xref: /openwifi/driver/sdr.c (revision 5680efab70e097c0088647d0db214d2bd4a5d0e0)
1 //Author: Xianjun Jiao. [email protected]; [email protected]
2 
3 #include <linux/bitops.h>
4 #include <linux/dmapool.h>
5 #include <linux/io.h>
6 #include <linux/iopoll.h>
7 #include <linux/of_address.h>
8 #include <linux/of_platform.h>
9 #include <linux/of_irq.h>
10 #include <linux/slab.h>
11 #include <linux/clk.h>
12 #include <linux/io-64-nonatomic-lo-hi.h>
13 
14 #include <linux/delay.h>
15 #include <linux/interrupt.h>
16 
17 #include <linux/dmaengine.h>
18 #include <linux/slab.h>
19 #include <linux/delay.h>
20 #include <linux/etherdevice.h>
21 
22 #include <linux/init.h>
23 #include <linux/kthread.h>
24 #include <linux/module.h>
25 #include <linux/of_dma.h>
26 #include <linux/platform_device.h>
27 #include <linux/random.h>
28 #include <linux/slab.h>
29 #include <linux/wait.h>
30 #include <linux/sched/task.h>
31 #include <linux/dma/xilinx_dma.h>
32 #include <linux/spi/spi.h>
33 #include <net/mac80211.h>
34 
35 #include <linux/clk.h>
36 #include <linux/clkdev.h>
37 #include <linux/clk-provider.h>
38 
39 #include <linux/iio/iio.h>
40 #include <linux/iio/sysfs.h>
41 
42 #include <linux/gpio.h>
43 #include <linux/leds.h>
44 
45 #define IIO_AD9361_USE_PRIVATE_H_
46 #include "ad9361/ad9361_regs.h"
47 #include "ad9361/ad9361.h"
48 #include "ad9361/ad9361_private.h"
49 
50 #include <../../drivers/iio/frequency/cf_axi_dds.h>
51 
52 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
53 #include "hw_def.h"
54 #include "sdr.h"
55 #include "git_rev.h"
56 
57 // driver API of component driver
58 extern struct tx_intf_driver_api *tx_intf_api;
59 extern struct rx_intf_driver_api *rx_intf_api;
60 extern struct openofdm_tx_driver_api *openofdm_tx_api;
61 extern struct openofdm_rx_driver_api *openofdm_rx_api;
62 extern struct xpu_driver_api *xpu_api;
63 
64 static int test_mode = 0; // 0 normal; 1 rx test
65 
66 MODULE_AUTHOR("Xianjun Jiao");
67 MODULE_DESCRIPTION("SDR driver");
68 MODULE_LICENSE("GPL v2");
69 
70 module_param(test_mode, int, 0);
71 MODULE_PARM_DESC(myint, "test_mode. 0 normal; 1 rx test");
72 
73 // ---------------rfkill---------------------------------------
74 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
75 {
76 	int reg;
77 
78 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
79 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
80 	else
81 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
82 
83 	if (reg == AD9361_RADIO_ON_TX_ATT)
84 		return true;// 0 off, 1 on
85 	return false;
86 }
87 
88 void openwifi_rfkill_init(struct ieee80211_hw *hw)
89 {
90 	struct openwifi_priv *priv = hw->priv;
91 
92 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
93 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
94 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
95 	wiphy_rfkill_start_polling(hw->wiphy);
96 }
97 
98 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
99 {
100 	bool enabled;
101 	struct openwifi_priv *priv = hw->priv;
102 
103 	enabled = openwifi_is_radio_enabled(priv);
104 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
105 	if (unlikely(enabled != priv->rfkill_off)) {
106 		priv->rfkill_off = enabled;
107 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
108 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
109 	}
110 }
111 
112 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
113 {
114 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
115 	wiphy_rfkill_stop_polling(hw->wiphy);
116 }
117 //----------------rfkill end-----------------------------------
118 
119 //static void ad9361_rf_init(void);
120 //static void ad9361_rf_stop(void);
121 //static void ad9361_rf_calc_rssi(void);
122 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
123 				  struct ieee80211_conf *conf)
124 {
125 	struct openwifi_priv *priv = dev->priv;
126 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz + priv->drv_rx_reg_val[DRV_RX_REG_IDX_EXTRA_FO];
127 	u32 actual_tx_lo;
128 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
129 
130 	if (change_flag) {
131 		priv->actual_rx_lo = actual_rx_lo;
132 
133 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
134 
135 		ad9361_clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) );
136 		ad9361_clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) );
137 
138 		if (actual_rx_lo<2412) {
139 			priv->rssi_correction = 153;
140 		} else if (actual_rx_lo<=2484) {
141 			priv->rssi_correction = 153;
142 		} else if (actual_rx_lo<5160) {
143 			priv->rssi_correction = 153;
144 		} else if (actual_rx_lo<=5240) {
145 			priv->rssi_correction = 145;
146 		} else if (actual_rx_lo<=5320) {
147 			priv->rssi_correction = 148;
148 		} else {
149 			priv->rssi_correction = 148;
150 		}
151 
152 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
153 		xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44
154 
155 		if (actual_rx_lo < 2500) {
156 			//priv->slot_time = 20; //20 is default slot time in ERP(OFDM)/11g 2.4G; short one is 9.
157 			//xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_2_4GHZ<<16);
158 			if (priv->band != BAND_2_4GHZ) {
159 				priv->band = BAND_2_4GHZ;
160 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
161 			}
162 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2)*10)<<16) | 10 ); // high 16 bits to cover sig valid of ACK packet, low 16 bits is adjustment of fcs valid waiting time.  let's add 2us for those device that is really "slow"!
163 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2+2)*10)<<16) | 10 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
164 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 0 );
165 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((10)*10)<<16);
166 		}
167 		else {
168 			//priv->slot_time = 9; //default slot time of OFDM PHY (OFDM by default means 5GHz)
169 			// xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_5_8GHZ<<16);
170 			if (priv->band != BAND_5_8GHZ) {
171 				priv->band = BAND_5_8GHZ;
172 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
173 			}
174 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2)*10)<<16) | 10 ); // because 5GHz needs longer SIFS (16 instead of 10), we need 58 instead of 48 for XPU low mac setting.  let's add 2us for those device that is really "slow"!
175 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2+2)*10)<<16) | 10 );//add 2us for longer fir.  BUT corrding to FPGA probing test, we do not need this
176 			// //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 60*10 );
177 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 50*10 );// for longer fir we need this delay 1us shorter
178 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((16)*10)<<16);
179 		}
180 		//printk("%s ad9361_rf_set_channel %dM rssi_correction %d\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction);
181 		// //-- use less
182 		//clk_prepare_enable(priv->ad9361_phy->clks[RX_RFPLL]);
183 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
184 		//ad9361_set_trx_clock_chain_default(priv->ad9361_phy);
185 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
186 	}
187 	printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag);
188 }
189 
190 const struct openwifi_rf_ops ad9361_rf_ops = {
191 	.name		= "ad9361",
192 //	.init		= ad9361_rf_init,
193 //	.stop		= ad9361_rf_stop,
194 	.set_chan	= ad9361_rf_set_channel,
195 //	.calc_rssi	= ad9361_rf_calc_rssi,
196 };
197 
198 u16 reverse16(u16 d) {
199 	union u16_byte2 tmp0, tmp1;
200 	tmp0.a = d;
201 	tmp1.c[0] = tmp0.c[1];
202 	tmp1.c[1] = tmp0.c[0];
203 	return(tmp1.a);
204 }
205 
206 u32 reverse32(u32 d) {
207 	union u32_byte4 tmp0, tmp1;
208 	tmp0.a = d;
209 	tmp1.c[0] = tmp0.c[3];
210 	tmp1.c[1] = tmp0.c[2];
211 	tmp1.c[2] = tmp0.c[1];
212 	tmp1.c[3] = tmp0.c[0];
213 	return(tmp1.a);
214 }
215 
216 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
217 {
218 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
219 	int i;
220 
221 	ring->stop_flag = 0;
222 	ring->bd_wr_idx = 0;
223 	ring->bd_rd_idx = 0;
224 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
225 	if (ring->bds==NULL) {
226 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
227 		return -ENOMEM;
228 	}
229 
230 	for (i = 0; i < NUM_TX_BD; i++) {
231 		ring->bds[i].skb_linked=0; // for tx, skb is from upper layer
232 		//at frist right after skb allocated, head, data, tail are the same.
233 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from uppler layer in tx routine
234 	}
235 
236 	return 0;
237 }
238 
239 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
240 {
241 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
242 	int i;
243 
244 	ring->stop_flag = 0;
245 	ring->bd_wr_idx = 0;
246 	ring->bd_rd_idx = 0;
247 	for (i = 0; i < NUM_TX_BD; i++) {
248 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
249 			continue;
250 		if (ring->bds[i].dma_mapping_addr != 0)
251 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
252 //		if (ring->bds[i].skb_linked!=NULL)
253 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
254 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
255 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
256 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08llx\n", sdr_compatible_str,
257 			ring_idx, i, (void*)(ring->bds[i].skb_linked), ring->bds[i].dma_mapping_addr);
258 
259 		ring->bds[i].skb_linked=0;
260 		ring->bds[i].dma_mapping_addr = 0;
261 	}
262 	if (ring->bds)
263 		kfree(ring->bds);
264 	ring->bds = NULL;
265 }
266 
267 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
268 {
269 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
270 	if (!priv->rx_cyclic_buf) {
271 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
272 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
273 		return(-1);
274 	}
275 	return 0;
276 }
277 
278 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
279 {
280 	if (priv->rx_cyclic_buf)
281 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
282 
283 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
284 	priv->rx_cyclic_buf = 0;
285 }
286 
287 static int rx_dma_setup(struct ieee80211_hw *dev){
288 	struct openwifi_priv *priv = dev->priv;
289 	struct dma_device *rx_dev = priv->rx_chan->device;
290 
291 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
292 	if (!(priv->rxd)) {
293 		openwifi_free_rx_ring(priv);
294 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
295 		return(-1);
296 	}
297 	priv->rxd->callback = 0;
298 	priv->rxd->callback_param = 0;
299 
300 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
301 
302 	if (dma_submit_error(priv->rx_cookie)) {
303 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
304 		return(-1);
305 	}
306 
307 	dma_async_issue_pending(priv->rx_chan);
308 	return(0);
309 }
310 
311 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
312 {
313 	struct ieee80211_hw *dev = dev_id;
314 	struct openwifi_priv *priv = dev->priv;
315 	struct ieee80211_rx_status rx_status = {0};
316 	struct sk_buff *skb;
317 	struct ieee80211_hdr *hdr;
318 	u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0, ht_flag, short_gi;//, fc_di;
319 	// u32 dma_driver_buf_idx_mod;
320 	u8 *pdata_tmp, fcs_ok, target_buf_idx;//, phy_rx_sn_hw;
321 	s8 signal;
322 	u16 rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0;
323 	bool content_ok = false, len_overflow = false;
324 	struct dma_tx_state state;
325 	static u8 target_buf_idx_old = 0xFF;
326 
327 	spin_lock(&priv->lock);
328 	priv->rx_chan->device->device_tx_status(priv->rx_chan,priv->rx_cookie,&state);
329 	target_buf_idx = ((state.residue-1)&(NUM_RX_BD-1));
330 
331 	while( target_buf_idx_old!=target_buf_idx ) { // loop all rx buffers that have new rx packets
332 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
333 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
334 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
335 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
336 		rssi_val =     (*((u16*)(pdata_tmp+8 )));
337 		len =          (*((u16*)(pdata_tmp+12)));
338 
339 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
340 
341 		rate_idx =     (*((u16*)(pdata_tmp+14)));
342 		short_gi =     ((rate_idx&0x20)!=0);
343 		rate_idx =     (rate_idx&0xDF);
344 
345 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
346 
347 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
348 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
349 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
350 		fcs_ok = ((fcs_ok&0x80)!=0);
351 		ht_flag = ((rate_idx&0x10)!=0);
352 
353 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
354 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
355 			// 	printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
356 			// }
357 			content_ok = true;
358 		} else {
359 			printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str);
360 			content_ok = false;
361 		}
362 
363 		rssi_val = (rssi_val>>1);
364 		if ( (rssi_val+128)<priv->rssi_correction )
365 			signal = -128;
366 		else
367 			signal = rssi_val - priv->rssi_correction;
368 
369 		// fc_di =        (*((u32*)(pdata_tmp+16)));
370 		// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
371 		// addr1_low32  = (*((u32*)(pdata_tmp+16+4+2)));
372 		// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
373 		// addr2_low32  = (*((u32*)(pdata_tmp+16+6+4+2)));
374 		// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
375 		// addr3_low32  = (*((u32*)(pdata_tmp+16+12+4+2)));
376 		if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) {
377 			hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
378 			addr1_low32  = *((u32*)(hdr->addr1+2));
379 			addr1_high16 = *((u16*)(hdr->addr1));
380 			if (len>=20) {
381 				addr2_low32  = *((u32*)(hdr->addr2+2));
382 				addr2_high16 = *((u16*)(hdr->addr2));
383 			}
384 			if (len>=26) {
385 				addr3_low32  = *((u32*)(hdr->addr3+2));
386 				addr3_high16 = *((u16*)(hdr->addr3));
387 			}
388 			if (len>=28)
389 				sc = hdr->seq_ctrl;
390 
391 			if ( addr1_low32!=0xffffffff || addr1_high16!=0xffff )
392 				printk("%s openwifi_rx_interrupt:%4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
393 					len, ht_flag, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
394 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
395 					sc, fcs_ok, target_buf_idx_old, signal);
396 		}
397 
398 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
399 		if (content_ok) {
400 			skb = dev_alloc_skb(len);
401 			if (skb) {
402 				skb_put_data(skb,pdata_tmp+16,len);
403 
404 				rx_status.antenna = 0;
405 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
406 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
407 				rx_status.signal = signal;
408 				rx_status.freq = dev->conf.chandef.chan->center_freq;
409 				rx_status.band = dev->conf.chandef.chan->band;
410 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
411 				rx_status.flag |= RX_FLAG_MACTIME_START;
412 				if (!fcs_ok)
413 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
414 				if (rate_idx <= 15)
415 					rx_status.encoding = RX_ENC_LEGACY;
416 				else
417 					rx_status.encoding = RX_ENC_HT;
418 				rx_status.bw = RATE_INFO_BW_20;
419 				if (short_gi)
420 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
421 
422 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
423 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
424 			} else
425 				printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
426 		}
427 		loop_count++;
428 	}
429 
430 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) )
431 		printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
432 
433 // openwifi_rx_interrupt_out:
434 	spin_unlock(&priv->lock);
435 	return IRQ_HANDLED;
436 }
437 
438 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
439 {
440 	struct ieee80211_hw *dev = dev_id;
441 	struct openwifi_priv *priv = dev->priv;
442 	struct openwifi_ring *ring;
443 	struct sk_buff *skb;
444 	struct ieee80211_tx_info *info;
445 	u32 reg_val, hw_queue_len, prio, queue_idx, dma_fifo_no_room_flag, cw, loop_count=0;//, i;
446 	u8 tx_result_report;
447 	// u16 prio_rd_idx_store[64]={0};
448 
449 	spin_lock(&priv->lock);
450 
451 	while(1) { // loop all packets that have been sent by FPGA
452 		reg_val = tx_intf_api->TX_INTF_REG_PKT_INFO_read();
453 		if (reg_val!=0x7FFFFF) {
454 			prio = ((0x7FFFF & reg_val)>>(5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
455 			cw = (reg_val>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
456 			ring = &(priv->tx_ring[prio]);
457 			ring->bd_rd_idx = ((reg_val>>5)&MAX_PHY_TX_SN);
458 			skb = ring->bds[ring->bd_rd_idx].skb_linked;
459 
460 			dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
461 					skb->len, DMA_MEM_TO_DEV);
462 
463 			if ( ring->stop_flag == 1) {
464 				// Wake up Linux queue if FPGA and driver ring have room
465 				queue_idx = ((reg_val>>(5+NUM_BIT_MAX_PHY_TX_SN))&(MAX_NUM_HW_QUEUE-1));
466 				dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
467 				hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
468 
469 				// printk("%s openwifi_tx_interrupt: WARNING loop %d prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d call %d\n", sdr_compatible_str,
470 				// loop_count, prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, priv->call_counter);
471 
472 				if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) {
473 					// printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter);
474 					printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str,
475 					prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx);
476 					ieee80211_wake_queue(dev, prio);
477 					ring->stop_flag = 0;
478 				}
479 			}
480 
481 			if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) ) {
482 				printk("%s openwifi_tx_interrupt: WARNING %08x %08x %08x %08x\n", sdr_compatible_str, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
483 				continue;
484 			}
485 
486 			skb_pull(skb, LEN_PHY_HEADER);
487 			//skb_trim(skb, num_byte_pad_skb);
488 			info = IEEE80211_SKB_CB(skb);
489 			ieee80211_tx_info_clear_status(info);
490 
491 			tx_result_report = (reg_val&0x1F);
492 			if ( !(info->flags & IEEE80211_TX_CTL_NO_ACK) ) {
493 				if ((tx_result_report&0x10)==0)
494 					info->flags |= IEEE80211_TX_STAT_ACK;
495 
496 				// printk("%s openwifi_tx_interrupt: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
497 				// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
498 				// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
499 				// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
500 				// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
501 			}
502 
503 			info->status.rates[0].count = (tx_result_report&0xF) + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
504 			info->status.rates[1].idx = -1;
505 			info->status.rates[2].idx = -1;
506 			info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
507 
508 			if ( (tx_result_report&0x10) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
509 				printk("%s openwifi_tx_interrupt: WARNING tx_result %02x prio%d wr%d rd%d\n", sdr_compatible_str, tx_result_report, prio, ring->bd_wr_idx, ring->bd_rd_idx);
510 			if ( ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) )
511 				printk("%s openwifi_tx_interrupt: tx_result %02x prio%d wr%d rd%d cw %d\n", sdr_compatible_str, tx_result_report, prio, ring->bd_wr_idx, ring->bd_rd_idx, cw);
512 
513 			ieee80211_tx_status_irqsafe(dev, skb);
514 
515 			loop_count++;
516 
517 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
518 
519 		} else
520 			break;
521 	}
522 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
523 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
524 
525 	spin_unlock(&priv->lock);
526 	return IRQ_HANDLED;
527 }
528 
529 u32 gen_parity(u32 v){
530 	v ^= v >> 1;
531 	v ^= v >> 2;
532 	v = (v & 0x11111111U) * 0x11111111U;
533 	return (v >> 28) & 1;
534 }
535 
536 u8 gen_ht_sig_crc(u64 m)
537 {
538 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, ht_sig_crc;
539 
540 	for (i = 0; i < 34; i++)
541 	{
542 		temp = c[7] ^ ((m >> i) & 0x01);
543 
544 		c[7] = c[6];
545 		c[6] = c[5];
546 		c[5] = c[4];
547 		c[4] = c[3];
548 		c[3] = c[2];
549 		c[2] = c[1] ^ temp;
550 		c[1] = c[0] ^ temp;
551 		c[0] = temp;
552 	}
553 	ht_sig_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
554 
555 	return ht_sig_crc;
556 }
557 
558 u32 calc_phy_header(u8 rate_hw_value, bool use_ht_rate, bool use_short_gi, u32 len, u8 *bytes){
559 	//u32 signal_word = 0 ;
560 	u8  SIG_RATE = 0, HT_SIG_RATE;
561 	u8	len_2to0, len_10to3, len_msb,b0,b1,b2, header_parity ;
562 	u32 l_len, ht_len, ht_sig1, ht_sig2;
563 
564 	// printk("rate_hw_value=%u\tuse_ht_rate=%u\tuse_short_gi=%u\tlen=%u\n", rate_hw_value, use_ht_rate, use_short_gi, len);
565 
566 	// HT-mixed mode ht signal
567 
568 	if(use_ht_rate)
569 	{
570 		SIG_RATE = wifi_mcs_table_11b_force_up[4];
571 		HT_SIG_RATE = rate_hw_value;
572 		l_len  = 24 * len / wifi_n_dbps_ht_table[rate_hw_value];
573 		ht_len = len;
574 	}
575 	else
576 	{
577 		// rate_hw_value = (rate_hw_value<=4?0:(rate_hw_value-4));
578 		// SIG_RATE = wifi_mcs_table_phy_tx[rate_hw_value];
579 		SIG_RATE = wifi_mcs_table_11b_force_up[rate_hw_value];
580 		l_len = len;
581 	}
582 
583 	len_2to0 = l_len & 0x07 ;
584 	len_10to3 = (l_len >> 3 ) & 0xFF ;
585 	len_msb = (l_len >> 11) & 0x01 ;
586 
587 	b0=SIG_RATE | (len_2to0 << 5) ;
588 	b1 = len_10to3 ;
589 	header_parity = gen_parity((len_msb << 16)| (b1<<8) | b0) ;
590 	b2 = ( len_msb | (header_parity << 1) ) ;
591 
592 	memset(bytes,0,16);
593 	bytes[0] = b0 ;
594 	bytes[1] = b1 ;
595     bytes[2] = b2;
596 
597 	// HT-mixed mode signal
598 	if(use_ht_rate)
599 	{
600 		ht_sig1 = (HT_SIG_RATE & 0x7F) | ((ht_len << 8) & 0xFFFF00);
601 		ht_sig2 = 0x04 | (use_short_gi << 7);
602 		ht_sig2 = ht_sig2 | (gen_ht_sig_crc(ht_sig1 | ht_sig2 << 24) << 10);
603 
604 	    bytes[3]  = 1;
605 	    bytes[8]  = (ht_sig1 & 0xFF);
606 	    bytes[9]  = (ht_sig1 >> 8)  & 0xFF;
607 	    bytes[10] = (ht_sig1 >> 16) & 0xFF;
608 	    bytes[11] = (ht_sig2 & 0xFF);
609 	    bytes[12] = (ht_sig2 >> 8)  & 0xFF;
610 	    bytes[13] = (ht_sig2 >> 16) & 0xFF;
611 
612 		return(HT_SIG_RATE);
613 	}
614 	else
615 	{
616 		//signal_word = b0+(b1<<8)+(b2<<16) ;
617 		//return signal_word;
618 		return(SIG_RATE);
619 	}
620 }
621 
622 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
623 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
624 {
625 	return container_of(led_cdev, struct gpio_led_data, cdev);
626 }
627 
628 static void openwifi_tx(struct ieee80211_hw *dev,
629 		       struct ieee80211_tx_control *control,
630 		       struct sk_buff *skb)
631 {
632 	struct openwifi_priv *priv = dev->priv;
633 	unsigned long flags;
634 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
635 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
636 	struct openwifi_ring *ring;
637 	dma_addr_t dma_mapping_addr;
638 	unsigned int prio, i;
639 	u32 num_dma_symbol, len_mac_pdu, num_dma_byte, len_phy_packet, num_byte_pad;
640 	u32 rate_signal_value,rate_hw_value,ack_flag;
641 	u32 pkt_need_ack, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, dma_reg, cts_reg;//, openofdm_state_history;
642 	u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value = 0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration;
643 	u8 fc_flag,fc_type,fc_subtype,retry_limit_raw,*dma_buf,retry_limit_hw_value,rc_flags;
644 	bool use_rts_cts, use_cts_protect, use_ht_rate=false, use_short_gi, addr_flag, cts_use_traffic_rate=false, force_use_cts_protect=false;
645 	__le16 frame_control,duration_id;
646 	u32 dma_fifo_no_room_flag, hw_queue_len;
647 	enum dma_status status;
648 	// static bool led_status=0;
649 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
650 
651 	// if ( (priv->phy_tx_sn&7) ==0 ) {
652 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
653 	// 	if (openofdm_state_history!=openofdm_state_history_old){
654 	// 		led_status = (~led_status);
655 	// 		openofdm_state_history_old = openofdm_state_history;
656 	// 		gpiod_set_value(led_dat->gpiod, led_status);
657 	// 	}
658 	// }
659 
660 	if (test_mode==1){
661 		printk("%s openwifi_tx: WARNING test_mode==1\n", sdr_compatible_str);
662 		goto openwifi_tx_early_out;
663 	}
664 
665 	if (skb->data_len>0) {// more data are not in linear data area skb->data
666 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
667 		goto openwifi_tx_early_out;
668 	}
669 
670 	len_mac_pdu = skb->len;
671 	len_phy_packet = len_mac_pdu + LEN_PHY_HEADER;
672 	num_dma_symbol = (len_phy_packet>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_phy_packet&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
673 
674 	// get Linux priority/queue setting info and target mac address
675 	prio = skb_get_queue_mapping(skb);
676 	addr1_low32  = *((u32*)(hdr->addr1+2));
677 	ring = &(priv->tx_ring[prio]);
678 
679 	// -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" -----------
680 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
681 		queue_idx = prio;
682 	} else {// customized prio to queue_idx mapping
683 		//if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only
684 		// check current packet belonging to which slice/hw-queue
685 			for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
686 				if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
687 					break;
688 				}
689 			}
690 		//}
691 		queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. becuase the queue 2 is the longest.
692 	}
693 	// -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------
694 
695 	// check whether the packet is bigger than DMA buffer size
696 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
697 	if (num_dma_byte > TX_BD_BUF_SIZE) {
698 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING num_dma_byte > TX_BD_BUF_SIZE\n");
699 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
700 		goto openwifi_tx_early_out;
701 	}
702 	num_byte_pad = num_dma_byte-len_phy_packet;
703 
704 	// get other info from packet header
705 	addr1_high16 = *((u16*)(hdr->addr1));
706 	if (len_mac_pdu>=20) {
707 		addr2_low32  = *((u32*)(hdr->addr2+2));
708 		addr2_high16 = *((u16*)(hdr->addr2));
709 	}
710 	if (len_mac_pdu>=26) {
711 		addr3_low32  = *((u32*)(hdr->addr3+2));
712 		addr3_high16 = *((u16*)(hdr->addr3));
713 	}
714 
715 	duration_id = hdr->duration_id;
716 	frame_control=hdr->frame_control;
717 	ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK);
718 	fc_type = ((frame_control)>>2)&3;
719 	fc_subtype = ((frame_control)>>4)&0xf;
720 	fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) );
721 	//if it is broadcasting or multicasting addr
722 	addr_flag = ( (addr1_low32==0 && addr1_high16==0) ||
723 	              (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) ||
724 				  (addr1_high16==0x3333) ||
725 				  (addr1_high16==0x0001 && hdr->addr1[2]==0x5E)  );
726 	if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame
727 		pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent
728 	} else {
729 		pkt_need_ack = 0;
730 	}
731 
732 	// get Linux rate (MCS) setting
733 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
734 	//rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
735 	if (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0 && fc_type==2 && (!addr_flag)) //rate override command
736 		rate_hw_value = priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE];
737 
738 	retry_limit_raw = info->control.rates[0].count;
739 
740 	rc_flags = info->control.rates[0].flags;
741 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
742 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
743 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
744 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
745 
746 	if (use_rts_cts)
747 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
748 
749 	if (use_cts_protect) {
750 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
751 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mac_pdu,info));
752 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
753 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
754 		sifs = (priv->actual_rx_lo<2500?10:16);
755 		if (pkt_need_ack)
756 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
757 		traffic_pkt_duration = 20 + 4*(((22+len_mac_pdu*8)/wifi_n_dbps_table[rate_hw_value])+1);
758 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
759 	}
760 
761 // this is 11b stuff
762 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
763 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
764 
765 	if (len_mac_pdu>=28) {
766 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
767 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
768 				priv->seqno += 0x10;
769 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
770 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
771 		}
772 		sc = hdr->seq_ctrl;
773 	}
774 
775 	if ( (!addr_flag) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) )
776 		printk("%s openwifi_tx: %4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
777 			len_mac_pdu, (use_ht_rate == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
778 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
779 			sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx,
780 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
781 			ring->bd_wr_idx,ring->bd_rd_idx);
782 
783 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
784 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
785 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
786 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
787 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
788 
789 	// -----------end of preprocess some info from header and skb----------------
790 
791 	// /* HW will perform RTS-CTS when only RTS flags is set.
792 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
793 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
794 	//  */
795 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
796 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
797 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
798 	// 					len_mac_pdu, info);
799 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
800 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
801 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
802 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
803 	// 					len_mac_pdu, info);
804 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
805 	// }
806 
807 	// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
808 	if (skb_headroom(skb)<LEN_PHY_HEADER) {
809 		struct sk_buff *skb_new; // in case original skb headroom is not enough to host phy header needed by FPGA IP core
810 		printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_PHY_HEADER\n", sdr_compatible_str, ring->bd_wr_idx);
811 		if ((skb_new = skb_realloc_headroom(skb, LEN_PHY_HEADER)) == NULL) {
812 			printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
813 			goto openwifi_tx_early_out;
814 		}
815 		if (skb->sk != NULL)
816 			skb_set_owner_w(skb_new, skb->sk);
817 		dev_kfree_skb(skb);
818 		skb = skb_new;
819 	}
820 
821 	skb_push( skb, LEN_PHY_HEADER );
822 	rate_signal_value = calc_phy_header(rate_hw_value, use_ht_rate, use_short_gi, len_mac_pdu+LEN_PHY_CRC, skb->data); //fill the phy header
823 
824 
825 	//make sure dma length is integer times of DDC_NUM_BYTE_PER_DMA_SYMBOL
826 	if (skb_tailroom(skb)<num_byte_pad) {
827 		printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
828 		// skb_pull(skb, LEN_PHY_HEADER);
829 		goto openwifi_tx_early_out;
830 	}
831 	skb_put( skb, num_byte_pad );
832 
833 	retry_limit_hw_value = (retry_limit_raw - 1)&0xF;
834 	dma_buf = skb->data;
835 
836 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
837 	cts_reg = (((use_cts_protect|force_use_cts_protect)<<31)|(cts_use_traffic_rate<<30)|(cts_duration<<8)|(cts_rate_signal_value<<4)|rate_signal_value);
838 	dma_reg = ( (( ((prio<<(NUM_BIT_MAX_NUM_HW_QUEUE+NUM_BIT_MAX_PHY_TX_SN))|(ring->bd_wr_idx<<NUM_BIT_MAX_NUM_HW_QUEUE)|queue_idx) )<<18)|(retry_limit_hw_value<<14)|(pkt_need_ack<<13)|num_dma_symbol );
839 
840 	/* We must be sure that tx_flags is written last because the HW
841 	 * looks at it to check if the rest of data is valid or not
842 	 */
843 	//wmb();
844 	// entry->flags = cpu_to_le32(tx_flags);
845 	/* We must be sure this has been written before followings HW
846 	 * register write, because this write will made the HW attempts
847 	 * to DMA the just-written data
848 	 */
849 	//wmb();
850 
851 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
852 
853 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
854 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
855 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
856 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD)  || ring->stop_flag==1 ) {
857 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
858 		printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str,
859 		prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
860 		ring->stop_flag = 1;
861 		goto openwifi_tx_early_out_after_lock;
862 	}
863 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
864 
865 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
866 	if (status!=DMA_COMPLETE) {
867 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
868 		goto openwifi_tx_early_out_after_lock;
869 	}
870 
871 	if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) ) {
872 		printk("%s openwifi_tx: WARNING 1 %d %08x %08x %08x %08x\n", sdr_compatible_str, num_byte_pad, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
873 		goto openwifi_tx_early_out_after_lock;
874 	}
875 
876 //-------------------------fire skb DMA to hardware----------------------------------
877 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
878 				 num_dma_byte, DMA_MEM_TO_DEV);
879 
880 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
881 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
882 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
883 		goto openwifi_tx_early_out_after_lock;
884 	}
885 
886 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
887 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
888 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
889 
890 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
891 	tx_intf_api->TX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(dma_reg);
892 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
893 	if (!(priv->txd)) {
894 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
895 		goto openwifi_tx_after_dma_mapping;
896 	}
897 
898 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
899 
900 	if (dma_submit_error(priv->tx_cookie)) {
901 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
902 		goto openwifi_tx_after_dma_mapping;
903 	}
904 
905 	// seems everything ok. let's mark this pkt in bd descriptor ring
906 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
907 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
908 
909 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
910 
911 	dma_async_issue_pending(priv->tx_chan);
912 
913 	if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) )
914 		printk("%s openwifi_tx: WARNING 2 %08x %08x %08x %08x\n", sdr_compatible_str, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
915 
916 	spin_unlock_irqrestore(&priv->lock, flags);
917 
918 	return;
919 
920 openwifi_tx_after_dma_mapping:
921 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
922 
923 openwifi_tx_early_out_after_lock:
924 	// skb_pull(skb, LEN_PHY_HEADER);
925 	dev_kfree_skb(skb);
926 	spin_unlock_irqrestore(&priv->lock, flags);
927 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
928 	return;
929 
930 openwifi_tx_early_out:
931 	dev_kfree_skb(skb);
932 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
933 }
934 
935 static int openwifi_start(struct ieee80211_hw *dev)
936 {
937 	struct openwifi_priv *priv = dev->priv;
938 	int ret, i, rssi_half_db_offset, agc_gain_delay;//rssi_half_db_th,
939 	u32 reg;
940 
941 	for (i=0; i<MAX_NUM_VIF; i++) {
942 		priv->vif[i] = NULL;
943 	}
944 
945 	memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
946 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
947 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
948 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
949 
950 	//turn on radio
951 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
952 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
953 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
954 	} else {
955 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
956 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
957 	}
958 	if (reg == AD9361_RADIO_ON_TX_ATT) {
959 		priv->rfkill_off = 1;// 0 off, 1 on
960 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
961 	}
962 	else
963 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
964 
965 	if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
966 		priv->ctrl_out.index=0x16;
967 	else
968 		priv->ctrl_out.index=0x17;
969 
970 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
971 	if (ret < 0) {
972 		printk("%s openwifi_start: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, ret);
973 	} else {
974 		printk("%s openwifi_start: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
975 	}
976 
977 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
978 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
979 
980 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
981 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8);
982 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
983 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
984 	xpu_api->hw_init(priv->xpu_cfg);
985 
986 	agc_gain_delay = 50; //samples
987 	rssi_half_db_offset = 134; // to be consistent
988 	xpu_api->XPU_REG_RSSI_DB_CFG_write(0x80000000|((rssi_half_db_offset<<16)|agc_gain_delay) );
989 	xpu_api->XPU_REG_RSSI_DB_CFG_write((~0x80000000)&((rssi_half_db_offset<<16)|agc_gain_delay) );
990 
991 	openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write(0);
992 	// rssi_half_db_th = 87<<1; // -62dBm // will settup in runtime in _rf_set_channel
993 	// xpu_api->XPU_REG_LBT_TH_write(rssi_half_db_th); // set IQ rssi th step .5dB to xxx and enable it
994 
995 	// xpu_api->XPU_REG_CSMA_CFG_write(3); // cw_min -- already set in xpu.c
996 
997 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((40)<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz (Attention, current tx core has around 1.19us starting delay that makes the ack fall behind 10us SIFS in 2.4GHz! Need to improve TX in 2.4GHz!)
998 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51)<<16)|0 );//now our tx send out I/Q immediately
999 	xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51+23)<<16)|(0+23) );//we have more time when we use FIR in AD9361
1000 
1001 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP0_write( (((45+2+2)*10 + 15)<<16) | 10 );//2.4GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1002 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP1_write( (((51+2+2)*10 + 15)<<16) | 10 );//5GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1003 
1004 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write( ((16*10)<<16)|(10*10) );//high 16bit 5GHz; low 16 bit 2.4GHz. counter speed 10MHz is assumed
1005 
1006 	// //xpu_api->XPU_REG_BB_RF_DELAY_write(51); // fine tuned value at 0.005us. old: dac-->ant port: 0.6us, 57 taps fir at 40MHz: 1.425us; round trip: 2*(0.6+1.425)=4.05us; 4.05*10=41
1007 	// xpu_api->XPU_REG_BB_RF_DELAY_write(47);//add .5us for slightly longer fir -- already in xpu.c
1008 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1009 
1010 	// setup time schedule of 4 slices
1011 	// slice 0
1012 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write(50000-1); // total 50ms
1013 	xpu_api->XPU_REG_SLICE_COUNT_START_write(0); //start 0ms
1014 	xpu_api->XPU_REG_SLICE_COUNT_END_write(50000-1); //end 50ms
1015 
1016 	// slice 1
1017 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((1<<20)|(50000-1)); // total 50ms
1018 	xpu_api->XPU_REG_SLICE_COUNT_START_write((1<<20)|(0)); //start 0ms
1019 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(20000-1)); //end 20ms
1020 	xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(50000-1)); //end 20ms
1021 
1022 	// slice 2
1023 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((2<<20)|(50000-1)); // total 50ms
1024 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(20000)); //start 20ms
1025 	xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(0)); //start 20ms
1026 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(40000-1)); //end 20ms
1027 	xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(50000-1)); //end 20ms
1028 
1029 	// slice 3
1030 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((3<<20)|(50000-1)); // total 50ms
1031 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(40000)); //start 40ms
1032 	xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(0)); //start 40ms
1033 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1034 	xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1035 
1036 	// all slice sync rest
1037 	xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1038 	xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1039 
1040 	//xpu_api->XPU_REG_MAC_ADDR_HIGH_write( (*( (u16*)(priv->mac_addr + 4) )) );
1041 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1042 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1043 
1044 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1045 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1046 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1047 
1048 	if (test_mode==1) {
1049 		printk("%s openwifi_start: test_mode==1\n",sdr_compatible_str);
1050 		goto normal_out;
1051 	}
1052 
1053 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1054 	if (IS_ERR(priv->rx_chan)) {
1055 		ret = PTR_ERR(priv->rx_chan);
1056 		pr_err("%s openwifi_start: No Rx channel %d\n",sdr_compatible_str,ret);
1057 		goto err_dma;
1058 	}
1059 
1060 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1061 	if (IS_ERR(priv->tx_chan)) {
1062 		ret = PTR_ERR(priv->tx_chan);
1063 		pr_err("%s openwifi_start: No Tx channel %d\n",sdr_compatible_str,ret);
1064 		goto err_dma;
1065 	}
1066 	printk("%s openwifi_start: DMA channel setup successfully.\n",sdr_compatible_str);
1067 
1068 	ret = openwifi_init_rx_ring(priv);
1069 	if (ret) {
1070 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1071 		goto err_free_rings;
1072 	}
1073 
1074 	priv->seqno=0;
1075 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1076 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1077 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1078 			goto err_free_rings;
1079 		}
1080 	}
1081 
1082 	if ( (ret = rx_dma_setup(dev)) ) {
1083 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1084 		goto err_free_rings;
1085 	}
1086 
1087 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1088 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1089 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1090 	if (ret) {
1091 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1092 		goto err_free_rings;
1093 	} else {
1094 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1095 	}
1096 
1097 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1098 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1099 			IRQF_SHARED, "sdr,tx_itrpt1", dev);
1100 	if (ret) {
1101 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1102 		goto err_free_rings;
1103 	} else {
1104 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1105 	}
1106 
1107 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1108 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1109 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1110 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1111 
1112 	//ieee80211_wake_queue(dev, 0);
1113 
1114 normal_out:
1115 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1116 	return 0;
1117 
1118 err_free_rings:
1119 	openwifi_free_rx_ring(priv);
1120 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1121 		openwifi_free_tx_ring(priv, i);
1122 
1123 err_dma:
1124 	ret = -1;
1125 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1126 	return ret;
1127 }
1128 
1129 static void openwifi_stop(struct ieee80211_hw *dev)
1130 {
1131 	struct openwifi_priv *priv = dev->priv;
1132 	u32 reg, reg1;
1133 	int i;
1134 
1135 	if (test_mode==1){
1136 		pr_info("%s openwifi_stop: test_mode==1\n", sdr_compatible_str);
1137 		goto normal_out;
1138 	}
1139 
1140 	//turn off radio
1141 	#if 1
1142 	ad9361_tx_mute(priv->ad9361_phy, 1);
1143 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1144 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1145 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1146 		priv->rfkill_off = 0;// 0 off, 1 on
1147 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1148 	}
1149 	else
1150 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1151 	#endif
1152 
1153 	//ieee80211_stop_queue(dev, 0);
1154 
1155 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1156 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1157 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1158 
1159 	for (i=0; i<MAX_NUM_VIF; i++) {
1160 		priv->vif[i] = NULL;
1161 	}
1162 
1163 	openwifi_free_rx_ring(priv);
1164 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1165 		openwifi_free_tx_ring(priv, i);
1166 
1167 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1168 	dmaengine_terminate_all(priv->rx_chan);
1169 	dma_release_channel(priv->rx_chan);
1170 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1171 	dmaengine_terminate_all(priv->tx_chan);
1172 	dma_release_channel(priv->tx_chan);
1173 
1174 	//priv->rf->stop(dev);
1175 
1176 	free_irq(priv->irq_rx, dev);
1177 	free_irq(priv->irq_tx, dev);
1178 
1179 normal_out:
1180 	printk("%s openwifi_stop\n", sdr_compatible_str);
1181 }
1182 
1183 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1184 			   struct ieee80211_vif *vif)
1185 {
1186 	u32 tsft_low, tsft_high;
1187 
1188 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1189 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1190 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1191 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1192 }
1193 
1194 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1195 {
1196 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1197 	u32 tsft_low  = (tsf&0xffffffff);
1198 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1199 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1200 }
1201 
1202 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1203 {
1204 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1205 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1206 }
1207 
1208 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1209 {
1210 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1211 	return(0);
1212 }
1213 
1214 static void openwifi_beacon_work(struct work_struct *work)
1215 {
1216 	struct openwifi_vif *vif_priv =
1217 		container_of(work, struct openwifi_vif, beacon_work.work);
1218 	struct ieee80211_vif *vif =
1219 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1220 	struct ieee80211_hw *dev = vif_priv->dev;
1221 	struct ieee80211_mgmt *mgmt;
1222 	struct sk_buff *skb;
1223 
1224 	/* don't overflow the tx ring */
1225 	if (ieee80211_queue_stopped(dev, 0))
1226 		goto resched;
1227 
1228 	/* grab a fresh beacon */
1229 	skb = ieee80211_beacon_get(dev, vif);
1230 	if (!skb)
1231 		goto resched;
1232 
1233 	/*
1234 	 * update beacon timestamp w/ TSF value
1235 	 * TODO: make hardware update beacon timestamp
1236 	 */
1237 	mgmt = (struct ieee80211_mgmt *)skb->data;
1238 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1239 
1240 	/* TODO: use actual beacon queue */
1241 	skb_set_queue_mapping(skb, 0);
1242 	openwifi_tx(dev, NULL, skb);
1243 
1244 resched:
1245 	/*
1246 	 * schedule next beacon
1247 	 * TODO: use hardware support for beacon timing
1248 	 */
1249 	schedule_delayed_work(&vif_priv->beacon_work,
1250 			usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1251 }
1252 
1253 static int openwifi_add_interface(struct ieee80211_hw *dev,
1254 				 struct ieee80211_vif *vif)
1255 {
1256 	int i;
1257 	struct openwifi_priv *priv = dev->priv;
1258 	struct openwifi_vif *vif_priv;
1259 
1260 	switch (vif->type) {
1261 	case NL80211_IFTYPE_AP:
1262 	case NL80211_IFTYPE_STATION:
1263 	case NL80211_IFTYPE_ADHOC:
1264 	case NL80211_IFTYPE_MONITOR:
1265 	case NL80211_IFTYPE_MESH_POINT:
1266 		break;
1267 	default:
1268 		return -EOPNOTSUPP;
1269 	}
1270 	// let's support more than 1 interface
1271 	for (i=0; i<MAX_NUM_VIF; i++) {
1272 		if (priv->vif[i] == NULL)
1273 			break;
1274 	}
1275 
1276 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1277 
1278 	if (i==MAX_NUM_VIF)
1279 		return -EBUSY;
1280 
1281 	priv->vif[i] = vif;
1282 
1283 	/* Initialize driver private area */
1284 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1285 	vif_priv->idx = i;
1286 
1287 	vif_priv->dev = dev;
1288 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1289 	vif_priv->enable_beacon = false;
1290 
1291 	printk("%s openwifi_add_interface end with vif idx %d\n", sdr_compatible_str,vif_priv->idx);
1292 
1293 	return 0;
1294 }
1295 
1296 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1297 				     struct ieee80211_vif *vif)
1298 {
1299 	struct openwifi_vif *vif_priv;
1300 	struct openwifi_priv *priv = dev->priv;
1301 
1302 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1303 	priv->vif[vif_priv->idx] = NULL;
1304 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1305 }
1306 
1307 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1308 {
1309 	struct openwifi_priv *priv = dev->priv;
1310 	struct ieee80211_conf *conf = &dev->conf;
1311 
1312 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
1313 		priv->rf->set_chan(dev, conf);
1314 	else
1315 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1316 
1317 	return 0;
1318 }
1319 
1320 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1321 				     struct ieee80211_vif *vif,
1322 				     struct ieee80211_bss_conf *info,
1323 				     u32 changed)
1324 {
1325 	struct openwifi_priv *priv = dev->priv;
1326 	struct openwifi_vif *vif_priv;
1327 	u32 bssid_low, bssid_high;
1328 
1329 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1330 
1331 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1332 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1333 	if (changed & BSS_CHANGED_BSSID) {
1334 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1335 		// write new bssid to our HW, and do not change bssid filter
1336 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1337 		bssid_low = ( *( (u32*)(info->bssid) ) );
1338 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1339 
1340 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1341 		//bssid_high = (bssid_high|bssid_filter_high);
1342 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1343 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1344 	}
1345 
1346 	if (changed & BSS_CHANGED_BEACON_INT) {
1347 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1348 	}
1349 
1350 	if (changed & BSS_CHANGED_TXPOWER)
1351 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1352 
1353 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1354 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1355 
1356 	if (changed & BSS_CHANGED_BASIC_RATES)
1357 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1358 
1359 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1360 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1361 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1362 		if (info->use_short_slot && priv->use_short_slot==false) {
1363 			priv->use_short_slot=true;
1364 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1365 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1366 			priv->use_short_slot=false;
1367 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1368 		}
1369 	}
1370 
1371 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1372 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1373 		vif_priv->enable_beacon = info->enable_beacon;
1374 	}
1375 
1376 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1377 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1378 		if (vif_priv->enable_beacon)
1379 			schedule_work(&vif_priv->beacon_work.work);
1380 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1381 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1382 	}
1383 }
1384 
1385 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
1386 	      const struct ieee80211_tx_queue_params *params)
1387 {
1388 	printk("%s openwifi_conf_tx: WARNING [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
1389 		  sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1390 	return(0);
1391 }
1392 
1393 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1394 				     struct netdev_hw_addr_list *mc_list)
1395 {
1396 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1397 	return netdev_hw_addr_list_count(mc_list);
1398 }
1399 
1400 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1401 				     unsigned int changed_flags,
1402 				     unsigned int *total_flags,
1403 				     u64 multicast)
1404 {
1405 	u32 filter_flag;
1406 
1407 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1408 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1409 
1410 	filter_flag = (*total_flags);
1411 
1412 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1413 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1414 
1415 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1416 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1417 		filter_flag = (filter_flag|MONITOR_ALL);
1418 	else
1419 		filter_flag = (filter_flag&(~MONITOR_ALL));
1420 
1421 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1422 		filter_flag = (filter_flag|MY_BEACON);
1423 
1424 	filter_flag = (filter_flag|FIF_PSPOLL);
1425 
1426 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
1427 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
1428 
1429 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
1430 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
1431 }
1432 
1433 static int openwifi_testmode_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void *data, int len)
1434 {
1435 	struct openwifi_priv *priv = hw->priv;
1436 	struct nlattr *tb[OPENWIFI_ATTR_MAX + 1];
1437 	struct sk_buff *skb;
1438 	int err;
1439 	u32 tmp=-1, reg_cat, reg_addr, reg_val, reg_addr_idx, tsft_high, tsft_low;
1440 
1441 	err = nla_parse(tb, OPENWIFI_ATTR_MAX, data, len, openwifi_testmode_policy, NULL);
1442 	if (err)
1443 		return err;
1444 
1445 	if (!tb[OPENWIFI_ATTR_CMD])
1446 		return -EINVAL;
1447 
1448 	switch (nla_get_u32(tb[OPENWIFI_ATTR_CMD])) {
1449 	case OPENWIFI_CMD_SET_GAP:
1450 		if (!tb[OPENWIFI_ATTR_GAP])
1451 			return -EINVAL;
1452 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_GAP]);
1453 		printk("%s openwifi radio inter frame gap set to %d usec\n", sdr_compatible_str, tmp);
1454 		xpu_api->XPU_REG_CSMA_CFG_write(tmp); // unit us
1455 		return 0;
1456 	case OPENWIFI_CMD_GET_GAP:
1457 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1458 		if (!skb)
1459 			return -ENOMEM;
1460 		tmp = xpu_api->XPU_REG_CSMA_CFG_read();
1461 		if (nla_put_u32(skb, OPENWIFI_ATTR_GAP, tmp))
1462 			goto nla_put_failure;
1463 		return cfg80211_testmode_reply(skb);
1464 	case OPENWIFI_CMD_SET_SLICE_IDX:
1465 		if (!tb[OPENWIFI_ATTR_SLICE_IDX])
1466 			return -EINVAL;
1467 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_IDX]);
1468 		printk("%s set openwifi slice_idx in hex: %08x\n", sdr_compatible_str, tmp);
1469 		if (tmp == MAX_NUM_HW_QUEUE) {
1470 			printk("%s set openwifi slice_idx reset all queue counter.\n", sdr_compatible_str);
1471 			xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1472 			xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1473 		} else {
1474 			priv->slice_idx = tmp;
1475 		}
1476 		return 0;
1477 	case OPENWIFI_CMD_GET_SLICE_IDX:
1478 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1479 		if (!skb)
1480 			return -ENOMEM;
1481 		tmp = priv->slice_idx;
1482 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_IDX, tmp))
1483 			goto nla_put_failure;
1484 		printk("%s get openwifi slice_idx in hex: %08x\n", sdr_compatible_str, tmp);
1485 		return cfg80211_testmode_reply(skb);
1486 	case OPENWIFI_CMD_SET_ADDR:
1487 		if (!tb[OPENWIFI_ATTR_ADDR])
1488 			return -EINVAL;
1489 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_ADDR]);
1490 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1491 			printk("%s set openwifi slice_target_mac_addr(low32) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1492 		} else {
1493 			printk("%s set openwifi slice_target_mac_addr(low32) in hex: %08x to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1494 			priv->dest_mac_addr_queue_map[priv->slice_idx] = reverse32(tmp);
1495 		}
1496 		return 0;
1497 	case OPENWIFI_CMD_GET_ADDR:
1498 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1499 		if (!skb)
1500 			return -ENOMEM;
1501 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1502 			tmp = -1;
1503 		} else {
1504 			tmp = reverse32(priv->dest_mac_addr_queue_map[priv->slice_idx]);
1505 		}
1506 		if (nla_put_u32(skb, OPENWIFI_ATTR_ADDR, tmp))
1507 			goto nla_put_failure;
1508 		printk("%s get openwifi slice_target_mac_addr(low32) in hex: %08x of slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1509 		return cfg80211_testmode_reply(skb);
1510 
1511 	case OPENWIFI_CMD_SET_SLICE_TOTAL:
1512 		if (!tb[OPENWIFI_ATTR_SLICE_TOTAL])
1513 			return -EINVAL;
1514 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL]);
1515 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1516 			printk("%s set SLICE_TOTAL(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1517 		} else {
1518 			printk("%s set SLICE_TOTAL(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1519 			xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((priv->slice_idx<<20)|tmp);
1520 		}
1521 		return 0;
1522 	case OPENWIFI_CMD_GET_SLICE_TOTAL:
1523 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1524 		if (!skb)
1525 			return -ENOMEM;
1526 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL_read());
1527 		printk("%s get SLICE_TOTAL(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1528 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL, tmp))
1529 			goto nla_put_failure;
1530 		return cfg80211_testmode_reply(skb);
1531 
1532 	case OPENWIFI_CMD_SET_SLICE_START:
1533 		if (!tb[OPENWIFI_ATTR_SLICE_START])
1534 			return -EINVAL;
1535 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START]);
1536 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1537 			printk("%s set SLICE_START(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1538 		} else {
1539 			printk("%s set SLICE_START(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1540 			xpu_api->XPU_REG_SLICE_COUNT_START_write((priv->slice_idx<<20)|tmp);
1541 		}
1542 		return 0;
1543 	case OPENWIFI_CMD_GET_SLICE_START:
1544 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1545 		if (!skb)
1546 			return -ENOMEM;
1547 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_START_read());
1548 		printk("%s get SLICE_START(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1549 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START, tmp))
1550 			goto nla_put_failure;
1551 		return cfg80211_testmode_reply(skb);
1552 
1553 	case OPENWIFI_CMD_SET_SLICE_END:
1554 		if (!tb[OPENWIFI_ATTR_SLICE_END])
1555 			return -EINVAL;
1556 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END]);
1557 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1558 			printk("%s set SLICE_END(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1559 		} else {
1560 			printk("%s set SLICE_END(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1561 			xpu_api->XPU_REG_SLICE_COUNT_END_write((priv->slice_idx<<20)|tmp);
1562 		}
1563 		return 0;
1564 	case OPENWIFI_CMD_GET_SLICE_END:
1565 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1566 		if (!skb)
1567 			return -ENOMEM;
1568 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_END_read());
1569 		printk("%s get SLICE_END(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1570 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END, tmp))
1571 			goto nla_put_failure;
1572 		return cfg80211_testmode_reply(skb);
1573 
1574 	// case OPENWIFI_CMD_SET_SLICE_TOTAL1:
1575 	// 	if (!tb[OPENWIFI_ATTR_SLICE_TOTAL1])
1576 	// 		return -EINVAL;
1577 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL1]);
1578 	// 	printk("%s set SLICE_TOTAL1(duration) to %d usec\n", sdr_compatible_str, tmp);
1579 	// 	// xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_write(tmp);
1580 	// 	return 0;
1581 	// case OPENWIFI_CMD_GET_SLICE_TOTAL1:
1582 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1583 	// 	if (!skb)
1584 	// 		return -ENOMEM;
1585 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_read());
1586 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL1, tmp))
1587 	// 		goto nla_put_failure;
1588 	// 	return cfg80211_testmode_reply(skb);
1589 
1590 	// case OPENWIFI_CMD_SET_SLICE_START1:
1591 	// 	if (!tb[OPENWIFI_ATTR_SLICE_START1])
1592 	// 		return -EINVAL;
1593 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START1]);
1594 	// 	printk("%s set SLICE_START1(duration) to %d usec\n", sdr_compatible_str, tmp);
1595 	// 	// xpu_api->XPU_REG_SLICE_COUNT_START1_write(tmp);
1596 	// 	return 0;
1597 	// case OPENWIFI_CMD_GET_SLICE_START1:
1598 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1599 	// 	if (!skb)
1600 	// 		return -ENOMEM;
1601 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_START1_read());
1602 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START1, tmp))
1603 	// 		goto nla_put_failure;
1604 	// 	return cfg80211_testmode_reply(skb);
1605 
1606 	// case OPENWIFI_CMD_SET_SLICE_END1:
1607 	// 	if (!tb[OPENWIFI_ATTR_SLICE_END1])
1608 	// 		return -EINVAL;
1609 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END1]);
1610 	// 	printk("%s set SLICE_END1(duration) to %d usec\n", sdr_compatible_str, tmp);
1611 	// 	// xpu_api->XPU_REG_SLICE_COUNT_END1_write(tmp);
1612 	// 	return 0;
1613 	// case OPENWIFI_CMD_GET_SLICE_END1:
1614 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1615 	// 	if (!skb)
1616 	// 		return -ENOMEM;
1617 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_END1_read());
1618 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END1, tmp))
1619 	// 		goto nla_put_failure;
1620 	// 	return cfg80211_testmode_reply(skb);
1621 
1622 	case OPENWIFI_CMD_SET_RSSI_TH:
1623 		if (!tb[OPENWIFI_ATTR_RSSI_TH])
1624 			return -EINVAL;
1625 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_RSSI_TH]);
1626 		printk("%s set RSSI_TH to %d\n", sdr_compatible_str, tmp);
1627 		xpu_api->XPU_REG_LBT_TH_write(tmp);
1628 		return 0;
1629 	case OPENWIFI_CMD_GET_RSSI_TH:
1630 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1631 		if (!skb)
1632 			return -ENOMEM;
1633 		tmp = xpu_api->XPU_REG_LBT_TH_read();
1634 		if (nla_put_u32(skb, OPENWIFI_ATTR_RSSI_TH, tmp))
1635 			goto nla_put_failure;
1636 		return cfg80211_testmode_reply(skb);
1637 
1638 	case OPENWIFI_CMD_SET_TSF:
1639 		printk("openwifi_set_tsf_1");
1640 		if ( (!tb[OPENWIFI_ATTR_HIGH_TSF]) || (!tb[OPENWIFI_ATTR_LOW_TSF]) )
1641 				return -EINVAL;
1642 		printk("openwifi_set_tsf_2");
1643 		tsft_high = nla_get_u32(tb[OPENWIFI_ATTR_HIGH_TSF]);
1644 		tsft_low  = nla_get_u32(tb[OPENWIFI_ATTR_LOW_TSF]);
1645 		xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1646 		printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1647 		return 0;
1648 
1649 	case REG_CMD_SET:
1650 		if ( (!tb[REG_ATTR_ADDR]) || (!tb[REG_ATTR_VAL]) )
1651 			return -EINVAL;
1652 		reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
1653 		reg_val  = nla_get_u32(tb[REG_ATTR_VAL]);
1654 		reg_cat = ((reg_addr>>16)&0xFFFF);
1655 		reg_addr = (reg_addr&0xFFFF);
1656 		reg_addr_idx = (reg_addr>>2);
1657 		printk("%s recv set cmd reg cat %d addr %08x val %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_val, reg_addr_idx);
1658 		if (reg_cat==1)
1659 			printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
1660 		else if (reg_cat==2)
1661 			rx_intf_api->reg_write(reg_addr,reg_val);
1662 		else if (reg_cat==3)
1663 			tx_intf_api->reg_write(reg_addr,reg_val);
1664 		else if (reg_cat==4)
1665 			openofdm_rx_api->reg_write(reg_addr,reg_val);
1666 		else if (reg_cat==5)
1667 			openofdm_tx_api->reg_write(reg_addr,reg_val);
1668 		else if (reg_cat==6)
1669 			xpu_api->reg_write(reg_addr,reg_val);
1670 		else if (reg_cat==7) {
1671 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1672 				priv->drv_rx_reg_val[reg_addr_idx]=reg_val;
1673 				if (reg_addr_idx==DRV_RX_REG_IDX_FREQ_BW_CFG) {
1674 					if (reg_val==0)
1675 						priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1676 					else
1677 						priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
1678 
1679 					priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1680 					//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1681 				}
1682 			} else
1683 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1684 		}
1685 		else if (reg_cat==8) {
1686 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1687 				priv->drv_tx_reg_val[reg_addr_idx]=reg_val;
1688 				if (reg_addr_idx==DRV_TX_REG_IDX_FREQ_BW_CFG) {
1689 					if (reg_val==0) {
1690 						priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
1691 						ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true);
1692 					} else {
1693 						priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1;
1694 						ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true);
1695 					}
1696 
1697 					//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1698 					priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1699 				}
1700 			} else
1701 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1702 		}
1703 		else if (reg_cat==9) {
1704 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG)
1705 				priv->drv_xpu_reg_val[reg_addr_idx]=reg_val;
1706 			else
1707 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1708 		}
1709 		else
1710 			printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
1711 
1712 		return 0;
1713 	case REG_CMD_GET:
1714 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1715 		if (!skb)
1716 			return -ENOMEM;
1717 		reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
1718 		reg_cat = ((reg_addr>>16)&0xFFFF);
1719 		reg_addr = (reg_addr&0xFFFF);
1720 		reg_addr_idx = (reg_addr>>2);
1721 		printk("%s recv get cmd reg cat %d addr %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_addr_idx);
1722 		if (reg_cat==1) {
1723 			printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
1724 			tmp = 0xFFFFFFFF;
1725 		}
1726 		else if (reg_cat==2)
1727 			tmp = rx_intf_api->reg_read(reg_addr);
1728 		else if (reg_cat==3)
1729 			tmp = tx_intf_api->reg_read(reg_addr);
1730 		else if (reg_cat==4)
1731 			tmp = openofdm_rx_api->reg_read(reg_addr);
1732 		else if (reg_cat==5)
1733 			tmp = openofdm_tx_api->reg_read(reg_addr);
1734 		else if (reg_cat==6)
1735 			tmp = xpu_api->reg_read(reg_addr);
1736 		else if (reg_cat==7) {
1737 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1738 				if (reg_addr_idx==DRV_RX_REG_IDX_FREQ_BW_CFG) {
1739 					priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1740 					//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1741 
1742 					if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
1743 						priv->drv_rx_reg_val[reg_addr_idx]=0;
1744 					else if	(priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT1)
1745 						priv->drv_rx_reg_val[reg_addr_idx]=1;
1746 				}
1747 				tmp = priv->drv_rx_reg_val[reg_addr_idx];
1748 			} else
1749 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1750 		}
1751 		else if (reg_cat==8) {
1752 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1753 				if (reg_addr_idx==DRV_TX_REG_IDX_FREQ_BW_CFG) {
1754 					//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1755 					priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1756 					if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)
1757 						priv->drv_tx_reg_val[reg_addr_idx]=0;
1758 					else if	(priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
1759 						priv->drv_tx_reg_val[reg_addr_idx]=1;
1760 				}
1761 				tmp = priv->drv_tx_reg_val[reg_addr_idx];
1762 			} else
1763 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1764 		}
1765 		else if (reg_cat==9) {
1766 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG)
1767 				tmp = priv->drv_xpu_reg_val[reg_addr_idx];
1768 			else
1769 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1770 		}
1771 		else
1772 			printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
1773 
1774 		if (nla_put_u32(skb, REG_ATTR_VAL, tmp))
1775 			goto nla_put_failure;
1776 		return cfg80211_testmode_reply(skb);
1777 
1778 	default:
1779 		return -EOPNOTSUPP;
1780 	}
1781 
1782  nla_put_failure:
1783 	dev_kfree_skb(skb);
1784 	return -ENOBUFS;
1785 }
1786 
1787 static const struct ieee80211_ops openwifi_ops = {
1788 	.tx			       = openwifi_tx,
1789 	.start			   = openwifi_start,
1790 	.stop			   = openwifi_stop,
1791 	.add_interface	   = openwifi_add_interface,
1792 	.remove_interface  = openwifi_remove_interface,
1793 	.config			   = openwifi_config,
1794 	.bss_info_changed  = openwifi_bss_info_changed,
1795 	.conf_tx		   = openwifi_conf_tx,
1796 	.prepare_multicast = openwifi_prepare_multicast,
1797 	.configure_filter  = openwifi_configure_filter,
1798 	.rfkill_poll	   = openwifi_rfkill_poll,
1799 	.get_tsf		   = openwifi_get_tsf,
1800 	.set_tsf		   = openwifi_set_tsf,
1801 	.reset_tsf		   = openwifi_reset_tsf,
1802 	.set_rts_threshold = openwifi_set_rts_threshold,
1803 	.testmode_cmd	   = openwifi_testmode_cmd,
1804 };
1805 
1806 static const struct of_device_id openwifi_dev_of_ids[] = {
1807 	{ .compatible = "sdr,sdr", },
1808 	{}
1809 };
1810 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
1811 
1812 static int custom_match_spi_dev(struct device *dev, void *data)
1813 {
1814     const char *name = data;
1815 
1816 	bool ret = sysfs_streq(name, dev->of_node->name);
1817 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
1818 	return ret;
1819 }
1820 
1821 static int custom_match_platform_dev(struct device *dev, void *data)
1822 {
1823 	struct platform_device *plat_dev = to_platform_device(dev);
1824 	const char *name = data;
1825 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
1826 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
1827 
1828 	if (match_flag) {
1829 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
1830 	}
1831 	return(match_flag);
1832 }
1833 
1834 static int openwifi_dev_probe(struct platform_device *pdev)
1835 {
1836 	struct ieee80211_hw *dev;
1837 	struct openwifi_priv *priv;
1838 	int err=1, rand_val;
1839 	const char *chip_name;
1840 	u32 reg;//, reg1;
1841 
1842 	struct device_node *np = pdev->dev.of_node;
1843 
1844 	struct device *tmp_dev;
1845 	struct platform_device *tmp_pdev;
1846 	struct iio_dev *tmp_indio_dev;
1847 	// struct gpio_leds_priv *tmp_led_priv;
1848 
1849 	printk("\n");
1850 
1851 	if (np) {
1852 		const struct of_device_id *match;
1853 
1854 		match = of_match_node(openwifi_dev_of_ids, np);
1855 		if (match) {
1856 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
1857 			err = 0;
1858 		}
1859 	}
1860 
1861 	if (err)
1862 		return err;
1863 
1864 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
1865 	if (!dev) {
1866 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
1867 		err = -ENOMEM;
1868 		goto err_free_dev;
1869 	}
1870 
1871 	priv = dev->priv;
1872 	priv->pdev = pdev;
1873 
1874 	// //-------------find ad9361-phy driver for lo/channel control---------------
1875 	priv->actual_rx_lo = 0;
1876 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
1877 	if (tmp_dev == NULL) {
1878 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
1879 		err = -ENOMEM;
1880 		goto err_free_dev;
1881 	}
1882 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
1883 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
1884 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
1885 		err = -ENOMEM;
1886 		goto err_free_dev;
1887 	}
1888 
1889 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
1890 	if (!(priv->ad9361_phy)) {
1891 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
1892 		err = -ENOMEM;
1893 		goto err_free_dev;
1894 	}
1895 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
1896 
1897 	priv->ctrl_out.en_mask=0xFF;
1898 	priv->ctrl_out.index=0x16;
1899 	err = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
1900 	if (err < 0) {
1901 		printk("%s openwifi_dev_probe: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, err);
1902 	} else {
1903 		printk("%s openwifi_dev_probe: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
1904 	}
1905 
1906 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
1907 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
1908 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
1909 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
1910 
1911 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
1912 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
1913 	if (!tmp_dev) {
1914 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
1915 		err = -ENOMEM;
1916 		goto err_free_dev;
1917 	}
1918 
1919 	tmp_pdev = to_platform_device(tmp_dev);
1920 	if (!tmp_pdev) {
1921 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
1922 		err = -ENOMEM;
1923 		goto err_free_dev;
1924 	}
1925 
1926 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
1927 	if (!tmp_indio_dev) {
1928 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
1929 		err = -ENOMEM;
1930 		goto err_free_dev;
1931 	}
1932 
1933 	priv->dds_st = iio_priv(tmp_indio_dev);
1934 	if (!(priv->dds_st)) {
1935 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
1936 		err = -ENOMEM;
1937 		goto err_free_dev;
1938 	}
1939 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
1940 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
1941 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
1942 
1943 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
1944 	// turn off radio by muting tx
1945 	// ad9361_tx_mute(priv->ad9361_phy, 1);
1946 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1947 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1948 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1949 	// 	priv->rfkill_off = 0;// 0 off, 1 on
1950 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
1951 	// }
1952 	// else
1953 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1954 
1955 	priv->rssi_correction = 43;//this will be set in real-time by _rf_set_channel()
1956 
1957 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1958 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1959 
1960 	priv->xpu_cfg = XPU_NORMAL;
1961 
1962 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
1963 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
1964 
1965 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
1966 	if (priv->rf_bw == 20000000) {
1967 		priv->rx_intf_cfg = RX_INTF_BYPASS;
1968 		priv->tx_intf_cfg = TX_INTF_BYPASS;
1969 		//priv->rx_freq_offset_to_lo_MHz = 0;
1970 		//priv->tx_freq_offset_to_lo_MHz = 0;
1971 	} else if (priv->rf_bw == 40000000) {
1972 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
1973 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
1974 
1975 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
1976 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1977 		priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
1978 		// // try another antenna option
1979 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
1980 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
1981 
1982 		#if 0
1983 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
1984 			priv->rx_freq_offset_to_lo_MHz = -10;
1985 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
1986 			priv->rx_freq_offset_to_lo_MHz = 10;
1987 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
1988 			priv->rx_freq_offset_to_lo_MHz = 0;
1989 		} else {
1990 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
1991 		}
1992 		#endif
1993 	} else {
1994 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
1995 	}
1996 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1997 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1998 	printk("%s openwifi_dev_probe: test_mode %d\n", sdr_compatible_str, test_mode);
1999 
2000 	//let's by default turn radio on when probing
2001 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
2002 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
2003 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
2004 	} else {
2005 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
2006 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2007 	}
2008 	if (reg == AD9361_RADIO_ON_TX_ATT) {
2009 		priv->rfkill_off = 1;// 0 off, 1 on
2010 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
2011 	}
2012 	else
2013 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
2014 
2015 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
2016 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
2017 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
2018 
2019 	// //set ad9361 in certain mode
2020 	#if 0
2021 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
2022 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2023 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
2024 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2025 
2026 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
2027 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8);
2028 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
2029 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
2030 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
2031 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
2032 	#endif
2033 
2034 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
2035 
2036 	SET_IEEE80211_DEV(dev, &pdev->dev);
2037 	platform_set_drvdata(pdev, dev);
2038 
2039 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
2040 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
2041 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
2042 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
2043 
2044 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
2045 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
2046 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
2047 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
2048 
2049 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
2050 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
2051 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
2052 
2053 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
2054 	priv->band_2GHz.channels = priv->channels_2GHz;
2055 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
2056 	priv->band_2GHz.bitrates = priv->rates_2GHz;
2057 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
2058 	priv->band_2GHz.ht_cap.ht_supported = true;
2059 	priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
2060 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
2061 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2062 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2063 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
2064 
2065 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
2066 	priv->band_5GHz.channels = priv->channels_5GHz;
2067 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
2068 	priv->band_5GHz.bitrates = priv->rates_5GHz;
2069 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
2070 	priv->band_5GHz.ht_cap.ht_supported = true;
2071 	priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
2072 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
2073 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2074 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2075 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2076 
2077 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2078 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2079 
2080 	ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING);
2081 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2082 	ieee80211_hw_set(dev, BEACON_TX_STATUS);
2083 
2084 	dev->vif_data_size = sizeof(struct openwifi_vif);
2085 	dev->wiphy->interface_modes =
2086 			BIT(NL80211_IFTYPE_MONITOR)|
2087 			BIT(NL80211_IFTYPE_P2P_GO) |
2088 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
2089 			BIT(NL80211_IFTYPE_AP) |
2090 			BIT(NL80211_IFTYPE_STATION) |
2091 			BIT(NL80211_IFTYPE_ADHOC) |
2092 			BIT(NL80211_IFTYPE_MESH_POINT) |
2093 			BIT(NL80211_IFTYPE_OCB);
2094 	dev->wiphy->iface_combinations = &openwifi_if_comb;
2095 	dev->wiphy->n_iface_combinations = 1;
2096 
2097 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2098 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2099 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2100 
2101 	chip_name = "ZYNQ";
2102 
2103 	/* we declare to MAC80211 all the queues except for beacon queue
2104 	 * that will be eventually handled by DRV.
2105 	 * TX rings are arranged in such a way that lower is the IDX,
2106 	 * higher is the priority, in order to achieve direct mapping
2107 	 * with mac80211, however the beacon queue is an exception and it
2108 	 * is mapped on the highst tx ring IDX.
2109 	 */
2110 	dev->queues = MAX_NUM_HW_QUEUE;
2111 	//dev->queues = 1;
2112 
2113 	ieee80211_hw_set(dev, SIGNAL_DBM);
2114 
2115 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2116 
2117 	priv->rf = &ad9361_rf_ops;
2118 
2119 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2120 	priv->slice_idx = 0xFFFFFFFF;
2121 
2122 	sg_init_table(&(priv->tx_sg), 1);
2123 
2124 	get_random_bytes(&rand_val, sizeof(rand_val));
2125     rand_val%=250;
2126 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
2127 	priv->mac_addr[5]=rand_val+1;
2128 	//priv->mac_addr[5]=0x11;
2129 	if (!is_valid_ether_addr(priv->mac_addr)) {
2130 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2131 		eth_random_addr(priv->mac_addr);
2132 	} else {
2133 		printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2134 	}
2135 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2136 
2137 	spin_lock_init(&priv->lock);
2138 
2139 	err = ieee80211_register_hw(dev);
2140 	if (err) {
2141 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2142 		goto err_free_dev;
2143 	} else {
2144 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2145 	}
2146 
2147 	// // //--------------------hook leds (not complete yet)--------------------------------
2148 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatiable" field
2149 	// if (!tmp_dev) {
2150 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2151 	// 	err = -ENOMEM;
2152 	// 	goto err_free_dev;
2153 	// }
2154 
2155 	// tmp_pdev = to_platform_device(tmp_dev);
2156 	// if (!tmp_pdev) {
2157 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2158 	// 	err = -ENOMEM;
2159 	// 	goto err_free_dev;
2160 	// }
2161 
2162 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2163 	// if (!tmp_led_priv) {
2164 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2165 	// 	err = -ENOMEM;
2166 	// 	goto err_free_dev;
2167 	// }
2168 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2169 	// if (tmp_led_priv->num_leds!=4){
2170 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2171 	// 	err = -ENOMEM;
2172 	// 	goto err_free_dev;
2173 	// }
2174 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2175 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2176 	// priv->num_led = tmp_led_priv->num_leds;
2177 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2178 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2179 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2180 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2181 
2182 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2183 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2184 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2185 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2186 
2187 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2188 		   priv->mac_addr, chip_name, priv->rf->name);
2189 
2190 	openwifi_rfkill_init(dev);
2191 	return 0;
2192 
2193  err_free_dev:
2194 	ieee80211_free_hw(dev);
2195 
2196 	return err;
2197 }
2198 
2199 static int openwifi_dev_remove(struct platform_device *pdev)
2200 {
2201 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2202 
2203 	if (!dev) {
2204 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2205 		return(-1);
2206 	}
2207 
2208 	openwifi_rfkill_exit(dev);
2209 	ieee80211_unregister_hw(dev);
2210 	ieee80211_free_hw(dev);
2211 	return(0);
2212 }
2213 
2214 static struct platform_driver openwifi_dev_driver = {
2215 	.driver = {
2216 		.name = "sdr,sdr",
2217 		.owner = THIS_MODULE,
2218 		.of_match_table = openwifi_dev_of_ids,
2219 	},
2220 	.probe = openwifi_dev_probe,
2221 	.remove = openwifi_dev_remove,
2222 };
2223 
2224 module_platform_driver(openwifi_dev_driver);
2225