xref: /openwifi/driver/sdr.c (revision 585a56016e8fc8f0a28be3b5aaf11d0dbc70c4e5)
1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos
2 // SPDX-FileCopyrightText: 2022 UGent
3 // SPDX-License-Identifier: AGPL-3.0-or-later
4 
5 #include <linux/bitops.h>
6 #include <linux/dmapool.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/of_address.h>
10 #include <linux/of_platform.h>
11 #include <linux/of_irq.h>
12 #include <linux/slab.h>
13 #include <linux/clk.h>
14 #include <linux/io-64-nonatomic-lo-hi.h>
15 
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 
24 #include <linux/init.h>
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/of_dma.h>
28 #include <linux/platform_device.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/wait.h>
32 #include <linux/sched/task.h>
33 #include <linux/dma/xilinx_dma.h>
34 #include <linux/spi/spi.h>
35 #include <net/mac80211.h>
36 
37 #include <linux/clk.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk-provider.h>
40 
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43 
44 #include <linux/gpio.h>
45 #include <linux/leds.h>
46 
47 #define IIO_AD9361_USE_PRIVATE_H_
48 #include <../../drivers/iio/adc/ad9361_regs.h>
49 #include <../../drivers/iio/adc/ad9361.h>
50 #include <../../drivers/iio/adc/ad9361_private.h>
51 
52 #include <../../drivers/iio/frequency/cf_axi_dds.h>
53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num);
54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb,
55 			       bool tx1, bool tx2, bool immed);
56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy,
57 				  struct ctrl_outs_control *ctrl);
58 
59 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
60 #include "hw_def.h"
61 #include "sdr.h"
62 #include "git_rev.h"
63 
64 // driver API of component driver
65 extern struct tx_intf_driver_api *tx_intf_api;
66 extern struct rx_intf_driver_api *rx_intf_api;
67 extern struct openofdm_tx_driver_api *openofdm_tx_api;
68 extern struct openofdm_rx_driver_api *openofdm_rx_api;
69 extern struct xpu_driver_api *xpu_api;
70 
71 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes);
72 u8 gen_mpdu_delim_crc(u16 m);
73 u32 reverse32(u32 d);
74 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant);
75 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant);
76 int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction);
77 int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction);
78 int rssi_correction_lookup_table(u32 freq_MHz);
79 
80 #include "sdrctl_intf.c"
81 #include "sysfs_intf.c"
82 
83 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1)
84 // Internal indication variables after parsing test_mode
85 static bool AGGR_ENABLE = false;
86 static bool TX_OFFSET_TUNING_ENABLE = false;
87 
88 static int init_tx_att = 0;
89 
90 MODULE_AUTHOR("Xianjun Jiao");
91 MODULE_DESCRIPTION("SDR driver");
92 MODULE_LICENSE("GPL v2");
93 
94 module_param(test_mode, int, 0);
95 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)");
96 
97 module_param(init_tx_att, int, 0);
98 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000	example: set to 3000 for 3dB attenuation");
99 
100 // ---------------rfkill---------------------------------------
101 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
102 {
103 	int reg;
104 
105 	if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH)
106 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
107 	else
108 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
109 
110 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]))
111 		return true;// 0 off, 1 on
112 	return false;
113 }
114 
115 void openwifi_rfkill_init(struct ieee80211_hw *hw)
116 {
117 	struct openwifi_priv *priv = hw->priv;
118 
119 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
120 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
121 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
122 	wiphy_rfkill_start_polling(hw->wiphy);
123 }
124 
125 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
126 {
127 	bool enabled;
128 	struct openwifi_priv *priv = hw->priv;
129 
130 	enabled = openwifi_is_radio_enabled(priv);
131 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
132 	if (unlikely(enabled != priv->rfkill_off)) {
133 		priv->rfkill_off = enabled;
134 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
135 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
136 	}
137 }
138 
139 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
140 {
141 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
142 	wiphy_rfkill_stop_polling(hw->wiphy);
143 }
144 //----------------rfkill end-----------------------------------
145 
146 inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction)
147 {
148 	return ((rssi_correction+rssi_dbm)<<1);
149 }
150 
151 inline int rssi_correction_lookup_table(u32 freq_MHz)
152 {
153 	int rssi_correction;
154 
155 	if (freq_MHz<2412) {
156 		rssi_correction = 153;
157 	} else if (freq_MHz<=2484) {
158 		rssi_correction = 153;
159 	} else if (freq_MHz<5160) {
160 		rssi_correction = 153;
161 	} else if (freq_MHz<=5240) {
162 		rssi_correction = 145;
163 	} else if (freq_MHz<=5320) {
164 		rssi_correction = 148;
165 	} else {
166 		rssi_correction = 148;
167 	}
168 
169 	return rssi_correction;
170 }
171 
172 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
173 				  struct ieee80211_conf *conf)
174 {
175 	struct openwifi_priv *priv = dev->priv;
176 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz;
177 	u32 actual_tx_lo;
178 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
179 	int static_lbt_th, auto_lbt_th, fpga_lbt_th, receiver_rssi_dbm_th;
180 
181 	if (change_flag) {
182 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
183 
184 		// -------------------Tx Lo tuning-------------------
185 		clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_tx_lo ) + priv->rf_reg_val[RF_TX_REG_IDX_FO] )>>1) );
186 		priv->actual_tx_lo = actual_tx_lo;
187 
188 		// -------------------Rx Lo tuning-------------------
189 		clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_rx_lo ) + priv->rf_reg_val[RF_RX_REG_IDX_FO] )>>1) );
190 		priv->actual_rx_lo = actual_rx_lo;
191 
192 		// get rssi correction value from lookup table
193 		priv->rssi_correction = rssi_correction_lookup_table(actual_rx_lo);
194 
195 		// set appropriate lbt threshold
196 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
197 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44
198 		// auto_lbt_th = ((priv->rssi_correction-62-16)<<1);
199 		auto_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction); // -78dBm, the same as above ((priv->rssi_correction-62-16)<<1)
200 		static_lbt_th = rssi_dbm_to_rssi_half_db(-(priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]), priv->rssi_correction);
201 		fpga_lbt_th = (priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]==0?auto_lbt_th:static_lbt_th);
202 		xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th);
203 		priv->last_auto_fpga_lbt_th = auto_lbt_th;
204 
205 		// Set rssi_half_db threshold (-85dBm equivalent) to receiver. Receiver will not react to signal lower than this rssi. See test records (OPENOFDM_RX_POWER_THRES_INIT in hw_def.h)
206 		receiver_rssi_dbm_th = (priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]==0?OPENOFDM_RX_RSSI_DBM_TH_DEFAULT:(-priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]));
207 		openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write((OPENOFDM_RX_DC_RUNNING_SUM_TH_INIT<<16)|rssi_dbm_to_rssi_half_db(receiver_rssi_dbm_th, priv->rssi_correction));
208 
209 		if (actual_rx_lo < 2500) {
210 			if (priv->band != BAND_2_4GHZ) {
211 				priv->band = BAND_2_4GHZ;
212 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
213 			}
214 		} else {
215 			if (priv->band != BAND_5_8GHZ) {
216 				priv->band = BAND_5_8GHZ;
217 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
218 			}
219 		}
220 		printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d(%ddBm) (auto %d static %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,rssi_half_db_to_rssi_dbm(fpga_lbt_th, priv->rssi_correction),auto_lbt_th,static_lbt_th);
221 	}
222 }
223 
224 const struct openwifi_rf_ops ad9361_rf_ops = {
225 	.name		= "ad9361",
226 //	.init		= ad9361_rf_init,
227 //	.stop		= ad9361_rf_stop,
228 	.set_chan	= ad9361_rf_set_channel,
229 //	.calc_rssi	= ad9361_rf_calc_rssi,
230 };
231 
232 u16 reverse16(u16 d) {
233 	union u16_byte2 tmp0, tmp1;
234 	tmp0.a = d;
235 	tmp1.c[0] = tmp0.c[1];
236 	tmp1.c[1] = tmp0.c[0];
237 	return(tmp1.a);
238 }
239 
240 u32 reverse32(u32 d) {
241 	union u32_byte4 tmp0, tmp1;
242 	tmp0.a = d;
243 	tmp1.c[0] = tmp0.c[3];
244 	tmp1.c[1] = tmp0.c[2];
245 	tmp1.c[2] = tmp0.c[1];
246 	tmp1.c[3] = tmp0.c[0];
247 	return(tmp1.a);
248 }
249 
250 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
251 {
252 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
253 	int i;
254 
255 	ring->stop_flag = 0;
256 	ring->bd_wr_idx = 0;
257 	ring->bd_rd_idx = 0;
258 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
259 	if (ring->bds==NULL) {
260 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
261 		return -ENOMEM;
262 	}
263 
264 	for (i = 0; i < NUM_TX_BD; i++) {
265 		ring->bds[i].skb_linked=0; // for tx, skb is from upper layer
266 		//at first right after skb allocated, head, data, tail are the same.
267 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine
268 		ring->bds[i].seq_no = 0;
269 	}
270 
271 	return 0;
272 }
273 
274 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
275 {
276 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
277 	int i;
278 
279 	ring->stop_flag = 0;
280 	ring->bd_wr_idx = 0;
281 	ring->bd_rd_idx = 0;
282 	for (i = 0; i < NUM_TX_BD; i++) {
283 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
284 			continue;
285 		if (ring->bds[i].dma_mapping_addr != 0)
286 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
287 //		if (ring->bds[i].skb_linked!=NULL)
288 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
289 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
290 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
291 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str,
292 			ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr));
293 
294 		ring->bds[i].skb_linked=0;
295 		ring->bds[i].dma_mapping_addr = 0;
296 		ring->bds[i].seq_no = 0;
297 	}
298 	if (ring->bds)
299 		kfree(ring->bds);
300 	ring->bds = NULL;
301 }
302 
303 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
304 {
305 	int i;
306 	u8 *pdata_tmp;
307 
308 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
309 	if (!priv->rx_cyclic_buf) {
310 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
311 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
312 		return(-1);
313 	}
314 
315 	// Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
316 	for (i=0; i<NUM_RX_BD; i++) {
317 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning
318 		(*((u32*)(pdata_tmp+0 ))) = 0;
319 		(*((u32*)(pdata_tmp+4 ))) = 0;
320 	}
321 	printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str);
322 
323 	return 0;
324 }
325 
326 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
327 {
328 	if (priv->rx_cyclic_buf)
329 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
330 
331 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
332 	priv->rx_cyclic_buf = 0;
333 }
334 
335 static int rx_dma_setup(struct ieee80211_hw *dev){
336 	struct openwifi_priv *priv = dev->priv;
337 	struct dma_device *rx_dev = priv->rx_chan->device;
338 
339 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
340 	if (!(priv->rxd)) {
341 		openwifi_free_rx_ring(priv);
342 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
343 		return(-1);
344 	}
345 	priv->rxd->callback = 0;
346 	priv->rxd->callback_param = 0;
347 
348 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
349 
350 	if (dma_submit_error(priv->rx_cookie)) {
351 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
352 		return(-1);
353 	}
354 
355 	dma_async_issue_pending(priv->rx_chan);
356 	return(0);
357 }
358 
359 inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction)
360 {
361 	int rssi_db, rssi_dbm;
362 
363 	rssi_db = (rssi_half_db>>1);
364 
365 	rssi_dbm = rssi_db - rssi_correction;
366 
367 	rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm);
368 
369 	return rssi_dbm;
370 }
371 
372 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
373 {
374 	struct ieee80211_hw *dev = dev_id;
375 	struct openwifi_priv *priv = dev->priv;
376 	struct ieee80211_rx_status rx_status = {0};
377 	struct sk_buff *skb;
378 	struct ieee80211_hdr *hdr;
379 	u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di;
380 	bool ht_flag, short_gi, ht_aggr, ht_aggr_last;
381 	// u32 dma_driver_buf_idx_mod;
382 	u8 *pdata_tmp, fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw;
383 	s8 signal;
384 	u16 agc_status_and_pkt_exist_flag, rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0;
385 	bool content_ok = false, len_overflow = false;
386 
387 #ifdef USE_NEW_RX_INTERRUPT
388 	int i;
389 	spin_lock(&priv->lock);
390 	for (i=0; i<NUM_RX_BD; i++) {
391 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE;
392 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid
393 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
394 			continue;
395 #else
396 	static u8 target_buf_idx_old = 0;
397 	spin_lock(&priv->lock);
398 	while(1) { // loop all rx buffers that have new rx packets
399 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
400 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10)));
401 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
402 			break;
403 #endif
404 
405 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
406 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
407 		rssi_val =     (*((u16*)(pdata_tmp+8 )));
408 		len =          (*((u16*)(pdata_tmp+12)));
409 
410 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
411 
412 		rate_idx =     (*((u16*)(pdata_tmp+14)));
413 		ht_flag  =     ((rate_idx&0x10)!=0);
414 		short_gi =     ((rate_idx&0x20)!=0);
415 		ht_aggr  =     (ht_flag & ((rate_idx&0x40)!=0));
416 		ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0));
417 		rate_idx =     (rate_idx&0x1F);
418 
419 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
420 
421 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
422 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
423 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
424 		fcs_ok = ((fcs_ok&0x80)!=0);
425 
426 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
427 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
428 			// 	printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
429 			// }
430 			content_ok = true;
431 		} else {
432 			printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str);
433 			content_ok = false;
434 		}
435 
436 		rssi_val = (rssi_val>>1);
437 		if ( (rssi_val+128)<priv->rssi_correction )
438 			signal = -128;
439 		else
440 			signal = rssi_val - priv->rssi_correction;
441 
442 		// fc_di =        (*((u32*)(pdata_tmp+16)));
443 		// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
444 		// addr1_low32  = (*((u32*)(pdata_tmp+16+4+2)));
445 		// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
446 		// addr2_low32  = (*((u32*)(pdata_tmp+16+6+4+2)));
447 		// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
448 		// addr3_low32  = (*((u32*)(pdata_tmp+16+12+4+2)));
449 		if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) {
450 			hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
451 			addr1_low32  = *((u32*)(hdr->addr1+2));
452 			addr1_high16 = *((u16*)(hdr->addr1));
453 			if (len>=20) {
454 				addr2_low32  = *((u32*)(hdr->addr2+2));
455 				addr2_high16 = *((u16*)(hdr->addr2));
456 			}
457 			if (len>=26) {
458 				addr3_low32  = *((u32*)(hdr->addr3+2));
459 				addr3_high16 = *((u16*)(hdr->addr3));
460 			}
461 			if (len>=28)
462 				sc = hdr->seq_ctrl;
463 
464 			if ( (addr1_low32!=0xffffffff || addr1_high16!=0xffff) || (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&4) )
465 				printk("%s openwifi_rx_interrupt:%4dbytes ht%d aggr%d/%d sgi%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
466 					len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
467 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
468 #ifdef USE_NEW_RX_INTERRUPT
469 					sc, fcs_ok, i, signal);
470 #else
471 					sc, fcs_ok, target_buf_idx_old, signal);
472 #endif
473 		}
474 
475 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
476 		if (content_ok) {
477 			skb = dev_alloc_skb(len);
478 			if (skb) {
479 				skb_put_data(skb,pdata_tmp+16,len);
480 
481 				rx_status.antenna = priv->runtime_rx_ant_cfg;
482 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
483 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
484 				rx_status.signal = signal;
485 				rx_status.freq = dev->conf.chandef.chan->center_freq;
486 				rx_status.band = dev->conf.chandef.chan->band;
487 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
488 				rx_status.flag |= RX_FLAG_MACTIME_START;
489 				if (!fcs_ok)
490 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
491 				if (rate_idx <= 15)
492 					rx_status.encoding = RX_ENC_LEGACY;
493 				else
494 					rx_status.encoding = RX_ENC_HT;
495 				rx_status.bw = RATE_INFO_BW_20;
496 				if (short_gi)
497 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
498 				if(ht_aggr)
499 				{
500 					rx_status.ampdu_reference = priv->ampdu_reference;
501 					rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
502 					if (ht_aggr_last)
503 						rx_status.flag |= RX_FLAG_AMPDU_IS_LAST;
504 				}
505 
506 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
507 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
508 			} else
509 				printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
510 
511 			if(ht_aggr_last)
512 				priv->ampdu_reference++;
513 		}
514 		(*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed
515 		loop_count++;
516 #ifndef USE_NEW_RX_INTERRUPT
517 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
518 #endif
519 	}
520 
521 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) )
522 		printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
523 
524 // openwifi_rx_interrupt_out:
525 	spin_unlock(&priv->lock);
526 	return IRQ_HANDLED;
527 }
528 
529 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
530 {
531 	struct ieee80211_hw *dev = dev_id;
532 	struct openwifi_priv *priv = dev->priv;
533 	struct openwifi_ring *ring;
534 	struct sk_buff *skb;
535 	struct ieee80211_tx_info *info;
536 	u32 reg_val1, hw_queue_len, reg_val2, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0;
537 	u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx;
538 	u8 nof_retx=-1, last_bd_rd_idx, i;
539 	u64 blk_ack_bitmap;
540 	// u16 prio_rd_idx_store[64]={0};
541 	bool tx_fail=false;
542 
543 	spin_lock(&priv->lock);
544 
545 	while(1) { // loop all packets that have been sent by FPGA
546 		reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read();
547         reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read();
548 		blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32);
549 
550 		if (reg_val1!=0xFFFFFFFF) {
551 			nof_retx = (reg_val1&0xF);
552 			last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1));
553 			prio = ((reg_val1>>17)&0x3);
554 			num_slot_random = ((reg_val1>>19)&0x1FF);
555 			//num_slot_random = ((0xFF80000 &reg_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
556 			cw = ((reg_val1>>28)&0xF);
557 			//cw = ((0xF0000000 & reg_val1) >> 28);
558 			if(cw > 10) {
559 				cw = 10 ;
560 				num_slot_random += 512 ;
561 			}
562 			pkt_cnt = (reg_val2&0x3F);
563 			blk_ack_ssn = ((reg_val2>>6)&0xFFF);
564 
565 			ring = &(priv->tx_ring[prio]);
566 
567 			if ( ring->stop_flag == 1) {
568 				// Wake up Linux queue if FPGA and driver ring have room
569 				queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1));
570 				dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
571 				hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
572 
573 				if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) {
574 					// printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter);
575 					printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str,
576 					prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, last_bd_rd_idx);
577 					ieee80211_wake_queue(dev, prio);
578 					ring->stop_flag = 0;
579 				}
580 			}
581 
582 			for(i = 1; i <= pkt_cnt; i++)
583 			{
584 				ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64;
585 				seq_no = ring->bds[ring->bd_rd_idx].seq_no;
586 				skb = ring->bds[ring->bd_rd_idx].skb_linked;
587 
588 				dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
589 						skb->len, DMA_MEM_TO_DEV);
590 
591 				info = IEEE80211_SKB_CB(skb);
592 				ieee80211_tx_info_clear_status(info);
593 
594 				// Aggregation packet
595 				if(pkt_cnt > 1)
596 				{
597 					start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF));
598 					tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0);
599 					info->flags |= IEEE80211_TX_STAT_AMPDU;
600 					info->status.ampdu_len = 1;
601 					info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1;
602 
603 					skb_pull(skb, LEN_MPDU_DELIM);
604 					//skb_trim(skb, num_byte_pad_skb);
605 				}
606 				// Normal packet
607 				else
608 				{
609 					tx_fail = ((blk_ack_bitmap&0x1)==0);
610 					info->flags &= (~IEEE80211_TX_CTL_AMPDU);
611 				}
612 
613 				if (tx_fail == false)
614 					info->flags |= IEEE80211_TX_STAT_ACK;
615 
616 				info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
617 				info->status.rates[1].idx = -1;
618 				info->status.rates[2].idx = -1;
619 				info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
620 				info->status.antenna = priv->runtime_tx_ant_cfg;
621 
622 				if ( tx_fail && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
623 					printk("%s openwifi_tx_interrupt: WARNING pkt_no %d/%d tx_result [nof_retx %d pass %d] prio%d wr%d rd%d\n", sdr_compatible_str, i, pkt_cnt, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx);
624 				if ( ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK))||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) )
625 					printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw);
626 
627 				ieee80211_tx_status_irqsafe(dev, skb);
628 			}
629 
630 			loop_count++;
631 
632 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
633 
634 		} else
635 			break;
636 	}
637 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
638 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
639 
640 	spin_unlock(&priv->lock);
641 	return IRQ_HANDLED;
642 }
643 
644 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000};
645 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes)
646 {
647 	u32 i, crc = 0;
648 	u8 idx;
649 	for( i = 0; i < num_bytes; i++)
650 	{
651 		idx = (crc & 0x0F) ^ (data_in[i] & 0x0F);
652 		crc = (crc >> 4) ^ crc_table[idx];
653 
654 		idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F);
655 		crc = (crc >> 4) ^ crc_table[idx];
656 	}
657 
658 	return crc;
659 }
660 
661 u8 gen_mpdu_delim_crc(u16 m)
662 {
663 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc;
664 
665 	for (i = 0; i < 16; i++)
666 	{
667 		temp = c[7] ^ ((m >> i) & 0x01);
668 
669 		c[7] = c[6];
670 		c[6] = c[5];
671 		c[5] = c[4];
672 		c[4] = c[3];
673 		c[3] = c[2];
674 		c[2] = c[1] ^ temp;
675 		c[1] = c[0] ^ temp;
676 		c[0] = temp;
677 	}
678 	mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
679 
680 	return mpdu_delim_crc;
681 }
682 
683 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
684 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
685 {
686 	return container_of(led_cdev, struct gpio_led_data, cdev);
687 }
688 
689 static void openwifi_tx(struct ieee80211_hw *dev,
690 		       struct ieee80211_tx_control *control,
691 		       struct sk_buff *skb)
692 {
693 	struct openwifi_priv *priv = dev->priv;
694 	unsigned long flags;
695 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
696 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
697 	struct openwifi_ring *ring = NULL;
698 	dma_addr_t dma_mapping_addr;
699 	unsigned int prio=0, i;
700 	u32 num_dma_symbol, len_mpdu = 0, len_mpdu_delim_pad = 0, num_dma_byte, len_psdu, num_byte_pad;
701 	u32 rate_signal_value,rate_hw_value=0,ack_flag;
702 	u32 pkt_need_ack=0, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history;
703 	u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration;
704 	u8 fc_flag,fc_type,fc_subtype,retry_limit_raw=0,use_short_gi=0,*dma_buf,retry_limit_hw_value,rc_flags,*qos_hdr;
705 	bool use_rts_cts, use_cts_protect=false, ht_aggr_start=false, use_ht_rate=false, use_ht_aggr=false, addr_flag, cts_use_traffic_rate=false, force_use_cts_protect=false;
706 	__le16 frame_control,duration_id;
707 	u32 dma_fifo_no_room_flag, hw_queue_len;
708 	enum dma_status status;
709 
710 	static u32 addr1_low32_prev = -1, rate_hw_value_prev = -1, pkt_need_ack_prev = -1;
711 	static u16 addr1_high16_prev = -1;
712 	static __le16 duration_id_prev = -1;
713 	static unsigned int prio_prev = -1;
714 	static u8 retry_limit_raw_prev = -1;
715 	static u8 use_short_gi_prev = -1;
716 
717 	// static bool led_status=0;
718 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
719 
720 	// if ( (priv->phy_tx_sn&7) ==0 ) {
721 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
722 	// 	if (openofdm_state_history!=openofdm_state_history_old){
723 	// 		led_status = (~led_status);
724 	// 		openofdm_state_history_old = openofdm_state_history;
725 	// 		gpiod_set_value(led_dat->gpiod, led_status);
726 	// 	}
727 	// }
728 
729 	if (skb->data_len>0) {// more data are not in linear data area skb->data
730 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
731 		goto openwifi_tx_early_out;
732 	}
733 
734 	len_mpdu = skb->len;
735 
736 	// get Linux priority/queue setting info and target mac address
737 	prio = skb_get_queue_mapping(skb);
738 	addr1_low32  = *((u32*)(hdr->addr1+2));
739 	ring = &(priv->tx_ring[prio]);
740 
741 	// -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" -----------
742 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
743 		queue_idx = prio;
744 	} else {// customized prio to queue_idx mapping
745 		//if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only
746 		// check current packet belonging to which slice/hw-queue
747 			for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
748 				if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
749 					break;
750 				}
751 			}
752 		//}
753 		queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest.
754 	}
755 	// -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------
756 	// get other info from packet header
757 	addr1_high16 = *((u16*)(hdr->addr1));
758 	if (len_mpdu>=20) {
759 		addr2_low32  = *((u32*)(hdr->addr2+2));
760 		addr2_high16 = *((u16*)(hdr->addr2));
761 	}
762 	if (len_mpdu>=26) {
763 		addr3_low32  = *((u32*)(hdr->addr3+2));
764 		addr3_high16 = *((u16*)(hdr->addr3));
765 	}
766 
767 	duration_id = hdr->duration_id;
768 	frame_control=hdr->frame_control;
769 	ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK);
770 	fc_type = ((frame_control)>>2)&3;
771 	fc_subtype = ((frame_control)>>4)&0xf;
772 	fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) );
773 	//if it is broadcasting or multicasting addr
774 	addr_flag = ( (addr1_low32==0 && addr1_high16==0) ||
775 	              (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) ||
776 				  (addr1_high16==0x3333) ||
777 				  (addr1_high16==0x0001 && hdr->addr1[2]==0x5E)  );
778 	if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame
779 		pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent
780 	} else {
781 		pkt_need_ack = 0;
782 	}
783 
784 	// get Linux rate (MCS) setting
785 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
786 	//rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
787 	if (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0 && fc_type==2 && (!addr_flag)) //rate override command
788 		rate_hw_value = priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE];
789 
790 	retry_limit_raw = info->control.rates[0].count;
791 
792 	rc_flags = info->control.rates[0].flags;
793 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
794 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
795 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
796 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
797 	use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0);
798 
799 	if (use_rts_cts)
800 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
801 
802 	if (use_cts_protect) {
803 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
804 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info));
805 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
806 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
807 		sifs = (priv->actual_rx_lo<2500?10:16);
808 		if (pkt_need_ack)
809 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
810 		traffic_pkt_duration = 20 + 4*(((22+len_mpdu*8)/wifi_n_dbps_table[rate_hw_value])+1);
811 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
812 	}
813 
814 // this is 11b stuff
815 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
816 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
817 
818 	if (len_mpdu>=28) {
819 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
820 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
821 				priv->seqno += 0x10;
822 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
823 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
824 		}
825 		sc = hdr->seq_ctrl;
826 	}
827 
828 	if ( ( (!addr_flag)||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) )
829 		printk("%s openwifi_tx: %4dbytes ht%d aggr%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
830 			len_mpdu, (use_ht_rate == false ? 0 : 1), (use_ht_aggr == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
831 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
832 			sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx,
833 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
834 			ring->bd_wr_idx,ring->bd_rd_idx);
835 
836 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
837 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
838 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
839 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
840 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
841 
842 	// -----------end of preprocess some info from header and skb----------------
843 
844 	// /* HW will perform RTS-CTS when only RTS flags is set.
845 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
846 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
847 	//  */
848 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
849 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
850 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
851 	// 					len_mpdu, info);
852 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
853 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
854 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
855 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
856 	// 					len_mpdu, info);
857 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
858 	// }
859 
860 	if(use_ht_aggr)
861 	{
862 		qos_hdr = ieee80211_get_qos_ctl(hdr);
863 		if(ieee80211_is_data_qos(frame_control) == false || qos_hdr[0] != priv->tid)
864 		{
865 			printk("%s openwifi_tx: WARNING packet is either not qos or tid %u does not match registered tid %u\n", sdr_compatible_str, qos_hdr[0], priv->tid);
866 			goto openwifi_tx_early_out;
867 		}
868 
869 		// psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ]
870 		len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4);
871 		len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad;
872 
873 		if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) ||
874 			(rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) ||
875 			(prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) )
876 		{
877 			addr1_low32_prev = addr1_low32;
878 			addr1_high16_prev = addr1_high16;
879 			duration_id_prev = duration_id;
880 			rate_hw_value_prev = rate_hw_value;
881 			use_short_gi_prev = use_short_gi;
882 			prio_prev = prio;
883 			retry_limit_raw_prev = retry_limit_raw;
884 			pkt_need_ack_prev = pkt_need_ack;
885 
886 			ht_aggr_start = true;
887 		}
888 	}
889 	else
890 	{
891 		// psdu = [ MPDU ]
892 		len_psdu = len_mpdu;
893 
894 		addr1_low32_prev = -1;
895 		addr1_high16_prev = -1;
896 		duration_id_prev = -1;
897 		use_short_gi_prev = -1;
898 		rate_hw_value_prev = -1;
899 		prio_prev = -1;
900 		retry_limit_raw_prev = -1;
901 		pkt_need_ack_prev = -1;
902 	}
903 	num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
904 
905 	// check whether the packet is bigger than DMA buffer size
906 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
907 	if (num_dma_byte > TX_BD_BUF_SIZE) {
908 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
909 		goto openwifi_tx_early_out;
910 	}
911 
912 	// Copy MPDU delimiter and padding into sk_buff
913 	if(use_ht_aggr)
914 	{
915 		// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
916 		if (skb_headroom(skb)<LEN_MPDU_DELIM) {
917 			struct sk_buff *skb_new; // in case original skb headroom is not enough to host MPDU delimiter
918 			printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_MPDU_DELIM\n", sdr_compatible_str, ring->bd_wr_idx);
919 			if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) {
920 				printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
921 				goto openwifi_tx_early_out;
922 			}
923 			if (skb->sk != NULL)
924 				skb_set_owner_w(skb_new, skb->sk);
925 			dev_kfree_skb(skb);
926 			skb = skb_new;
927 		}
928 		skb_push( skb, LEN_MPDU_DELIM );
929 		dma_buf = skb->data;
930 
931 		// fill in MPDU delimiter
932 		*((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0;
933 		*((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf));
934 		*((u8 *)(dma_buf+3)) = 0x4e;
935 
936 		// Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter
937 		num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu);
938 		if (skb_tailroom(skb)<num_byte_pad) {
939 			printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
940 			goto openwifi_tx_early_out;
941 		}
942 		skb_put( skb, num_byte_pad );
943 
944 		// fill in MPDU CRC
945 		*((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu);
946 
947 		// fill in MPDU delimiter padding
948 		memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad);
949 
950 		// num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary.
951 		// If they have different lengths, add "empty MPDU delimiter" for alignment
952 		if(num_dma_byte == len_psdu + 4)
953 		{
954 			*((u32*)(dma_buf+len_psdu)) = 0x4e140000;
955 			len_psdu = num_dma_byte;
956 		}
957 	}
958 	else
959 	{
960 		// Extend sk_buff to hold padding
961 		num_byte_pad = num_dma_byte - len_mpdu;
962 		if (skb_tailroom(skb)<num_byte_pad) {
963 			printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
964 			goto openwifi_tx_early_out;
965 		}
966 		skb_put( skb, num_byte_pad );
967 
968 		dma_buf = skb->data;
969 	}
970 //	for(i = 0; i <= num_dma_symbol; i++)
971 //		printk("%16llx\n", (*(u64*)(&(dma_buf[i*8]))));
972 
973 	rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]);
974 
975 	retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) );
976 
977 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
978 	cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value);
979 	tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | (len_mpdu+LEN_PHY_CRC) );
980 	phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu );
981 
982 	/* We must be sure that tx_flags is written last because the HW
983 	 * looks at it to check if the rest of data is valid or not
984 	 */
985 	//wmb();
986 	// entry->flags = cpu_to_le32(tx_flags);
987 	/* We must be sure this has been written before following HW
988 	 * register write, because this write will make the HW attempts
989 	 * to DMA the just-written data
990 	 */
991 	//wmb();
992 
993 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
994 
995 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
996 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
997 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
998 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD)  || ring->stop_flag==1 ) {
999 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
1000 		printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str,
1001 		prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
1002 		ring->stop_flag = 1;
1003 		goto openwifi_tx_early_out_after_lock;
1004 	}
1005 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
1006 
1007 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
1008 	if (status!=DMA_COMPLETE) {
1009 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
1010 		goto openwifi_tx_early_out_after_lock;
1011 	}
1012 
1013 //-------------------------fire skb DMA to hardware----------------------------------
1014 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
1015 				 num_dma_byte, DMA_MEM_TO_DEV);
1016 
1017 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
1018 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
1019 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
1020 		goto openwifi_tx_early_out_after_lock;
1021 	}
1022 
1023 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
1024 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
1025 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
1026 
1027 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
1028 	tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config);
1029 	tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config);
1030 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
1031 	if (!(priv->txd)) {
1032 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
1033 		goto openwifi_tx_after_dma_mapping;
1034 	}
1035 
1036 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
1037 
1038 	if (dma_submit_error(priv->tx_cookie)) {
1039 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
1040 		goto openwifi_tx_after_dma_mapping;
1041 	}
1042 
1043 	// seems everything is ok. let's mark this pkt in bd descriptor ring
1044 	ring->bds[ring->bd_wr_idx].seq_no = (sc&IEEE80211_SCTL_SEQ)>>4;
1045 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
1046 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
1047 
1048 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
1049 
1050 	dma_async_issue_pending(priv->tx_chan);
1051 
1052 	spin_unlock_irqrestore(&priv->lock, flags);
1053 
1054 	return;
1055 
1056 openwifi_tx_after_dma_mapping:
1057 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
1058 
1059 openwifi_tx_early_out_after_lock:
1060 	dev_kfree_skb(skb);
1061 	spin_unlock_irqrestore(&priv->lock, flags);
1062 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1063 	return;
1064 
1065 openwifi_tx_early_out:
1066 	//dev_kfree_skb(skb);
1067 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1068 }
1069 
1070 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant)
1071 {
1072 	struct openwifi_priv *priv = dev->priv;
1073 	u8 fpga_tx_ant_setting, target_rx_ant;
1074 	u32 atten_mdb_tx0, atten_mdb_tx1;
1075 	struct ctrl_outs_control ctrl_out;
1076 	int ret;
1077 
1078 	printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant);
1079 
1080 	if (tx_ant >= 4 || tx_ant == 0) {
1081 		return -EINVAL;
1082 	} else if (rx_ant >= 3 || rx_ant == 0) {
1083 		return -EINVAL;
1084 	}
1085 
1086 	fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16));
1087 	target_rx_ant = ((rx_ant&1)?0:1);
1088 
1089 	// try rf chip setting firstly, only update internal state variable when rf chip succeed
1090 	atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1091 	atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1092 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true);
1093 	if (ret < 0) {
1094 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0);
1095 		return -EINVAL;
1096 	} else {
1097 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0);
1098 	}
1099 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true);
1100 	if (ret < 0) {
1101 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1);
1102 		return -EINVAL;
1103 	} else {
1104 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1);
1105 	}
1106 
1107 	ctrl_out.en_mask = priv->ctrl_out.en_mask;
1108 	ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
1109 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out));
1110 	if (ret < 0) {
1111 		printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1112 		return -EINVAL;
1113 	} else {
1114 		printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1115 	}
1116 
1117 	tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting);
1118 	ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read();
1119 	if (ret != fpga_tx_ant_setting) {
1120 		printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret);
1121 		return -EINVAL;
1122 	} else {
1123 		printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1124 	}
1125 
1126 	rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant);
1127 	ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read();
1128 	if (ret != target_rx_ant) {
1129 		printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret);
1130 		return -EINVAL;
1131 	} else {
1132 		printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1133 	}
1134 
1135 	// update internal state variable
1136 	priv->runtime_tx_ant_cfg = tx_ant;
1137 	priv->runtime_rx_ant_cfg = rx_ant;
1138 
1139 	if (TX_OFFSET_TUNING_ENABLE)
1140 		priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE
1141 	else {
1142 		if (tx_ant == 3)
1143 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH;
1144 		else
1145 			priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1146 	}
1147 
1148 	priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1149 	priv->ctrl_out.index=ctrl_out.index;
1150 
1151 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1152 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1153 
1154 	return 0;
1155 }
1156 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant)
1157 {
1158 	struct openwifi_priv *priv = dev->priv;
1159 
1160 	*tx_ant = priv->runtime_tx_ant_cfg;
1161 	*rx_ant = priv->runtime_rx_ant_cfg;
1162 
1163 	printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant);
1164 
1165 	printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str,
1166 	priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index);
1167 
1168 	printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str,
1169 	tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read());
1170 
1171 	printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str,
1172 	ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER));
1173 
1174 	return 0;
1175 }
1176 
1177 static int openwifi_start(struct ieee80211_hw *dev)
1178 {
1179 	struct openwifi_priv *priv = dev->priv;
1180 	int ret, i;
1181 	u32 reg;
1182 
1183 	for (i=0; i<MAX_NUM_VIF; i++) {
1184 		priv->vif[i] = NULL;
1185 	}
1186 
1187 	// //keep software registers persistent between NIC down and up for multiple times
1188 	/*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
1189 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
1190 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
1191 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
1192 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/
1193 
1194 	//turn on radio
1195 	openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
1196 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
1197 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
1198 		priv->rfkill_off = 1;// 0 off, 1 on
1199 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
1200 	}
1201 	else
1202 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
1203 
1204 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1205 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1206 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1207 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1208 	xpu_api->hw_init(priv->xpu_cfg);
1209 
1210 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1211 
1212 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1213 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1214 
1215 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1216 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1217 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1218 
1219 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1220 	if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) {
1221 		ret = PTR_ERR(priv->rx_chan);
1222 		pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan);
1223 		goto err_dma;
1224 	}
1225 
1226 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1227 	if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) {
1228 		ret = PTR_ERR(priv->tx_chan);
1229 		pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan);
1230 		goto err_dma;
1231 	}
1232 	printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan);
1233 
1234 	ret = openwifi_init_rx_ring(priv);
1235 	if (ret) {
1236 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1237 		goto err_free_rings;
1238 	}
1239 
1240 	priv->seqno=0;
1241 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1242 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1243 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1244 			goto err_free_rings;
1245 		}
1246 	}
1247 
1248 	if ( (ret = rx_dma_setup(dev)) ) {
1249 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1250 		goto err_free_rings;
1251 	}
1252 
1253 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1254 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1255 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1256 	if (ret) {
1257 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1258 		goto err_free_rings;
1259 	} else {
1260 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1261 	}
1262 
1263 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1264 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1265 			IRQF_SHARED, "sdr,tx_itrpt", dev);
1266 	if (ret) {
1267 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1268 		goto err_free_rings;
1269 	} else {
1270 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1271 	}
1272 
1273 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1274 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1275 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1276 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1277 
1278 
1279 // normal_out:
1280 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1281 	return 0;
1282 
1283 err_free_rings:
1284 	openwifi_free_rx_ring(priv);
1285 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1286 		openwifi_free_tx_ring(priv, i);
1287 
1288 err_dma:
1289 	ret = -1;
1290 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1291 	return ret;
1292 }
1293 
1294 static void openwifi_stop(struct ieee80211_hw *dev)
1295 {
1296 	struct openwifi_priv *priv = dev->priv;
1297 	u32 reg, reg1;
1298 	int i;
1299 
1300 
1301 	//turn off radio
1302 	#if 1
1303 	ad9361_tx_mute(priv->ad9361_phy, 1);
1304 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1305 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1306 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1307 		priv->rfkill_off = 0;// 0 off, 1 on
1308 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1309 	}
1310 	else
1311 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1312 	#endif
1313 
1314 	//ieee80211_stop_queue(dev, 0);
1315 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1316 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1317 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1318 
1319 	for (i=0; i<MAX_NUM_VIF; i++) {
1320 		priv->vif[i] = NULL;
1321 	}
1322 
1323 	openwifi_free_rx_ring(priv);
1324 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1325 		openwifi_free_tx_ring(priv, i);
1326 
1327 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1328 	dmaengine_terminate_all(priv->rx_chan);
1329 	dma_release_channel(priv->rx_chan);
1330 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1331 	dmaengine_terminate_all(priv->tx_chan);
1332 	dma_release_channel(priv->tx_chan);
1333 
1334 	//priv->rf->stop(dev);
1335 
1336 	free_irq(priv->irq_rx, dev);
1337 	free_irq(priv->irq_tx, dev);
1338 
1339 // normal_out:
1340 	printk("%s openwifi_stop\n", sdr_compatible_str);
1341 }
1342 
1343 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1344 			   struct ieee80211_vif *vif)
1345 {
1346 	u32 tsft_low, tsft_high;
1347 
1348 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1349 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1350 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1351 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1352 }
1353 
1354 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1355 {
1356 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1357 	u32 tsft_low  = (tsf&0xffffffff);
1358 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1359 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1360 }
1361 
1362 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1363 {
1364 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1365 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1366 }
1367 
1368 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1369 {
1370 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1371 	return(0);
1372 }
1373 
1374 static void openwifi_beacon_work(struct work_struct *work)
1375 {
1376 	struct openwifi_vif *vif_priv =
1377 		container_of(work, struct openwifi_vif, beacon_work.work);
1378 	struct ieee80211_vif *vif =
1379 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1380 	struct ieee80211_hw *dev = vif_priv->dev;
1381 	struct ieee80211_mgmt *mgmt;
1382 	struct sk_buff *skb;
1383 
1384 	/* don't overflow the tx ring */
1385 	if (ieee80211_queue_stopped(dev, 0))
1386 		goto resched;
1387 
1388 	/* grab a fresh beacon */
1389 	skb = ieee80211_beacon_get(dev, vif);
1390 	if (!skb)
1391 		goto resched;
1392 
1393 	/*
1394 	 * update beacon timestamp w/ TSF value
1395 	 * TODO: make hardware update beacon timestamp
1396 	 */
1397 	mgmt = (struct ieee80211_mgmt *)skb->data;
1398 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1399 
1400 	/* TODO: use actual beacon queue */
1401 	skb_set_queue_mapping(skb, 0);
1402 	openwifi_tx(dev, NULL, skb);
1403 
1404 resched:
1405 	/*
1406 	 * schedule next beacon
1407 	 * TODO: use hardware support for beacon timing
1408 	 */
1409 	schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1410 	// printk("%s openwifi_beacon_work beacon_int %d\n", sdr_compatible_str, vif->bss_conf.beacon_int);
1411 }
1412 
1413 static int openwifi_add_interface(struct ieee80211_hw *dev,
1414 				 struct ieee80211_vif *vif)
1415 {
1416 	int i;
1417 	struct openwifi_priv *priv = dev->priv;
1418 	struct openwifi_vif *vif_priv;
1419 
1420 	switch (vif->type) {
1421 	case NL80211_IFTYPE_AP:
1422 	case NL80211_IFTYPE_STATION:
1423 	case NL80211_IFTYPE_ADHOC:
1424 	case NL80211_IFTYPE_MONITOR:
1425 	case NL80211_IFTYPE_MESH_POINT:
1426 		break;
1427 	default:
1428 		return -EOPNOTSUPP;
1429 	}
1430 	// let's support more than 1 interface
1431 	for (i=0; i<MAX_NUM_VIF; i++) {
1432 		if (priv->vif[i] == NULL)
1433 			break;
1434 	}
1435 
1436 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1437 
1438 	if (i==MAX_NUM_VIF)
1439 		return -EBUSY;
1440 
1441 	priv->vif[i] = vif;
1442 
1443 	/* Initialize driver private area */
1444 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1445 	vif_priv->idx = i;
1446 
1447 	vif_priv->dev = dev;
1448 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1449 	vif_priv->enable_beacon = false;
1450 
1451 	priv->mac_addr[0] = vif->addr[0];
1452 	priv->mac_addr[1] = vif->addr[1];
1453 	priv->mac_addr[2] = vif->addr[2];
1454 	priv->mac_addr[3] = vif->addr[3];
1455 	priv->mac_addr[4] = vif->addr[4];
1456 	priv->mac_addr[5] = vif->addr[5];
1457 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); // set mac addr in fpga
1458 
1459 	printk("%s openwifi_add_interface end with vif idx %d addr %02x:%02x:%02x:%02x:%02x:%02x\n", sdr_compatible_str,vif_priv->idx,
1460 	vif->addr[0],vif->addr[1],vif->addr[2],vif->addr[3],vif->addr[4],vif->addr[5]);
1461 
1462 	return 0;
1463 }
1464 
1465 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1466 				     struct ieee80211_vif *vif)
1467 {
1468 	struct openwifi_vif *vif_priv;
1469 	struct openwifi_priv *priv = dev->priv;
1470 
1471 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1472 	priv->vif[vif_priv->idx] = NULL;
1473 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1474 }
1475 
1476 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1477 {
1478 	struct openwifi_priv *priv = dev->priv;
1479 	struct ieee80211_conf *conf = &dev->conf;
1480 
1481 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
1482 		priv->rf->set_chan(dev, conf);
1483 	else
1484 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1485 
1486 	return 0;
1487 }
1488 
1489 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1490 				     struct ieee80211_vif *vif,
1491 				     struct ieee80211_bss_conf *info,
1492 				     u32 changed)
1493 {
1494 	struct openwifi_priv *priv = dev->priv;
1495 	struct openwifi_vif *vif_priv;
1496 	u32 bssid_low, bssid_high;
1497 
1498 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1499 
1500 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1501 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1502 	if (changed & BSS_CHANGED_BSSID) {
1503 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1504 		// write new bssid to our HW, and do not change bssid filter
1505 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1506 		bssid_low = ( *( (u32*)(info->bssid) ) );
1507 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1508 
1509 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1510 		//bssid_high = (bssid_high|bssid_filter_high);
1511 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1512 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1513 	}
1514 
1515 	if (changed & BSS_CHANGED_BEACON_INT) {
1516 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1517 	}
1518 
1519 	if (changed & BSS_CHANGED_TXPOWER)
1520 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1521 
1522 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1523 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1524 
1525 	if (changed & BSS_CHANGED_BASIC_RATES)
1526 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1527 
1528 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1529 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1530 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1531 		if (info->use_short_slot && priv->use_short_slot==false) {
1532 			priv->use_short_slot=true;
1533 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1534 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1535 			priv->use_short_slot=false;
1536 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1537 		}
1538 	}
1539 
1540 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1541 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1542 		vif_priv->enable_beacon = info->enable_beacon;
1543 	}
1544 
1545 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1546 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1547 		if (vif_priv->enable_beacon) {
1548 			schedule_work(&vif_priv->beacon_work.work);
1549 			printk("%s openwifi_bss_info_changed WARNING enable_beacon\n",sdr_compatible_str);
1550 		}
1551 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1552 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1553 	}
1554 }
1555 // helper function
1556 u32 log2val(u32 val){
1557 	u32 ret_val = 0 ;
1558 	while(val>1){
1559 		val = val >> 1 ;
1560 		ret_val ++ ;
1561 	}
1562 	return ret_val ;
1563 }
1564 
1565 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
1566 	      const struct ieee80211_tx_queue_params *params)
1567 {
1568 	u32 reg_val, cw_min_exp, cw_max_exp;
1569 
1570 	printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
1571 		  sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1572 
1573 	reg_val=xpu_api->XPU_REG_CSMA_CFG_read();
1574 	cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
1575 	cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
1576 	switch(queue){
1577 		case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) );  break;
1578 		case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) );  break;
1579 		case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break;
1580 		case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break;
1581 		default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
1582 	}
1583 	xpu_api->XPU_REG_CSMA_CFG_write(reg_val);
1584 	return(0);
1585 }
1586 
1587 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1588 				     struct netdev_hw_addr_list *mc_list)
1589 {
1590 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1591 	return netdev_hw_addr_list_count(mc_list);
1592 }
1593 
1594 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1595 				     unsigned int changed_flags,
1596 				     unsigned int *total_flags,
1597 				     u64 multicast)
1598 {
1599 	u32 filter_flag;
1600 
1601 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1602 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1603 
1604 	filter_flag = (*total_flags);
1605 
1606 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1607 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1608 
1609 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1610 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1611 		filter_flag = (filter_flag|MONITOR_ALL);
1612 	else
1613 		filter_flag = (filter_flag&(~MONITOR_ALL));
1614 
1615 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1616 		filter_flag = (filter_flag|MY_BEACON);
1617 
1618 	filter_flag = (filter_flag|FIF_PSPOLL);
1619 
1620 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
1621 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
1622 
1623 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
1624 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
1625 }
1626 
1627 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params)
1628 {
1629 	struct ieee80211_sta *sta = params->sta;
1630 	enum ieee80211_ampdu_mlme_action action = params->action;
1631 	// struct openwifi_priv *priv = hw->priv;
1632 	u16 max_tx_bytes, buf_size;
1633 	u32 ampdu_action_config;
1634 
1635 	if (!AGGR_ENABLE) {
1636 		return -EOPNOTSUPP;
1637 	}
1638 
1639 	switch (action)
1640 	{
1641 		case IEEE80211_AMPDU_TX_START:
1642 			ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
1643 			printk("%s openwifi_ampdu_action: start TX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1644 			break;
1645 		case IEEE80211_AMPDU_TX_STOP_CONT:
1646 		case IEEE80211_AMPDU_TX_STOP_FLUSH:
1647 		case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
1648 			ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
1649 			printk("%s openwifi_ampdu_action: stop TX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1650 			break;
1651 		case IEEE80211_AMPDU_TX_OPERATIONAL:
1652 			buf_size = 4;
1653 //			buf_size = (params->buf_size) - 1;
1654 			max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1;
1655 			ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes );
1656 			tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config);
1657 			printk("%s openwifi_ampdu_action: TX operational. tid %d max_tx_bytes %d ampdu_density %d buf_size %d\n",
1658 			sdr_compatible_str, params->tid, max_tx_bytes, sta->ht_cap.ampdu_density, buf_size);
1659 			break;
1660 		case IEEE80211_AMPDU_RX_START:
1661 			printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1662 			break;
1663 		case IEEE80211_AMPDU_RX_STOP:
1664 			printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1665 			break;
1666 		default:
1667 			return -EOPNOTSUPP;
1668 	}
1669 
1670 	return 0;
1671 }
1672 
1673 static const struct ieee80211_ops openwifi_ops = {
1674 	.tx			       = openwifi_tx,
1675 	.start			   = openwifi_start,
1676 	.stop			   = openwifi_stop,
1677 	.add_interface	   = openwifi_add_interface,
1678 	.remove_interface  = openwifi_remove_interface,
1679 	.config			   = openwifi_config,
1680 	.set_antenna       = openwifi_set_antenna,
1681 	.get_antenna       = openwifi_get_antenna,
1682 	.bss_info_changed  = openwifi_bss_info_changed,
1683 	.conf_tx		   = openwifi_conf_tx,
1684 	.prepare_multicast = openwifi_prepare_multicast,
1685 	.configure_filter  = openwifi_configure_filter,
1686 	.rfkill_poll	   = openwifi_rfkill_poll,
1687 	.get_tsf		   = openwifi_get_tsf,
1688 	.set_tsf		   = openwifi_set_tsf,
1689 	.reset_tsf		   = openwifi_reset_tsf,
1690 	.set_rts_threshold = openwifi_set_rts_threshold,
1691 	.ampdu_action      = openwifi_ampdu_action,
1692 	.testmode_cmd	   = openwifi_testmode_cmd,
1693 };
1694 
1695 static const struct of_device_id openwifi_dev_of_ids[] = {
1696 	{ .compatible = "sdr,sdr", },
1697 	{}
1698 };
1699 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
1700 
1701 static int custom_match_spi_dev(struct device *dev, void *data)
1702 {
1703     const char *name = data;
1704 
1705 	bool ret = sysfs_streq(name, dev->of_node->name);
1706 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
1707 	return ret;
1708 }
1709 
1710 static int custom_match_platform_dev(struct device *dev, void *data)
1711 {
1712 	struct platform_device *plat_dev = to_platform_device(dev);
1713 	const char *name = data;
1714 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
1715 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
1716 
1717 	if (match_flag) {
1718 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
1719 	}
1720 	return(match_flag);
1721 }
1722 
1723 static int openwifi_dev_probe(struct platform_device *pdev)
1724 {
1725 	struct ieee80211_hw *dev;
1726 	struct openwifi_priv *priv;
1727 	int err=1, rand_val;
1728 	const char *chip_name, *fpga_model;
1729 	u32 reg, i;//, reg1;
1730 
1731 	struct device_node *np = pdev->dev.of_node;
1732 
1733 	struct device *tmp_dev;
1734 	struct platform_device *tmp_pdev;
1735 	struct iio_dev *tmp_indio_dev;
1736 	// struct gpio_leds_priv *tmp_led_priv;
1737 
1738 	printk("\n");
1739 
1740 	if (np) {
1741 		const struct of_device_id *match;
1742 
1743 		match = of_match_node(openwifi_dev_of_ids, np);
1744 		if (match) {
1745 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
1746 			err = 0;
1747 		}
1748 	}
1749 
1750 	if (err)
1751 		return err;
1752 
1753 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
1754 	if (!dev) {
1755 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
1756 		err = -ENOMEM;
1757 		goto err_free_dev;
1758 	}
1759 
1760 	priv = dev->priv;
1761 	priv->pdev = pdev;
1762 
1763 	err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
1764 	if(err < 0) {
1765 		printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
1766 		priv->fpga_type = SMALL_FPGA;
1767 	} else {
1768 		// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
1769 		if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
1770 			priv->fpga_type = LARGE_FPGA;
1771 		// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
1772 		else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
1773 			priv->fpga_type = SMALL_FPGA;
1774 	}
1775 
1776 	// //-------------find ad9361-phy driver for lo/channel control---------------
1777 	priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
1778 	priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
1779 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
1780 	if (tmp_dev == NULL) {
1781 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
1782 		err = -ENODEV;
1783 		goto err_free_dev;
1784 	}
1785 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
1786 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
1787 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
1788 		err = -ENODEV;
1789 		goto err_free_dev;
1790 	}
1791 
1792 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
1793 	if (!(priv->ad9361_phy)) {
1794 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
1795 		err = -ENODEV;
1796 		goto err_free_dev;
1797 	}
1798 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
1799 
1800 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
1801 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
1802 	if (!tmp_dev) {
1803 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
1804 		err = -ENODEV;
1805 		goto err_free_dev;
1806 	}
1807 
1808 	tmp_pdev = to_platform_device(tmp_dev);
1809 	if (!tmp_pdev) {
1810 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
1811 		err = -ENODEV;
1812 		goto err_free_dev;
1813 	}
1814 
1815 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
1816 	if (!tmp_indio_dev) {
1817 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
1818 		err = -ENODEV;
1819 		goto err_free_dev;
1820 	}
1821 
1822 	priv->dds_st = iio_priv(tmp_indio_dev);
1823 	if (!(priv->dds_st)) {
1824 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
1825 		err = -ENODEV;
1826 		goto err_free_dev;
1827 	}
1828 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
1829 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
1830 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
1831 
1832 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
1833 	// turn off radio by muting tx
1834 	// ad9361_tx_mute(priv->ad9361_phy, 1);
1835 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1836 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1837 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1838 	// 	priv->rfkill_off = 0;// 0 off, 1 on
1839 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
1840 	// }
1841 	// else
1842 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1843 
1844 	// //-----------------------------parse the test_mode input--------------------------------
1845 	if (test_mode&1)
1846 		AGGR_ENABLE = true;
1847 
1848 	// if (test_mode&2)
1849 	// 	TX_OFFSET_TUNING_ENABLE = false;
1850 
1851 	priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel()
1852 	priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized
1853 
1854 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1855 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1856 
1857 	priv->xpu_cfg = XPU_NORMAL;
1858 
1859 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
1860 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
1861 
1862 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
1863 	if (priv->rf_bw == 20000000) { //DO NOT USE. Not used for long time.
1864 		priv->rx_intf_cfg = RX_INTF_BYPASS;
1865 		priv->tx_intf_cfg = TX_INTF_BYPASS;
1866 		//priv->rx_freq_offset_to_lo_MHz = 0;
1867 		//priv->tx_freq_offset_to_lo_MHz = 0;
1868 	} else if (priv->rf_bw == 40000000) {
1869 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
1870 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
1871 
1872 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
1873 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1874 		if (TX_OFFSET_TUNING_ENABLE)
1875 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
1876 		else
1877 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1878 		// // try another antenna option
1879 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
1880 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
1881 
1882 		#if 0
1883 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
1884 			priv->rx_freq_offset_to_lo_MHz = -10;
1885 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
1886 			priv->rx_freq_offset_to_lo_MHz = 10;
1887 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
1888 			priv->rx_freq_offset_to_lo_MHz = 0;
1889 		} else {
1890 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
1891 		}
1892 		#endif
1893 	} else {
1894 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
1895 		err = -EBADRQC;
1896 		goto err_free_dev;
1897 	}
1898 
1899 	printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att);
1900 
1901 	priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2));
1902 	priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2);
1903 
1904 	priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK;
1905 	priv->ctrl_out.index  =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
1906 
1907 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
1908 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
1909 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
1910 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
1911 
1912 	priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att;
1913 
1914 	//let's by default turn radio on when probing
1915 	err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
1916 	if (err) {
1917 		printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err);
1918 		err = -EIO;
1919 		goto err_free_dev;
1920 	}
1921 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
1922 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
1923 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
1924 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
1925 
1926 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
1927 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
1928 		priv->rfkill_off = 1;// 0 off, 1 on
1929 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
1930 	} else
1931 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
1932 
1933 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
1934 
1935 	// //set ad9361 in certain mode
1936 	#if 0
1937 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
1938 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
1939 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
1940 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
1941 
1942 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1943 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1944 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1945 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1946 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1947 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1948 	#endif
1949 
1950 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
1951 
1952 	SET_IEEE80211_DEV(dev, &pdev->dev);
1953 	platform_set_drvdata(pdev, dev);
1954 
1955 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
1956 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
1957 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
1958 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
1959 
1960 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
1961 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
1962 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
1963 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
1964 
1965 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
1966 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
1967 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
1968 	priv->ampdu_reference = 0;
1969 
1970 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
1971 	priv->band_2GHz.channels = priv->channels_2GHz;
1972 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
1973 	priv->band_2GHz.bitrates = priv->rates_2GHz;
1974 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
1975 	priv->band_2GHz.ht_cap.ht_supported = true;
1976 	// priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
1977 	if (AGGR_ENABLE) {
1978 		priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
1979 		priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
1980 	}
1981 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
1982 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
1983 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1984 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
1985 
1986 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
1987 	priv->band_5GHz.channels = priv->channels_5GHz;
1988 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
1989 	priv->band_5GHz.bitrates = priv->rates_5GHz;
1990 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
1991 	priv->band_5GHz.ht_cap.ht_supported = true;
1992 	// priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
1993 	if (AGGR_ENABLE) {
1994 		priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
1995 		priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
1996 	}
1997 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
1998 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
1999 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2000 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2001 
2002 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2003 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2004 
2005 	// ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); // remove this because we don't want: mac80211.h: host buffers frame for PS and we fetch them via ieee80211_get_buffered_bc()
2006 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2007 	ieee80211_hw_set(dev, BEACON_TX_STATUS);//mac80211.h: The device/driver provides TX status for sent beacons.
2008 
2009 	ieee80211_hw_set(dev, REPORTS_TX_ACK_STATUS);//mac80211.h: Hardware can provide ack status reports of Tx frames to the stack
2010 
2011 	// * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device
2012 	// *	autonomously manages the PS status of connected stations. When
2013 	// *	this flag is set mac80211 will not trigger PS mode for connected
2014 	// *	stations based on the PM bit of incoming frames.
2015 	// *	Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure
2016 	// *	the PS mode of connected stations.
2017 	ieee80211_hw_set(dev, AP_LINK_PS);
2018 
2019 	if (AGGR_ENABLE) {
2020 		ieee80211_hw_set(dev, AMPDU_AGGREGATION);
2021 	}
2022 
2023 	dev->extra_tx_headroom = LEN_MPDU_DELIM;
2024 
2025 	dev->vif_data_size = sizeof(struct openwifi_vif);
2026 	dev->wiphy->interface_modes =
2027 			BIT(NL80211_IFTYPE_MONITOR)|
2028 			BIT(NL80211_IFTYPE_P2P_GO) |
2029 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
2030 			BIT(NL80211_IFTYPE_AP) |
2031 			BIT(NL80211_IFTYPE_STATION) |
2032 			BIT(NL80211_IFTYPE_ADHOC) |
2033 			BIT(NL80211_IFTYPE_MESH_POINT) |
2034 			BIT(NL80211_IFTYPE_OCB);
2035 	dev->wiphy->iface_combinations = &openwifi_if_comb;
2036 	dev->wiphy->n_iface_combinations = 1;
2037 
2038 	dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK;
2039 	dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK;
2040 
2041 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2042 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2043 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2044 
2045 	chip_name = "ZYNQ";
2046 
2047 	/* we declare to MAC80211 all the queues except for beacon queue
2048 	 * that will be eventually handled by DRV.
2049 	 * TX rings are arranged in such a way that lower is the IDX,
2050 	 * higher is the priority, in order to achieve direct mapping
2051 	 * with mac80211, however the beacon queue is an exception and it
2052 	 * is mapped on the highst tx ring IDX.
2053 	 */
2054 	dev->queues = MAX_NUM_HW_QUEUE;
2055 	//dev->queues = 1;
2056 
2057 	ieee80211_hw_set(dev, SIGNAL_DBM);
2058 
2059 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2060 
2061 	priv->rf = &ad9361_rf_ops;
2062 
2063 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2064 	priv->slice_idx = 0xFFFFFFFF;
2065 
2066 	sg_init_table(&(priv->tx_sg), 1);
2067 
2068 	get_random_bytes(&rand_val, sizeof(rand_val));
2069     rand_val%=250;
2070 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
2071 	priv->mac_addr[5]=rand_val+1;
2072 	//priv->mac_addr[5]=0x11;
2073 	if (!is_valid_ether_addr(priv->mac_addr)) {
2074 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2075 		eth_random_addr(priv->mac_addr);
2076 	}
2077 	printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2078 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2079 
2080 	spin_lock_init(&priv->lock);
2081 
2082 	err = ieee80211_register_hw(dev);
2083 	if (err) {
2084 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2085 		err = -EIO;
2086 		goto err_free_dev;
2087 	} else {
2088 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2089 	}
2090 
2091 	// // //--------------------hook leds (not complete yet)--------------------------------
2092 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
2093 	// if (!tmp_dev) {
2094 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2095 	// 	err = -ENOMEM;
2096 	// 	goto err_free_dev;
2097 	// }
2098 
2099 	// tmp_pdev = to_platform_device(tmp_dev);
2100 	// if (!tmp_pdev) {
2101 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2102 	// 	err = -ENOMEM;
2103 	// 	goto err_free_dev;
2104 	// }
2105 
2106 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2107 	// if (!tmp_led_priv) {
2108 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2109 	// 	err = -ENOMEM;
2110 	// 	goto err_free_dev;
2111 	// }
2112 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2113 	// if (tmp_led_priv->num_leds!=4){
2114 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2115 	// 	err = -ENOMEM;
2116 	// 	goto err_free_dev;
2117 	// }
2118 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2119 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2120 	// priv->num_led = tmp_led_priv->num_leds;
2121 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2122 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2123 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2124 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2125 
2126 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2127 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2128 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2129 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2130 
2131 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2132 		   priv->mac_addr, chip_name, priv->rf->name);
2133 
2134 	openwifi_rfkill_init(dev);
2135 	return 0;
2136 
2137  err_free_dev:
2138 	ieee80211_free_hw(dev);
2139 
2140 	return err;
2141 }
2142 
2143 static int openwifi_dev_remove(struct platform_device *pdev)
2144 {
2145 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2146 
2147 	if (!dev) {
2148 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2149 		return(-1);
2150 	}
2151 
2152 	openwifi_rfkill_exit(dev);
2153 	ieee80211_unregister_hw(dev);
2154 	ieee80211_free_hw(dev);
2155 	return(0);
2156 }
2157 
2158 static struct platform_driver openwifi_dev_driver = {
2159 	.driver = {
2160 		.name = "sdr,sdr",
2161 		.owner = THIS_MODULE,
2162 		.of_match_table = openwifi_dev_of_ids,
2163 	},
2164 	.probe = openwifi_dev_probe,
2165 	.remove = openwifi_dev_remove,
2166 };
2167 
2168 module_platform_driver(openwifi_dev_driver);
2169