1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos 2 // SPDX-FileCopyrightText: 2022 UGent 3 // SPDX-License-Identifier: AGPL-3.0-or-later 4 5 #include <linux/bitops.h> 6 #include <linux/dmapool.h> 7 #include <linux/io.h> 8 #include <linux/iopoll.h> 9 #include <linux/of_address.h> 10 #include <linux/of_platform.h> 11 #include <linux/of_irq.h> 12 #include <linux/slab.h> 13 #include <linux/clk.h> 14 #include <linux/io-64-nonatomic-lo-hi.h> 15 16 #include <linux/delay.h> 17 #include <linux/interrupt.h> 18 19 #include <linux/dmaengine.h> 20 #include <linux/slab.h> 21 #include <linux/delay.h> 22 #include <linux/etherdevice.h> 23 24 #include <linux/init.h> 25 #include <linux/kthread.h> 26 #include <linux/module.h> 27 #include <linux/of_dma.h> 28 #include <linux/platform_device.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/wait.h> 32 #include <linux/sched/task.h> 33 #include <linux/dma/xilinx_dma.h> 34 #include <linux/spi/spi.h> 35 #include <net/mac80211.h> 36 37 #include <linux/clk.h> 38 #include <linux/clkdev.h> 39 #include <linux/clk-provider.h> 40 41 #include <linux/iio/iio.h> 42 #include <linux/iio/sysfs.h> 43 44 #include <linux/gpio.h> 45 #include <linux/leds.h> 46 47 #define IIO_AD9361_USE_PRIVATE_H_ 48 #include <../../drivers/iio/adc/ad9361_regs.h> 49 #include <../../drivers/iio/adc/ad9361.h> 50 #include <../../drivers/iio/adc/ad9361_private.h> 51 52 #include <../../drivers/iio/frequency/cf_axi_dds.h> 53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num); 54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb, 55 bool tx1, bool tx2, bool immed); 56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy, 57 struct ctrl_outs_control *ctrl); 58 extern int ad9361_do_calib_run(struct ad9361_rf_phy *phy, u32 cal, int arg); 59 60 #include "../user_space/sdrctl_src/nl80211_testmode_def.h" 61 #include "hw_def.h" 62 #include "sdr.h" 63 #include "git_rev.h" 64 65 // driver API of component driver 66 extern struct tx_intf_driver_api *tx_intf_api; 67 extern struct rx_intf_driver_api *rx_intf_api; 68 extern struct openofdm_tx_driver_api *openofdm_tx_api; 69 extern struct openofdm_rx_driver_api *openofdm_rx_api; 70 extern struct xpu_driver_api *xpu_api; 71 72 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes); 73 u8 gen_mpdu_delim_crc(u16 m); 74 u32 reverse32(u32 d); 75 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant); 76 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant); 77 int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction); 78 int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction); 79 int rssi_correction_lookup_table(u32 freq_MHz); 80 81 #include "sdrctl_intf.c" 82 #include "sysfs_intf.c" 83 84 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1) 85 // Internal indication variables after parsing test_mode 86 static bool AGGR_ENABLE = false; 87 static bool TX_OFFSET_TUNING_ENABLE = false; 88 89 static int init_tx_att = 0; 90 91 MODULE_AUTHOR("Xianjun Jiao"); 92 MODULE_DESCRIPTION("SDR driver"); 93 MODULE_LICENSE("GPL v2"); 94 95 module_param(test_mode, int, 0); 96 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)"); 97 98 module_param(init_tx_att, int, 0); 99 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000 example: set to 3000 for 3dB attenuation"); 100 101 // ---------------rfkill--------------------------------------- 102 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv) 103 { 104 int reg; 105 106 if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH) 107 reg = ad9361_get_tx_atten(priv->ad9361_phy, 1); 108 else 109 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 110 111 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) 112 return true;// 0 off, 1 on 113 return false; 114 } 115 116 void openwifi_rfkill_init(struct ieee80211_hw *hw) 117 { 118 struct openwifi_priv *priv = hw->priv; 119 120 priv->rfkill_off = openwifi_is_radio_enabled(priv); 121 printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off"); 122 wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off); 123 wiphy_rfkill_start_polling(hw->wiphy); 124 } 125 126 void openwifi_rfkill_poll(struct ieee80211_hw *hw) 127 { 128 bool enabled; 129 struct openwifi_priv *priv = hw->priv; 130 131 enabled = openwifi_is_radio_enabled(priv); 132 // printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); 133 if (unlikely(enabled != priv->rfkill_off)) { 134 priv->rfkill_off = enabled; 135 printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); 136 wiphy_rfkill_set_hw_state(hw->wiphy, !enabled); 137 } 138 } 139 140 void openwifi_rfkill_exit(struct ieee80211_hw *hw) 141 { 142 printk("%s openwifi_rfkill_exit\n", sdr_compatible_str); 143 wiphy_rfkill_stop_polling(hw->wiphy); 144 } 145 //----------------rfkill end----------------------------------- 146 147 inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction) 148 { 149 return ((rssi_correction+rssi_dbm)<<1); 150 } 151 152 inline int rssi_correction_lookup_table(u32 freq_MHz) 153 { 154 int rssi_correction; 155 156 if (freq_MHz<2412) { 157 rssi_correction = 153; 158 } else if (freq_MHz<=2484) { 159 rssi_correction = 153; 160 } else if (freq_MHz<5160) { 161 rssi_correction = 153; 162 } else if (freq_MHz<=5240) { 163 rssi_correction = 145; 164 } else if (freq_MHz<=5320) { 165 rssi_correction = 148; 166 } else { 167 rssi_correction = 148; 168 } 169 170 return rssi_correction; 171 } 172 173 static void ad9361_rf_set_channel(struct ieee80211_hw *dev, 174 struct ieee80211_conf *conf) 175 { 176 struct openwifi_priv *priv = dev->priv; 177 u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz; 178 u32 actual_tx_lo; 179 u32 spi_disable; 180 u32 diff_tx_lo; 181 bool change_flag = (actual_rx_lo != priv->actual_rx_lo); 182 int static_lbt_th, auto_lbt_th, fpga_lbt_th, receiver_rssi_dbm_th; 183 struct timeval tv; 184 unsigned long time_before = 0; 185 unsigned long time_after = 0; 186 187 if (change_flag) { 188 actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz; 189 diff_tx_lo = priv->last_tx_quad_cal_lo > actual_tx_lo ? priv->last_tx_quad_cal_lo - actual_tx_lo : actual_tx_lo - priv->last_tx_quad_cal_lo; 190 191 // -------------------Tx Lo tuning------------------- 192 clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_tx_lo ) + priv->rf_reg_val[RF_TX_REG_IDX_FO] )>>1) ); 193 priv->actual_tx_lo = actual_tx_lo; 194 195 // -------------------Rx Lo tuning------------------- 196 clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_rx_lo ) + priv->rf_reg_val[RF_RX_REG_IDX_FO] )>>1) ); 197 priv->actual_rx_lo = actual_rx_lo; 198 199 // call Tx Quadrature calibration if frequency change is more than 100MHz 200 if (diff_tx_lo > 100) { 201 priv->last_tx_quad_cal_lo = actual_tx_lo; 202 do_gettimeofday(&tv); 203 time_before = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec ); 204 spi_disable = xpu_api->XPU_REG_SPI_DISABLE_read(); // disable FPGA SPI module 205 xpu_api->XPU_REG_SPI_DISABLE_write(1); 206 ad9361_do_calib_run(priv->ad9361_phy, TX_QUAD_CAL, (int)priv->ad9361_phy->state->last_tx_quad_cal_phase); 207 // restore original SPI disable state 208 xpu_api->XPU_REG_SPI_DISABLE_write(spi_disable); 209 do_gettimeofday(&tv); 210 time_after = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec ); 211 } 212 213 // get rssi correction value from lookup table 214 priv->rssi_correction = rssi_correction_lookup_table(actual_rx_lo); 215 216 // set appropriate lbt threshold 217 // xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm 218 // xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44 219 // auto_lbt_th = ((priv->rssi_correction-62-16)<<1); 220 auto_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction); // -78dBm, the same as above ((priv->rssi_correction-62-16)<<1) 221 static_lbt_th = rssi_dbm_to_rssi_half_db(-(priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]), priv->rssi_correction); 222 fpga_lbt_th = (priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]==0?auto_lbt_th:static_lbt_th); 223 xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th); 224 priv->last_auto_fpga_lbt_th = auto_lbt_th; 225 226 // Set rssi_half_db threshold (-85dBm equivalent) to receiver. Receiver will not react to signal lower than this rssi. See test records (OPENOFDM_RX_POWER_THRES_INIT in hw_def.h) 227 receiver_rssi_dbm_th = (priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]==0?OPENOFDM_RX_RSSI_DBM_TH_DEFAULT:(-priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH])); 228 openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write((OPENOFDM_RX_DC_RUNNING_SUM_TH_INIT<<16)|rssi_dbm_to_rssi_half_db(receiver_rssi_dbm_th, priv->rssi_correction)); 229 230 if (actual_rx_lo < 2500) { 231 if (priv->band != BAND_2_4GHZ) { 232 priv->band = BAND_2_4GHZ; 233 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 234 } 235 } else { 236 if (priv->band != BAND_5_8GHZ) { 237 priv->band = BAND_5_8GHZ; 238 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 239 } 240 } 241 printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d(%ddBm) (auto %d static %d) tx_quad_cal duration %lu us\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,rssi_half_db_to_rssi_dbm(fpga_lbt_th, priv->rssi_correction),auto_lbt_th,static_lbt_th, time_after-time_before); 242 } 243 } 244 245 const struct openwifi_rf_ops ad9361_rf_ops = { 246 .name = "ad9361", 247 // .init = ad9361_rf_init, 248 // .stop = ad9361_rf_stop, 249 .set_chan = ad9361_rf_set_channel, 250 // .calc_rssi = ad9361_rf_calc_rssi, 251 }; 252 253 u16 reverse16(u16 d) { 254 union u16_byte2 tmp0, tmp1; 255 tmp0.a = d; 256 tmp1.c[0] = tmp0.c[1]; 257 tmp1.c[1] = tmp0.c[0]; 258 return(tmp1.a); 259 } 260 261 u32 reverse32(u32 d) { 262 union u32_byte4 tmp0, tmp1; 263 tmp0.a = d; 264 tmp1.c[0] = tmp0.c[3]; 265 tmp1.c[1] = tmp0.c[2]; 266 tmp1.c[2] = tmp0.c[1]; 267 tmp1.c[3] = tmp0.c[0]; 268 return(tmp1.a); 269 } 270 271 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx) 272 { 273 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); 274 int i; 275 276 ring->stop_flag = 0; 277 ring->bd_wr_idx = 0; 278 ring->bd_rd_idx = 0; 279 ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL); 280 if (ring->bds==NULL) { 281 printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str); 282 return -ENOMEM; 283 } 284 285 for (i = 0; i < NUM_TX_BD; i++) { 286 ring->bds[i].skb_linked=0; // for tx, skb is from upper layer 287 //at first right after skb allocated, head, data, tail are the same. 288 ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine 289 ring->bds[i].seq_no = 0; 290 } 291 292 return 0; 293 } 294 295 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx) 296 { 297 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); 298 int i; 299 300 ring->stop_flag = 0; 301 ring->bd_wr_idx = 0; 302 ring->bd_rd_idx = 0; 303 for (i = 0; i < NUM_TX_BD; i++) { 304 if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0) 305 continue; 306 if (ring->bds[i].dma_mapping_addr != 0) 307 dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV); 308 // if (ring->bds[i].skb_linked!=NULL) 309 // dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception 310 if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) || 311 (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0)) 312 printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str, 313 ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr)); 314 315 ring->bds[i].skb_linked=0; 316 ring->bds[i].dma_mapping_addr = 0; 317 ring->bds[i].seq_no = 0; 318 } 319 if (ring->bds) 320 kfree(ring->bds); 321 ring->bds = NULL; 322 } 323 324 static int openwifi_init_rx_ring(struct openwifi_priv *priv) 325 { 326 int i; 327 u8 *pdata_tmp; 328 329 priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL); 330 if (!priv->rx_cyclic_buf) { 331 printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str); 332 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); 333 return(-1); 334 } 335 336 // Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA 337 for (i=0; i<NUM_RX_BD; i++) { 338 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning 339 (*((u32*)(pdata_tmp+0 ))) = 0; 340 (*((u32*)(pdata_tmp+4 ))) = 0; 341 } 342 printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str); 343 344 return 0; 345 } 346 347 static void openwifi_free_rx_ring(struct openwifi_priv *priv) 348 { 349 if (priv->rx_cyclic_buf) 350 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); 351 352 priv->rx_cyclic_buf_dma_mapping_addr = 0; 353 priv->rx_cyclic_buf = 0; 354 } 355 356 static int rx_dma_setup(struct ieee80211_hw *dev){ 357 struct openwifi_priv *priv = dev->priv; 358 struct dma_device *rx_dev = priv->rx_chan->device; 359 360 priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT); 361 if (!(priv->rxd)) { 362 openwifi_free_rx_ring(priv); 363 printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd)); 364 return(-1); 365 } 366 priv->rxd->callback = 0; 367 priv->rxd->callback_param = 0; 368 369 priv->rx_cookie = priv->rxd->tx_submit(priv->rxd); 370 371 if (dma_submit_error(priv->rx_cookie)) { 372 printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie)); 373 return(-1); 374 } 375 376 dma_async_issue_pending(priv->rx_chan); 377 return(0); 378 } 379 380 inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction) 381 { 382 int rssi_db, rssi_dbm; 383 384 rssi_db = (rssi_half_db>>1); 385 386 rssi_dbm = rssi_db - rssi_correction; 387 388 rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm); 389 390 return rssi_dbm; 391 } 392 393 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id) 394 { 395 struct ieee80211_hw *dev = dev_id; 396 struct openwifi_priv *priv = dev->priv; 397 struct ieee80211_rx_status rx_status = {0}; 398 struct sk_buff *skb; 399 struct ieee80211_hdr *hdr; 400 u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di; 401 bool ht_flag, short_gi, ht_aggr, ht_aggr_last; 402 // u32 dma_driver_buf_idx_mod; 403 u8 *pdata_tmp, fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw; 404 s8 signal; 405 u16 agc_status_and_pkt_exist_flag, rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0; 406 bool content_ok = false, len_overflow = false; 407 408 #ifdef USE_NEW_RX_INTERRUPT 409 int i; 410 spin_lock(&priv->lock); 411 for (i=0; i<NUM_RX_BD; i++) { 412 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; 413 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid 414 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer 415 continue; 416 #else 417 static u8 target_buf_idx_old = 0; 418 spin_lock(&priv->lock); 419 while(1) { // loop all rx buffers that have new rx packets 420 pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning 421 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); 422 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer 423 break; 424 #endif 425 426 tsft_low = (*((u32*)(pdata_tmp+0 ))); 427 tsft_high = (*((u32*)(pdata_tmp+4 ))); 428 rssi_val = (*((u16*)(pdata_tmp+8 ))); 429 len = (*((u16*)(pdata_tmp+12))); 430 431 len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false); 432 433 rate_idx = (*((u16*)(pdata_tmp+14))); 434 ht_flag = ((rate_idx&0x10)!=0); 435 short_gi = ((rate_idx&0x20)!=0); 436 ht_aggr = (ht_flag & ((rate_idx&0x40)!=0)); 437 ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0)); 438 rate_idx = (rate_idx&0x1F); 439 440 fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) ); 441 442 //phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1)); 443 // phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation 444 // dma_driver_buf_idx_mod = (state.residue&0x7f); 445 fcs_ok = ((fcs_ok&0x80)!=0); 446 447 if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) { 448 // if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) { 449 // printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod); 450 // } 451 content_ok = true; 452 } else { 453 printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str); 454 content_ok = false; 455 } 456 457 rssi_val = (rssi_val>>1); 458 if ( (rssi_val+128)<priv->rssi_correction ) 459 signal = -128; 460 else 461 signal = rssi_val - priv->rssi_correction; 462 463 // fc_di = (*((u32*)(pdata_tmp+16))); 464 // addr1_high16 = (*((u16*)(pdata_tmp+16+4))); 465 // addr1_low32 = (*((u32*)(pdata_tmp+16+4+2))); 466 // addr2_high16 = (*((u16*)(pdata_tmp+16+6+4))); 467 // addr2_low32 = (*((u32*)(pdata_tmp+16+6+4+2))); 468 // addr3_high16 = (*((u16*)(pdata_tmp+16+12+4))); 469 // addr3_low32 = (*((u32*)(pdata_tmp+16+12+4+2))); 470 if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) { 471 hdr = (struct ieee80211_hdr *)(pdata_tmp+16); 472 addr1_low32 = *((u32*)(hdr->addr1+2)); 473 addr1_high16 = *((u16*)(hdr->addr1)); 474 if (len>=20) { 475 addr2_low32 = *((u32*)(hdr->addr2+2)); 476 addr2_high16 = *((u16*)(hdr->addr2)); 477 } 478 if (len>=26) { 479 addr3_low32 = *((u32*)(hdr->addr3+2)); 480 addr3_high16 = *((u16*)(hdr->addr3)); 481 } 482 if (len>=28) 483 sc = hdr->seq_ctrl; 484 485 if ( (addr1_low32!=0xffffffff || addr1_high16!=0xffff) || (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&4) ) 486 printk("%s openwifi_rx_interrupt:%4dbytes ht%d aggr%d/%d sgi%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str, 487 len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id, 488 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), 489 #ifdef USE_NEW_RX_INTERRUPT 490 sc, fcs_ok, i, signal); 491 #else 492 sc, fcs_ok, target_buf_idx_old, signal); 493 #endif 494 } 495 496 // priv->phy_rx_sn_hw_old = phy_rx_sn_hw; 497 if (content_ok) { 498 skb = dev_alloc_skb(len); 499 if (skb) { 500 skb_put_data(skb,pdata_tmp+16,len); 501 502 rx_status.antenna = priv->runtime_rx_ant_cfg; 503 // def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M) 504 rx_status.rate_idx = wifi_rate_table_mapping[rate_idx]; 505 rx_status.signal = signal; 506 rx_status.freq = dev->conf.chandef.chan->center_freq; 507 rx_status.band = dev->conf.chandef.chan->band; 508 rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); 509 rx_status.flag |= RX_FLAG_MACTIME_START; 510 if (!fcs_ok) 511 rx_status.flag |= RX_FLAG_FAILED_FCS_CRC; 512 if (rate_idx <= 15) 513 rx_status.encoding = RX_ENC_LEGACY; 514 else 515 rx_status.encoding = RX_ENC_HT; 516 rx_status.bw = RATE_INFO_BW_20; 517 if (short_gi) 518 rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI; 519 if(ht_aggr) 520 { 521 rx_status.ampdu_reference = priv->ampdu_reference; 522 rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 523 if (ht_aggr_last) 524 rx_status.flag |= RX_FLAG_AMPDU_IS_LAST; 525 } 526 527 memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more. 528 ieee80211_rx_irqsafe(dev, skb); // call mac80211 function 529 } else 530 printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str); 531 532 if(ht_aggr_last) 533 priv->ampdu_reference++; 534 } 535 (*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed 536 loop_count++; 537 #ifndef USE_NEW_RX_INTERRUPT 538 target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1)); 539 #endif 540 } 541 542 if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) ) 543 printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count); 544 545 // openwifi_rx_interrupt_out: 546 spin_unlock(&priv->lock); 547 return IRQ_HANDLED; 548 } 549 550 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id) 551 { 552 struct ieee80211_hw *dev = dev_id; 553 struct openwifi_priv *priv = dev->priv; 554 struct openwifi_ring *ring; 555 struct sk_buff *skb; 556 struct ieee80211_tx_info *info; 557 u32 reg_val1, hw_queue_len, reg_val2, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0; 558 u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx; 559 u8 nof_retx=-1, last_bd_rd_idx, i; 560 u64 blk_ack_bitmap; 561 // u16 prio_rd_idx_store[64]={0}; 562 bool tx_fail=false; 563 564 spin_lock(&priv->lock); 565 566 while(1) { // loop all packets that have been sent by FPGA 567 reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read(); 568 reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read(); 569 blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32); 570 571 if (reg_val1!=0xFFFFFFFF) { 572 nof_retx = (reg_val1&0xF); 573 last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1)); 574 prio = ((reg_val1>>17)&0x3); 575 num_slot_random = ((reg_val1>>19)&0x1FF); 576 //num_slot_random = ((0xFF80000 ®_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE)); 577 cw = ((reg_val1>>28)&0xF); 578 //cw = ((0xF0000000 & reg_val1) >> 28); 579 if(cw > 10) { 580 cw = 10 ; 581 num_slot_random += 512 ; 582 } 583 pkt_cnt = (reg_val2&0x3F); 584 blk_ack_ssn = ((reg_val2>>6)&0xFFF); 585 586 ring = &(priv->tx_ring[prio]); 587 588 if ( ring->stop_flag == 1) { 589 // Wake up Linux queue if FPGA and driver ring have room 590 queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1)); 591 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); 592 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 593 594 if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) { 595 // printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter); 596 printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str, 597 prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, last_bd_rd_idx); 598 ieee80211_wake_queue(dev, prio); 599 ring->stop_flag = 0; 600 } 601 } 602 603 for(i = 1; i <= pkt_cnt; i++) 604 { 605 ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64; 606 seq_no = ring->bds[ring->bd_rd_idx].seq_no; 607 skb = ring->bds[ring->bd_rd_idx].skb_linked; 608 609 dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr, 610 skb->len, DMA_MEM_TO_DEV); 611 612 info = IEEE80211_SKB_CB(skb); 613 ieee80211_tx_info_clear_status(info); 614 615 // Aggregation packet 616 if(pkt_cnt > 1) 617 { 618 start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF)); 619 tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0); 620 info->flags |= IEEE80211_TX_STAT_AMPDU; 621 info->status.ampdu_len = 1; 622 info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1; 623 624 skb_pull(skb, LEN_MPDU_DELIM); 625 //skb_trim(skb, num_byte_pad_skb); 626 } 627 // Normal packet 628 else 629 { 630 tx_fail = ((blk_ack_bitmap&0x1)==0); 631 info->flags &= (~IEEE80211_TX_CTL_AMPDU); 632 } 633 634 if (tx_fail == false) 635 info->flags |= IEEE80211_TX_STAT_ACK; 636 637 info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate 638 info->status.rates[1].idx = -1; 639 info->status.rates[2].idx = -1; 640 info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES 4 641 info->status.antenna = priv->runtime_tx_ant_cfg; 642 643 if ( tx_fail && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) ) 644 printk("%s openwifi_tx_interrupt: WARNING pkt_no %d/%d tx_result [nof_retx %d pass %d] prio%d wr%d rd%d\n", sdr_compatible_str, i, pkt_cnt, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx); 645 if ( ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK))||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) ) 646 printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw); 647 648 ieee80211_tx_status_irqsafe(dev, skb); 649 } 650 651 loop_count++; 652 653 // printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx); 654 655 } else 656 break; 657 } 658 if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) ) 659 printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count); 660 661 spin_unlock(&priv->lock); 662 return IRQ_HANDLED; 663 } 664 665 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000}; 666 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes) 667 { 668 u32 i, crc = 0; 669 u8 idx; 670 for( i = 0; i < num_bytes; i++) 671 { 672 idx = (crc & 0x0F) ^ (data_in[i] & 0x0F); 673 crc = (crc >> 4) ^ crc_table[idx]; 674 675 idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F); 676 crc = (crc >> 4) ^ crc_table[idx]; 677 } 678 679 return crc; 680 } 681 682 u8 gen_mpdu_delim_crc(u16 m) 683 { 684 u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc; 685 686 for (i = 0; i < 16; i++) 687 { 688 temp = c[7] ^ ((m >> i) & 0x01); 689 690 c[7] = c[6]; 691 c[6] = c[5]; 692 c[5] = c[4]; 693 c[4] = c[3]; 694 c[3] = c[2]; 695 c[2] = c[1] ^ temp; 696 c[1] = c[0] ^ temp; 697 c[0] = temp; 698 } 699 mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7); 700 701 return mpdu_delim_crc; 702 } 703 704 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c 705 cdev_to_gpio_led_data(struct led_classdev *led_cdev) 706 { 707 return container_of(led_cdev, struct gpio_led_data, cdev); 708 } 709 710 inline int calc_n_ofdm(int num_octet, int n_dbps) 711 { 712 int num_bit, num_ofdm_sym; 713 714 num_bit = 22+num_octet*8; 715 num_ofdm_sym = (num_bit/n_dbps) + ((num_bit%n_dbps)!=0); 716 717 return (num_ofdm_sym); 718 } 719 720 inline __le16 gen_ht_duration_id(__le16 frame_control, __le16 aid, u8 qos_hdr, bool use_ht_aggr, u16 rate_hw_value, u16 sifs) 721 { 722 // COTS wifi ht QoS data duration field analysis (lots of capture): 723 724 // ht non-aggr QoS data: 44, type 2 (data frame) sub-type 8 (1000) 21.7/52/57.8/58.5/65Mbps 725 // ack ht 36 + 4*[(22+14*8)/78] = 36 + 4*2 = 44 726 // ack legacy 20 + 4*[(22+14*8)/72] = 20 + 4*2 = 28 727 728 // ht non-aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 6.5Mbps 729 // ack ht 36 + 4*[(22+14*8)/26] = 36 + 4*6 = 60 730 // ack legacy 20 + 4*[(22+14*8)/24] = 20 + 4*6 = 44 731 732 // ht aggr QoS data: 52, type 2 (data frame) sub-type 8 (1000) 19.5/28.9/39/57.8/65/72.2Mbps 733 // ack ht 36 + 4*[(22+32*8)/78] = 36 + 4*4 = 52 734 // ack legacy 20 + 4*[(22+32*8)/72] = 20 + 4*4 = 36 735 736 // ht aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 13/14.4Mbps 737 // ack ht 36 + 4*[(22+32*8)/52] = 36 + 4*6 = 60 738 // ack legacy 20 + 4*[(22+32*8)/48] = 20 + 4*6 = 44 739 740 // ht and legacy rate mapping is ont one on one, instead it is modulation combined with coding rate 741 // modulate coding ht-mcs ht-n_dbps legacy-mcs legacy-n_dbps 742 // BPSK 1/2 0 26 4 24 743 // QPSK 1/2 1 52 6 48 744 // QPSK 3/4 2 78 7 72 745 // 16QAM 1/2 3 104 8 96 746 // 16QAM 3/4 4 156 9 144 747 // 64QAM 2/3 5 208 10 192 748 // 64QAM 3/4 6 234 11 216 749 750 // conclusion: duration is: assume ack/blk-ack uses legacy, plus SIFS 751 752 // other observation: ht always use QoS data, not data (sub-type) 753 // other observation: management/control frame always in non-ht 754 755 __le16 dur = 0; 756 u16 n_dbps; 757 int num_octet, num_ofdm_sym; 758 759 if (ieee80211_is_pspoll(frame_control)) { 760 dur = (aid|0xc000); 761 } else if (ieee80211_is_data_qos(frame_control) && (~(qos_hdr&IEEE80211_QOS_CTL_ACK_POLICY_NOACK))) { 762 rate_hw_value = (rate_hw_value>6?6:rate_hw_value); 763 n_dbps = (rate_hw_value==0?wifi_n_dbps_table[4]:wifi_n_dbps_table[rate_hw_value+5]); 764 num_octet = (use_ht_aggr?32:14); //32 bytes for compressed block ack; 14 bytes for normal ack 765 num_ofdm_sym = calc_n_ofdm(num_octet, n_dbps); 766 dur = sifs + 20 + 4*num_ofdm_sym; // 20us legacy preamble 767 // printk("%s gen_ht_duration_id: num_octet %d n_dbps %d num_ofdm_sym %d dur %d\n", sdr_compatible_str, 768 // num_octet, n_dbps, num_ofdm_sym, dur); 769 } else { 770 printk("%s openwifi_tx: WARNING gen_ht_duration_id wrong pkt type!\n", sdr_compatible_str); 771 } 772 773 return dur; 774 } 775 776 static void openwifi_tx(struct ieee80211_hw *dev, 777 struct ieee80211_tx_control *control, 778 struct sk_buff *skb) 779 { 780 struct openwifi_priv *priv = dev->priv; 781 unsigned long flags; 782 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 783 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 784 struct openwifi_ring *ring = NULL; 785 dma_addr_t dma_mapping_addr; 786 unsigned int prio=0, i; 787 u16 rate_signal_value, rate_hw_value, len_mpdu, len_psdu, num_dma_symbol, len_mpdu_delim_pad=0, num_byte_pad; 788 u32 num_dma_byte, addr1_low32, addr2_low32=0, addr3_low32=0, queue_idx=2, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history; 789 u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration, n_dbps; 790 u8 pkt_need_ack, retry_limit_raw=0,use_short_gi=0,*dma_buf,retry_limit_hw_value,rc_flags,qos_hdr; 791 bool use_rts_cts, use_cts_protect=false, ht_aggr_start=false, use_ht_rate=false, use_ht_aggr=false, cts_use_traffic_rate=false, force_use_cts_protect=false; 792 __le16 frame_control,duration_id; 793 u32 dma_fifo_no_room_flag, hw_queue_len; 794 enum dma_status status; 795 796 static u32 addr1_low32_prev = -1; 797 static u16 rate_hw_value_prev = -1; 798 static u8 pkt_need_ack_prev = -1; 799 static u16 addr1_high16_prev = -1; 800 static __le16 duration_id_prev = -1; 801 static u8 prio_prev = -1; 802 static u8 retry_limit_raw_prev = -1; 803 static u8 use_short_gi_prev = -1; 804 805 // static bool led_status=0; 806 // struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]); 807 808 // if ( (priv->phy_tx_sn&7) ==0 ) { 809 // openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read(); 810 // if (openofdm_state_history!=openofdm_state_history_old){ 811 // led_status = (~led_status); 812 // openofdm_state_history_old = openofdm_state_history; 813 // gpiod_set_value(led_dat->gpiod, led_status); 814 // } 815 // } 816 817 if (skb->data_len>0) {// more data are not in linear data area skb->data 818 printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str); 819 goto openwifi_tx_early_out; 820 } 821 822 len_mpdu = skb->len; 823 824 // get Linux priority/queue setting info and target mac address 825 prio = skb_get_queue_mapping(skb); 826 if (prio >= MAX_NUM_HW_QUEUE) { 827 printk("%s openwifi_tx: WARNING prio%d\n", sdr_compatible_str, prio); 828 goto openwifi_tx_early_out; 829 } 830 831 addr1_low32 = *((u32*)(hdr->addr1+2)); 832 ring = &(priv->tx_ring[prio]); 833 834 // -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" ----------- 835 if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config 836 queue_idx = prio; 837 } else {// customized prio to queue_idx mapping 838 //if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only 839 // check current packet belonging to which slice/hw-queue 840 for (i=0; i<MAX_NUM_HW_QUEUE; i++) { 841 if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) { 842 break; 843 } 844 } 845 //} 846 queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest. 847 } 848 // -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------ 849 // get other info from packet header 850 addr1_high16 = *((u16*)(hdr->addr1)); 851 if (len_mpdu>=20) { 852 addr2_low32 = *((u32*)(hdr->addr2+2)); 853 addr2_high16 = *((u16*)(hdr->addr2)); 854 } 855 if (len_mpdu>=26) { 856 addr3_low32 = *((u32*)(hdr->addr3+2)); 857 addr3_high16 = *((u16*)(hdr->addr3)); 858 } 859 860 frame_control=hdr->frame_control; 861 pkt_need_ack = (!(info->flags&IEEE80211_TX_CTL_NO_ACK)); 862 863 retry_limit_raw = info->control.rates[0].count; 864 865 rc_flags = info->control.rates[0].flags; 866 use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0); 867 use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0); 868 use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0); 869 use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0); 870 use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0); 871 qos_hdr = (*(ieee80211_get_qos_ctl(hdr))); 872 873 // get Linux rate (MCS) setting 874 rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value; 875 // drv_tx_reg_val[DRV_TX_REG_IDX_RATE] 876 // override rate legacy: 4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M 877 // drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT] 878 // override rate ht: 4:6.5M, 5:13M, 6:19.5M,7:26M, 8:39M, 9:52M, 10:58.5M, 11:65M 879 if ( ieee80211_is_data(hdr->frame_control) ) {//rate override command 880 if (use_ht_rate && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]>0) { 881 rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0xF)-4; 882 use_short_gi = ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0x10)==0x10); 883 } else if ((!use_ht_rate) && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0) 884 rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]&0xF); 885 // TODO: need to map rate_hw_value back to info->control.rates[0].idx!!! 886 } 887 888 // Workaround for a FPGA bug: if aggr happens on ht mcs 0, the tx core will never end, running eneless and stuck the low MAC! 889 if (use_ht_aggr && rate_hw_value==0) 890 rate_hw_value = 1; 891 892 sifs = (priv->actual_rx_lo<2500?10:16); 893 894 if (use_ht_rate) { 895 // printk("%s openwifi_tx: rate_hw_value %d aggr %d sifs %d\n", sdr_compatible_str, rate_hw_value, use_ht_aggr, sifs); 896 hdr->duration_id = gen_ht_duration_id(frame_control, control->sta->aid, qos_hdr, use_ht_aggr, rate_hw_value, sifs); //linux only do it for 11a/g, not for 11n and later 897 } 898 duration_id = hdr->duration_id; 899 900 if (use_rts_cts) 901 printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx); 902 903 if (use_cts_protect) { 904 cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value; 905 cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info)); 906 } else if (force_use_cts_protect) { // could override mac80211 setting here. 907 cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M) 908 if (pkt_need_ack) 909 ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL) 910 911 n_dbps = (use_ht_rate?wifi_n_dbps_ht_table[rate_hw_value+4]:wifi_n_dbps_table[rate_hw_value]); 912 traffic_pkt_duration = (use_ht_rate?36:20) + 4*calc_n_ofdm(len_mpdu, n_dbps); 913 cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration); 914 } 915 916 // this is 11b stuff 917 // if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 918 // printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str); 919 920 if (len_mpdu>=28) { 921 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 922 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 923 priv->seqno += 0x10; 924 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 925 hdr->seq_ctrl |= cpu_to_le16(priv->seqno); 926 } 927 sc = hdr->seq_ctrl; 928 } 929 930 if ( ( (!pkt_need_ack)||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) ) 931 printk("%s openwifi_tx: %4dbytes ht%d aggr%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str, 932 len_mpdu, (use_ht_rate == false ? 0 : 1), (use_ht_aggr == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id, 933 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), 934 sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx, 935 // use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration, 936 ring->bd_wr_idx,ring->bd_rd_idx); 937 938 // printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str, 939 // info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags, 940 // info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags, 941 // info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags, 942 // info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags); 943 944 // -----------end of preprocess some info from header and skb---------------- 945 946 // /* HW will perform RTS-CTS when only RTS flags is set. 947 // * HW will perform CTS-to-self when both RTS and CTS flags are set. 948 // * RTS rate and RTS duration will be used also for CTS-to-self. 949 // */ 950 // if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 951 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; 952 // rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config 953 // len_mpdu, info); 954 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str); 955 // } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 956 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; 957 // rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config 958 // len_mpdu, info); 959 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str); 960 // } 961 962 if(use_ht_aggr) 963 { 964 if(ieee80211_is_data_qos(frame_control) == false) 965 { 966 printk("%s openwifi_tx: WARNING packet is not QoS packet!\n", sdr_compatible_str); 967 goto openwifi_tx_early_out; 968 } 969 970 // psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ] 971 len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4); 972 len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad; 973 974 if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) || 975 (rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) || 976 (prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) ) 977 { 978 addr1_low32_prev = addr1_low32; 979 addr1_high16_prev = addr1_high16; 980 duration_id_prev = duration_id; 981 rate_hw_value_prev = rate_hw_value; 982 use_short_gi_prev = use_short_gi; 983 prio_prev = prio; 984 retry_limit_raw_prev = retry_limit_raw; 985 pkt_need_ack_prev = pkt_need_ack; 986 987 ht_aggr_start = true; 988 } 989 } 990 else 991 { 992 // psdu = [ MPDU ] 993 len_psdu = len_mpdu; 994 995 // // Don't need to reset _prev variables every time when it is not ht aggr qos data. Reason: 996 // // 1. In 99.9999% cases, the ht always use qos data and goes to prio/queue_idx 2. By not resetting the variable to -1, we can have continuous aggregation packet operation in FPGA queue 2. 997 // // 2. In other words, the aggregation operation for queue 2 in FPGA won't be interrupted by other non aggregation packets (control/management/beacon/etc.) that go to queue 0 (or other queues than 2). 998 // // 3. From wired domain and upper level ( DSCP, AC (0~3), WMM management, 802.11D service classes and user priority (UP) ) to chip/FPGA queue index, thre should be some (complicated) mapping relationship. 999 // // 4. More decent design is setting these aggregation flags (ht_aggr_start) per queue/prio here in driver. But since now only queue 2 and 0 are used (data goes to queue 2, others go to queue 0) in normal (most) cases, let's not go to the decent (complicated) solution immediately. 1000 // addr1_low32_prev = -1; 1001 // addr1_high16_prev = -1; 1002 // duration_id_prev = -1; 1003 // use_short_gi_prev = -1; 1004 // rate_hw_value_prev = -1; 1005 // prio_prev = -1; 1006 // retry_limit_raw_prev = -1; 1007 // pkt_need_ack_prev = -1; 1008 } 1009 num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0); 1010 1011 // check whether the packet is bigger than DMA buffer size 1012 num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS); 1013 if (num_dma_byte > TX_BD_BUF_SIZE) { 1014 printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx); 1015 goto openwifi_tx_early_out; 1016 } 1017 1018 // Copy MPDU delimiter and padding into sk_buff 1019 if(use_ht_aggr) 1020 { 1021 // when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary 1022 if (skb_headroom(skb)<LEN_MPDU_DELIM) { 1023 struct sk_buff *skb_new; // in case original skb headroom is not enough to host MPDU delimiter 1024 printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_MPDU_DELIM\n", sdr_compatible_str, ring->bd_wr_idx); 1025 if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) { 1026 printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx); 1027 goto openwifi_tx_early_out; 1028 } 1029 if (skb->sk != NULL) 1030 skb_set_owner_w(skb_new, skb->sk); 1031 dev_kfree_skb(skb); 1032 skb = skb_new; 1033 } 1034 skb_push( skb, LEN_MPDU_DELIM ); 1035 dma_buf = skb->data; 1036 1037 // fill in MPDU delimiter 1038 *((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0; 1039 *((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf)); 1040 *((u8 *)(dma_buf+3)) = 0x4e; 1041 1042 // Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter 1043 num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu); 1044 if (skb_tailroom(skb)<num_byte_pad) { 1045 printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx); 1046 goto openwifi_tx_early_out; 1047 } 1048 skb_put( skb, num_byte_pad ); 1049 1050 // fill in MPDU CRC 1051 *((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu); 1052 1053 // fill in MPDU delimiter padding 1054 memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad); 1055 1056 // num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary. 1057 // If they have different lengths, add "empty MPDU delimiter" for alignment 1058 if(num_dma_byte == len_psdu + 4) 1059 { 1060 *((u32*)(dma_buf+len_psdu)) = 0x4e140000; 1061 len_psdu = num_dma_byte; 1062 } 1063 } 1064 else 1065 { 1066 // Extend sk_buff to hold padding 1067 num_byte_pad = num_dma_byte - len_mpdu; 1068 if (skb_tailroom(skb)<num_byte_pad) { 1069 printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx); 1070 goto openwifi_tx_early_out; 1071 } 1072 skb_put( skb, num_byte_pad ); 1073 1074 dma_buf = skb->data; 1075 } 1076 // for(i = 0; i <= num_dma_symbol; i++) 1077 // printk("%16llx\n", (*(u64*)(&(dma_buf[i*8])))); 1078 1079 rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]); 1080 1081 retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) ); 1082 1083 cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value]; 1084 cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value); 1085 tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | num_dma_symbol ); 1086 phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu ); 1087 1088 /* We must be sure that tx_flags is written last because the HW 1089 * looks at it to check if the rest of data is valid or not 1090 */ 1091 //wmb(); 1092 // entry->flags = cpu_to_le32(tx_flags); 1093 /* We must be sure this has been written before following HW 1094 * register write, because this write will make the HW attempts 1095 * to DMA the just-written data 1096 */ 1097 //wmb(); 1098 1099 spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt 1100 1101 // -------------check whether FPGA dma fifo and queue (queue_idx) has enough room------------- 1102 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); 1103 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 1104 if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD) || ring->stop_flag==1 ) { 1105 ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read 1106 printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str, 1107 prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx); 1108 ring->stop_flag = 1; 1109 goto openwifi_tx_early_out_after_lock; 1110 } 1111 // --------end of check whether FPGA fifo (queue_idx) has enough room------------ 1112 1113 status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL); 1114 if (status!=DMA_COMPLETE) { 1115 printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str); 1116 goto openwifi_tx_early_out_after_lock; 1117 } 1118 1119 //-------------------------fire skb DMA to hardware---------------------------------- 1120 dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf, 1121 num_dma_byte, DMA_MEM_TO_DEV); 1122 1123 if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) { 1124 // dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n"); 1125 printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx); 1126 goto openwifi_tx_early_out_after_lock; 1127 } 1128 1129 sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start 1130 sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr; 1131 sg_dma_len( &(priv->tx_sg) ) = num_dma_byte; 1132 1133 tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg); 1134 tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config); 1135 tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config); 1136 priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL); 1137 if (!(priv->txd)) { 1138 printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd)); 1139 goto openwifi_tx_after_dma_mapping; 1140 } 1141 1142 priv->tx_cookie = priv->txd->tx_submit(priv->txd); 1143 1144 if (dma_submit_error(priv->tx_cookie)) { 1145 printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie)); 1146 goto openwifi_tx_after_dma_mapping; 1147 } 1148 1149 // seems everything is ok. let's mark this pkt in bd descriptor ring 1150 ring->bds[ring->bd_wr_idx].seq_no = (sc&IEEE80211_SCTL_SEQ)>>4; 1151 ring->bds[ring->bd_wr_idx].skb_linked = skb; 1152 ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr; 1153 1154 ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1)); 1155 1156 dma_async_issue_pending(priv->tx_chan); 1157 1158 spin_unlock_irqrestore(&priv->lock, flags); 1159 1160 return; 1161 1162 openwifi_tx_after_dma_mapping: 1163 dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV); 1164 1165 openwifi_tx_early_out_after_lock: 1166 dev_kfree_skb(skb); 1167 spin_unlock_irqrestore(&priv->lock, flags); 1168 // printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); 1169 return; 1170 1171 openwifi_tx_early_out: 1172 //dev_kfree_skb(skb); 1173 // printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); 1174 } 1175 1176 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant) 1177 { 1178 struct openwifi_priv *priv = dev->priv; 1179 u8 fpga_tx_ant_setting, target_rx_ant; 1180 u32 atten_mdb_tx0, atten_mdb_tx1; 1181 struct ctrl_outs_control ctrl_out; 1182 int ret; 1183 1184 printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant); 1185 1186 if (tx_ant >= 4 || tx_ant == 0) { 1187 return -EINVAL; 1188 } else if (rx_ant >= 3 || rx_ant == 0) { 1189 return -EINVAL; 1190 } 1191 1192 fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16)); 1193 target_rx_ant = ((rx_ant&1)?0:1); 1194 1195 // try rf chip setting firstly, only update internal state variable when rf chip succeed 1196 atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); 1197 atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); 1198 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true); 1199 if (ret < 0) { 1200 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0); 1201 return -EINVAL; 1202 } else { 1203 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0); 1204 } 1205 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true); 1206 if (ret < 0) { 1207 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1); 1208 return -EINVAL; 1209 } else { 1210 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1); 1211 } 1212 1213 ctrl_out.en_mask = priv->ctrl_out.en_mask; 1214 ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); 1215 ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out)); 1216 if (ret < 0) { 1217 printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); 1218 return -EINVAL; 1219 } else { 1220 printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); 1221 } 1222 1223 tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting); 1224 ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read(); 1225 if (ret != fpga_tx_ant_setting) { 1226 printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret); 1227 return -EINVAL; 1228 } else { 1229 printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); 1230 } 1231 1232 rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant); 1233 ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read(); 1234 if (ret != target_rx_ant) { 1235 printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret); 1236 return -EINVAL; 1237 } else { 1238 printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); 1239 } 1240 1241 // update internal state variable 1242 priv->runtime_tx_ant_cfg = tx_ant; 1243 priv->runtime_rx_ant_cfg = rx_ant; 1244 1245 if (TX_OFFSET_TUNING_ENABLE) 1246 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE 1247 else { 1248 if (tx_ant == 3) 1249 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH; 1250 else 1251 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1); 1252 } 1253 1254 priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1); 1255 priv->ctrl_out.index=ctrl_out.index; 1256 1257 priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg]; 1258 priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg]; 1259 1260 return 0; 1261 } 1262 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant) 1263 { 1264 struct openwifi_priv *priv = dev->priv; 1265 1266 *tx_ant = priv->runtime_tx_ant_cfg; 1267 *rx_ant = priv->runtime_rx_ant_cfg; 1268 1269 printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant); 1270 1271 printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str, 1272 priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index); 1273 1274 printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str, 1275 tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read()); 1276 1277 printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str, 1278 ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER)); 1279 1280 return 0; 1281 } 1282 1283 static int openwifi_start(struct ieee80211_hw *dev) 1284 { 1285 struct openwifi_priv *priv = dev->priv; 1286 int ret, i; 1287 u32 reg; 1288 1289 for (i=0; i<MAX_NUM_VIF; i++) { 1290 priv->vif[i] = NULL; 1291 } 1292 1293 // //keep software registers persistent between NIC down and up for multiple times 1294 /*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val)); 1295 memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val)); 1296 memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val)); 1297 memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val)); 1298 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/ 1299 1300 //turn on radio 1301 openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); 1302 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); 1303 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { 1304 priv->rfkill_off = 1;// 0 off, 1 on 1305 printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str); 1306 } 1307 else 1308 printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); 1309 1310 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); 1311 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); 1312 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); 1313 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); 1314 xpu_api->hw_init(priv->xpu_cfg); 1315 1316 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); 1317 1318 printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); 1319 printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); 1320 1321 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt 1322 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode 1323 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status 1324 1325 priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm"); 1326 if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) { 1327 ret = PTR_ERR(priv->rx_chan); 1328 pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan); 1329 goto err_dma; 1330 } 1331 1332 priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s"); 1333 if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) { 1334 ret = PTR_ERR(priv->tx_chan); 1335 pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan); 1336 goto err_dma; 1337 } 1338 printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan); 1339 1340 ret = openwifi_init_rx_ring(priv); 1341 if (ret) { 1342 printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret); 1343 goto err_free_rings; 1344 } 1345 1346 priv->seqno=0; 1347 for (i=0; i<MAX_NUM_SW_QUEUE; i++) { 1348 if ((ret = openwifi_init_tx_ring(priv, i))) { 1349 printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret); 1350 goto err_free_rings; 1351 } 1352 } 1353 1354 if ( (ret = rx_dma_setup(dev)) ) { 1355 printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret); 1356 goto err_free_rings; 1357 } 1358 1359 priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1); 1360 ret = request_irq(priv->irq_rx, openwifi_rx_interrupt, 1361 IRQF_SHARED, "sdr,rx_pkt_intr", dev); 1362 if (ret) { 1363 wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n"); 1364 goto err_free_rings; 1365 } else { 1366 printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx); 1367 } 1368 1369 priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3); 1370 ret = request_irq(priv->irq_tx, openwifi_tx_interrupt, 1371 IRQF_SHARED, "sdr,tx_itrpt", dev); 1372 if (ret) { 1373 wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n"); 1374 goto err_free_rings; 1375 } else { 1376 printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx); 1377 } 1378 1379 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM 1380 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt 1381 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS 1382 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer 1383 1384 1385 // normal_out: 1386 printk("%s openwifi_start: normal end\n", sdr_compatible_str); 1387 return 0; 1388 1389 err_free_rings: 1390 openwifi_free_rx_ring(priv); 1391 for (i=0; i<MAX_NUM_SW_QUEUE; i++) 1392 openwifi_free_tx_ring(priv, i); 1393 1394 err_dma: 1395 ret = -1; 1396 printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret); 1397 return ret; 1398 } 1399 1400 static void openwifi_stop(struct ieee80211_hw *dev) 1401 { 1402 struct openwifi_priv *priv = dev->priv; 1403 u32 reg, reg1; 1404 int i; 1405 1406 // enable ad9361 auto calibration and disable openwifi fpga spi control 1407 priv->ad9361_phy->state->auto_cal_en = true; // turn on auto Tx quadrature calib. 1408 priv->ad9361_phy->state->manual_tx_quad_cal_en = false; // turn off manual Tx quadrature calib. 1409 xpu_api->XPU_REG_SPI_DISABLE_write(1); 1410 1411 //turn off radio 1412 #if 1 1413 ad9361_tx_mute(priv->ad9361_phy, 1); 1414 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 1415 reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); 1416 if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { 1417 priv->rfkill_off = 0;// 0 off, 1 on 1418 printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str); 1419 } 1420 else 1421 printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); 1422 #endif 1423 1424 //ieee80211_stop_queue(dev, 0); 1425 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt 1426 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode 1427 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status 1428 1429 for (i=0; i<MAX_NUM_VIF; i++) { 1430 priv->vif[i] = NULL; 1431 } 1432 1433 openwifi_free_rx_ring(priv); 1434 for (i=0; i<MAX_NUM_SW_QUEUE; i++) 1435 openwifi_free_tx_ring(priv, i); 1436 1437 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan)); 1438 dmaengine_terminate_all(priv->rx_chan); 1439 dma_release_channel(priv->rx_chan); 1440 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan)); 1441 dmaengine_terminate_all(priv->tx_chan); 1442 dma_release_channel(priv->tx_chan); 1443 1444 //priv->rf->stop(dev); 1445 1446 free_irq(priv->irq_rx, dev); 1447 free_irq(priv->irq_tx, dev); 1448 1449 // normal_out: 1450 printk("%s openwifi_stop\n", sdr_compatible_str); 1451 } 1452 1453 static u64 openwifi_get_tsf(struct ieee80211_hw *dev, 1454 struct ieee80211_vif *vif) 1455 { 1456 u32 tsft_low, tsft_high; 1457 1458 tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read(); 1459 tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read(); 1460 //printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); 1461 return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); 1462 } 1463 1464 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf) 1465 { 1466 u32 tsft_high = ((tsf >> 32)&0xffffffff); 1467 u32 tsft_low = (tsf&0xffffffff); 1468 xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low); 1469 printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); 1470 } 1471 1472 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 1473 { 1474 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); 1475 printk("%s openwifi_reset_tsf\n", sdr_compatible_str); 1476 } 1477 1478 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value) 1479 { 1480 printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value); 1481 return(0); 1482 } 1483 1484 static void openwifi_beacon_work(struct work_struct *work) 1485 { 1486 struct openwifi_vif *vif_priv = 1487 container_of(work, struct openwifi_vif, beacon_work.work); 1488 struct ieee80211_vif *vif = 1489 container_of((void *)vif_priv, struct ieee80211_vif, drv_priv); 1490 struct ieee80211_hw *dev = vif_priv->dev; 1491 struct ieee80211_mgmt *mgmt; 1492 struct sk_buff *skb; 1493 1494 /* don't overflow the tx ring */ 1495 if (ieee80211_queue_stopped(dev, 0)) 1496 goto resched; 1497 1498 /* grab a fresh beacon */ 1499 skb = ieee80211_beacon_get(dev, vif); 1500 if (!skb) 1501 goto resched; 1502 1503 /* 1504 * update beacon timestamp w/ TSF value 1505 * TODO: make hardware update beacon timestamp 1506 */ 1507 mgmt = (struct ieee80211_mgmt *)skb->data; 1508 mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif)); 1509 1510 /* TODO: use actual beacon queue */ 1511 skb_set_queue_mapping(skb, 0); 1512 openwifi_tx(dev, NULL, skb); 1513 1514 resched: 1515 /* 1516 * schedule next beacon 1517 * TODO: use hardware support for beacon timing 1518 */ 1519 schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int)); 1520 // printk("%s openwifi_beacon_work beacon_int %d\n", sdr_compatible_str, vif->bss_conf.beacon_int); 1521 } 1522 1523 static int openwifi_add_interface(struct ieee80211_hw *dev, 1524 struct ieee80211_vif *vif) 1525 { 1526 int i; 1527 struct openwifi_priv *priv = dev->priv; 1528 struct openwifi_vif *vif_priv; 1529 1530 switch (vif->type) { 1531 case NL80211_IFTYPE_AP: 1532 case NL80211_IFTYPE_STATION: 1533 case NL80211_IFTYPE_ADHOC: 1534 case NL80211_IFTYPE_MONITOR: 1535 case NL80211_IFTYPE_MESH_POINT: 1536 break; 1537 default: 1538 return -EOPNOTSUPP; 1539 } 1540 // let's support more than 1 interface 1541 for (i=0; i<MAX_NUM_VIF; i++) { 1542 if (priv->vif[i] == NULL) 1543 break; 1544 } 1545 1546 printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i); 1547 1548 if (i==MAX_NUM_VIF) 1549 return -EBUSY; 1550 1551 priv->vif[i] = vif; 1552 1553 /* Initialize driver private area */ 1554 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1555 vif_priv->idx = i; 1556 1557 vif_priv->dev = dev; 1558 INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work); 1559 vif_priv->enable_beacon = false; 1560 1561 priv->mac_addr[0] = vif->addr[0]; 1562 priv->mac_addr[1] = vif->addr[1]; 1563 priv->mac_addr[2] = vif->addr[2]; 1564 priv->mac_addr[3] = vif->addr[3]; 1565 priv->mac_addr[4] = vif->addr[4]; 1566 priv->mac_addr[5] = vif->addr[5]; 1567 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); // set mac addr in fpga 1568 1569 printk("%s openwifi_add_interface end with vif idx %d addr %02x:%02x:%02x:%02x:%02x:%02x\n", sdr_compatible_str,vif_priv->idx, 1570 vif->addr[0],vif->addr[1],vif->addr[2],vif->addr[3],vif->addr[4],vif->addr[5]); 1571 1572 return 0; 1573 } 1574 1575 static void openwifi_remove_interface(struct ieee80211_hw *dev, 1576 struct ieee80211_vif *vif) 1577 { 1578 struct openwifi_vif *vif_priv; 1579 struct openwifi_priv *priv = dev->priv; 1580 1581 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1582 priv->vif[vif_priv->idx] = NULL; 1583 printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx); 1584 } 1585 1586 static int openwifi_config(struct ieee80211_hw *dev, u32 changed) 1587 { 1588 struct openwifi_priv *priv = dev->priv; 1589 struct ieee80211_conf *conf = &dev->conf; 1590 1591 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) 1592 priv->rf->set_chan(dev, conf); 1593 else 1594 printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed); 1595 1596 return 0; 1597 } 1598 1599 static void openwifi_bss_info_changed(struct ieee80211_hw *dev, 1600 struct ieee80211_vif *vif, 1601 struct ieee80211_bss_conf *info, 1602 u32 changed) 1603 { 1604 struct openwifi_priv *priv = dev->priv; 1605 struct openwifi_vif *vif_priv; 1606 u32 bssid_low, bssid_high; 1607 1608 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1609 1610 //be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it! 1611 //printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]); 1612 if (changed & BSS_CHANGED_BSSID) { 1613 printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]); 1614 // write new bssid to our HW, and do not change bssid filter 1615 //u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read(); 1616 bssid_low = ( *( (u32*)(info->bssid) ) ); 1617 bssid_high = ( *( (u16*)(info->bssid+4) ) ); 1618 1619 //bssid_filter_high = (bssid_filter_high&0x80000000); 1620 //bssid_high = (bssid_high|bssid_filter_high); 1621 xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low); 1622 xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high); 1623 } 1624 1625 if (changed & BSS_CHANGED_BEACON_INT) { 1626 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int); 1627 } 1628 1629 if (changed & BSS_CHANGED_TXPOWER) 1630 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower); 1631 1632 if (changed & BSS_CHANGED_ERP_CTS_PROT) 1633 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot); 1634 1635 if (changed & BSS_CHANGED_BASIC_RATES) 1636 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates); 1637 1638 if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) { 1639 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str, 1640 changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot); 1641 if (info->use_short_slot && priv->use_short_slot==false) { 1642 priv->use_short_slot=true; 1643 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 1644 } else if ((!info->use_short_slot) && priv->use_short_slot==true) { 1645 priv->use_short_slot=false; 1646 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 1647 } 1648 } 1649 1650 if (changed & BSS_CHANGED_BEACON_ENABLED) { 1651 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str); 1652 vif_priv->enable_beacon = info->enable_beacon; 1653 } 1654 1655 if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) { 1656 cancel_delayed_work_sync(&vif_priv->beacon_work); 1657 if (vif_priv->enable_beacon) { 1658 schedule_work(&vif_priv->beacon_work.work); 1659 printk("%s openwifi_bss_info_changed WARNING enable_beacon\n",sdr_compatible_str); 1660 } 1661 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str, 1662 changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON); 1663 } 1664 } 1665 // helper function 1666 u32 log2val(u32 val){ 1667 u32 ret_val = 0 ; 1668 while(val>1){ 1669 val = val >> 1 ; 1670 ret_val ++ ; 1671 } 1672 return ret_val ; 1673 } 1674 1675 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue, 1676 const struct ieee80211_tx_queue_params *params) 1677 { 1678 u32 reg_val, cw_min_exp, cw_max_exp; 1679 1680 printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n", 1681 sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop); 1682 1683 reg_val=xpu_api->XPU_REG_CSMA_CFG_read(); 1684 cw_min_exp = (log2val(params->cw_min + 1) & 0x0F); 1685 cw_max_exp = (log2val(params->cw_max + 1) & 0x0F); 1686 switch(queue){ 1687 case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) ); break; 1688 case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) ); break; 1689 case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break; 1690 case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break; 1691 default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0); 1692 } 1693 xpu_api->XPU_REG_CSMA_CFG_write(reg_val); 1694 return(0); 1695 } 1696 1697 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev, 1698 struct netdev_hw_addr_list *mc_list) 1699 { 1700 printk("%s openwifi_prepare_multicast\n", sdr_compatible_str); 1701 return netdev_hw_addr_list_count(mc_list); 1702 } 1703 1704 static void openwifi_configure_filter(struct ieee80211_hw *dev, 1705 unsigned int changed_flags, 1706 unsigned int *total_flags, 1707 u64 multicast) 1708 { 1709 u32 filter_flag; 1710 1711 (*total_flags) &= SDR_SUPPORTED_FILTERS; 1712 (*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer 1713 1714 filter_flag = (*total_flags); 1715 1716 filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO); 1717 //filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm 1718 1719 //if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR) 1720 if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode 1721 filter_flag = (filter_flag|MONITOR_ALL); 1722 else 1723 filter_flag = (filter_flag&(~MONITOR_ALL)); 1724 1725 if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) ) 1726 filter_flag = (filter_flag|MY_BEACON); 1727 1728 filter_flag = (filter_flag|FIF_PSPOLL); 1729 1730 xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG); 1731 //xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt 1732 1733 printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str, 1734 (filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1); 1735 } 1736 1737 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) 1738 { 1739 struct ieee80211_sta *sta = params->sta; 1740 enum ieee80211_ampdu_mlme_action action = params->action; 1741 // struct openwifi_priv *priv = hw->priv; 1742 u16 max_tx_bytes, buf_size; 1743 u32 ampdu_action_config; 1744 1745 if (!AGGR_ENABLE) { 1746 return -EOPNOTSUPP; 1747 } 1748 1749 switch (action) 1750 { 1751 case IEEE80211_AMPDU_TX_START: 1752 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); 1753 printk("%s openwifi_ampdu_action: start TX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1754 break; 1755 case IEEE80211_AMPDU_TX_STOP_CONT: 1756 case IEEE80211_AMPDU_TX_STOP_FLUSH: 1757 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: 1758 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); 1759 printk("%s openwifi_ampdu_action: stop TX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1760 break; 1761 case IEEE80211_AMPDU_TX_OPERATIONAL: 1762 buf_size = 4; 1763 // buf_size = (params->buf_size) - 1; 1764 max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1; 1765 ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes ); 1766 tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config); 1767 printk("%s openwifi_ampdu_action: TX operational. tid %d max_tx_bytes %d ampdu_density %d buf_size %d\n", 1768 sdr_compatible_str, params->tid, max_tx_bytes, sta->ht_cap.ampdu_density, buf_size); 1769 break; 1770 case IEEE80211_AMPDU_RX_START: 1771 printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1772 break; 1773 case IEEE80211_AMPDU_RX_STOP: 1774 printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1775 break; 1776 default: 1777 return -EOPNOTSUPP; 1778 } 1779 1780 return 0; 1781 } 1782 1783 static const struct ieee80211_ops openwifi_ops = { 1784 .tx = openwifi_tx, 1785 .start = openwifi_start, 1786 .stop = openwifi_stop, 1787 .add_interface = openwifi_add_interface, 1788 .remove_interface = openwifi_remove_interface, 1789 .config = openwifi_config, 1790 .set_antenna = openwifi_set_antenna, 1791 .get_antenna = openwifi_get_antenna, 1792 .bss_info_changed = openwifi_bss_info_changed, 1793 .conf_tx = openwifi_conf_tx, 1794 .prepare_multicast = openwifi_prepare_multicast, 1795 .configure_filter = openwifi_configure_filter, 1796 .rfkill_poll = openwifi_rfkill_poll, 1797 .get_tsf = openwifi_get_tsf, 1798 .set_tsf = openwifi_set_tsf, 1799 .reset_tsf = openwifi_reset_tsf, 1800 .set_rts_threshold = openwifi_set_rts_threshold, 1801 .ampdu_action = openwifi_ampdu_action, 1802 .testmode_cmd = openwifi_testmode_cmd, 1803 }; 1804 1805 static const struct of_device_id openwifi_dev_of_ids[] = { 1806 { .compatible = "sdr,sdr", }, 1807 {} 1808 }; 1809 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids); 1810 1811 static int custom_match_spi_dev(struct device *dev, void *data) 1812 { 1813 const char *name = data; 1814 1815 bool ret = sysfs_streq(name, dev->of_node->name); 1816 printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret); 1817 return ret; 1818 } 1819 1820 static int custom_match_platform_dev(struct device *dev, void *data) 1821 { 1822 struct platform_device *plat_dev = to_platform_device(dev); 1823 const char *name = data; 1824 char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name); 1825 bool match_flag = (name_in_sys_bus_platform_devices != NULL); 1826 1827 if (match_flag) { 1828 printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name); 1829 } 1830 return(match_flag); 1831 } 1832 1833 static int openwifi_dev_probe(struct platform_device *pdev) 1834 { 1835 struct ieee80211_hw *dev; 1836 struct openwifi_priv *priv; 1837 int err=1, rand_val; 1838 const char *chip_name, *fpga_model; 1839 u32 reg, i;//, reg1; 1840 1841 struct device_node *np = pdev->dev.of_node; 1842 1843 struct device *tmp_dev; 1844 struct platform_device *tmp_pdev; 1845 struct iio_dev *tmp_indio_dev; 1846 // struct gpio_leds_priv *tmp_led_priv; 1847 1848 printk("\n"); 1849 1850 if (np) { 1851 const struct of_device_id *match; 1852 1853 match = of_match_node(openwifi_dev_of_ids, np); 1854 if (match) { 1855 printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str); 1856 err = 0; 1857 } 1858 } 1859 1860 if (err) 1861 return err; 1862 1863 dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops); 1864 if (!dev) { 1865 printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str); 1866 err = -ENOMEM; 1867 goto err_free_dev; 1868 } 1869 1870 priv = dev->priv; 1871 priv->pdev = pdev; 1872 1873 err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model); 1874 if(err < 0) { 1875 printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err); 1876 priv->fpga_type = SMALL_FPGA; 1877 } else { 1878 // LARGE FPGAs (i.e. ZCU102, Z7035, ZC706) 1879 if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL) 1880 priv->fpga_type = LARGE_FPGA; 1881 // SMALL FPGA: (i.e. ZED, ZC702, Z7020) 1882 else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL) 1883 priv->fpga_type = SMALL_FPGA; 1884 } 1885 1886 // //-------------find ad9361-phy driver for lo/channel control--------------- 1887 priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux 1888 priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux 1889 priv->last_tx_quad_cal_lo = 1000; 1890 tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev ); 1891 if (tmp_dev == NULL) { 1892 printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str); 1893 err = -ENODEV; 1894 goto err_free_dev; 1895 } 1896 printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data)); 1897 if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) { 1898 printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str); 1899 err = -ENODEV; 1900 goto err_free_dev; 1901 } 1902 1903 priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev); 1904 if (!(priv->ad9361_phy)) { 1905 printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str); 1906 err = -ENODEV; 1907 goto err_free_dev; 1908 } 1909 printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias); 1910 1911 // //-------------find driver: axi_ad9361 hdl ref design module, dac channel--------------- 1912 tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev ); 1913 if (!tmp_dev) { 1914 printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str); 1915 err = -ENODEV; 1916 goto err_free_dev; 1917 } 1918 1919 tmp_pdev = to_platform_device(tmp_dev); 1920 if (!tmp_pdev) { 1921 printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str); 1922 err = -ENODEV; 1923 goto err_free_dev; 1924 } 1925 1926 tmp_indio_dev = platform_get_drvdata(tmp_pdev); 1927 if (!tmp_indio_dev) { 1928 printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str); 1929 err = -ENODEV; 1930 goto err_free_dev; 1931 } 1932 1933 priv->dds_st = iio_priv(tmp_indio_dev); 1934 if (!(priv->dds_st)) { 1935 printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str); 1936 err = -ENODEV; 1937 goto err_free_dev; 1938 } 1939 printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name); 1940 cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA); 1941 printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str); 1942 1943 // //-------------find driver: axi_ad9361 hdl ref design module, adc channel--------------- 1944 // turn off radio by muting tx 1945 // ad9361_tx_mute(priv->ad9361_phy, 1); 1946 // reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 1947 // reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); 1948 // if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { 1949 // priv->rfkill_off = 0;// 0 off, 1 on 1950 // printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str); 1951 // } 1952 // else 1953 // printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); 1954 1955 // //-----------------------------parse the test_mode input-------------------------------- 1956 if (test_mode&1) 1957 AGGR_ENABLE = true; 1958 1959 // if (test_mode&2) 1960 // TX_OFFSET_TUNING_ENABLE = false; 1961 1962 priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel() 1963 priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized 1964 1965 //priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode 1966 priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode 1967 1968 priv->xpu_cfg = XPU_NORMAL; 1969 1970 priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL; 1971 priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL; 1972 1973 printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) ); 1974 if (priv->rf_bw == 20000000) { //DO NOT USE. Not used for long time. 1975 priv->rx_intf_cfg = RX_INTF_BYPASS; 1976 priv->tx_intf_cfg = TX_INTF_BYPASS; 1977 //priv->rx_freq_offset_to_lo_MHz = 0; 1978 //priv->tx_freq_offset_to_lo_MHz = 0; 1979 } else if (priv->rf_bw == 40000000) { 1980 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work 1981 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work 1982 1983 // // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps 1984 priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0; 1985 if (TX_OFFSET_TUNING_ENABLE) 1986 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364 1987 else 1988 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT0; 1989 // // try another antenna option 1990 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1; 1991 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; 1992 1993 #if 0 1994 if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) { 1995 priv->rx_freq_offset_to_lo_MHz = -10; 1996 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) { 1997 priv->rx_freq_offset_to_lo_MHz = 10; 1998 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) { 1999 priv->rx_freq_offset_to_lo_MHz = 0; 2000 } else { 2001 printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg); 2002 } 2003 #endif 2004 } else { 2005 printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw); 2006 err = -EBADRQC; 2007 goto err_free_dev; 2008 } 2009 2010 printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att); 2011 2012 priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2)); 2013 priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2); 2014 2015 priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK; 2016 priv->ctrl_out.index =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); 2017 2018 memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val)); 2019 memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val)); 2020 memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val)); 2021 memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val)); 2022 2023 priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att; 2024 2025 //let's by default turn radio on when probing 2026 err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); 2027 if (err) { 2028 printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err); 2029 err = -EIO; 2030 goto err_free_dev; 2031 } 2032 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER); 2033 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg); 2034 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE); 2035 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg); 2036 2037 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); 2038 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { 2039 priv->rfkill_off = 1;// 0 off, 1 on 2040 printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str); 2041 } else 2042 printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); 2043 2044 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV; 2045 2046 // //set ad9361 in certain mode 2047 #if 0 2048 err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw); 2049 printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); 2050 err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw); 2051 printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); 2052 2053 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); 2054 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); 2055 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); 2056 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); 2057 printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); 2058 printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); 2059 #endif 2060 2061 dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle. 2062 2063 SET_IEEE80211_DEV(dev, &pdev->dev); 2064 platform_set_drvdata(pdev, dev); 2065 2066 BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates)); 2067 BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates)); 2068 BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels)); 2069 BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels)); 2070 2071 memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates)); 2072 memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates)); 2073 memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels)); 2074 memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels)); 2075 2076 priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM) 2077 priv->channel = 44; //currently useless. this can be changed by band _rf_set_channel() 2078 priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT 2079 priv->ampdu_reference = 0; 2080 2081 priv->band_2GHz.band = NL80211_BAND_2GHZ; 2082 priv->band_2GHz.channels = priv->channels_2GHz; 2083 priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz); 2084 priv->band_2GHz.bitrates = priv->rates_2GHz; 2085 priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz); 2086 priv->band_2GHz.ht_cap.ht_supported = true; 2087 // priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue 2088 if (AGGR_ENABLE) { 2089 priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; 2090 priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; 2091 } 2092 memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs)); 2093 priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff; 2094 priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 2095 dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz); 2096 2097 priv->band_5GHz.band = NL80211_BAND_5GHZ; 2098 priv->band_5GHz.channels = priv->channels_5GHz; 2099 priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz); 2100 priv->band_5GHz.bitrates = priv->rates_5GHz; 2101 priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz); 2102 priv->band_5GHz.ht_cap.ht_supported = true; 2103 // priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue 2104 if (AGGR_ENABLE) { 2105 priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; 2106 priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; 2107 } 2108 memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs)); 2109 priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff; 2110 priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 2111 dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz); 2112 2113 printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str, 2114 priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates); 2115 2116 // ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); // remove this because we don't want: mac80211.h: host buffers frame for PS and we fetch them via ieee80211_get_buffered_bc() 2117 ieee80211_hw_set(dev, RX_INCLUDES_FCS); 2118 ieee80211_hw_set(dev, BEACON_TX_STATUS);//mac80211.h: The device/driver provides TX status for sent beacons. 2119 2120 ieee80211_hw_set(dev, REPORTS_TX_ACK_STATUS);//mac80211.h: Hardware can provide ack status reports of Tx frames to the stack 2121 2122 // * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device 2123 // * autonomously manages the PS status of connected stations. When 2124 // * this flag is set mac80211 will not trigger PS mode for connected 2125 // * stations based on the PM bit of incoming frames. 2126 // * Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure 2127 // * the PS mode of connected stations. 2128 ieee80211_hw_set(dev, AP_LINK_PS); 2129 2130 if (AGGR_ENABLE) { 2131 ieee80211_hw_set(dev, AMPDU_AGGREGATION); 2132 } 2133 2134 dev->extra_tx_headroom = LEN_MPDU_DELIM; 2135 2136 dev->vif_data_size = sizeof(struct openwifi_vif); 2137 dev->wiphy->interface_modes = 2138 BIT(NL80211_IFTYPE_MONITOR)| 2139 BIT(NL80211_IFTYPE_P2P_GO) | 2140 BIT(NL80211_IFTYPE_P2P_CLIENT) | 2141 BIT(NL80211_IFTYPE_AP) | 2142 BIT(NL80211_IFTYPE_STATION) | 2143 BIT(NL80211_IFTYPE_ADHOC) | 2144 BIT(NL80211_IFTYPE_MESH_POINT) | 2145 BIT(NL80211_IFTYPE_OCB); 2146 dev->wiphy->iface_combinations = &openwifi_if_comb; 2147 dev->wiphy->n_iface_combinations = 1; 2148 2149 dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK; 2150 dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK; 2151 2152 dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation 2153 //dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config 2154 wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd); 2155 2156 chip_name = "ZYNQ"; 2157 2158 /* we declare to MAC80211 all the queues except for beacon queue 2159 * that will be eventually handled by DRV. 2160 * TX rings are arranged in such a way that lower is the IDX, 2161 * higher is the priority, in order to achieve direct mapping 2162 * with mac80211, however the beacon queue is an exception and it 2163 * is mapped on the highst tx ring IDX. 2164 */ 2165 dev->queues = MAX_NUM_HW_QUEUE; 2166 //dev->queues = 1; 2167 2168 ieee80211_hw_set(dev, SIGNAL_DBM); 2169 2170 wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 2171 2172 priv->rf = &ad9361_rf_ops; 2173 2174 memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map)); 2175 priv->slice_idx = 0xFFFFFFFF; 2176 2177 sg_init_table(&(priv->tx_sg), 1); 2178 2179 get_random_bytes(&rand_val, sizeof(rand_val)); 2180 rand_val%=250; 2181 priv->mac_addr[0]=0x66; priv->mac_addr[1]=0x55; priv->mac_addr[2]=0x44; priv->mac_addr[3]=0x33; priv->mac_addr[4]=0x22; 2182 priv->mac_addr[5]=rand_val+1; 2183 //priv->mac_addr[5]=0x11; 2184 if (!is_valid_ether_addr(priv->mac_addr)) { 2185 printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str); 2186 eth_random_addr(priv->mac_addr); 2187 } 2188 printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]); 2189 SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr); 2190 2191 spin_lock_init(&priv->lock); 2192 2193 err = ieee80211_register_hw(dev); 2194 if (err) { 2195 pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str); 2196 err = -EIO; 2197 goto err_free_dev; 2198 } else { 2199 printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err); 2200 } 2201 2202 // // //--------------------hook leds (not complete yet)-------------------------------- 2203 // tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field 2204 // if (!tmp_dev) { 2205 // printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str); 2206 // err = -ENOMEM; 2207 // goto err_free_dev; 2208 // } 2209 2210 // tmp_pdev = to_platform_device(tmp_dev); 2211 // if (!tmp_pdev) { 2212 // printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str); 2213 // err = -ENOMEM; 2214 // goto err_free_dev; 2215 // } 2216 2217 // tmp_led_priv = platform_get_drvdata(tmp_pdev); 2218 // if (!tmp_led_priv) { 2219 // printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str); 2220 // err = -ENOMEM; 2221 // goto err_free_dev; 2222 // } 2223 // printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds); 2224 // if (tmp_led_priv->num_leds!=4){ 2225 // printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds); 2226 // err = -ENOMEM; 2227 // goto err_free_dev; 2228 // } 2229 // gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it 2230 // gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it 2231 // priv->num_led = tmp_led_priv->num_leds; 2232 // priv->led[0] = &(tmp_led_priv->leds[0].cdev); 2233 // priv->led[1] = &(tmp_led_priv->leds[1].cdev); 2234 // priv->led[2] = &(tmp_led_priv->leds[2].cdev); 2235 // priv->led[3] = &(tmp_led_priv->leds[3].cdev); 2236 2237 // snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy)); 2238 // snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy)); 2239 // snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy)); 2240 // snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy)); 2241 2242 wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n", 2243 priv->mac_addr, chip_name, priv->rf->name); 2244 2245 openwifi_rfkill_init(dev); 2246 return 0; 2247 2248 err_free_dev: 2249 ieee80211_free_hw(dev); 2250 2251 return err; 2252 } 2253 2254 static int openwifi_dev_remove(struct platform_device *pdev) 2255 { 2256 struct ieee80211_hw *dev = platform_get_drvdata(pdev); 2257 2258 if (!dev) { 2259 pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev); 2260 return(-1); 2261 } 2262 2263 openwifi_rfkill_exit(dev); 2264 ieee80211_unregister_hw(dev); 2265 ieee80211_free_hw(dev); 2266 return(0); 2267 } 2268 2269 static struct platform_driver openwifi_dev_driver = { 2270 .driver = { 2271 .name = "sdr,sdr", 2272 .owner = THIS_MODULE, 2273 .of_match_table = openwifi_dev_of_ids, 2274 }, 2275 .probe = openwifi_dev_probe, 2276 .remove = openwifi_dev_remove, 2277 }; 2278 2279 module_platform_driver(openwifi_dev_driver); 2280