table(u32 freq_MHz)
153 {
154 	int rssi_correction;
155 
156 	if (freq_MHz<2412) {
157 		rssi_correction = 153;
158 	} else if (freq_MHz<=2484) {
159 		rssi_correction = 153;
160 	} else if (freq_MHz<5160) {
161 		rssi_correction = 153;
162 	} else if (freq_MHz<=5240) {
163 		rssi_correction = 145;
164 	} else if (freq_MHz<=5320) {
165 		rssi_correction = 148;
166 	} else {
167 		rssi_correction = 148;
168 	}
169 
170 	return rssi_correction;
171 }
172 
173 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
174 				  struct ieee80211_conf *conf)
175 {
176 	struct openwifi_priv *priv = dev->priv;
177 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz;
178 	u32 actual_tx_lo;
179 	u32 spi_disable;
180 	u32 diff_tx_lo;
181 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
182 	int static_lbt_th, auto_lbt_th, fpga_lbt_th, receiver_rssi_dbm_th;
183 	struct timeval tv;
184 	unsigned long time_before = 0;
185 	unsigned long time_after = 0;
186 
187 	if (change_flag) {
188 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
189 		diff_tx_lo = priv->last_tx_quad_cal_lo > actual_tx_lo ? priv->last_tx_quad_cal_lo - actual_tx_lo : actual_tx_lo - priv->last_tx_quad_cal_lo;
190 
191 		// -------------------Tx Lo tuning-------------------
192 		clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_tx_lo ) + priv->rf_reg_val[RF_TX_REG_IDX_FO] )>>1) );
193 		priv->actual_tx_lo = actual_tx_lo;
194 
195 		// -------------------Rx Lo tuning-------------------
196 		clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_rx_lo ) + priv->rf_reg_val[RF_RX_REG_IDX_FO] )>>1) );
197 		priv->actual_rx_lo = actual_rx_lo;
198 
199 		// call Tx Quadrature calibration if frequency change is more than 100MHz
200 		if (diff_tx_lo > 100) {
201 			priv->last_tx_quad_cal_lo = actual_tx_lo;
202 			do_gettimeofday(&tv);
203 			time_before = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec );
204 			spi_disable = xpu_api->XPU_REG_SPI_DISABLE_read();  // disable FPGA SPI module
205 			xpu_api->XPU_REG_SPI_DISABLE_write(1);
206 			ad9361_do_calib_run(priv->ad9361_phy, TX_QUAD_CAL, (int)priv->ad9361_phy->state->last_tx_quad_cal_phase);
207 			// restore original SPI disable state
208 			xpu_api->XPU_REG_SPI_DISABLE_write(spi_disable);
209 			do_gettimeofday(&tv);
210 			time_after = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec );
211 		}
212 
213 		// get rssi correction value from lookup table
214 		priv->rssi_correction = rssi_correction_lookup_table(actual_rx_lo);
215 
216 		// set appropriate lbt threshold
217 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
218 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44
219 		// auto_lbt_th = ((priv->rssi_correction-62-16)<<1);
220 		auto_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction); // -78dBm, the same as above ((priv->rssi_correction-62-16)<<1)
221 		static_lbt_th = rssi_dbm_to_rssi_half_db(-(priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]), priv->rssi_correction);
222 		fpga_lbt_th = (priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]==0?auto_lbt_th:static_lbt_th);
223 		xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th);
224 		priv->last_auto_fpga_lbt_th = auto_lbt_th;
225 
226 		// Set rssi_half_db threshold (-85dBm equivalent) to receiver. Receiver will not react to signal lower than this rssi. See test records (OPENOFDM_RX_POWER_THRES_INIT in hw_def.h)
227 		receiver_rssi_dbm_th = (priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]==0?OPENOFDM_RX_RSSI_DBM_TH_DEFAULT:(-priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]));
228 		openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write((OPENOFDM_RX_DC_RUNNING_SUM_TH_INIT<<16)|rssi_dbm_to_rssi_half_db(receiver_rssi_dbm_th, priv->rssi_correction));
229 
230 		if (actual_rx_lo < 2500) {
231 			if (priv->band != BAND_2_4GHZ) {
232 				priv->band = BAND_2_4GHZ;
233 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
234 			}
235 		} else {
236 			if (priv->band != BAND_5_8GHZ) {
237 				priv->band = BAND_5_8GHZ;
238 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
239 			}
240 		}
241 		printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d(%ddBm) (auto %d static %d) tx_quad_cal duration %lu us\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,rssi_half_db_to_rssi_dbm(fpga_lbt_th, priv->rssi_correction),auto_lbt_th,static_lbt_th, time_after-time_before);
242 	}
243 }
244 
245 const struct openwifi_rf_ops ad9361_rf_ops = {
246 	.name		= "ad9361",
247 //	.init		= ad9361_rf_init,
248 //	.stop		= ad9361_rf_stop,
249 	.set_chan	= ad9361_rf_set_channel,
250 //	.calc_rssi	= ad9361_rf_calc_rssi,
251 };
252 
253 u16 reverse16(u16 d) {
254 	union u16_byte2 tmp0, tmp1;
255 	tmp0.a = d;
256 	tmp1.c[0] = tmp0.c[1];
257 	tmp1.c[1] = tmp0.c[0];
258 	return(tmp1.a);
259 }
260 
261 u32 reverse32(u32 d) {
262 	union u32_byte4 tmp0, tmp1;
263 	tmp0.a = d;
264 	tmp1.c[0] = tmp0.c[3];
265 	tmp1.c[1] = tmp0.c[2];
266 	tmp1.c[2] = tmp0.c[1];
267 	tmp1.c[3] = tmp0.c[0];
268 	return(tmp1.a);
269 }
270 
271 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
272 {
273 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
274 	int i;
275 
276 	ring->stop_flag = -1;
277 	ring->bd_wr_idx = 0;
278 	ring->bd_rd_idx = 0;
279 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
280 	if (ring->bds==NULL) {
281 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
282 		return -ENOMEM;
283 	}
284 
285 	for (i = 0; i < NUM_TX_BD; i++) {
286 		ring->bds[i].skb_linked=NULL; // for tx, skb is from upper layer
287 		//at first right after skb allocated, head, data, tail are the same.
288 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine
289 		ring->bds[i].seq_no = 0xffff; // invalid value
290 		ring->bds[i].prio = 0xff; // invalid value
291 		ring->bds[i].len_mpdu = 0; // invalid value
292 	}
293 
294 	return 0;
295 }
296 
297 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
298 {
299 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
300 	int i;
301 
302 	ring->stop_flag = -1;
303 	ring->bd_wr_idx = 0;
304 	ring->bd_rd_idx = 0;
305 	for (i = 0; i < NUM_TX_BD; i++) {
306 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
307 			continue;
308 		if (ring->bds[i].dma_mapping_addr != 0)
309 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
310 //		if (ring->bds[i].skb_linked!=NULL)
311 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
312 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
313 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
314 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str,
315 			ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr));
316 
317 		ring->bds[i].skb_linked=NULL;
318 		ring->bds[i].dma_mapping_addr = 0;
319 		ring->bds[i].seq_no = 0xffff; // invalid value
320 		ring->bds[i].prio = 0xff; // invalid value
321 		ring->bds[i].len_mpdu = 0; // invalid value
322 	}
323 	if (ring->bds)
324 		kfree(ring->bds);
325 	ring->bds = NULL;
326 }
327 
328 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
329 {
330 	int i;
331 	u8 *pdata_tmp;
332 
333 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
334 	if (!priv->rx_cyclic_buf) {
335 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
336 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
337 		return(-1);
338 	}
339 
340 	// Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
341 	for (i=0; i<NUM_RX_BD; i++) {
342 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning
343 		(*((u16*)(pdata_tmp+10))) = 0;
344 	}
345 	printk("%s openwifi_init_rx_ring: NUM_RX_BD %d RX_BD_BUF_SIZE %d pkt existing flag are cleared!\n", sdr_compatible_str,
346 	NUM_RX_BD, RX_BD_BUF_SIZE);
347 
348 	return 0;
349 }
350 
351 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
352 {
353 	if (priv->rx_cyclic_buf)
354 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
355 
356 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
357 	priv->rx_cyclic_buf = 0;
358 }
359 
360 static int rx_dma_setup(struct ieee80211_hw *dev){
361 	struct openwifi_priv *priv = dev->priv;
362 	struct dma_device *rx_dev = priv->rx_chan->device;
363 
364 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
365 	if (!(priv->rxd)) {
366 		openwifi_free_rx_ring(priv);
367 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
368 		return(-1);
369 	}
370 	priv->rxd->callback = 0;
371 	priv->rxd->callback_param = 0;
372 
373 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
374 
375 	if (dma_submit_error(priv->rx_cookie)) {
376 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
377 		return(-1);
378 	}
379 
380 	dma_async_issue_pending(priv->rx_chan);
381 	return(0);
382 }
383 
384 inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction)
385 {
386 	int rssi_db, rssi_dbm;
387 
388 	rssi_db = (rssi_half_db>>1);
389 
390 	rssi_dbm = rssi_db - rssi_correction;
391 
392 	rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm);
393 
394 	return rssi_dbm;
395 }
396 
397 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
398 {
399 	struct ieee80211_hw *dev = dev_id;
400 	struct openwifi_priv *priv = dev->priv;
401 	struct ieee80211_rx_status rx_status = {0};
402 	struct sk_buff *skb;
403 	struct ieee80211_hdr *hdr;
404 	u32 addr1_low32, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di;
405 	bool ht_flag, short_gi, ht_aggr, ht_aggr_last;
406 	// u32 dma_driver_buf_idx_mod;
407 	u8 *pdata_tmp;
408 	u8 fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw;
409 	s8 signal;
410 	u16 agc_status_and_pkt_exist_flag, rssi_half_db, addr1_high16, addr2_high16=0, addr3_high16=0, seq_no=0;
411 	bool content_ok, len_overflow, is_unicast;
412 
413 #ifdef USE_NEW_RX_INTERRUPT
414 	int i;
415 	spin_lock(&priv->lock);
416 	for (i=0; i<NUM_RX_BD; i++) {
417 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE;
418 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid
419 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
420 			continue;
421 #else
422 	static u8 target_buf_idx_old = 0;
423 	spin_lock(&priv->lock);
424 	while(1) { // loop all rx buffers that have new rx packets
425 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
426 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10)));
427 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
428 			break;
429 #endif
430 
431 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
432 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
433 		rssi_half_db = (*((u16*)(pdata_tmp+8 )));
434 		len =          (*((u16*)(pdata_tmp+12)));
435 
436 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
437 
438 		rate_idx =     (*((u16*)(pdata_tmp+14)));
439 		ht_flag  =     ((rate_idx&0x10)!=0);
440 		short_gi =     ((rate_idx&0x20)!=0);
441 		ht_aggr  =     (ht_flag & ((rate_idx&0x40)!=0));
442 		ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0));
443 		rate_idx =     (rate_idx&0x1F);
444 
445 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
446 
447 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
448 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
449 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
450 		fcs_ok = ((fcs_ok&0x80)!=0);
451 
452 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
453 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
454 			// 	printk("%s openwifi_rx: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
455 			// }
456 			content_ok = true;
457 		} else {
458 			printk("%s openwifi_rx: WARNING content! len%d overflow%d rate_idx%d\n", sdr_compatible_str,
459 			len, len_overflow, rate_idx);
460 			content_ok = false;
461 		}
462 
463 		signal = rssi_half_db_to_rssi_dbm(rssi_half_db, priv->rssi_correction);
464 
465 		hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
466 		if (len>=20) {
467 			addr2_low32  = *((u32*)(hdr->addr2+2));
468 			addr2_high16 = *((u16*)(hdr->addr2));
469 		}
470 
471 		addr1_low32  = *((u32*)(hdr->addr1+2));
472 		addr1_high16 = *((u16*)(hdr->addr1));
473 
474 		if ( priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ANY ) {
475 			if (len>=26) {
476 				addr3_low32  = *((u32*)(hdr->addr3+2));
477 				addr3_high16 = *((u16*)(hdr->addr3));
478 			}
479 			if (len>=28)
480 				seq_no = ( (hdr->seq_ctrl&IEEE80211_SCTL_SEQ)>>4 );
481 
482 			is_unicast = (addr1_low32!=0xffffffff || addr1_high16!=0xffff);
483 
484 			if ( (( is_unicast)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST))   ||
485 			     ((!is_unicast)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST)) ||
486 				 ((  fcs_ok==0)&&(priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ERROR)) )
487 				printk("%s openwifi_rx: %dB ht%daggr%d/%d sgi%d %dM FC%04x DI%04x ADDR%04x%08x/%04x%08x/%04x%08x SC%d fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
488 					len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
489 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
490 #ifdef USE_NEW_RX_INTERRUPT
491 					seq_no, fcs_ok, i, signal);
492 #else
493 					seq_no, fcs_ok, target_buf_idx_old, signal);
494 #endif
495 		}
496 
497 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
498 		if (content_ok) {
499 			skb = dev_alloc_skb(len);
500 			if (skb) {
501 				skb_put_data(skb,pdata_tmp+16,len);
502 
503 				rx_status.antenna = priv->runtime_rx_ant_cfg;
504 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
505 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
506 				rx_status.signal = signal;
507 
508 				// rx_status.freq = dev->conf.chandef.chan->center_freq;
509 				rx_status.freq = priv->actual_rx_lo;
510 				// rx_status.band = dev->conf.chandef.chan->band;
511 				rx_status.band = (rx_status.freq<2500?NL80211_BAND_2GHZ:NL80211_BAND_5GHZ);
512 
513 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
514 				rx_status.flag |= RX_FLAG_MACTIME_START;
515 				if (!fcs_ok)
516 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
517 				if (rate_idx <= 15)
518 					rx_status.encoding = RX_ENC_LEGACY;
519 				else
520 					rx_status.encoding = RX_ENC_HT;
521 				rx_status.bw = RATE_INFO_BW_20;
522 				if (short_gi)
523 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
524 				if(ht_aggr)
525 				{
526 					rx_status.ampdu_reference = priv->ampdu_reference;
527 					rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
528 					if (ht_aggr_last)
529 						rx_status.flag |= RX_FLAG_AMPDU_IS_LAST;
530 				}
531 
532 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
533 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
534 
535 				// printk("%s openwifi_rx: addr1_low32 %08x self addr %08x\n", sdr_compatible_str, addr1_low32, ( *( (u32*)(priv->mac_addr+2) ) ));
536 				if (addr1_low32 == ( *( (u32*)(priv->mac_addr+2) ) ) && priv->stat.stat_enable) {
537 					agc_status_and_pkt_exist_flag = (agc_status_and_pkt_exist_flag&0x7f);
538 					if (len>=20) {// rx stat
539 						if (addr2_low32 == priv->stat.rx_target_sender_mac_addr || priv->stat.rx_target_sender_mac_addr==0) {
540 							if ( ieee80211_is_data(hdr->frame_control) ) {
541 								priv->stat.rx_data_pkt_mcs_realtime = rate_idx;
542 								priv->stat.rx_data_pkt_num_total++;
543 								if (!fcs_ok) {
544 									priv->stat.rx_data_pkt_num_fail++;
545 									priv->stat.rx_data_pkt_fail_mcs_realtime = rate_idx;
546 									priv->stat.rx_data_fail_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
547 								} else {
548 									priv->stat.rx_data_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
549 								}
550 							} else if ( ieee80211_is_mgmt(hdr->frame_control) ) {
551 								priv->stat.rx_mgmt_pkt_mcs_realtime = rate_idx;
552 								priv->stat.rx_mgmt_pkt_num_total++;
553 								if (!fcs_ok) {
554 									priv->stat.rx_mgmt_pkt_num_fail++;
555 									priv->stat.rx_mgmt_pkt_fail_mcs_realtime = rate_idx;
556 									priv->stat.rx_mgmt_fail_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
557 								} else {
558 									priv->stat.rx_mgmt_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
559 								}
560 							}
561 						}
562 					} else if ( ieee80211_is_ack(hdr->frame_control) ) {
563 						priv->stat.rx_ack_pkt_mcs_realtime = rate_idx;
564 						priv->stat.rx_ack_pkt_num_total++;
565 						if (!fcs_ok) {
566 							priv->stat.rx_ack_pkt_num_fail++;
567 						} else {
568 							priv->stat.rx_ack_ok_agc_gain_value_realtime = agc_status_and_pkt_exist_flag;
569 						}
570 					}
571 				}
572 			} else
573 				printk("%s openwifi_rx: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
574 
575 			if(ht_aggr_last)
576 				priv->ampdu_reference++;
577 		}
578 		(*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed
579 		loop_count++;
580 #ifndef USE_NEW_RX_INTERRUPT
581 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
582 #endif
583 	}
584 
585 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&DMESG_LOG_ERROR) )
586 		printk("%s openwifi_rx: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
587 
588 // openwifi_rx_out:
589 	spin_unlock(&priv->lock);
590 	return IRQ_HANDLED;
591 }
592 
593 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
594 {
595 	struct ieee80211_hw *dev = dev_id;
596 	struct openwifi_priv *priv = dev->priv;
597 	struct openwifi_ring *ring, *drv_ring_tmp;
598 	struct sk_buff *skb;
599 	struct ieee80211_tx_info *info;
600 	struct ieee80211_hdr *hdr;
601 	u32 reg_val1, hw_queue_len, reg_val2, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0, addr1_low32, mcs_for_sysfs;
602 	u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx;
603 	u8 nof_retx=-1, last_bd_rd_idx, i, prio, queue_idx, nof_retx_stat;
604 	u64 blk_ack_bitmap;
605 	// u16 prio_rd_idx_store[64]={0};
606 	bool tx_fail=false, fpga_queue_has_room=false;
607 	bool use_ht_aggr, pkt_need_ack, use_ht_rate, prio_wake_up_flag = false;
608 
609 	spin_lock(&priv->lock);
610 
611 	while(1) { // loop all packets that have been sent by FPGA
612 		reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read();
613         reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read();
614 		blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32);
615 
616 		if (reg_val1!=0xFFFFFFFF) {
617 			nof_retx = (reg_val1&0xF);
618 			last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1));
619 			prio = ((reg_val1>>17)&0x3);
620 			num_slot_random = ((reg_val1>>19)&0x1FF);
621 			//num_slot_random = ((0xFF80000 &reg_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
622 			cw = ((reg_val1>>28)&0xF);
623 			//cw = ((0xF0000000 & reg_val1) >> 28);
624 			if(cw > 10) {
625 				cw = 10 ;
626 				num_slot_random += 512 ;
627 			}
628 			pkt_cnt = (reg_val2&0x3F);
629 			blk_ack_ssn = ((reg_val2>>6)&0xFFF);
630 
631 			queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1));
632 			dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
633 			hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
634 			// check which linux prio is stopped by this queue (queue_idx)
635 			for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
636 				drv_ring_tmp = &(priv->tx_ring[i]);
637 				if ( drv_ring_tmp->stop_flag == prio ) {
638 
639 					if ( ((dma_fifo_no_room_flag>>i)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(i*8))&0xFF))>=RING_ROOM_THRESHOLD )
640 						fpga_queue_has_room=true;
641 					else
642 						fpga_queue_has_room=false;
643 
644 					// Wake up Linux queue due to the current fpga queue releases some room
645 					if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP )
646 						printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio%d i%d queue%d no room flag%x hwq len%08x wr%d rd%d\n", sdr_compatible_str,
647 						        prio, i, queue_idx, dma_fifo_no_room_flag, hw_queue_len, drv_ring_tmp->bd_wr_idx, last_bd_rd_idx);
648 
649 					if (fpga_queue_has_room) {
650 						prio_wake_up_flag = true;
651 						drv_ring_tmp->stop_flag = -1;
652 
653 						if (priv->stat.stat_enable) {
654 							priv->stat.tx_prio_wakeup_num[prio]++;
655 							priv->stat.tx_queue_wakeup_num[i]++;
656 						}
657 					} else {
658 						if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP )
659 							printk("%s openwifi_tx_interrupt: WARNING no room! prio_wake_up_flag%d\n", sdr_compatible_str, prio_wake_up_flag);
660 					}
661 				}
662 			}
663 			if (prio_wake_up_flag)
664 				ieee80211_wake_queue(dev, prio);
665 
666 			if (priv->stat.stat_enable) {
667 				priv->stat.tx_prio_interrupt_num[prio] = priv->stat.tx_prio_interrupt_num[prio] + pkt_cnt;
668 				priv->stat.tx_queue_interrupt_num[queue_idx] = priv->stat.tx_queue_interrupt_num[queue_idx] + pkt_cnt;
669 			}
670 
671 			ring = &(priv->tx_ring[queue_idx]);
672 			for(i = 1; i <= pkt_cnt; i++)
673 			{
674 				ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64;
675 				seq_no = ring->bds[ring->bd_rd_idx].seq_no;
676 
677 				if (seq_no == 0xffff) {// it has been forced cleared by the openwifi_tx (due to out-of-order Tx of different queues to the air?)
678 					printk("%s openwifi_tx_interrupt: WARNING wr%d rd%d last_bd_rd_idx%d i%d pkt_cnt%d prio%d fpga q%d hwq len%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str,
679 					ring->bd_wr_idx, ring->bd_rd_idx, last_bd_rd_idx, i, pkt_cnt, prio, queue_idx, hw_queue_len, ring->bds[ring->bd_rd_idx].prio, ring->bds[ring->bd_rd_idx].len_mpdu, seq_no, ring->bds[ring->bd_rd_idx].skb_linked, ring->bds[ring->bd_rd_idx].dma_mapping_addr);
680 					continue;
681 				}
682 
683 				skb = ring->bds[ring->bd_rd_idx].skb_linked;
684 
685 				dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
686 						skb->len, DMA_MEM_TO_DEV);
687 
688 				info = IEEE80211_SKB_CB(skb);
689 				use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0);
690 				ieee80211_tx_info_clear_status(info);
691 
692 				// Aggregation packet
693 				if (use_ht_aggr)
694 				{
695 					start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF));
696 					tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0);
697 					info->flags |= IEEE80211_TX_STAT_AMPDU;
698 					info->status.ampdu_len = 1;
699 					info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1;
700 
701 					skb_pull(skb, LEN_MPDU_DELIM);
702 					//skb_trim(skb, num_byte_pad_skb);
703 				}
704 				// Normal packet
705 				else
706 				{
707 					tx_fail = ((blk_ack_bitmap&0x1)==0);
708 					info->flags &= (~IEEE80211_TX_CTL_AMPDU);
709 				}
710 
711 				pkt_need_ack = (!(info->flags & IEEE80211_TX_CTL_NO_ACK));
712 				// do statistics for data packet that needs ack
713 				hdr = (struct ieee80211_hdr *)skb->data;
714 				addr1_low32  = *((u32*)(hdr->addr1+2));
715 				if ( priv->stat.stat_enable && pkt_need_ack && (addr1_low32 == priv->stat.rx_target_sender_mac_addr || priv->stat.rx_target_sender_mac_addr==0) ) {
716 					use_ht_rate = (((info->control.rates[0].flags)&IEEE80211_TX_RC_MCS)!=0);
717 					mcs_for_sysfs = ieee80211_get_tx_rate(dev, info)->hw_value;
718 					if (use_ht_rate)
719 						mcs_for_sysfs = (mcs_for_sysfs | 0x80000000);
720 
721 					if ( ieee80211_is_data(hdr->frame_control) ) {
722 						nof_retx_stat = (nof_retx<=5?nof_retx:5);
723 
724 						priv->stat.tx_data_pkt_need_ack_num_total++;
725 						priv->stat.tx_data_pkt_mcs_realtime = mcs_for_sysfs;
726 						priv->stat.tx_data_pkt_need_ack_num_retx[nof_retx_stat]++;
727 						if (tx_fail) {
728 							priv->stat.tx_data_pkt_need_ack_num_total_fail++;
729 							priv->stat.tx_data_pkt_fail_mcs_realtime = mcs_for_sysfs;
730 							priv->stat.tx_data_pkt_need_ack_num_retx_fail[nof_retx_stat]++;
731 						}
732 					} else if ( ieee80211_is_mgmt(hdr->frame_control) ) {
733 						nof_retx_stat = (nof_retx<=2?nof_retx:2);
734 
735 						priv->stat.tx_mgmt_pkt_need_ack_num_total++;
736 						priv->stat.tx_mgmt_pkt_mcs_realtime = mcs_for_sysfs;
737 						priv->stat.tx_mgmt_pkt_need_ack_num_retx[nof_retx_stat]++;
738 						if (tx_fail) {
739 							priv->stat.tx_mgmt_pkt_need_ack_num_total_fail++;
740 							priv->stat.tx_mgmt_pkt_fail_mcs_realtime = mcs_for_sysfs;
741 							priv->stat.tx_mgmt_pkt_need_ack_num_retx_fail[nof_retx_stat]++;
742 						}
743 					}
744 				}
745 
746 				if ( tx_fail == false )
747 					info->flags |= IEEE80211_TX_STAT_ACK;
748 
749 				info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
750 				info->status.rates[1].idx = -1;
751 				// info->status.rates[2].idx = -1;
752 				// info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
753 				info->status.antenna = priv->runtime_tx_ant_cfg;
754 
755 				if ( ( (!pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST) ) || ( (pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST) ) ){
756 					printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] SC%d prio%d q%d wr%d rd%d num_slot%d cw%d hwq len%08x no_room_flag%x\n", sdr_compatible_str,
757 					nof_retx+1, !tx_fail, seq_no, prio, queue_idx, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw, hw_queue_len, dma_fifo_no_room_flag);
758 				}
759 
760 				ieee80211_tx_status_irqsafe(dev, skb);
761 
762 				ring->bds[ring->bd_rd_idx].prio = 0xff; // invalid value
763 				ring->bds[ring->bd_rd_idx].len_mpdu = 0; // invalid value
764 				ring->bds[ring->bd_rd_idx].seq_no = 0xffff;
765 				ring->bds[ring->bd_rd_idx].skb_linked = NULL;
766 				ring->bds[ring->bd_rd_idx].dma_mapping_addr = 0;
767 			}
768 
769 			loop_count++;
770 
771 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
772 
773 		} else
774 			break;
775 	}
776 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&DMESG_LOG_ERROR) )
777 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
778 
779 	spin_unlock(&priv->lock);
780 	return IRQ_HANDLED;
781 }
782 
783 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000};
784 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes)
785 {
786 	u32 i, crc = 0;
787 	u8 idx;
788 	for( i = 0; i < num_bytes; i++)
789 	{
790 		idx = (crc & 0x0F) ^ (data_in[i] & 0x0F);
791 		crc = (crc >> 4) ^ crc_table[idx];
792 
793 		idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F);
794 		crc = (crc >> 4) ^ crc_table[idx];
795 	}
796 
797 	return crc;
798 }
799 
800 u8 gen_mpdu_delim_crc(u16 m)
801 {
802 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc;
803 
804 	for (i = 0; i < 16; i++)
805 	{
806 		temp = c[7] ^ ((m >> i) & 0x01);
807 
808 		c[7] = c[6];
809 		c[6] = c[5];
810 		c[5] = c[4];
811 		c[4] = c[3];
812 		c[3] = c[2];
813 		c[2] = c[1] ^ temp;
814 		c[1] = c[0] ^ temp;
815 		c[0] = temp;
816 	}
817 	mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
818 
819 	return mpdu_delim_crc;
820 }
821 
822 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
823 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
824 {
825 	return container_of(led_cdev, struct gpio_led_data, cdev);
826 }
827 
828 inline int calc_n_ofdm(int num_octet, int n_dbps)
829 {
830 	int num_bit, num_ofdm_sym;
831 
832 	num_bit      = 22+num_octet*8;
833 	num_ofdm_sym = (num_bit/n_dbps) + ((num_bit%n_dbps)!=0);
834 
835 	return (num_ofdm_sym);
836 }
837 
838 inline __le16 gen_ht_duration_id(__le16 frame_control, __le16 aid, u8 qos_hdr, bool use_ht_aggr, u16 rate_hw_value, u16 sifs)
839 {
840 // COTS wifi ht QoS data duration field analysis (lots of capture):
841 
842 // ht non-aggr QoS data: 44, type 2 (data frame) sub-type 8 (1000) 21.7/52/57.8/58.5/65Mbps
843 // ack     ht 36 + 4*[(22+14*8)/78] = 36 + 4*2 = 44
844 // ack legacy 20 + 4*[(22+14*8)/72] = 20 + 4*2 = 28
845 
846 // ht non-aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 6.5Mbps
847 // ack     ht 36 + 4*[(22+14*8)/26] = 36 + 4*6 = 60
848 // ack legacy 20 + 4*[(22+14*8)/24] = 20 + 4*6 = 44
849 
850 // ht     aggr QoS data: 52, type 2 (data frame) sub-type 8 (1000) 19.5/28.9/39/57.8/65/72.2Mbps
851 // ack     ht 36 + 4*[(22+32*8)/78] = 36 + 4*4 = 52
852 // ack legacy 20 + 4*[(22+32*8)/72] = 20 + 4*4 = 36
853 
854 // ht     aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 13/14.4Mbps
855 // ack     ht 36 + 4*[(22+32*8)/52] = 36 + 4*6 = 60
856 // ack legacy 20 + 4*[(22+32*8)/48] = 20 + 4*6 = 44
857 
858 // ht and legacy rate mapping is ont one on one, instead it is modulation combined with coding rate
859 // modulate  coding  ht-mcs ht-n_dbps legacy-mcs legacy-n_dbps
860 // BPSK      1/2     0      26        4          24
861 // QPSK      1/2     1      52        6          48
862 // QPSK      3/4     2      78        7          72
863 // 16QAM     1/2     3      104       8          96
864 // 16QAM     3/4     4      156       9          144
865 // 64QAM     2/3     5      208       10         192
866 // 64QAM     3/4     6      234       11         216
867 
868 // conclusion: duration is: assume ack/blk-ack uses legacy, plus SIFS
869 
870 // other observation: ht always use QoS data, not data (sub-type)
871 // other observation: management/control frame always in non-ht
872 
873 	__le16 dur = 0;
874 	u16 n_dbps;
875 	int num_octet, num_ofdm_sym;
876 
877 	if (ieee80211_is_pspoll(frame_control)) {
878 		dur = (aid|0xc000);
879 	} else if (ieee80211_is_data_qos(frame_control) && (~(qos_hdr&IEEE80211_QOS_CTL_ACK_POLICY_NOACK))) {
880 		rate_hw_value = (rate_hw_value>6?6:rate_hw_value);
881 		n_dbps = (rate_hw_value==0?wifi_n_dbps_table[4]:wifi_n_dbps_table[rate_hw_value+5]);
882 		num_octet = (use_ht_aggr?32:14); //32 bytes for compressed block ack; 14 bytes for normal ack
883 		num_ofdm_sym = calc_n_ofdm(num_octet, n_dbps);
884 		dur = sifs + 20 + 4*num_ofdm_sym; // 20us legacy preamble
885 		// printk("%s gen_ht_duration_id: num_octet %d n_dbps %d num_ofdm_sym %d dur %d\n", sdr_compatible_str,
886 		// num_octet, n_dbps, num_ofdm_sym, dur);
887 	} else {
888 		printk("%s openwifi_tx: WARNING gen_ht_duration_id wrong pkt type!\n", sdr_compatible_str);
889 	}
890 
891 	return dur;
892 }
893 
894 inline void report_pkt_loss_due_to_driver_drop(struct ieee80211_hw *dev, struct sk_buff *skb)
895 {
896 	struct openwifi_priv *priv = dev->priv;
897 	struct ieee80211_tx_info *info;
898 
899 	info = IEEE80211_SKB_CB(skb);
900 	ieee80211_tx_info_clear_status(info);
901 	info->status.rates[0].count = 1;
902 	info->status.rates[1].idx = -1;
903 	info->status.antenna = priv->runtime_tx_ant_cfg;
904 	ieee80211_tx_status_irqsafe(dev, skb);
905 }
906 
907 static void openwifi_tx(struct ieee80211_hw *dev,
908 		       struct ieee80211_tx_control *control,
909 		       struct sk_buff *skb)
910 {
911 	struct openwifi_priv *priv = dev->priv;
912 	unsigned long flags;
913 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
914 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
915 	struct openwifi_ring *ring = NULL;
916 	struct sk_buff *skb_new; // temp skb for internal use
917 	struct ieee80211_tx_info *info_skipped;
918 	dma_addr_t dma_mapping_addr;
919 	unsigned int i, j, empty_bd_idx = 0;
920 	u16 rate_signal_value, rate_hw_value, len_mpdu, len_psdu, num_dma_symbol, len_mpdu_delim_pad=0, num_byte_pad;
921 	u32 num_dma_byte, addr1_low32, addr2_low32=0, addr3_low32=0, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history;
922 	u16 addr1_high16, addr2_high16=0, addr3_high16=0, sc, seq_no=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration, n_dbps;
923 	u8 pkt_need_ack, retry_limit_raw,use_short_gi,*dma_buf,retry_limit_hw_value,rc_flags,qos_hdr,prio,queue_idx,drv_ring_idx;
924 	bool drv_seqno=false, use_rts_cts, use_cts_protect, ht_aggr_start=false, use_ht_rate, use_ht_aggr, cts_use_traffic_rate=false, force_use_cts_protect=false;
925 	__le16 frame_control,duration_id;
926 	u32 dma_fifo_no_room_flag, hw_queue_len, delay_count=0;
927 	enum dma_status status;
928 
929 	static u32 addr1_low32_prev = -1;
930 	static u16 rate_hw_value_prev = -1;
931 	static u8 pkt_need_ack_prev = -1;
932 	static u16 addr1_high16_prev = -1;
933 	static __le16 duration_id_prev = -1;
934 	static u8 prio_prev = -1;
935 	static u8 retry_limit_raw_prev = -1;
936 	static u8 use_short_gi_prev = -1;
937 
938 	// static bool led_status=0;
939 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
940 
941 	// if ( (priv->phy_tx_sn&7) ==0 ) {
942 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
943 	// 	if (openofdm_state_history!=openofdm_state_history_old){
944 	// 		led_status = (~led_status);
945 	// 		openofdm_state_history_old = openofdm_state_history;
946 	// 		gpiod_set_value(led_dat->gpiod, led_status);
947 	// 	}
948 	// }
949 
950 	if (skb->data_len>0) {// more data are not in linear data area skb->data
951 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
952 		goto openwifi_tx_early_out;
953 	}
954 
955 	len_mpdu = skb->len;
956 
957 	// get Linux priority/queue setting info and target mac address
958 	prio = skb_get_queue_mapping(skb);
959 	if (prio >= MAX_NUM_HW_QUEUE) {
960 		printk("%s openwifi_tx: WARNING prio%d\n", sdr_compatible_str, prio);
961 		goto openwifi_tx_early_out;
962 	}
963 
964 	addr1_low32  = *((u32*)(hdr->addr1+2));
965 
966 	// ---- DO your idea here! Map Linux/SW "prio" to driver "drv_ring_idx" (then 1on1 to FPGA queue_idx) ---
967 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
968 		drv_ring_idx = prio;
969 	} else {// customized prio to drv_ring_idx mapping
970 		// check current packet belonging to which slice/hw-queue
971 		for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
972 			if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
973 				break;
974 			}
975 		}
976 		drv_ring_idx = (i>=MAX_NUM_HW_QUEUE?prio:i); // if no address is hit
977 	}
978 
979 	ring = &(priv->tx_ring[drv_ring_idx]);
980 
981 	spin_lock_irqsave(&priv->lock, flags);
982 	if (ring->bds[ring->bd_wr_idx].seq_no != 0xffff) { // not cleared yet by interrupt
983 		for (i=1; i<NUM_TX_BD; i++) {
984 			if (ring->bds[(ring->bd_wr_idx+i)&(NUM_TX_BD-1)].seq_no == 0xffff) {
985 				empty_bd_idx = i;
986 				break;
987 			}
988 		}
989 		hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
990 		if (empty_bd_idx) { // clear all bds before the empty bd and report failure to Linux
991 			if (priv->stat.stat_enable) {
992 				priv->stat.tx_prio_stop0_fake_num[prio]++;
993 				priv->stat.tx_queue_stop0_fake_num[drv_ring_idx]++;
994 			}
995 			for (i=0; i<empty_bd_idx; i++) {
996 				j = ( (ring->bd_wr_idx+i)&(NUM_TX_BD-1) );
997 				printk("%s openwifi_tx: WARNING fake stop queue empty_bd_idx%d i%d lnx prio%d map to q%d stop%d hwq len%d wr%d rd%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str,
998 				empty_bd_idx, i, prio, drv_ring_idx, ring->stop_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, ring->bds[j].prio, ring->bds[j].len_mpdu, ring->bds[j].seq_no, ring->bds[j].skb_linked, ring->bds[j].dma_mapping_addr);
999 				// tell Linux this skb failed
1000 				skb_new = ring->bds[j].skb_linked;
1001 				dma_unmap_single(priv->tx_chan->device->dev,ring->bds[j].dma_mapping_addr,
1002 							skb_new->len, DMA_MEM_TO_DEV);
1003 				info_skipped = IEEE80211_SKB_CB(skb_new);
1004 				ieee80211_tx_info_clear_status(info_skipped);
1005 				info_skipped->status.rates[0].count = 1;
1006 				info_skipped->status.rates[1].idx = -1;
1007 				info_skipped->status.antenna = priv->runtime_tx_ant_cfg;
1008 				ieee80211_tx_status_irqsafe(dev, skb_new);
1009 
1010 				ring->bds[j].prio = 0xff; // invalid value
1011 				ring->bds[j].len_mpdu = 0; // invalid value
1012 				ring->bds[j].seq_no = 0xffff;
1013 				ring->bds[j].skb_linked = NULL;
1014 				ring->bds[j].dma_mapping_addr = 0;
1015 
1016 			}
1017 			if (ring->stop_flag != -1) { //the interrupt seems will never come, we need to wake up the queue in case the interrupt will never wake it up
1018 				ieee80211_wake_queue(dev, ring->stop_flag);
1019 				ring->stop_flag = -1;
1020 			}
1021 		} else {
1022 			j = ring->bd_wr_idx;
1023 			printk("%s openwifi_tx: WARNING real stop queue lnx prio%d map to q%d stop%d hwq len%d wr%d rd%d bd prio%d len_mpdu%d seq_no%d skb_linked%p dma_mapping_addr%llu\n", sdr_compatible_str,
1024 			prio, drv_ring_idx, ring->stop_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, ring->bds[j].prio, ring->bds[j].len_mpdu, ring->bds[j].seq_no, ring->bds[j].skb_linked, ring->bds[j].dma_mapping_addr);
1025 
1026 			ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
1027 			ring->stop_flag = prio;
1028 			if (priv->stat.stat_enable) {
1029 				priv->stat.tx_prio_stop0_real_num[prio]++;
1030 				priv->stat.tx_queue_stop0_real_num[drv_ring_idx]++;
1031 			}
1032 
1033 			spin_unlock_irqrestore(&priv->lock, flags);
1034 			goto openwifi_tx_early_out;
1035 		}
1036 	}
1037 	spin_unlock_irqrestore(&priv->lock, flags);
1038 	// -------------------- end of Map Linux/SW "prio" to driver "drv_ring_idx" ------------------
1039 
1040 	// get other info from packet header
1041 	addr1_high16 = *((u16*)(hdr->addr1));
1042 	if (len_mpdu>=20) {
1043 		addr2_low32  = *((u32*)(hdr->addr2+2));
1044 		addr2_high16 = *((u16*)(hdr->addr2));
1045 	}
1046 	if (len_mpdu>=26) {
1047 		addr3_low32  = *((u32*)(hdr->addr3+2));
1048 		addr3_high16 = *((u16*)(hdr->addr3));
1049 	}
1050 
1051 	frame_control=hdr->frame_control;
1052 	pkt_need_ack = (!(info->flags&IEEE80211_TX_CTL_NO_ACK));
1053 
1054 	retry_limit_raw = info->control.rates[0].count;
1055 
1056 	rc_flags = info->control.rates[0].flags;
1057 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
1058 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
1059 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
1060 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
1061 	use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0);
1062 	qos_hdr = (*(ieee80211_get_qos_ctl(hdr)));
1063 
1064 	// get Linux rate (MCS) setting
1065 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
1066 	// drv_tx_reg_val[DRV_TX_REG_IDX_RATE]
1067 	// override rate legacy: 4:6M,   5:9M,  6:12M,  7:18M, 8:24M, 9:36M, 10:48M,   11:54M
1068 	// drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]
1069 	// override rate     ht: 4:6.5M, 5:13M, 6:19.5M,7:26M, 8:39M, 9:52M, 10:58.5M, 11:65M
1070 	if ( ieee80211_is_data(hdr->frame_control) ) {//rate override command
1071 		if (use_ht_rate && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]>0) {
1072 			rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0xF)-4;
1073 			use_short_gi  = ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0x10)==0x10);
1074 		} else if ((!use_ht_rate) && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0)
1075 			rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]&0xF);
1076 		// TODO: need to map rate_hw_value back to info->control.rates[0].idx!!!
1077 	}
1078 
1079 	// Workaround for a FPGA bug: if aggr happens on ht mcs 0, the tx core will never end, running eneless and stuck the low MAC!
1080 	if (use_ht_aggr && rate_hw_value==0)
1081 		rate_hw_value = 1;
1082 
1083 	sifs = (priv->actual_rx_lo<2500?10:16);
1084 
1085 	if (use_ht_rate) {
1086 		// printk("%s openwifi_tx: rate_hw_value %d aggr %d sifs %d\n", sdr_compatible_str, rate_hw_value, use_ht_aggr, sifs);
1087 		hdr->duration_id = gen_ht_duration_id(frame_control, control->sta->aid, qos_hdr, use_ht_aggr, rate_hw_value, sifs); //linux only do it for 11a/g, not for 11n and later
1088 	}
1089 	duration_id = hdr->duration_id;
1090 
1091 	if (use_rts_cts)
1092 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
1093 
1094 	if (use_cts_protect) {
1095 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
1096 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info));
1097 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
1098 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
1099 		if (pkt_need_ack)
1100 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
1101 
1102 		n_dbps = (use_ht_rate?wifi_n_dbps_ht_table[rate_hw_value+4]:wifi_n_dbps_table[rate_hw_value]);
1103 		traffic_pkt_duration = (use_ht_rate?36:20) + 4*calc_n_ofdm(len_mpdu, n_dbps);
1104 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
1105 	}
1106 
1107 // this is 11b stuff
1108 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1109 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
1110 
1111 	if (len_mpdu>=28) {
1112 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1113 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) {
1114 				priv->seqno += 0x10;
1115 				drv_seqno = true;
1116 			}
1117 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1118 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
1119 		}
1120 		sc = hdr->seq_ctrl;
1121 		seq_no = (sc&IEEE80211_SCTL_SEQ)>>4;
1122 	}
1123 
1124 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
1125 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
1126 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
1127 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
1128 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
1129 
1130 	// -----------end of preprocess some info from header and skb----------------
1131 
1132 	// /* HW will perform RTS-CTS when only RTS flags is set.
1133 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
1134 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
1135 	//  */
1136 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1137 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
1138 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
1139 	// 					len_mpdu, info);
1140 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
1141 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1142 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
1143 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
1144 	// 					len_mpdu, info);
1145 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
1146 	// }
1147 
1148 	if(use_ht_aggr)
1149 	{
1150 		if(ieee80211_is_data_qos(frame_control) == false)
1151 		{
1152 			printk("%s openwifi_tx: WARNING packet is not QoS packet!\n", sdr_compatible_str);
1153 			goto openwifi_tx_early_out;
1154 		}
1155 
1156 		// psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ]
1157 		len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4);
1158 		len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad;
1159 
1160 		if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) ||
1161 			(rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) ||
1162 			(prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) )
1163 		{
1164 			addr1_low32_prev = addr1_low32;
1165 			addr1_high16_prev = addr1_high16;
1166 			duration_id_prev = duration_id;
1167 			rate_hw_value_prev = rate_hw_value;
1168 			use_short_gi_prev = use_short_gi;
1169 			prio_prev = prio;
1170 			retry_limit_raw_prev = retry_limit_raw;
1171 			pkt_need_ack_prev = pkt_need_ack;
1172 
1173 			ht_aggr_start = true;
1174 		}
1175 	}
1176 	else
1177 	{
1178 		// psdu = [ MPDU ]
1179 		len_psdu = len_mpdu;
1180 
1181 		// // Don't need to reset _prev variables every time when it is not ht aggr qos data. Reason:
1182 		// // 1. In 99.9999% cases, the ht always use qos data and goes to prio/queue_idx 2. By not resetting the variable to -1, we can have continuous aggregation packet operation in FPGA queue 2.
1183 		// // 2. In other words, the aggregation operation for queue 2 in FPGA won't be interrupted by other non aggregation packets (control/management/beacon/etc.) that go to queue 0 (or other queues than 2).
1184 		// // 3. From wired domain and upper level ( DSCP, AC (0~3), WMM management, 802.11D service classes and user priority (UP) ) to chip/FPGA queue index, thre should be some (complicated) mapping relationship.
1185 		// // 4. More decent design is setting these aggregation flags (ht_aggr_start) per queue/prio here in driver. But since now only queue 2 and 0 are used (data goes to queue 2, others go to queue 0) in normal (most) cases, let's not go to the decent (complicated) solution immediately.
1186 		// addr1_low32_prev = -1;
1187 		// addr1_high16_prev = -1;
1188 		// duration_id_prev = -1;
1189 		// use_short_gi_prev = -1;
1190 		// rate_hw_value_prev = -1;
1191 		// prio_prev = -1;
1192 		// retry_limit_raw_prev = -1;
1193 		// pkt_need_ack_prev = -1;
1194 	}
1195 	num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
1196 
1197 	if ( ( (!pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_BROADCAST) ) || ( (pkt_need_ack)&&(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_UNICAST) ) )
1198 		printk("%s openwifi_tx: %dB RC%x %dM FC%04x DI%04x ADDR%04x%08x/%04x%08x/%04x%08x flag%08x QoS%02x SC%d_%d retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
1199 			len_mpdu, rc_flags, (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
1200 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
1201 			info->flags, qos_hdr, seq_no, drv_seqno, retry_limit_raw, pkt_need_ack, prio, drv_ring_idx,
1202 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
1203 			ring->bd_wr_idx,ring->bd_rd_idx);
1204 
1205 	// check whether the packet is bigger than DMA buffer size
1206 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
1207 	if (num_dma_byte > TX_BD_BUF_SIZE) {
1208 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
1209 		goto openwifi_tx_early_out;
1210 	}
1211 
1212 	// Copy MPDU delimiter and padding into sk_buff
1213 	if(use_ht_aggr)
1214 	{
1215 		// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
1216 		if (skb_headroom(skb)<LEN_MPDU_DELIM) {// in case original skb headroom is not enough to host MPDU delimiter
1217 			printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_headroom(skb) %d < LEN_MPDU_DELIM %d\n", sdr_compatible_str, ring->bd_wr_idx, skb_headroom(skb), LEN_MPDU_DELIM);
1218 			if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) {
1219 				printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1220 				goto openwifi_tx_early_out;
1221 			}
1222 			if (skb->sk != NULL)
1223 				skb_set_owner_w(skb_new, skb->sk);
1224 			dev_kfree_skb(skb);
1225 			skb = skb_new;
1226 		}
1227 		skb_push( skb, LEN_MPDU_DELIM );
1228 		dma_buf = skb->data;
1229 
1230 		// fill in MPDU delimiter
1231 		*((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0;
1232 		*((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf));
1233 		*((u8 *)(dma_buf+3)) = 0x4e;
1234 
1235 		// Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter
1236 		num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu);
1237 		if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad
1238 			printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad);
1239 			if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) {
1240 				printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1241 				goto openwifi_tx_early_out;
1242 			}
1243 			if (skb->sk != NULL)
1244 				skb_set_owner_w(skb_new, skb->sk);
1245 			dev_kfree_skb(skb);
1246 			skb = skb_new;
1247 		}
1248 		skb_put( skb, num_byte_pad );
1249 
1250 		// fill in MPDU CRC
1251 		*((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu);
1252 
1253 		// fill in MPDU delimiter padding
1254 		memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad);
1255 
1256 		// num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary.
1257 		// If they have different lengths, add "empty MPDU delimiter" for alignment
1258 		if(num_dma_byte == len_psdu + 4)
1259 		{
1260 			*((u32*)(dma_buf+len_psdu)) = 0x4e140000;
1261 			len_psdu = num_dma_byte;
1262 		}
1263 	}
1264 	else
1265 	{
1266 		// Extend sk_buff to hold padding
1267 		num_byte_pad = num_dma_byte - len_mpdu;
1268 		if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad
1269 			printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad);
1270 			if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) {
1271 				printk("%s openwifi_tx: WARNING sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx);
1272 				goto openwifi_tx_early_out;
1273 			}
1274 			if (skb->sk != NULL)
1275 				skb_set_owner_w(skb_new, skb->sk);
1276 			dev_kfree_skb(skb);
1277 			skb = skb_new;
1278 		}
1279 		skb_put( skb, num_byte_pad );
1280 
1281 		dma_buf = skb->data;
1282 	}
1283 //	for(i = 0; i <= num_dma_symbol; i++)
1284 //		printk("%16llx\n", (*(u64*)(&(dma_buf[i*8]))));
1285 
1286 	rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]);
1287 
1288 	retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) );
1289 
1290 	queue_idx = drv_ring_idx; // from driver ring idx to FPGA queue_idx mapping
1291 
1292 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
1293 	cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value);
1294 	tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | num_dma_symbol );
1295 	phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu );
1296 
1297 	/* We must be sure that tx_flags is written last because the HW
1298 	 * looks at it to check if the rest of data is valid or not
1299 	 */
1300 	//wmb();
1301 	// entry->flags = cpu_to_le32(tx_flags);
1302 	/* We must be sure this has been written before following HW
1303 	 * register write, because this write will make the HW attempts
1304 	 * to DMA the just-written data
1305 	 */
1306 	//wmb();
1307 
1308 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
1309 
1310 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
1311 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
1312 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
1313 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<=RING_ROOM_THRESHOLD)  || ring->stop_flag>=0 ) {
1314 		if( priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&DMESG_LOG_NORMAL_QUEUE_STOP )
1315 			printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio%d queue%d no room flag%x hwq len%08x request%d wr%d rd%d\n", sdr_compatible_str,
1316 			        prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
1317 
1318 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
1319 		ring->stop_flag = prio;
1320 		if (priv->stat.stat_enable) {
1321 			priv->stat.tx_prio_stop1_num[prio]++;
1322 			priv->stat.tx_queue_stop1_num[queue_idx]++;
1323 		}
1324 		// goto openwifi_tx_early_out_after_lock;
1325 	}
1326 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
1327 
1328 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
1329 	while(delay_count<100 && status!=DMA_COMPLETE) {
1330 		status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
1331 		delay_count++;
1332 		udelay(4);
1333 		// udelay(priv->stat.dbg_ch1);
1334 	}
1335 	if (status!=DMA_COMPLETE) {
1336 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
1337 		goto openwifi_tx_early_out_after_lock;
1338 	}
1339 
1340 //-------------------------fire skb DMA to hardware----------------------------------
1341 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
1342 				 num_dma_byte, DMA_MEM_TO_DEV);
1343 
1344 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
1345 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
1346 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
1347 		goto openwifi_tx_early_out_after_lock;
1348 	}
1349 
1350 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
1351 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
1352 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
1353 
1354 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
1355 	tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config);
1356 	tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config);
1357 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
1358 	if (!(priv->txd)) {
1359 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
1360 		goto openwifi_tx_after_dma_mapping;
1361 	}
1362 
1363 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
1364 
1365 	if (dma_submit_error(priv->tx_cookie)) {
1366 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
1367 		goto openwifi_tx_after_dma_mapping;
1368 	}
1369 
1370 	// seems everything is ok. let's mark this pkt in bd descriptor ring
1371 	ring->bds[ring->bd_wr_idx].prio = prio;
1372 	ring->bds[ring->bd_wr_idx].len_mpdu = len_mpdu;
1373 	ring->bds[ring->bd_wr_idx].seq_no = seq_no;
1374 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
1375 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
1376 
1377 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
1378 
1379 	dma_async_issue_pending(priv->tx_chan);
1380 
1381 	spin_unlock_irqrestore(&priv->lock, flags);
1382 
1383 	if (priv->stat.stat_enable) {
1384 		priv->stat.tx_prio_num[prio]++;
1385 		priv->stat.tx_queue_num[queue_idx]++;
1386 	}
1387 
1388 	return;
1389 
1390 openwifi_tx_after_dma_mapping:
1391 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
1392 
1393 openwifi_tx_early_out_after_lock:
1394 	spin_unlock_irqrestore(&priv->lock, flags);
1395 	report_pkt_loss_due_to_driver_drop(dev, skb);
1396 	// dev_kfree_skb(skb);
1397 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1398 	return;
1399 
1400 openwifi_tx_early_out:
1401 	report_pkt_loss_due_to_driver_drop(dev, skb);
1402 	// dev_kfree_skb(skb);
1403 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1404 }
1405 
1406 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant)
1407 {
1408 	struct openwifi_priv *priv = dev->priv;
1409 	u8 fpga_tx_ant_setting, target_rx_ant;
1410 	u32 atten_mdb_tx0, atten_mdb_tx1;
1411 	struct ctrl_outs_control ctrl_out;
1412 	int ret;
1413 
1414 	printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant);
1415 
1416 	if (tx_ant >= 4 || tx_ant == 0) {
1417 		return -EINVAL;
1418 	} else if (rx_ant >= 3 || rx_ant == 0) {
1419 		return -EINVAL;
1420 	}
1421 
1422 	fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16));
1423 	target_rx_ant = ((rx_ant&1)?0:1);
1424 
1425 	// try rf chip setting firstly, only update internal state variable when rf chip succeed
1426 	atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1427 	atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1428 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true);
1429 	if (ret < 0) {
1430 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0);
1431 		return -EINVAL;
1432 	} else {
1433 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0);
1434 	}
1435 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true);
1436 	if (ret < 0) {
1437 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1);
1438 		return -EINVAL;
1439 	} else {
1440 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1);
1441 	}
1442 
1443 	ctrl_out.en_mask = priv->ctrl_out.en_mask;
1444 	ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
1445 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out));
1446 	if (ret < 0) {
1447 		printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1448 		return -EINVAL;
1449 	} else {
1450 		printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1451 	}
1452 
1453 	tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting);
1454 	ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read();
1455 	if (ret != fpga_tx_ant_setting) {
1456 		printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret);
1457 		return -EINVAL;
1458 	} else {
1459 		printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1460 	}
1461 
1462 	rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant);
1463 	ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read();
1464 	if (ret != target_rx_ant) {
1465 		printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret);
1466 		return -EINVAL;
1467 	} else {
1468 		printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1469 	}
1470 
1471 	// update internal state variable
1472 	priv->runtime_tx_ant_cfg = tx_ant;
1473 	priv->runtime_rx_ant_cfg = rx_ant;
1474 
1475 	if (TX_OFFSET_TUNING_ENABLE)
1476 		priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE
1477 	else {
1478 		if (tx_ant == 3)
1479 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH;
1480 		else
1481 			priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1482 	}
1483 
1484 	priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1485 	priv->ctrl_out.index=ctrl_out.index;
1486 
1487 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1488 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1489 
1490 	return 0;
1491 }
1492 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant)
1493 {
1494 	struct openwifi_priv *priv = dev->priv;
1495 
1496 	*tx_ant = priv->runtime_tx_ant_cfg;
1497 	*rx_ant = priv->runtime_rx_ant_cfg;
1498 
1499 	printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant);
1500 
1501 	printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str,
1502 	priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index);
1503 
1504 	printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str,
1505 	tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read());
1506 
1507 	printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str,
1508 	ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER));
1509 
1510 	return 0;
1511 }
1512 
1513 static int openwifi_start(struct ieee80211_hw *dev)
1514 {
1515 	struct openwifi_priv *priv = dev->priv;
1516 	int ret, i;
1517 	u32 reg;
1518 
1519 	for (i=0; i<MAX_NUM_VIF; i++) {
1520 		priv->vif[i] = NULL;
1521 	}
1522 
1523 	// //keep software registers persistent between NIC down and up for multiple times
1524 	/*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
1525 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
1526 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
1527 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
1528 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/
1529 
1530 	//turn on radio
1531 	openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
1532 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
1533 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
1534 		priv->rfkill_off = 1;// 0 off, 1 on
1535 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
1536 	}
1537 	else
1538 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
1539 
1540 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1541 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1542 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1543 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1544 	xpu_api->hw_init(priv->xpu_cfg);
1545 
1546 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1547 
1548 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1549 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1550 
1551 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1552 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1553 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1554 
1555 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1556 	if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) {
1557 		ret = PTR_ERR(priv->rx_chan);
1558 		pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan);
1559 		goto err_dma;
1560 	}
1561 
1562 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1563 	if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) {
1564 		ret = PTR_ERR(priv->tx_chan);
1565 		pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan);
1566 		goto err_dma;
1567 	}
1568 	printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan);
1569 
1570 	ret = openwifi_init_rx_ring(priv);
1571 	if (ret) {
1572 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1573 		goto err_free_rings;
1574 	}
1575 
1576 	priv->seqno=0;
1577 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1578 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1579 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1580 			goto err_free_rings;
1581 		}
1582 	}
1583 
1584 	if ( (ret = rx_dma_setup(dev)) ) {
1585 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1586 		goto err_free_rings;
1587 	}
1588 
1589 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1590 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1591 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1592 	if (ret) {
1593 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1594 		goto err_free_rings;
1595 	} else {
1596 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1597 	}
1598 
1599 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1600 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1601 			IRQF_SHARED, "sdr,tx_itrpt", dev);
1602 	if (ret) {
1603 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1604 		goto err_free_rings;
1605 	} else {
1606 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1607 	}
1608 
1609 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1610 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1611 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1612 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1613 
1614 	priv->stat.csma_cfg0 = xpu_api->XPU_REG_FORCE_IDLE_MISC_read();
1615 
1616 	// disable ad9361 auto calibration and enable openwifi fpga spi control
1617 	priv->ad9361_phy->state->auto_cal_en = false;   // turn off auto Tx quadrature calib.
1618 	priv->ad9361_phy->state->manual_tx_quad_cal_en = true;  // turn on manual Tx quadrature calib.
1619 	xpu_api->XPU_REG_SPI_DISABLE_write(0);
1620 
1621 // normal_out:
1622 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1623 	return 0;
1624 
1625 err_free_rings:
1626 	openwifi_free_rx_ring(priv);
1627 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1628 		openwifi_free_tx_ring(priv, i);
1629 
1630 err_dma:
1631 	ret = -1;
1632 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1633 	return ret;
1634 }
1635 
1636 static void openwifi_stop(struct ieee80211_hw *dev)
1637 {
1638 	struct openwifi_priv *priv = dev->priv;
1639 	u32 reg, reg1;
1640 	int i;
1641 
1642 	// enable ad9361 auto calibration and disable openwifi fpga spi control
1643 	priv->ad9361_phy->state->auto_cal_en = true;   // turn on auto Tx quadrature calib.
1644 	priv->ad9361_phy->state->manual_tx_quad_cal_en = false;  // turn off manual Tx quadrature calib.
1645 	xpu_api->XPU_REG_SPI_DISABLE_write(1);
1646 
1647 	//turn off radio
1648 	#if 1
1649 	ad9361_tx_mute(priv->ad9361_phy, 1);
1650 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1651 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1652 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1653 		priv->rfkill_off = 0;// 0 off, 1 on
1654 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1655 	}
1656 	else
1657 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1658 	#endif
1659 
1660 	//ieee80211_stop_queue(dev, 0);
1661 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1662 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1663 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1664 
1665 	for (i=0; i<MAX_NUM_VIF; i++) {
1666 		priv->vif[i] = NULL;
1667 	}
1668 
1669 	openwifi_free_rx_ring(priv);
1670 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1671 		openwifi_free_tx_ring(priv, i);
1672 
1673 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1674 	dmaengine_terminate_all(priv->rx_chan);
1675 	dma_release_channel(priv->rx_chan);
1676 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1677 	dmaengine_terminate_all(priv->tx_chan);
1678 	dma_release_channel(priv->tx_chan);
1679 
1680 	//priv->rf->stop(dev);
1681 
1682 	free_irq(priv->irq_rx, dev);
1683 	free_irq(priv->irq_tx, dev);
1684 
1685 // normal_out:
1686 	printk("%s openwifi_stop\n", sdr_compatible_str);
1687 }
1688 
1689 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1690 			   struct ieee80211_vif *vif)
1691 {
1692 	u32 tsft_low, tsft_high;
1693 
1694 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1695 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1696 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1697 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1698 }
1699 
1700 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1701 {
1702 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1703 	u32 tsft_low  = (tsf&0xffffffff);
1704 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1705 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1706 }
1707 
1708 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1709 {
1710 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1711 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1712 }
1713 
1714 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1715 {
1716 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1717 	return(0);
1718 }
1719 
1720 static void openwifi_beacon_work(struct work_struct *work)
1721 {
1722 	struct openwifi_vif *vif_priv =
1723 		container_of(work, struct openwifi_vif, beacon_work.work);
1724 	struct ieee80211_vif *vif =
1725 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1726 	struct ieee80211_hw *dev = vif_priv->dev;
1727 	struct ieee80211_mgmt *mgmt;
1728 	struct sk_buff *skb;
1729 
1730 	/* don't overflow the tx ring */
1731 	if (ieee80211_queue_stopped(dev, 0))
1732 		goto resched;
1733 
1734 	/* grab a fresh beacon */
1735 	skb = ieee80211_beacon_get(dev, vif);
1736 	if (!skb)
1737 		goto resched;
1738 
1739 	/*
1740 	 * update beacon timestamp w/ TSF value
1741 	 * TODO: make hardware update beacon timestamp
1742 	 */
1743 	mgmt = (struct ieee80211_mgmt *)skb->data;
1744 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1745 
1746 	/* TODO: use actual beacon queue */
1747 	skb_set_queue_mapping(skb, 0);
1748 	openwifi_tx(dev, NULL, skb);
1749 
1750 resched:
1751 	/*
1752 	 * schedule next beacon
1753 	 * TODO: use hardware support for beacon timing
1754 	 */
1755 	schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1756 	// printk("%s openwifi_beacon_work beacon_int %d\n", sdr_compatible_str, vif->bss_conf.beacon_int);
1757 }
1758 
1759 static int openwifi_add_interface(struct ieee80211_hw *dev,
1760 				 struct ieee80211_vif *vif)
1761 {
1762 	int i;
1763 	struct openwifi_priv *priv = dev->priv;
1764 	struct openwifi_vif *vif_priv;
1765 
1766 	switch (vif->type) {
1767 	case NL80211_IFTYPE_AP:
1768 	case NL80211_IFTYPE_STATION:
1769 	case NL80211_IFTYPE_ADHOC:
1770 	case NL80211_IFTYPE_MONITOR:
1771 	case NL80211_IFTYPE_MESH_POINT:
1772 		break;
1773 	default:
1774 		return -EOPNOTSUPP;
1775 	}
1776 	// let's support more than 1 interface
1777 	for (i=0; i<MAX_NUM_VIF; i++) {
1778 		if (priv->vif[i] == NULL)
1779 			break;
1780 	}
1781 
1782 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1783 
1784 	if (i==MAX_NUM_VIF)
1785 		return -EBUSY;
1786 
1787 	priv->vif[i] = vif;
1788 
1789 	/* Initialize driver private area */
1790 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1791 	vif_priv->idx = i;
1792 
1793 	vif_priv->dev = dev;
1794 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1795 	vif_priv->enable_beacon = false;
1796 
1797 	priv->mac_addr[0] = vif->addr[0];
1798 	priv->mac_addr[1] = vif->addr[1];
1799 	priv->mac_addr[2] = vif->addr[2];
1800 	priv->mac_addr[3] = vif->addr[3];
1801 	priv->mac_addr[4] = vif->addr[4];
1802 	priv->mac_addr[5] = vif->addr[5];
1803 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); // set mac addr in fpga
1804 
1805 	printk("%s openwifi_add_interface end with vif idx %d addr %02x:%02x:%02x:%02x:%02x:%02x\n", sdr_compatible_str,vif_priv->idx,
1806 	vif->addr[0],vif->addr[1],vif->addr[2],vif->addr[3],vif->addr[4],vif->addr[5]);
1807 
1808 	return 0;
1809 }
1810 
1811 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1812 				     struct ieee80211_vif *vif)
1813 {
1814 	struct openwifi_vif *vif_priv;
1815 	struct openwifi_priv *priv = dev->priv;
1816 
1817 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1818 	priv->vif[vif_priv->idx] = NULL;
1819 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1820 }
1821 
1822 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1823 {
1824 	struct openwifi_priv *priv = dev->priv;
1825 	struct ieee80211_conf *conf = &dev->conf;
1826 
1827 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
1828 		if ( priv->stat.restrict_freq_mhz>0 && (conf->chandef.chan->center_freq != priv->stat.restrict_freq_mhz) ) {
1829 			printk("%s openwifi_config avoid Linux requested freq %dMHz (restrict freq %dMHz)\n", sdr_compatible_str,
1830 			conf->chandef.chan->center_freq, priv->stat.restrict_freq_mhz);
1831 			return -EINVAL;
1832 		}
1833 		priv->rf->set_chan(dev, conf);
1834 	} else
1835 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1836 
1837 	return 0;
1838 }
1839 
1840 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1841 				     struct ieee80211_vif *vif,
1842 				     struct ieee80211_bss_conf *info,
1843 				     u32 changed)
1844 {
1845 	struct openwifi_priv *priv = dev->priv;
1846 	struct openwifi_vif *vif_priv;
1847 	u32 bssid_low, bssid_high;
1848 
1849 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1850 
1851 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1852 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1853 	if (changed & BSS_CHANGED_BSSID) {
1854 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1855 		// write new bssid to our HW, and do not change bssid filter
1856 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1857 		bssid_low = ( *( (u32*)(info->bssid) ) );
1858 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1859 
1860 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1861 		//bssid_high = (bssid_high|bssid_filter_high);
1862 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1863 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1864 	}
1865 
1866 	if (changed & BSS_CHANGED_BEACON_INT) {
1867 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1868 	}
1869 
1870 	if (changed & BSS_CHANGED_TXPOWER)
1871 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1872 
1873 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1874 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1875 
1876 	if (changed & BSS_CHANGED_BASIC_RATES)
1877 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1878 
1879 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1880 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1881 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1882 		if (info->use_short_slot && priv->use_short_slot==false) {
1883 			priv->use_short_slot=true;
1884 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1885 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1886 			priv->use_short_slot=false;
1887 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1888 		}
1889 	}
1890 
1891 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1892 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1893 		vif_priv->enable_beacon = info->enable_beacon;
1894 	}
1895 
1896 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1897 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1898 		if (vif_priv->enable_beacon) {
1899 			schedule_work(&vif_priv->beacon_work.work);
1900 			printk("%s openwifi_bss_info_changed WARNING enable_beacon\n",sdr_compatible_str);
1901 		}
1902 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1903 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1904 	}
1905 }
1906 // helper function
1907 u32 log2val(u32 val){
1908 	u32 ret_val = 0 ;
1909 	while(val>1){
1910 		val = val >> 1 ;
1911 		ret_val ++ ;
1912 	}
1913 	return ret_val ;
1914 }
1915 
1916 static int openwifi_conf_tx(struct ieee80211_hw *dev, struct ieee80211_vif *vif, u16 queue,
1917 	      const struct ieee80211_tx_queue_params *params)
1918 {
1919 	struct openwifi_priv *priv = dev->priv;
1920 	u32 reg_val, cw_min_exp, cw_max_exp;
1921 
1922 	if (priv->stat.cw_max_min_cfg == 0) {
1923 		printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
1924 			sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1925 
1926 		reg_val=xpu_api->XPU_REG_CSMA_CFG_read();
1927 		cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
1928 		cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
1929 		switch(queue){
1930 			case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) );  break;
1931 			case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) );  break;
1932 			case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break;
1933 			case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break;
1934 			default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
1935 		}
1936 	} else {
1937 		reg_val = priv->stat.cw_max_min_cfg;
1938 		printk("%s openwifi_conf_tx: override cw max min for q3 to q0: %d %d; %d %d; %d %d; %d %d\n",
1939 			sdr_compatible_str,
1940 			(1<<((reg_val>>28)&0xF))-1,
1941 			(1<<((reg_val>>24)&0xF))-1,
1942 			(1<<((reg_val>>20)&0xF))-1,
1943 			(1<<((reg_val>>16)&0xF))-1,
1944 			(1<<((reg_val>>12)&0xF))-1,
1945 			(1<<((reg_val>> 8)&0xF))-1,
1946 			(1<<((reg_val>> 4)&0xF))-1,
1947 			(1<<((reg_val>> 0)&0xF))-1);
1948 	}
1949 	xpu_api->XPU_REG_CSMA_CFG_write(reg_val);
1950 	return(0);
1951 }
1952 
1953 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1954 				     struct netdev_hw_addr_list *mc_list)
1955 {
1956 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1957 	return netdev_hw_addr_list_count(mc_list);
1958 }
1959 
1960 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1961 				     unsigned int changed_flags,
1962 				     unsigned int *total_flags,
1963 				     u64 multicast)
1964 {
1965 	struct openwifi_priv *priv = dev->priv;
1966 	u32 filter_flag;
1967 
1968 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1969 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1970 
1971 	filter_flag = (*total_flags);
1972 
1973 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1974 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1975 
1976 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1977 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1978 		filter_flag = (filter_flag|MONITOR_ALL);
1979 	else
1980 		filter_flag = (filter_flag&(~MONITOR_ALL));
1981 
1982 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1983 		filter_flag = (filter_flag|MY_BEACON);
1984 
1985 	filter_flag = (filter_flag|FIF_PSPOLL);
1986 
1987 	if (priv->stat.rx_monitor_all)
1988 		filter_flag = (filter_flag|MONITOR_ALL);
1989 
1990 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
1991 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
1992 
1993 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
1994 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
1995 }
1996 
1997 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params)
1998 {
1999 	struct ieee80211_sta *sta = params->sta;
2000 	enum ieee80211_ampdu_mlme_action action = params->action;
2001 	// struct openwifi_priv *priv = hw->priv;
2002 	u16 max_tx_bytes, buf_size;
2003 	u32 ampdu_action_config;
2004 
2005 	if (!AGGR_ENABLE) {
2006 		return -EOPNOTSUPP;
2007 	}
2008 
2009 	switch (action)
2010 	{
2011 		case IEEE80211_AMPDU_TX_START:
2012 			ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
2013 			printk("%s openwifi_ampdu_action: start TX aggregation. tid %d\n", sdr_compatible_str, params->tid);
2014 			break;
2015 		case IEEE80211_AMPDU_TX_STOP_CONT:
2016 		case IEEE80211_AMPDU_TX_STOP_FLUSH:
2017 		case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
2018 			ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
2019 			printk("%s openwifi_ampdu_action: stop TX aggregation. tid %d\n", sdr_compatible_str, params->tid);
2020 			break;
2021 		case IEEE80211_AMPDU_TX_OPERATIONAL:
2022 			buf_size = 4;
2023 //			buf_size = (params->buf_size) - 1;
2024 			max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1;
2025 			ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes );
2026 			tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config);
2027 			printk("%s openwifi_ampdu_action: TX operational. tid %d max_tx_bytes %d ampdu_density %d buf_size %d\n",
2028 			sdr_compatible_str, params->tid, max_tx_bytes, sta->ht_cap.ampdu_density, buf_size);
2029 			break;
2030 		case IEEE80211_AMPDU_RX_START:
2031 			printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
2032 			break;
2033 		case IEEE80211_AMPDU_RX_STOP:
2034 			printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
2035 			break;
2036 		default:
2037 			return -EOPNOTSUPP;
2038 	}
2039 
2040 	return 0;
2041 }
2042 
2043 static const struct ieee80211_ops openwifi_ops = {
2044 	.tx			       = openwifi_tx,
2045 	.start			   = openwifi_start,
2046 	.stop			   = openwifi_stop,
2047 	.add_interface	   = openwifi_add_interface,
2048 	.remove_interface  = openwifi_remove_interface,
2049 	.config			   = openwifi_config,
2050 	.set_antenna       = openwifi_set_antenna,
2051 	.get_antenna       = openwifi_get_antenna,
2052 	.bss_info_changed  = openwifi_bss_info_changed,
2053 	.conf_tx		   = openwifi_conf_tx,
2054 	.prepare_multicast = openwifi_prepare_multicast,
2055 	.configure_filter  = openwifi_configure_filter,
2056 	.rfkill_poll	   = openwifi_rfkill_poll,
2057 	.get_tsf		   = openwifi_get_tsf,
2058 	.set_tsf		   = openwifi_set_tsf,
2059 	.reset_tsf		   = openwifi_reset_tsf,
2060 	.set_rts_threshold = openwifi_set_rts_threshold,
2061 	.ampdu_action      = openwifi_ampdu_action,
2062 	.testmode_cmd	   = openwifi_testmode_cmd,
2063 };
2064 
2065 static const struct of_device_id openwifi_dev_of_ids[] = {
2066 	{ .compatible = "sdr,sdr", },
2067 	{}
2068 };
2069 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
2070 
2071 static int custom_match_spi_dev(struct device *dev, void *data)
2072 {
2073     const char *name = data;
2074 
2075 	bool ret = sysfs_streq(name, dev->of_node->name);
2076 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
2077 	return ret;
2078 }
2079 
2080 static int custom_match_platform_dev(struct device *dev, void *data)
2081 {
2082 	struct platform_device *plat_dev = to_platform_device(dev);
2083 	const char *name = data;
2084 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
2085 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
2086 
2087 	if (match_flag) {
2088 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
2089 	}
2090 	return(match_flag);
2091 }
2092 
2093 static int openwifi_dev_probe(struct platform_device *pdev)
2094 {
2095 	struct ieee80211_hw *dev;
2096 	struct openwifi_priv *priv;
2097 	int err=1, rand_val;
2098 	const char *chip_name, *fpga_model;
2099 	u32 reg, i;//, reg1;
2100 
2101 	struct device_node *np = pdev->dev.of_node;
2102 
2103 	struct device *tmp_dev;
2104 	struct platform_device *tmp_pdev;
2105 	struct iio_dev *tmp_indio_dev;
2106 	// struct gpio_leds_priv *tmp_led_priv;
2107 
2108 	printk("\n");
2109 
2110 	if (np) {
2111 		const struct of_device_id *match;
2112 
2113 		match = of_match_node(openwifi_dev_of_ids, np);
2114 		if (match) {
2115 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
2116 			err = 0;
2117 		}
2118 	}
2119 
2120 	if (err)
2121 		return err;
2122 
2123 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
2124 	if (!dev) {
2125 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
2126 		err = -ENOMEM;
2127 		goto err_free_dev;
2128 	}
2129 
2130 	priv = dev->priv;
2131 	priv->pdev = pdev;
2132 
2133 	err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
2134 	if(err < 0) {
2135 		printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
2136 		priv->fpga_type = SMALL_FPGA;
2137 	} else {
2138 		// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
2139 		if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
2140 			priv->fpga_type = LARGE_FPGA;
2141 		// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
2142 		else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
2143 			priv->fpga_type = SMALL_FPGA;
2144 	}
2145 
2146 	// //-------------find ad9361-phy driver for lo/channel control---------------
2147 	priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
2148 	priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
2149 	priv->last_tx_quad_cal_lo = 1000;
2150 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
2151 	if (tmp_dev == NULL) {
2152 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
2153 		err = -ENODEV;
2154 		goto err_free_dev;
2155 	}
2156 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
2157 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
2158 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
2159 		err = -ENODEV;
2160 		goto err_free_dev;
2161 	}
2162 
2163 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
2164 	if (!(priv->ad9361_phy)) {
2165 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
2166 		err = -ENODEV;
2167 		goto err_free_dev;
2168 	}
2169 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
2170 
2171 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
2172 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
2173 	if (!tmp_dev) {
2174 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
2175 		err = -ENODEV;
2176 		goto err_free_dev;
2177 	}
2178 
2179 	tmp_pdev = to_platform_device(tmp_dev);
2180 	if (!tmp_pdev) {
2181 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
2182 		err = -ENODEV;
2183 		goto err_free_dev;
2184 	}
2185 
2186 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
2187 	if (!tmp_indio_dev) {
2188 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
2189 		err = -ENODEV;
2190 		goto err_free_dev;
2191 	}
2192 
2193 	priv->dds_st = iio_priv(tmp_indio_dev);
2194 	if (!(priv->dds_st)) {
2195 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
2196 		err = -ENODEV;
2197 		goto err_free_dev;
2198 	}
2199 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
2200 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
2201 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
2202 
2203 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
2204 	// turn off radio by muting tx
2205 	// ad9361_tx_mute(priv->ad9361_phy, 1);
2206 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
2207 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2208 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
2209 	// 	priv->rfkill_off = 0;// 0 off, 1 on
2210 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
2211 	// }
2212 	// else
2213 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
2214 
2215 	// //-----------------------------parse the test_mode input--------------------------------
2216 	if (test_mode&1)
2217 		AGGR_ENABLE = true;
2218 
2219 	// if (test_mode&2)
2220 	// 	TX_OFFSET_TUNING_ENABLE = false;
2221 
2222 	priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel()
2223 	priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized
2224 
2225 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2226 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2227 
2228 	priv->xpu_cfg = XPU_NORMAL;
2229 
2230 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
2231 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
2232 
2233 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
2234 	if (priv->rf_bw == 20000000) { //DO NOT USE. Not used for long time.
2235 		priv->rx_intf_cfg = RX_INTF_BYPASS;
2236 		priv->tx_intf_cfg = TX_INTF_BYPASS;
2237 		//priv->rx_freq_offset_to_lo_MHz = 0;
2238 		//priv->tx_freq_offset_to_lo_MHz = 0;
2239 	} else if (priv->rf_bw == 40000000) {
2240 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
2241 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
2242 
2243 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
2244 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2245 		if (TX_OFFSET_TUNING_ENABLE)
2246 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
2247 		else
2248 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2249 		// // try another antenna option
2250 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
2251 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
2252 
2253 		#if 0
2254 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
2255 			priv->rx_freq_offset_to_lo_MHz = -10;
2256 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
2257 			priv->rx_freq_offset_to_lo_MHz = 10;
2258 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
2259 			priv->rx_freq_offset_to_lo_MHz = 0;
2260 		} else {
2261 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
2262 		}
2263 		#endif
2264 	} else {
2265 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
2266 		err = -EBADRQC;
2267 		goto err_free_dev;
2268 	}
2269 
2270 	printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att);
2271 
2272 	priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2));
2273 	priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2);
2274 
2275 	priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK;
2276 	priv->ctrl_out.index  =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
2277 
2278 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
2279 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
2280 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
2281 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
2282 
2283 	priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att;
2284 
2285 	//let's by default turn radio on when probing
2286 	err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
2287 	if (err) {
2288 		printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err);
2289 		err = -EIO;
2290 		goto err_free_dev;
2291 	}
2292 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
2293 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
2294 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
2295 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
2296 
2297 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
2298 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
2299 		priv->rfkill_off = 1;// 0 off, 1 on
2300 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
2301 	} else
2302 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
2303 
2304 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
2305 
2306 	// //set ad9361 in certain mode
2307 	#if 0
2308 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
2309 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2310 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
2311 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2312 
2313 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
2314 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
2315 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
2316 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
2317 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
2318 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
2319 	#endif
2320 
2321 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
2322 
2323 	SET_IEEE80211_DEV(dev, &pdev->dev);
2324 	platform_set_drvdata(pdev, dev);
2325 
2326 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
2327 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
2328 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
2329 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
2330 
2331 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
2332 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
2333 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
2334 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
2335 
2336 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
2337 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
2338 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
2339 	priv->ampdu_reference = 0;
2340 
2341 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
2342 	priv->band_2GHz.channels = priv->channels_2GHz;
2343 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
2344 	priv->band_2GHz.bitrates = priv->rates_2GHz;
2345 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
2346 	priv->band_2GHz.ht_cap.ht_supported = true;
2347 	// priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
2348 	if (AGGR_ENABLE) {
2349 		priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2350 		priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2351 	}
2352 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
2353 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2354 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2355 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
2356 
2357 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
2358 	priv->band_5GHz.channels = priv->channels_5GHz;
2359 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
2360 	priv->band_5GHz.bitrates = priv->rates_5GHz;
2361 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
2362 	priv->band_5GHz.ht_cap.ht_supported = true;
2363 	// priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
2364 	if (AGGR_ENABLE) {
2365 		priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2366 		priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2367 	}
2368 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
2369 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2370 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2371 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2372 
2373 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2374 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2375 
2376 	// ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); // remove this because we don't want: mac80211.h: host buffers frame for PS and we fetch them via ieee80211_get_buffered_bc()
2377 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2378 	ieee80211_hw_set(dev, BEACON_TX_STATUS);//mac80211.h: The device/driver provides TX status for sent beacons.
2379 
2380 	ieee80211_hw_set(dev, REPORTS_TX_ACK_STATUS);//mac80211.h: Hardware can provide ack status reports of Tx frames to the stack
2381 
2382 	// * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device
2383 	// *	autonomously manages the PS status of connected stations. When
2384 	// *	this flag is set mac80211 will not trigger PS mode for connected
2385 	// *	stations based on the PM bit of incoming frames.
2386 	// *	Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure
2387 	// *	the PS mode of connected stations.
2388 	ieee80211_hw_set(dev, AP_LINK_PS);
2389 
2390 	if (AGGR_ENABLE) {
2391 		ieee80211_hw_set(dev, AMPDU_AGGREGATION);
2392 	}
2393 
2394 	dev->extra_tx_headroom = LEN_MPDU_DELIM;
2395 
2396 	dev->vif_data_size = sizeof(struct openwifi_vif);
2397 	dev->wiphy->interface_modes =
2398 			BIT(NL80211_IFTYPE_MONITOR)|
2399 			BIT(NL80211_IFTYPE_P2P_GO) |
2400 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
2401 			BIT(NL80211_IFTYPE_AP) |
2402 			BIT(NL80211_IFTYPE_STATION) |
2403 			BIT(NL80211_IFTYPE_ADHOC) |
2404 			BIT(NL80211_IFTYPE_MESH_POINT) |
2405 			BIT(NL80211_IFTYPE_OCB);
2406 	dev->wiphy->iface_combinations = &openwifi_if_comb;
2407 	dev->wiphy->n_iface_combinations = 1;
2408 
2409 	dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK;
2410 	dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK;
2411 
2412 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2413 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2414 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2415 
2416 	chip_name = "ZYNQ";
2417 
2418 	/* we declare to MAC80211 all the queues except for beacon queue
2419 	 * that will be eventually handled by DRV.
2420 	 * TX rings are arranged in such a way that lower is the IDX,
2421 	 * higher is the priority, in order to achieve direct mapping
2422 	 * with mac80211, however the beacon queue is an exception and it
2423 	 * is mapped on the highst tx ring IDX.
2424 	 */
2425 	dev->queues = MAX_NUM_HW_QUEUE;
2426 	//dev->queues = 1;
2427 
2428 	ieee80211_hw_set(dev, SIGNAL_DBM);
2429 
2430 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2431 
2432 	priv->rf = &ad9361_rf_ops;
2433 
2434 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2435 	priv->slice_idx = 0xFFFFFFFF;
2436 
2437 	sg_init_table(&(priv->tx_sg), 1);
2438 
2439 	get_random_bytes(&rand_val, sizeof(rand_val));
2440     rand_val%=250;
2441 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
2442 	priv->mac_addr[5]=rand_val+1;
2443 	//priv->mac_addr[5]=0x11;
2444 	if (!is_valid_ether_addr(priv->mac_addr)) {
2445 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2446 		eth_random_addr(priv->mac_addr);
2447 	}
2448 	printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2449 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2450 
2451 	spin_lock_init(&priv->lock);
2452 
2453 	err = ieee80211_register_hw(dev);
2454 	if (err) {
2455 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2456 		err = -EIO;
2457 		goto err_free_dev;
2458 	} else {
2459 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2460 	}
2461 
2462 	// create sysfs for arbitrary iq setting
2463 	sysfs_bin_attr_init(&priv->bin_iq);
2464 	priv->bin_iq.attr.name = "tx_intf_iq_data";
2465 	priv->bin_iq.attr.mode = S_IWUSR | S_IRUGO;
2466 	priv->bin_iq.write = openwifi_tx_intf_bin_iq_write;
2467 	priv->bin_iq.read = openwifi_tx_intf_bin_iq_read;
2468 	priv->bin_iq.size = 4096;
2469 	err = sysfs_create_bin_file(&pdev->dev.kobj, &priv->bin_iq);
2470 	printk("%s openwifi_dev_probe: sysfs_create_bin_file %d\n",sdr_compatible_str, err);
2471 	if (err < 0)
2472 		goto err_free_dev;
2473 
2474 	priv->tx_intf_arbitrary_iq_num = 0;
2475 	// priv->tx_intf_arbitrary_iq[0] = 1;
2476 	// priv->tx_intf_arbitrary_iq[1] = 2;
2477 
2478 	err = sysfs_create_group(&pdev->dev.kobj, &tx_intf_attribute_group);
2479 	printk("%s openwifi_dev_probe: sysfs_create_group tx_intf_attribute_group %d\n",sdr_compatible_str, err);
2480 	if (err < 0)
2481 		goto err_free_dev;
2482 	priv->tx_intf_iq_ctl = 0;
2483 
2484 	// create sysfs for stat
2485 	err = sysfs_create_group(&pdev->dev.kobj, &stat_attribute_group);
2486 	printk("%s openwifi_dev_probe: sysfs_create_group stat_attribute_group %d\n",sdr_compatible_str, err);
2487 	if (err < 0)
2488 		goto err_free_dev;
2489 
2490 	priv->stat.stat_enable = 0; // by default disable
2491 
2492 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
2493 		priv->stat.tx_prio_num[i] = 0;
2494 		priv->stat.tx_prio_interrupt_num[i] = 0;
2495 		priv->stat.tx_prio_stop0_fake_num[i] = 0;
2496 		priv->stat.tx_prio_stop0_real_num[i] = 0;
2497 		priv->stat.tx_prio_stop1_num[i] = 0;
2498 		priv->stat.tx_prio_wakeup_num[i] = 0;
2499 	}
2500 	for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
2501 		priv->stat.tx_queue_num[i] = 0;
2502 		priv->stat.tx_queue_interrupt_num[i] = 0;
2503 		priv->stat.tx_queue_stop0_fake_num[i] = 0;
2504 		priv->stat.tx_queue_stop0_real_num[i] = 0;
2505 		priv->stat.tx_queue_stop1_num[i] = 0;
2506 		priv->stat.tx_queue_wakeup_num[i] = 0;
2507 	}
2508 
2509 	priv->stat.tx_data_pkt_need_ack_num_total = 0;
2510 	priv->stat.tx_data_pkt_need_ack_num_total_fail = 0;
2511 	for (i=0; i<6; i++) {
2512 		priv->stat.tx_data_pkt_need_ack_num_retx[i] = 0;
2513 		priv->stat.tx_data_pkt_need_ack_num_retx_fail[i] = 0;
2514 	}
2515 	priv->stat.tx_data_pkt_mcs_realtime = 0;
2516 	priv->stat.tx_data_pkt_fail_mcs_realtime = 0;
2517 
2518 	priv->stat.tx_mgmt_pkt_need_ack_num_total = 0;
2519 	priv->stat.tx_mgmt_pkt_need_ack_num_total_fail = 0;
2520 	for (i=0; i<3; i++) {
2521 		priv->stat.tx_mgmt_pkt_need_ack_num_retx[i] = 0;
2522 		priv->stat.tx_mgmt_pkt_need_ack_num_retx_fail[i] = 0;
2523 	}
2524 	priv->stat.tx_mgmt_pkt_mcs_realtime = 0;
2525 	priv->stat.tx_mgmt_pkt_fail_mcs_realtime = 0;
2526 
2527 	priv->stat.rx_monitor_all = 0;
2528 	priv->stat.rx_target_sender_mac_addr = 0;
2529 	priv->stat.rx_data_ok_agc_gain_value_realtime = 0;
2530 	priv->stat.rx_data_fail_agc_gain_value_realtime = 0;
2531 	priv->stat.rx_mgmt_ok_agc_gain_value_realtime = 0;
2532 	priv->stat.rx_mgmt_fail_agc_gain_value_realtime = 0;
2533 	priv->stat.rx_ack_ok_agc_gain_value_realtime = 0;
2534 
2535 	priv->stat.rx_monitor_all = 0;
2536 	priv->stat.rx_data_pkt_num_total = 0;
2537 	priv->stat.rx_data_pkt_num_fail = 0;
2538 	priv->stat.rx_mgmt_pkt_num_total = 0;
2539 	priv->stat.rx_mgmt_pkt_num_fail = 0;
2540 	priv->stat.rx_ack_pkt_num_total = 0;
2541 	priv->stat.rx_ack_pkt_num_fail = 0;
2542 
2543 	priv->stat.rx_data_pkt_mcs_realtime = 0;
2544 	priv->stat.rx_data_pkt_fail_mcs_realtime = 0;
2545 	priv->stat.rx_mgmt_pkt_mcs_realtime = 0;
2546 	priv->stat.rx_mgmt_pkt_fail_mcs_realtime = 0;
2547 	priv->stat.rx_ack_pkt_mcs_realtime = 0;
2548 
2549 	priv->stat.restrict_freq_mhz = 0;
2550 
2551 	priv->stat.csma_cfg0 = 0;
2552 	priv->stat.cw_max_min_cfg = 0;
2553 
2554 	priv->stat.dbg_ch0 = 0;
2555 	priv->stat.dbg_ch1 = 0;
2556 	priv->stat.dbg_ch2 = 0;
2557 
2558 	// // //--------------------hook leds (not complete yet)--------------------------------
2559 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
2560 	// if (!tmp_dev) {
2561 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2562 	// 	err = -ENOMEM;
2563 	// 	goto err_free_dev;
2564 	// }
2565 
2566 	// tmp_pdev = to_platform_device(tmp_dev);
2567 	// if (!tmp_pdev) {
2568 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2569 	// 	err = -ENOMEM;
2570 	// 	goto err_free_dev;
2571 	// }
2572 
2573 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2574 	// if (!tmp_led_priv) {
2575 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2576 	// 	err = -ENOMEM;
2577 	// 	goto err_free_dev;
2578 	// }
2579 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2580 	// if (tmp_led_priv->num_leds!=4){
2581 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2582 	// 	err = -ENOMEM;
2583 	// 	goto err_free_dev;
2584 	// }
2585 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2586 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2587 	// priv->num_led = tmp_led_priv->num_leds;
2588 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2589 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2590 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2591 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2592 
2593 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2594 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2595 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2596 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2597 
2598 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2599 		   priv->mac_addr, chip_name, priv->rf->name);
2600 
2601 	openwifi_rfkill_init(dev);
2602 	return 0;
2603 
2604  err_free_dev:
2605 	ieee80211_free_hw(dev);
2606 
2607 	return err;
2608 }
2609 
2610 static int openwifi_dev_remove(struct platform_device *pdev)
2611 {
2612 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2613 	struct openwifi_priv *priv = dev->priv;
2614 
2615 	if (!dev) {
2616 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2617 		return(-1);
2618 	}
2619 
2620 	sysfs_remove_bin_file(&pdev->dev.kobj, &priv->bin_iq);
2621 	sysfs_remove_group(&pdev->dev.kobj, &tx_intf_attribute_group);
2622 	sysfs_remove_group(&pdev->dev.kobj, &stat_attribute_group);
2623 
2624 	openwifi_rfkill_exit(dev);
2625 	ieee80211_unregister_hw(dev);
2626 	ieee80211_free_hw(dev);
2627 	return(0);
2628 }
2629 
2630 static struct platform_driver openwifi_dev_driver = {
2631 	.driver = {
2632 		.name = "sdr,sdr",
2633 		.owner = THIS_MODULE,
2634 		.of_match_table = openwifi_dev_of_ids,
2635 	},
2636 	.probe = openwifi_dev_probe,
2637 	.remove = openwifi_dev_remove,
2638 };
2639 
2640 module_platform_driver(openwifi_dev_driver);
2641