1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos 2 // SPDX-FileCopyrightText: 2022 UGent 3 // SPDX-License-Identifier: AGPL-3.0-or-later 4 5 #include <linux/bitops.h> 6 #include <linux/dmapool.h> 7 #include <linux/io.h> 8 #include <linux/iopoll.h> 9 #include <linux/of_address.h> 10 #include <linux/of_platform.h> 11 #include <linux/of_irq.h> 12 #include <linux/slab.h> 13 #include <linux/clk.h> 14 #include <linux/io-64-nonatomic-lo-hi.h> 15 16 #include <linux/delay.h> 17 #include <linux/interrupt.h> 18 19 #include <linux/dmaengine.h> 20 #include <linux/slab.h> 21 #include <linux/delay.h> 22 #include <linux/etherdevice.h> 23 24 #include <linux/init.h> 25 #include <linux/kthread.h> 26 #include <linux/module.h> 27 #include <linux/of_dma.h> 28 #include <linux/platform_device.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/wait.h> 32 #include <linux/sched/task.h> 33 #include <linux/dma/xilinx_dma.h> 34 #include <linux/spi/spi.h> 35 #include <net/mac80211.h> 36 37 #include <linux/clk.h> 38 #include <linux/clkdev.h> 39 #include <linux/clk-provider.h> 40 41 #include <linux/iio/iio.h> 42 #include <linux/iio/sysfs.h> 43 44 #include <linux/gpio.h> 45 #include <linux/leds.h> 46 47 #define IIO_AD9361_USE_PRIVATE_H_ 48 #include <../../drivers/iio/adc/ad9361_regs.h> 49 #include <../../drivers/iio/adc/ad9361.h> 50 #include <../../drivers/iio/adc/ad9361_private.h> 51 52 #include <../../drivers/iio/frequency/cf_axi_dds.h> 53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num); 54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb, 55 bool tx1, bool tx2, bool immed); 56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy, 57 struct ctrl_outs_control *ctrl); 58 59 #include "../user_space/sdrctl_src/nl80211_testmode_def.h" 60 #include "hw_def.h" 61 #include "sdr.h" 62 #include "git_rev.h" 63 64 // driver API of component driver 65 extern struct tx_intf_driver_api *tx_intf_api; 66 extern struct rx_intf_driver_api *rx_intf_api; 67 extern struct openofdm_tx_driver_api *openofdm_tx_api; 68 extern struct openofdm_rx_driver_api *openofdm_rx_api; 69 extern struct xpu_driver_api *xpu_api; 70 71 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes); 72 u8 gen_mpdu_delim_crc(u16 m); 73 74 #include "sdrctl_intf.c" 75 #include "sysfs_intf.c" 76 77 static int test_mode = 0; // 0 normal; 1 rx test 78 79 MODULE_AUTHOR("Xianjun Jiao"); 80 MODULE_DESCRIPTION("SDR driver"); 81 MODULE_LICENSE("GPL v2"); 82 83 module_param(test_mode, int, 0); 84 MODULE_PARM_DESC(myint, "test_mode. 0 normal; 1 rx test"); 85 86 // ---------------rfkill--------------------------------------- 87 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv) 88 { 89 int reg; 90 91 if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) 92 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 93 else 94 reg = ad9361_get_tx_atten(priv->ad9361_phy, 1); 95 96 if (reg == AD9361_RADIO_ON_TX_ATT) 97 return true;// 0 off, 1 on 98 return false; 99 } 100 101 void openwifi_rfkill_init(struct ieee80211_hw *hw) 102 { 103 struct openwifi_priv *priv = hw->priv; 104 105 priv->rfkill_off = openwifi_is_radio_enabled(priv); 106 printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off"); 107 wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off); 108 wiphy_rfkill_start_polling(hw->wiphy); 109 } 110 111 void openwifi_rfkill_poll(struct ieee80211_hw *hw) 112 { 113 bool enabled; 114 struct openwifi_priv *priv = hw->priv; 115 116 enabled = openwifi_is_radio_enabled(priv); 117 // printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); 118 if (unlikely(enabled != priv->rfkill_off)) { 119 priv->rfkill_off = enabled; 120 printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); 121 wiphy_rfkill_set_hw_state(hw->wiphy, !enabled); 122 } 123 } 124 125 void openwifi_rfkill_exit(struct ieee80211_hw *hw) 126 { 127 printk("%s openwifi_rfkill_exit\n", sdr_compatible_str); 128 wiphy_rfkill_stop_polling(hw->wiphy); 129 } 130 //----------------rfkill end----------------------------------- 131 132 //static void ad9361_rf_init(void); 133 //static void ad9361_rf_stop(void); 134 //static void ad9361_rf_calc_rssi(void); 135 static void ad9361_rf_set_channel(struct ieee80211_hw *dev, 136 struct ieee80211_conf *conf) 137 { 138 struct openwifi_priv *priv = dev->priv; 139 u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz + priv->drv_rx_reg_val[DRV_RX_REG_IDX_EXTRA_FO]; 140 u32 actual_tx_lo; 141 bool change_flag = (actual_rx_lo != priv->actual_rx_lo); 142 int static_lbt_th, auto_lbt_th, fpga_lbt_th; 143 144 if (change_flag) { 145 priv->actual_rx_lo = actual_rx_lo; 146 priv->actual_tx_lo = actual_tx_lo; 147 148 actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz; 149 150 clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) ); 151 clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) ); 152 153 if (actual_rx_lo<2412) { 154 priv->rssi_correction = 153; 155 } else if (actual_rx_lo<=2484) { 156 priv->rssi_correction = 153; 157 } else if (actual_rx_lo<5160) { 158 priv->rssi_correction = 153; 159 } else if (actual_rx_lo<=5240) { 160 priv->rssi_correction = 145; 161 } else if (actual_rx_lo<=5320) { 162 priv->rssi_correction = 148; 163 } else { 164 priv->rssi_correction = 148; 165 } 166 167 // xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm 168 // xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44 169 auto_lbt_th = ((priv->rssi_correction-62-16)<<1); 170 static_lbt_th = priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]; 171 fpga_lbt_th = (static_lbt_th==0?auto_lbt_th:static_lbt_th); 172 xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th); 173 174 priv->last_auto_fpga_lbt_th = auto_lbt_th; 175 176 if (actual_rx_lo < 2500) { 177 //priv->slot_time = 20; //20 is default slot time in ERP(OFDM)/11g 2.4G; short one is 9. 178 //xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_2_4GHZ<<16); 179 if (priv->band != BAND_2_4GHZ) { 180 priv->band = BAND_2_4GHZ; 181 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 182 } 183 // //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2)*10)<<16) | 10 ); // high 16 bits to cover sig valid of ACK packet, low 16 bits is adjustment of fcs valid waiting time. let's add 2us for those device that is really "slow"! 184 // xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2+2)*10)<<16) | 10 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this 185 // xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 0 ); 186 // tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((10)*10)<<16); 187 } 188 else { 189 //priv->slot_time = 9; //default slot time of OFDM PHY (OFDM by default means 5GHz) 190 // xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_5_8GHZ<<16); 191 if (priv->band != BAND_5_8GHZ) { 192 priv->band = BAND_5_8GHZ; 193 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 194 } 195 // //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2)*10)<<16) | 10 ); // because 5GHz needs longer SIFS (16 instead of 10), we need 58 instead of 48 for XPU low mac setting. let's add 2us for those device that is really "slow"! 196 // xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2+2)*10)<<16) | 10 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this 197 // //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 60*10 ); 198 // xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 50*10 );// for longer fir we need this delay 1us shorter 199 // tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((16)*10)<<16); 200 } 201 //printk("%s ad9361_rf_set_channel %dM rssi_correction %d\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction); 202 // //-- use less 203 //clk_prepare_enable(priv->ad9361_phy->clks[RX_RFPLL]); 204 //printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq); 205 //ad9361_set_trx_clock_chain_default(priv->ad9361_phy); 206 //printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq); 207 printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d (auto %d static %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,auto_lbt_th,static_lbt_th); 208 } 209 } 210 211 const struct openwifi_rf_ops ad9361_rf_ops = { 212 .name = "ad9361", 213 // .init = ad9361_rf_init, 214 // .stop = ad9361_rf_stop, 215 .set_chan = ad9361_rf_set_channel, 216 // .calc_rssi = ad9361_rf_calc_rssi, 217 }; 218 219 u16 reverse16(u16 d) { 220 union u16_byte2 tmp0, tmp1; 221 tmp0.a = d; 222 tmp1.c[0] = tmp0.c[1]; 223 tmp1.c[1] = tmp0.c[0]; 224 return(tmp1.a); 225 } 226 227 u32 reverse32(u32 d) { 228 union u32_byte4 tmp0, tmp1; 229 tmp0.a = d; 230 tmp1.c[0] = tmp0.c[3]; 231 tmp1.c[1] = tmp0.c[2]; 232 tmp1.c[2] = tmp0.c[1]; 233 tmp1.c[3] = tmp0.c[0]; 234 return(tmp1.a); 235 } 236 237 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx) 238 { 239 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); 240 int i; 241 242 ring->stop_flag = 0; 243 ring->bd_wr_idx = 0; 244 ring->bd_rd_idx = 0; 245 ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL); 246 if (ring->bds==NULL) { 247 printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str); 248 return -ENOMEM; 249 } 250 251 for (i = 0; i < NUM_TX_BD; i++) { 252 ring->bds[i].skb_linked=0; // for tx, skb is from upper layer 253 //at first right after skb allocated, head, data, tail are the same. 254 ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine 255 ring->bds[i].seq_no = 0; 256 } 257 258 return 0; 259 } 260 261 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx) 262 { 263 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); 264 int i; 265 266 ring->stop_flag = 0; 267 ring->bd_wr_idx = 0; 268 ring->bd_rd_idx = 0; 269 for (i = 0; i < NUM_TX_BD; i++) { 270 if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0) 271 continue; 272 if (ring->bds[i].dma_mapping_addr != 0) 273 dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV); 274 // if (ring->bds[i].skb_linked!=NULL) 275 // dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception 276 if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) || 277 (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0)) 278 printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str, 279 ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr)); 280 281 ring->bds[i].skb_linked=0; 282 ring->bds[i].dma_mapping_addr = 0; 283 ring->bds[i].seq_no = 0; 284 } 285 if (ring->bds) 286 kfree(ring->bds); 287 ring->bds = NULL; 288 } 289 290 static int openwifi_init_rx_ring(struct openwifi_priv *priv) 291 { 292 int i; 293 u8 *pdata_tmp; 294 295 priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL); 296 if (!priv->rx_cyclic_buf) { 297 printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str); 298 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); 299 return(-1); 300 } 301 302 // Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA 303 for (i=0; i<NUM_RX_BD; i++) { 304 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning 305 (*((u32*)(pdata_tmp+0 ))) = 0; 306 (*((u32*)(pdata_tmp+4 ))) = 0; 307 } 308 printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str); 309 310 return 0; 311 } 312 313 static void openwifi_free_rx_ring(struct openwifi_priv *priv) 314 { 315 if (priv->rx_cyclic_buf) 316 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); 317 318 priv->rx_cyclic_buf_dma_mapping_addr = 0; 319 priv->rx_cyclic_buf = 0; 320 } 321 322 static int rx_dma_setup(struct ieee80211_hw *dev){ 323 struct openwifi_priv *priv = dev->priv; 324 struct dma_device *rx_dev = priv->rx_chan->device; 325 326 priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT); 327 if (!(priv->rxd)) { 328 openwifi_free_rx_ring(priv); 329 printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd)); 330 return(-1); 331 } 332 priv->rxd->callback = 0; 333 priv->rxd->callback_param = 0; 334 335 priv->rx_cookie = priv->rxd->tx_submit(priv->rxd); 336 337 if (dma_submit_error(priv->rx_cookie)) { 338 printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie)); 339 return(-1); 340 } 341 342 dma_async_issue_pending(priv->rx_chan); 343 return(0); 344 } 345 346 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id) 347 { 348 struct ieee80211_hw *dev = dev_id; 349 struct openwifi_priv *priv = dev->priv; 350 struct ieee80211_rx_status rx_status = {0}; 351 struct sk_buff *skb; 352 struct ieee80211_hdr *hdr; 353 u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di; 354 bool ht_flag, short_gi, ht_aggr, ht_aggr_last; 355 // u32 dma_driver_buf_idx_mod; 356 u8 *pdata_tmp, fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw; 357 s8 signal; 358 u16 agc_status_and_pkt_exist_flag, rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0; 359 bool content_ok = false, len_overflow = false; 360 361 #ifdef USE_NEW_RX_INTERRUPT 362 int i; 363 spin_lock(&priv->lock); 364 for (i=0; i<NUM_RX_BD; i++) { 365 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; 366 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid 367 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer 368 continue; 369 #else 370 static u8 target_buf_idx_old = 0; 371 spin_lock(&priv->lock); 372 while(1) { // loop all rx buffers that have new rx packets 373 pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning 374 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); 375 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer 376 break; 377 #endif 378 379 tsft_low = (*((u32*)(pdata_tmp+0 ))); 380 tsft_high = (*((u32*)(pdata_tmp+4 ))); 381 rssi_val = (*((u16*)(pdata_tmp+8 ))); 382 len = (*((u16*)(pdata_tmp+12))); 383 384 len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false); 385 386 rate_idx = (*((u16*)(pdata_tmp+14))); 387 ht_flag = ((rate_idx&0x10)!=0); 388 short_gi = ((rate_idx&0x20)!=0); 389 ht_aggr = (ht_flag & ((rate_idx&0x40)!=0)); 390 ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0)); 391 rate_idx = (rate_idx&0x1F); 392 393 fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) ); 394 395 //phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1)); 396 // phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation 397 // dma_driver_buf_idx_mod = (state.residue&0x7f); 398 fcs_ok = ((fcs_ok&0x80)!=0); 399 400 if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) { 401 // if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) { 402 // printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod); 403 // } 404 content_ok = true; 405 } else { 406 printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str); 407 content_ok = false; 408 } 409 410 rssi_val = (rssi_val>>1); 411 if ( (rssi_val+128)<priv->rssi_correction ) 412 signal = -128; 413 else 414 signal = rssi_val - priv->rssi_correction; 415 416 // fc_di = (*((u32*)(pdata_tmp+16))); 417 // addr1_high16 = (*((u16*)(pdata_tmp+16+4))); 418 // addr1_low32 = (*((u32*)(pdata_tmp+16+4+2))); 419 // addr2_high16 = (*((u16*)(pdata_tmp+16+6+4))); 420 // addr2_low32 = (*((u32*)(pdata_tmp+16+6+4+2))); 421 // addr3_high16 = (*((u16*)(pdata_tmp+16+12+4))); 422 // addr3_low32 = (*((u32*)(pdata_tmp+16+12+4+2))); 423 if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) { 424 hdr = (struct ieee80211_hdr *)(pdata_tmp+16); 425 addr1_low32 = *((u32*)(hdr->addr1+2)); 426 addr1_high16 = *((u16*)(hdr->addr1)); 427 if (len>=20) { 428 addr2_low32 = *((u32*)(hdr->addr2+2)); 429 addr2_high16 = *((u16*)(hdr->addr2)); 430 } 431 if (len>=26) { 432 addr3_low32 = *((u32*)(hdr->addr3+2)); 433 addr3_high16 = *((u16*)(hdr->addr3)); 434 } 435 if (len>=28) 436 sc = hdr->seq_ctrl; 437 438 if ( (addr1_low32!=0xffffffff || addr1_high16!=0xffff) || (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&4) ) 439 printk("%s openwifi_rx_interrupt:%4dbytes ht%d aggr%d/%d sgi%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str, 440 len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id, 441 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), 442 #ifdef USE_NEW_RX_INTERRUPT 443 sc, fcs_ok, i, signal); 444 #else 445 sc, fcs_ok, target_buf_idx_old, signal); 446 #endif 447 } 448 449 // priv->phy_rx_sn_hw_old = phy_rx_sn_hw; 450 if (content_ok) { 451 skb = dev_alloc_skb(len); 452 if (skb) { 453 skb_put_data(skb,pdata_tmp+16,len); 454 455 rx_status.antenna = priv->runtime_rx_ant_cfg; 456 // def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M) 457 rx_status.rate_idx = wifi_rate_table_mapping[rate_idx]; 458 rx_status.signal = signal; 459 rx_status.freq = dev->conf.chandef.chan->center_freq; 460 rx_status.band = dev->conf.chandef.chan->band; 461 rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); 462 rx_status.flag |= RX_FLAG_MACTIME_START; 463 if (!fcs_ok) 464 rx_status.flag |= RX_FLAG_FAILED_FCS_CRC; 465 if (rate_idx <= 15) 466 rx_status.encoding = RX_ENC_LEGACY; 467 else 468 rx_status.encoding = RX_ENC_HT; 469 rx_status.bw = RATE_INFO_BW_20; 470 if (short_gi) 471 rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI; 472 if(ht_aggr) 473 { 474 rx_status.ampdu_reference = priv->ampdu_reference; 475 rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 476 if (ht_aggr_last) 477 rx_status.flag |= RX_FLAG_AMPDU_IS_LAST; 478 } 479 480 memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more. 481 ieee80211_rx_irqsafe(dev, skb); // call mac80211 function 482 } else 483 printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str); 484 485 if(ht_aggr_last) 486 priv->ampdu_reference++; 487 } 488 (*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed 489 loop_count++; 490 #ifndef USE_NEW_RX_INTERRUPT 491 target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1)); 492 #endif 493 } 494 495 if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) ) 496 printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count); 497 498 // openwifi_rx_interrupt_out: 499 spin_unlock(&priv->lock); 500 return IRQ_HANDLED; 501 } 502 503 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id) 504 { 505 struct ieee80211_hw *dev = dev_id; 506 struct openwifi_priv *priv = dev->priv; 507 struct openwifi_ring *ring; 508 struct sk_buff *skb; 509 struct ieee80211_tx_info *info; 510 u32 reg_val1, hw_queue_len, reg_val2, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0; 511 u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx; 512 u8 nof_retx=-1, last_bd_rd_idx, i; 513 u64 blk_ack_bitmap; 514 // u16 prio_rd_idx_store[64]={0}; 515 bool tx_fail=false; 516 517 spin_lock(&priv->lock); 518 519 while(1) { // loop all packets that have been sent by FPGA 520 reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read(); 521 reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read(); 522 blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32); 523 524 if (reg_val1!=0xFFFFFFFF) { 525 nof_retx = (reg_val1&0xF); 526 last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1)); 527 prio = ((reg_val1>>17)&0x3); 528 num_slot_random = ((reg_val1>>19)&0x1FF); 529 //num_slot_random = ((0xFF80000 ®_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE)); 530 cw = ((reg_val1>>28)&0xF); 531 //cw = ((0xF0000000 & reg_val1) >> 28); 532 if(cw > 10) { 533 cw = 10 ; 534 num_slot_random += 512 ; 535 } 536 pkt_cnt = (reg_val2&0x3F); 537 blk_ack_ssn = ((reg_val2>>6)&0xFFF); 538 539 ring = &(priv->tx_ring[prio]); 540 541 if ( ring->stop_flag == 1) { 542 // Wake up Linux queue if FPGA and driver ring have room 543 queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1)); 544 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); 545 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 546 547 if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) { 548 // printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter); 549 printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str, 550 prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, last_bd_rd_idx); 551 ieee80211_wake_queue(dev, prio); 552 ring->stop_flag = 0; 553 } 554 } 555 556 for(i = 1; i <= pkt_cnt; i++) 557 { 558 ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64; 559 seq_no = ring->bds[ring->bd_rd_idx].seq_no; 560 skb = ring->bds[ring->bd_rd_idx].skb_linked; 561 562 dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr, 563 skb->len, DMA_MEM_TO_DEV); 564 565 info = IEEE80211_SKB_CB(skb); 566 ieee80211_tx_info_clear_status(info); 567 568 // Aggregation packet 569 if(pkt_cnt > 1) 570 { 571 start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF)); 572 tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0); 573 info->flags |= IEEE80211_TX_STAT_AMPDU; 574 info->status.ampdu_len = 1; 575 info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1; 576 577 skb_pull(skb, LEN_MPDU_DELIM); 578 //skb_trim(skb, num_byte_pad_skb); 579 } 580 // Normal packet 581 else 582 { 583 tx_fail = ((blk_ack_bitmap&0x1)==0); 584 info->flags &= (~IEEE80211_TX_CTL_AMPDU); 585 } 586 587 if (tx_fail == false) 588 info->flags |= IEEE80211_TX_STAT_ACK; 589 590 info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate 591 info->status.rates[1].idx = -1; 592 info->status.rates[2].idx = -1; 593 info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES 4 594 info->status.antenna = priv->runtime_tx_ant_cfg; 595 596 if ( tx_fail && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) ) 597 printk("%s openwifi_tx_interrupt: WARNING pkt_no %d/%d tx_result [nof_retx %d pass %d] prio%d wr%d rd%d\n", sdr_compatible_str, i, pkt_cnt, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx); 598 if ( ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK))||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) ) 599 printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw); 600 601 ieee80211_tx_status_irqsafe(dev, skb); 602 } 603 604 loop_count++; 605 606 // printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx); 607 608 } else 609 break; 610 } 611 if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) ) 612 printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count); 613 614 spin_unlock(&priv->lock); 615 return IRQ_HANDLED; 616 } 617 618 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000}; 619 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes) 620 { 621 u32 i, crc = 0; 622 u8 idx; 623 for( i = 0; i < num_bytes; i++) 624 { 625 idx = (crc & 0x0F) ^ (data_in[i] & 0x0F); 626 crc = (crc >> 4) ^ crc_table[idx]; 627 628 idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F); 629 crc = (crc >> 4) ^ crc_table[idx]; 630 } 631 632 return crc; 633 } 634 635 u8 gen_mpdu_delim_crc(u16 m) 636 { 637 u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc; 638 639 for (i = 0; i < 16; i++) 640 { 641 temp = c[7] ^ ((m >> i) & 0x01); 642 643 c[7] = c[6]; 644 c[6] = c[5]; 645 c[5] = c[4]; 646 c[4] = c[3]; 647 c[3] = c[2]; 648 c[2] = c[1] ^ temp; 649 c[1] = c[0] ^ temp; 650 c[0] = temp; 651 } 652 mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7); 653 654 return mpdu_delim_crc; 655 } 656 657 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c 658 cdev_to_gpio_led_data(struct led_classdev *led_cdev) 659 { 660 return container_of(led_cdev, struct gpio_led_data, cdev); 661 } 662 663 static void openwifi_tx(struct ieee80211_hw *dev, 664 struct ieee80211_tx_control *control, 665 struct sk_buff *skb) 666 { 667 struct openwifi_priv *priv = dev->priv; 668 unsigned long flags; 669 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 670 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 671 struct openwifi_ring *ring = NULL; 672 dma_addr_t dma_mapping_addr; 673 unsigned int prio=0, i; 674 u32 num_dma_symbol, len_mpdu = 0, len_mpdu_delim_pad = 0, num_dma_byte, len_psdu, num_byte_pad; 675 u32 rate_signal_value,rate_hw_value=0,ack_flag; 676 u32 pkt_need_ack=0, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history; 677 u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration; 678 u8 fc_flag,fc_type,fc_subtype,retry_limit_raw=0,use_short_gi=0,*dma_buf,retry_limit_hw_value,rc_flags,*qos_hdr; 679 bool use_rts_cts, use_cts_protect=false, ht_aggr_start=false, use_ht_rate=false, use_ht_aggr=false, addr_flag, cts_use_traffic_rate=false, force_use_cts_protect=false; 680 __le16 frame_control,duration_id; 681 u32 dma_fifo_no_room_flag, hw_queue_len; 682 enum dma_status status; 683 684 static u32 addr1_low32_prev = -1, rate_hw_value_prev = -1, pkt_need_ack_prev = -1; 685 static u16 addr1_high16_prev = -1; 686 static __le16 duration_id_prev = -1; 687 static unsigned int prio_prev = -1; 688 static u8 retry_limit_raw_prev = -1; 689 static u8 use_short_gi_prev = -1; 690 691 // static bool led_status=0; 692 // struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]); 693 694 // if ( (priv->phy_tx_sn&7) ==0 ) { 695 // openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read(); 696 // if (openofdm_state_history!=openofdm_state_history_old){ 697 // led_status = (~led_status); 698 // openofdm_state_history_old = openofdm_state_history; 699 // gpiod_set_value(led_dat->gpiod, led_status); 700 // } 701 // } 702 703 if (test_mode==1){ 704 printk("%s openwifi_tx: WARNING test_mode==1\n", sdr_compatible_str); 705 goto openwifi_tx_early_out; 706 } 707 708 if (skb->data_len>0) {// more data are not in linear data area skb->data 709 printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str); 710 goto openwifi_tx_early_out; 711 } 712 713 len_mpdu = skb->len; 714 715 // get Linux priority/queue setting info and target mac address 716 prio = skb_get_queue_mapping(skb); 717 addr1_low32 = *((u32*)(hdr->addr1+2)); 718 ring = &(priv->tx_ring[prio]); 719 720 // -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" ----------- 721 if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config 722 queue_idx = prio; 723 } else {// customized prio to queue_idx mapping 724 //if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only 725 // check current packet belonging to which slice/hw-queue 726 for (i=0; i<MAX_NUM_HW_QUEUE; i++) { 727 if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) { 728 break; 729 } 730 } 731 //} 732 queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest. 733 } 734 // -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------ 735 // get other info from packet header 736 addr1_high16 = *((u16*)(hdr->addr1)); 737 if (len_mpdu>=20) { 738 addr2_low32 = *((u32*)(hdr->addr2+2)); 739 addr2_high16 = *((u16*)(hdr->addr2)); 740 } 741 if (len_mpdu>=26) { 742 addr3_low32 = *((u32*)(hdr->addr3+2)); 743 addr3_high16 = *((u16*)(hdr->addr3)); 744 } 745 746 duration_id = hdr->duration_id; 747 frame_control=hdr->frame_control; 748 ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK); 749 fc_type = ((frame_control)>>2)&3; 750 fc_subtype = ((frame_control)>>4)&0xf; 751 fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) ); 752 //if it is broadcasting or multicasting addr 753 addr_flag = ( (addr1_low32==0 && addr1_high16==0) || 754 (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) || 755 (addr1_high16==0x3333) || 756 (addr1_high16==0x0001 && hdr->addr1[2]==0x5E) ); 757 if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame 758 pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent 759 } else { 760 pkt_need_ack = 0; 761 } 762 763 // get Linux rate (MCS) setting 764 rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value; 765 //rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M 766 if (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0 && fc_type==2 && (!addr_flag)) //rate override command 767 rate_hw_value = priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]; 768 769 retry_limit_raw = info->control.rates[0].count; 770 771 rc_flags = info->control.rates[0].flags; 772 use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0); 773 use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0); 774 use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0); 775 use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0); 776 use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0); 777 778 if (use_rts_cts) 779 printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx); 780 781 if (use_cts_protect) { 782 cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value; 783 cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info)); 784 } else if (force_use_cts_protect) { // could override mac80211 setting here. 785 cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M) 786 sifs = (priv->actual_rx_lo<2500?10:16); 787 if (pkt_need_ack) 788 ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL) 789 traffic_pkt_duration = 20 + 4*(((22+len_mpdu*8)/wifi_n_dbps_table[rate_hw_value])+1); 790 cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration); 791 } 792 793 // this is 11b stuff 794 // if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 795 // printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str); 796 797 if (len_mpdu>=28) { 798 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 799 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 800 priv->seqno += 0x10; 801 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 802 hdr->seq_ctrl |= cpu_to_le16(priv->seqno); 803 } 804 sc = hdr->seq_ctrl; 805 } 806 807 if ( ( (!addr_flag)||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) ) 808 printk("%s openwifi_tx: %4dbytes ht%d aggr%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str, 809 len_mpdu, (use_ht_rate == false ? 0 : 1), (use_ht_aggr == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id, 810 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), 811 sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx, 812 // use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration, 813 ring->bd_wr_idx,ring->bd_rd_idx); 814 815 // printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str, 816 // info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags, 817 // info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags, 818 // info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags, 819 // info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags); 820 821 // -----------end of preprocess some info from header and skb---------------- 822 823 // /* HW will perform RTS-CTS when only RTS flags is set. 824 // * HW will perform CTS-to-self when both RTS and CTS flags are set. 825 // * RTS rate and RTS duration will be used also for CTS-to-self. 826 // */ 827 // if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 828 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; 829 // rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config 830 // len_mpdu, info); 831 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str); 832 // } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 833 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; 834 // rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config 835 // len_mpdu, info); 836 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str); 837 // } 838 839 if(use_ht_aggr) 840 { 841 qos_hdr = ieee80211_get_qos_ctl(hdr); 842 if(ieee80211_is_data_qos(frame_control) == false || qos_hdr[0] != priv->tid) 843 { 844 printk("%s openwifi_tx: WARNING packet is either not qos or tid %u does not match registered tid %u\n", sdr_compatible_str, qos_hdr[0], priv->tid); 845 goto openwifi_tx_early_out; 846 } 847 848 // psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ] 849 len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4); 850 len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad; 851 852 if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) || 853 (rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) || 854 (prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) ) 855 { 856 addr1_low32_prev = addr1_low32; 857 addr1_high16_prev = addr1_high16; 858 duration_id_prev = duration_id; 859 rate_hw_value_prev = rate_hw_value; 860 use_short_gi_prev = use_short_gi; 861 prio_prev = prio; 862 retry_limit_raw_prev = retry_limit_raw; 863 pkt_need_ack_prev = pkt_need_ack; 864 865 ht_aggr_start = true; 866 } 867 } 868 else 869 { 870 // psdu = [ MPDU ] 871 len_psdu = len_mpdu; 872 873 addr1_low32_prev = -1; 874 addr1_high16_prev = -1; 875 duration_id_prev = -1; 876 use_short_gi_prev = -1; 877 rate_hw_value_prev = -1; 878 prio_prev = -1; 879 retry_limit_raw_prev = -1; 880 pkt_need_ack_prev = -1; 881 } 882 num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0); 883 884 // check whether the packet is bigger than DMA buffer size 885 num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS); 886 if (num_dma_byte > TX_BD_BUF_SIZE) { 887 printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx); 888 goto openwifi_tx_early_out; 889 } 890 891 // Copy MPDU delimiter and padding into sk_buff 892 if(use_ht_aggr) 893 { 894 // when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary 895 if (skb_headroom(skb)<LEN_MPDU_DELIM) { 896 struct sk_buff *skb_new; // in case original skb headroom is not enough to host MPDU delimiter 897 printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_MPDU_DELIM\n", sdr_compatible_str, ring->bd_wr_idx); 898 if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) { 899 printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx); 900 goto openwifi_tx_early_out; 901 } 902 if (skb->sk != NULL) 903 skb_set_owner_w(skb_new, skb->sk); 904 dev_kfree_skb(skb); 905 skb = skb_new; 906 } 907 skb_push( skb, LEN_MPDU_DELIM ); 908 dma_buf = skb->data; 909 910 // fill in MPDU delimiter 911 *((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0; 912 *((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf)); 913 *((u8 *)(dma_buf+3)) = 0x4e; 914 915 // Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter 916 num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu); 917 if (skb_tailroom(skb)<num_byte_pad) { 918 printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx); 919 goto openwifi_tx_early_out; 920 } 921 skb_put( skb, num_byte_pad ); 922 923 // fill in MPDU CRC 924 *((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu); 925 926 // fill in MPDU delimiter padding 927 memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad); 928 929 // num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary. 930 // If they have different lengths, add "empty MPDU delimiter" for alignment 931 if(num_dma_byte == len_psdu + 4) 932 { 933 *((u32*)(dma_buf+len_psdu)) = 0x4e140000; 934 len_psdu = num_dma_byte; 935 } 936 } 937 else 938 { 939 // Extend sk_buff to hold padding 940 num_byte_pad = num_dma_byte - len_mpdu; 941 if (skb_tailroom(skb)<num_byte_pad) { 942 printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx); 943 goto openwifi_tx_early_out; 944 } 945 skb_put( skb, num_byte_pad ); 946 947 dma_buf = skb->data; 948 } 949 // for(i = 0; i <= num_dma_symbol; i++) 950 // printk("%16llx\n", (*(u64*)(&(dma_buf[i*8])))); 951 952 rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]); 953 954 retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) ); 955 956 cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value]; 957 cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value); 958 tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | (len_mpdu+LEN_PHY_CRC) ); 959 phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu ); 960 961 /* We must be sure that tx_flags is written last because the HW 962 * looks at it to check if the rest of data is valid or not 963 */ 964 //wmb(); 965 // entry->flags = cpu_to_le32(tx_flags); 966 /* We must be sure this has been written before following HW 967 * register write, because this write will make the HW attempts 968 * to DMA the just-written data 969 */ 970 //wmb(); 971 972 spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt 973 974 // -------------check whether FPGA dma fifo and queue (queue_idx) has enough room------------- 975 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); 976 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 977 if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD) || ring->stop_flag==1 ) { 978 ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read 979 printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str, 980 prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx); 981 ring->stop_flag = 1; 982 goto openwifi_tx_early_out_after_lock; 983 } 984 // --------end of check whether FPGA fifo (queue_idx) has enough room------------ 985 986 status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL); 987 if (status!=DMA_COMPLETE) { 988 printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str); 989 goto openwifi_tx_early_out_after_lock; 990 } 991 992 //-------------------------fire skb DMA to hardware---------------------------------- 993 dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf, 994 num_dma_byte, DMA_MEM_TO_DEV); 995 996 if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) { 997 // dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n"); 998 printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx); 999 goto openwifi_tx_early_out_after_lock; 1000 } 1001 1002 sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start 1003 sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr; 1004 sg_dma_len( &(priv->tx_sg) ) = num_dma_byte; 1005 1006 tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg); 1007 tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config); 1008 tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config); 1009 priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL); 1010 if (!(priv->txd)) { 1011 printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd)); 1012 goto openwifi_tx_after_dma_mapping; 1013 } 1014 1015 priv->tx_cookie = priv->txd->tx_submit(priv->txd); 1016 1017 if (dma_submit_error(priv->tx_cookie)) { 1018 printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie)); 1019 goto openwifi_tx_after_dma_mapping; 1020 } 1021 1022 // seems everything is ok. let's mark this pkt in bd descriptor ring 1023 ring->bds[ring->bd_wr_idx].seq_no = (sc&IEEE80211_SCTL_SEQ)>>4; 1024 ring->bds[ring->bd_wr_idx].skb_linked = skb; 1025 ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr; 1026 1027 ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1)); 1028 1029 dma_async_issue_pending(priv->tx_chan); 1030 1031 spin_unlock_irqrestore(&priv->lock, flags); 1032 1033 return; 1034 1035 openwifi_tx_after_dma_mapping: 1036 dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV); 1037 1038 openwifi_tx_early_out_after_lock: 1039 dev_kfree_skb(skb); 1040 spin_unlock_irqrestore(&priv->lock, flags); 1041 // printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); 1042 return; 1043 1044 openwifi_tx_early_out: 1045 dev_kfree_skb(skb); 1046 // printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); 1047 } 1048 1049 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant) 1050 { 1051 struct openwifi_priv *priv = dev->priv; 1052 u8 fpga_tx_ant_setting, target_rx_ant; 1053 u32 atten_mdb_tx0, atten_mdb_tx1; 1054 struct ctrl_outs_control ctrl_out; 1055 int ret; 1056 1057 printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant); 1058 1059 if (tx_ant >= 4 || tx_ant == 0) { 1060 return -EINVAL; 1061 } else if (rx_ant >= 3 || rx_ant == 0) { 1062 return -EINVAL; 1063 } 1064 1065 fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16)); 1066 target_rx_ant = ((rx_ant&1)?0:1); 1067 1068 // try rf chip setting firstly, only update internal state variable when rf chip succeed 1069 atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); 1070 atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); 1071 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true); 1072 if (ret < 0) { 1073 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0); 1074 return -EINVAL; 1075 } else { 1076 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0); 1077 } 1078 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true); 1079 if (ret < 0) { 1080 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1); 1081 return -EINVAL; 1082 } else { 1083 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1); 1084 } 1085 1086 ctrl_out.en_mask = priv->ctrl_out.en_mask; 1087 ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); 1088 ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out)); 1089 if (ret < 0) { 1090 printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); 1091 return -EINVAL; 1092 } else { 1093 printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); 1094 } 1095 1096 tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting); 1097 ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read(); 1098 if (ret != fpga_tx_ant_setting) { 1099 printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret); 1100 return -EINVAL; 1101 } else { 1102 printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); 1103 } 1104 1105 rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant); 1106 ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read(); 1107 if (ret != target_rx_ant) { 1108 printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret); 1109 return -EINVAL; 1110 } else { 1111 printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); 1112 } 1113 1114 // update internal state variable 1115 priv->runtime_tx_ant_cfg = tx_ant; 1116 priv->runtime_rx_ant_cfg = rx_ant; 1117 1118 if (TX_OFFSET_TUNING_ENABLE) 1119 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE 1120 else { 1121 if (tx_ant == 3) 1122 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH; 1123 else 1124 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1); 1125 } 1126 1127 priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1); 1128 priv->ctrl_out.index=ctrl_out.index; 1129 1130 priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg]; 1131 priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg]; 1132 1133 return 0; 1134 } 1135 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant) 1136 { 1137 struct openwifi_priv *priv = dev->priv; 1138 1139 *tx_ant = priv->runtime_tx_ant_cfg; 1140 *rx_ant = priv->runtime_rx_ant_cfg; 1141 1142 printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant); 1143 1144 printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str, 1145 priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index); 1146 1147 printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str, 1148 tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read()); 1149 1150 printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str, 1151 ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER)); 1152 1153 return 0; 1154 } 1155 1156 static int openwifi_start(struct ieee80211_hw *dev) 1157 { 1158 struct openwifi_priv *priv = dev->priv; 1159 int ret, i, rssi_half_db_offset, agc_gain_delay;//rssi_half_db_th, 1160 u32 reg; 1161 1162 for (i=0; i<MAX_NUM_VIF; i++) { 1163 priv->vif[i] = NULL; 1164 } 1165 1166 memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val)); 1167 memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val)); 1168 memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val)); 1169 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV; 1170 1171 //turn on radio 1172 openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); 1173 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); 1174 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { 1175 priv->rfkill_off = 1;// 0 off, 1 on 1176 printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str); 1177 } 1178 else 1179 printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); 1180 1181 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); 1182 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); 1183 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); 1184 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); 1185 xpu_api->hw_init(priv->xpu_cfg); 1186 1187 agc_gain_delay = 50; //samples 1188 rssi_half_db_offset = 150; // to be consistent 1189 xpu_api->XPU_REG_RSSI_DB_CFG_write(0x80000000|((rssi_half_db_offset<<16)|agc_gain_delay) ); 1190 xpu_api->XPU_REG_RSSI_DB_CFG_write((~0x80000000)&((rssi_half_db_offset<<16)|agc_gain_delay) ); 1191 1192 openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write(0); 1193 // rssi_half_db_th = 87<<1; // -62dBm // will setup in runtime in _rf_set_channel 1194 // xpu_api->XPU_REG_LBT_TH_write(rssi_half_db_th); // set IQ rssi th step .5dB to xxx and enable it 1195 xpu_api->XPU_REG_FORCE_IDLE_MISC_write(75); //control the duration to force ch_idle after decoding a packet due to imperfection of agc and signals 1196 1197 //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((40)<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz (Attention, current tx core has around 1.19us starting delay that makes the ack fall behind 10us SIFS in 2.4GHz! Need to improve TX in 2.4GHz!) 1198 //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51)<<16)|0 );//now our tx send out I/Q immediately 1199 xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51+23)<<16)|(0+23) );//we have more time when we use FIR in AD9361 1200 1201 xpu_api->XPU_REG_RECV_ACK_COUNT_TOP0_write( (1<<31) | (((45+2+2)*10 + 15)<<16) | 10 );//2.4GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M) 1202 xpu_api->XPU_REG_RECV_ACK_COUNT_TOP1_write( (1<<31) | (((51+2+2)*10 + 15)<<16) | 10 );//5GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M) 1203 1204 tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write( ((16*10)<<16)|(10*10) );//high 16bit 5GHz; low 16 bit 2.4GHz. counter speed 10MHz is assumed 1205 1206 // //xpu_api->XPU_REG_BB_RF_DELAY_write(51); // fine tuned value at 0.005us. old: dac-->ant port: 0.6us, 57 taps fir at 40MHz: 1.425us; round trip: 2*(0.6+1.425)=4.05us; 4.05*10=41 1207 // xpu_api->XPU_REG_BB_RF_DELAY_write(47);//add .5us for slightly longer fir -- already in xpu.c 1208 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); 1209 1210 // setup time schedule of 4 slices 1211 // slice 0 1212 xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write(50000-1); // total 50ms 1213 xpu_api->XPU_REG_SLICE_COUNT_START_write(0); //start 0ms 1214 xpu_api->XPU_REG_SLICE_COUNT_END_write(50000-1); //end 50ms 1215 1216 // slice 1 1217 xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((1<<20)|(50000-1)); // total 50ms 1218 xpu_api->XPU_REG_SLICE_COUNT_START_write((1<<20)|(0)); //start 0ms 1219 //xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(20000-1)); //end 20ms 1220 xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(50000-1)); //end 20ms 1221 1222 // slice 2 1223 xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((2<<20)|(50000-1)); // total 50ms 1224 //xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(20000)); //start 20ms 1225 xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(0)); //start 20ms 1226 //xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(40000-1)); //end 20ms 1227 xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(50000-1)); //end 20ms 1228 1229 // slice 3 1230 xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((3<<20)|(50000-1)); // total 50ms 1231 //xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(40000)); //start 40ms 1232 xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(0)); //start 40ms 1233 //xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms 1234 xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms 1235 1236 // all slice sync rest 1237 xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time 1238 xpu_api->XPU_REG_MULTI_RST_write(0<<7); 1239 1240 //xpu_api->XPU_REG_MAC_ADDR_HIGH_write( (*( (u16*)(priv->mac_addr + 4) )) ); 1241 printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); 1242 printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); 1243 1244 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt 1245 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode 1246 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status 1247 1248 if (test_mode==1) { 1249 printk("%s openwifi_start: test_mode==1\n",sdr_compatible_str); 1250 goto normal_out; 1251 } 1252 1253 priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm"); 1254 if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) { 1255 ret = PTR_ERR(priv->rx_chan); 1256 pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan); 1257 goto err_dma; 1258 } 1259 1260 priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s"); 1261 if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) { 1262 ret = PTR_ERR(priv->tx_chan); 1263 pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan); 1264 goto err_dma; 1265 } 1266 printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan); 1267 1268 ret = openwifi_init_rx_ring(priv); 1269 if (ret) { 1270 printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret); 1271 goto err_free_rings; 1272 } 1273 1274 priv->seqno=0; 1275 for (i=0; i<MAX_NUM_SW_QUEUE; i++) { 1276 if ((ret = openwifi_init_tx_ring(priv, i))) { 1277 printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret); 1278 goto err_free_rings; 1279 } 1280 } 1281 1282 if ( (ret = rx_dma_setup(dev)) ) { 1283 printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret); 1284 goto err_free_rings; 1285 } 1286 1287 priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1); 1288 ret = request_irq(priv->irq_rx, openwifi_rx_interrupt, 1289 IRQF_SHARED, "sdr,rx_pkt_intr", dev); 1290 if (ret) { 1291 wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n"); 1292 goto err_free_rings; 1293 } else { 1294 printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx); 1295 } 1296 1297 priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3); 1298 ret = request_irq(priv->irq_tx, openwifi_tx_interrupt, 1299 IRQF_SHARED, "sdr,tx_itrpt", dev); 1300 if (ret) { 1301 wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n"); 1302 goto err_free_rings; 1303 } else { 1304 printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx); 1305 } 1306 1307 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM 1308 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt 1309 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS 1310 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer 1311 1312 //ieee80211_wake_queue(dev, 0); 1313 1314 normal_out: 1315 printk("%s openwifi_start: normal end\n", sdr_compatible_str); 1316 return 0; 1317 1318 err_free_rings: 1319 openwifi_free_rx_ring(priv); 1320 for (i=0; i<MAX_NUM_SW_QUEUE; i++) 1321 openwifi_free_tx_ring(priv, i); 1322 1323 err_dma: 1324 ret = -1; 1325 printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret); 1326 return ret; 1327 } 1328 1329 static void openwifi_stop(struct ieee80211_hw *dev) 1330 { 1331 struct openwifi_priv *priv = dev->priv; 1332 u32 reg, reg1; 1333 int i; 1334 1335 if (test_mode==1){ 1336 pr_info("%s openwifi_stop: test_mode==1\n", sdr_compatible_str); 1337 goto normal_out; 1338 } 1339 1340 //turn off radio 1341 #if 1 1342 ad9361_tx_mute(priv->ad9361_phy, 1); 1343 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 1344 reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); 1345 if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { 1346 priv->rfkill_off = 0;// 0 off, 1 on 1347 printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str); 1348 } 1349 else 1350 printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); 1351 #endif 1352 1353 //ieee80211_stop_queue(dev, 0); 1354 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt 1355 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode 1356 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status 1357 1358 for (i=0; i<MAX_NUM_VIF; i++) { 1359 priv->vif[i] = NULL; 1360 } 1361 1362 openwifi_free_rx_ring(priv); 1363 for (i=0; i<MAX_NUM_SW_QUEUE; i++) 1364 openwifi_free_tx_ring(priv, i); 1365 1366 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan)); 1367 dmaengine_terminate_all(priv->rx_chan); 1368 dma_release_channel(priv->rx_chan); 1369 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan)); 1370 dmaengine_terminate_all(priv->tx_chan); 1371 dma_release_channel(priv->tx_chan); 1372 1373 //priv->rf->stop(dev); 1374 1375 free_irq(priv->irq_rx, dev); 1376 free_irq(priv->irq_tx, dev); 1377 1378 normal_out: 1379 printk("%s openwifi_stop\n", sdr_compatible_str); 1380 } 1381 1382 static u64 openwifi_get_tsf(struct ieee80211_hw *dev, 1383 struct ieee80211_vif *vif) 1384 { 1385 u32 tsft_low, tsft_high; 1386 1387 tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read(); 1388 tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read(); 1389 //printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); 1390 return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); 1391 } 1392 1393 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf) 1394 { 1395 u32 tsft_high = ((tsf >> 32)&0xffffffff); 1396 u32 tsft_low = (tsf&0xffffffff); 1397 xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low); 1398 printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); 1399 } 1400 1401 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 1402 { 1403 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); 1404 printk("%s openwifi_reset_tsf\n", sdr_compatible_str); 1405 } 1406 1407 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value) 1408 { 1409 printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value); 1410 return(0); 1411 } 1412 1413 static void openwifi_beacon_work(struct work_struct *work) 1414 { 1415 struct openwifi_vif *vif_priv = 1416 container_of(work, struct openwifi_vif, beacon_work.work); 1417 struct ieee80211_vif *vif = 1418 container_of((void *)vif_priv, struct ieee80211_vif, drv_priv); 1419 struct ieee80211_hw *dev = vif_priv->dev; 1420 struct ieee80211_mgmt *mgmt; 1421 struct sk_buff *skb; 1422 1423 /* don't overflow the tx ring */ 1424 if (ieee80211_queue_stopped(dev, 0)) 1425 goto resched; 1426 1427 /* grab a fresh beacon */ 1428 skb = ieee80211_beacon_get(dev, vif); 1429 if (!skb) 1430 goto resched; 1431 1432 /* 1433 * update beacon timestamp w/ TSF value 1434 * TODO: make hardware update beacon timestamp 1435 */ 1436 mgmt = (struct ieee80211_mgmt *)skb->data; 1437 mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif)); 1438 1439 /* TODO: use actual beacon queue */ 1440 skb_set_queue_mapping(skb, 0); 1441 openwifi_tx(dev, NULL, skb); 1442 1443 resched: 1444 /* 1445 * schedule next beacon 1446 * TODO: use hardware support for beacon timing 1447 */ 1448 schedule_delayed_work(&vif_priv->beacon_work, 1449 usecs_to_jiffies(1024 * vif->bss_conf.beacon_int)); 1450 } 1451 1452 static int openwifi_add_interface(struct ieee80211_hw *dev, 1453 struct ieee80211_vif *vif) 1454 { 1455 int i; 1456 struct openwifi_priv *priv = dev->priv; 1457 struct openwifi_vif *vif_priv; 1458 1459 switch (vif->type) { 1460 case NL80211_IFTYPE_AP: 1461 case NL80211_IFTYPE_STATION: 1462 case NL80211_IFTYPE_ADHOC: 1463 case NL80211_IFTYPE_MONITOR: 1464 case NL80211_IFTYPE_MESH_POINT: 1465 break; 1466 default: 1467 return -EOPNOTSUPP; 1468 } 1469 // let's support more than 1 interface 1470 for (i=0; i<MAX_NUM_VIF; i++) { 1471 if (priv->vif[i] == NULL) 1472 break; 1473 } 1474 1475 printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i); 1476 1477 if (i==MAX_NUM_VIF) 1478 return -EBUSY; 1479 1480 priv->vif[i] = vif; 1481 1482 /* Initialize driver private area */ 1483 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1484 vif_priv->idx = i; 1485 1486 vif_priv->dev = dev; 1487 INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work); 1488 vif_priv->enable_beacon = false; 1489 1490 printk("%s openwifi_add_interface end with vif idx %d\n", sdr_compatible_str,vif_priv->idx); 1491 1492 return 0; 1493 } 1494 1495 static void openwifi_remove_interface(struct ieee80211_hw *dev, 1496 struct ieee80211_vif *vif) 1497 { 1498 struct openwifi_vif *vif_priv; 1499 struct openwifi_priv *priv = dev->priv; 1500 1501 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1502 priv->vif[vif_priv->idx] = NULL; 1503 printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx); 1504 } 1505 1506 static int openwifi_config(struct ieee80211_hw *dev, u32 changed) 1507 { 1508 struct openwifi_priv *priv = dev->priv; 1509 struct ieee80211_conf *conf = &dev->conf; 1510 1511 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) 1512 priv->rf->set_chan(dev, conf); 1513 else 1514 printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed); 1515 1516 return 0; 1517 } 1518 1519 static void openwifi_bss_info_changed(struct ieee80211_hw *dev, 1520 struct ieee80211_vif *vif, 1521 struct ieee80211_bss_conf *info, 1522 u32 changed) 1523 { 1524 struct openwifi_priv *priv = dev->priv; 1525 struct openwifi_vif *vif_priv; 1526 u32 bssid_low, bssid_high; 1527 1528 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1529 1530 //be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it! 1531 //printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]); 1532 if (changed & BSS_CHANGED_BSSID) { 1533 printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]); 1534 // write new bssid to our HW, and do not change bssid filter 1535 //u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read(); 1536 bssid_low = ( *( (u32*)(info->bssid) ) ); 1537 bssid_high = ( *( (u16*)(info->bssid+4) ) ); 1538 1539 //bssid_filter_high = (bssid_filter_high&0x80000000); 1540 //bssid_high = (bssid_high|bssid_filter_high); 1541 xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low); 1542 xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high); 1543 } 1544 1545 if (changed & BSS_CHANGED_BEACON_INT) { 1546 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int); 1547 } 1548 1549 if (changed & BSS_CHANGED_TXPOWER) 1550 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower); 1551 1552 if (changed & BSS_CHANGED_ERP_CTS_PROT) 1553 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot); 1554 1555 if (changed & BSS_CHANGED_BASIC_RATES) 1556 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates); 1557 1558 if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) { 1559 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str, 1560 changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot); 1561 if (info->use_short_slot && priv->use_short_slot==false) { 1562 priv->use_short_slot=true; 1563 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 1564 } else if ((!info->use_short_slot) && priv->use_short_slot==true) { 1565 priv->use_short_slot=false; 1566 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 1567 } 1568 } 1569 1570 if (changed & BSS_CHANGED_BEACON_ENABLED) { 1571 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str); 1572 vif_priv->enable_beacon = info->enable_beacon; 1573 } 1574 1575 if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) { 1576 cancel_delayed_work_sync(&vif_priv->beacon_work); 1577 if (vif_priv->enable_beacon) 1578 schedule_work(&vif_priv->beacon_work.work); 1579 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str, 1580 changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON); 1581 } 1582 } 1583 // helper function 1584 u32 log2val(u32 val){ 1585 u32 ret_val = 0 ; 1586 while(val>1){ 1587 val = val >> 1 ; 1588 ret_val ++ ; 1589 } 1590 return ret_val ; 1591 } 1592 1593 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue, 1594 const struct ieee80211_tx_queue_params *params) 1595 { 1596 u32 reg_val, cw_min_exp, cw_max_exp; 1597 1598 printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n", 1599 sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop); 1600 1601 reg_val=xpu_api->XPU_REG_CSMA_CFG_read(); 1602 cw_min_exp = (log2val(params->cw_min + 1) & 0x0F); 1603 cw_max_exp = (log2val(params->cw_max + 1) & 0x0F); 1604 switch(queue){ 1605 case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) ); break; 1606 case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) ); break; 1607 case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break; 1608 case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break; 1609 default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0); 1610 } 1611 xpu_api->XPU_REG_CSMA_CFG_write(reg_val); 1612 return(0); 1613 } 1614 1615 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev, 1616 struct netdev_hw_addr_list *mc_list) 1617 { 1618 printk("%s openwifi_prepare_multicast\n", sdr_compatible_str); 1619 return netdev_hw_addr_list_count(mc_list); 1620 } 1621 1622 static void openwifi_configure_filter(struct ieee80211_hw *dev, 1623 unsigned int changed_flags, 1624 unsigned int *total_flags, 1625 u64 multicast) 1626 { 1627 u32 filter_flag; 1628 1629 (*total_flags) &= SDR_SUPPORTED_FILTERS; 1630 (*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer 1631 1632 filter_flag = (*total_flags); 1633 1634 filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO); 1635 //filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm 1636 1637 //if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR) 1638 if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode 1639 filter_flag = (filter_flag|MONITOR_ALL); 1640 else 1641 filter_flag = (filter_flag&(~MONITOR_ALL)); 1642 1643 if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) ) 1644 filter_flag = (filter_flag|MY_BEACON); 1645 1646 filter_flag = (filter_flag|FIF_PSPOLL); 1647 1648 xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG); 1649 //xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt 1650 1651 printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str, 1652 (filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1); 1653 } 1654 1655 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) 1656 { 1657 struct ieee80211_sta *sta = params->sta; 1658 enum ieee80211_ampdu_mlme_action action = params->action; 1659 // struct openwifi_priv *priv = hw->priv; 1660 u16 max_tx_bytes, buf_size; 1661 u32 ampdu_action_config; 1662 1663 switch (action) 1664 { 1665 case IEEE80211_AMPDU_TX_START: 1666 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); 1667 break; 1668 case IEEE80211_AMPDU_TX_STOP_CONT: 1669 case IEEE80211_AMPDU_TX_STOP_FLUSH: 1670 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: 1671 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); 1672 break; 1673 case IEEE80211_AMPDU_TX_OPERATIONAL: 1674 buf_size = 4; 1675 // buf_size = (params->buf_size) - 1; 1676 max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1; 1677 ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes ); 1678 tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config); 1679 break; 1680 case IEEE80211_AMPDU_RX_START: 1681 printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1682 break; 1683 case IEEE80211_AMPDU_RX_STOP: 1684 printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1685 break; 1686 default: 1687 return -EOPNOTSUPP; 1688 } 1689 1690 return 0; 1691 } 1692 1693 static const struct ieee80211_ops openwifi_ops = { 1694 .tx = openwifi_tx, 1695 .start = openwifi_start, 1696 .stop = openwifi_stop, 1697 .add_interface = openwifi_add_interface, 1698 .remove_interface = openwifi_remove_interface, 1699 .config = openwifi_config, 1700 .bss_info_changed = openwifi_bss_info_changed, 1701 .conf_tx = openwifi_conf_tx, 1702 .prepare_multicast = openwifi_prepare_multicast, 1703 .configure_filter = openwifi_configure_filter, 1704 .rfkill_poll = openwifi_rfkill_poll, 1705 .get_tsf = openwifi_get_tsf, 1706 .set_tsf = openwifi_set_tsf, 1707 .reset_tsf = openwifi_reset_tsf, 1708 .set_rts_threshold = openwifi_set_rts_threshold, 1709 .ampdu_action = openwifi_ampdu_action, 1710 .testmode_cmd = openwifi_testmode_cmd, 1711 }; 1712 1713 static const struct of_device_id openwifi_dev_of_ids[] = { 1714 { .compatible = "sdr,sdr", }, 1715 {} 1716 }; 1717 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids); 1718 1719 static int custom_match_spi_dev(struct device *dev, void *data) 1720 { 1721 const char *name = data; 1722 1723 bool ret = sysfs_streq(name, dev->of_node->name); 1724 printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret); 1725 return ret; 1726 } 1727 1728 static int custom_match_platform_dev(struct device *dev, void *data) 1729 { 1730 struct platform_device *plat_dev = to_platform_device(dev); 1731 const char *name = data; 1732 char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name); 1733 bool match_flag = (name_in_sys_bus_platform_devices != NULL); 1734 1735 if (match_flag) { 1736 printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name); 1737 } 1738 return(match_flag); 1739 } 1740 1741 static int openwifi_dev_probe(struct platform_device *pdev) 1742 { 1743 struct ieee80211_hw *dev; 1744 struct openwifi_priv *priv; 1745 int err=1, rand_val; 1746 const char *chip_name, *fpga_model; 1747 u32 reg;//, reg1; 1748 1749 struct device_node *np = pdev->dev.of_node; 1750 1751 struct device *tmp_dev; 1752 struct platform_device *tmp_pdev; 1753 struct iio_dev *tmp_indio_dev; 1754 // struct gpio_leds_priv *tmp_led_priv; 1755 1756 printk("\n"); 1757 1758 if (np) { 1759 const struct of_device_id *match; 1760 1761 match = of_match_node(openwifi_dev_of_ids, np); 1762 if (match) { 1763 printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str); 1764 err = 0; 1765 } 1766 } 1767 1768 if (err) 1769 return err; 1770 1771 dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops); 1772 if (!dev) { 1773 printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str); 1774 err = -ENOMEM; 1775 goto err_free_dev; 1776 } 1777 1778 priv = dev->priv; 1779 priv->pdev = pdev; 1780 1781 err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model); 1782 if(err < 0) { 1783 printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err); 1784 priv->fpga_type = SMALL_FPGA; 1785 } else { 1786 // LARGE FPGAs (i.e. ZCU102, Z7035, ZC706) 1787 if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL) 1788 priv->fpga_type = LARGE_FPGA; 1789 // SMALL FPGA: (i.e. ZED, ZC702, Z7020) 1790 else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL) 1791 priv->fpga_type = SMALL_FPGA; 1792 } 1793 1794 // //-------------find ad9361-phy driver for lo/channel control--------------- 1795 priv->actual_rx_lo = 0; 1796 priv->actual_tx_lo = 0; 1797 tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev ); 1798 if (tmp_dev == NULL) { 1799 printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str); 1800 err = -ENOMEM; 1801 goto err_free_dev; 1802 } 1803 printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data)); 1804 if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) { 1805 printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str); 1806 err = -ENOMEM; 1807 goto err_free_dev; 1808 } 1809 1810 priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev); 1811 if (!(priv->ad9361_phy)) { 1812 printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str); 1813 err = -ENOMEM; 1814 goto err_free_dev; 1815 } 1816 printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias); 1817 1818 priv->ctrl_out.en_mask=0xFF; 1819 priv->ctrl_out.index=0x16; 1820 err = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out)); 1821 if (err < 0) { 1822 printk("%s openwifi_dev_probe: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, err); 1823 } else { 1824 printk("%s openwifi_dev_probe: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index); 1825 } 1826 1827 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER); 1828 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg); 1829 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE); 1830 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg); 1831 1832 // //-------------find driver: axi_ad9361 hdl ref design module, dac channel--------------- 1833 tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev ); 1834 if (!tmp_dev) { 1835 printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str); 1836 err = -ENOMEM; 1837 goto err_free_dev; 1838 } 1839 1840 tmp_pdev = to_platform_device(tmp_dev); 1841 if (!tmp_pdev) { 1842 printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str); 1843 err = -ENOMEM; 1844 goto err_free_dev; 1845 } 1846 1847 tmp_indio_dev = platform_get_drvdata(tmp_pdev); 1848 if (!tmp_indio_dev) { 1849 printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str); 1850 err = -ENOMEM; 1851 goto err_free_dev; 1852 } 1853 1854 priv->dds_st = iio_priv(tmp_indio_dev); 1855 if (!(priv->dds_st)) { 1856 printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str); 1857 err = -ENOMEM; 1858 goto err_free_dev; 1859 } 1860 printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name); 1861 cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA); 1862 printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str); 1863 1864 // //-------------find driver: axi_ad9361 hdl ref design module, adc channel--------------- 1865 // turn off radio by muting tx 1866 // ad9361_tx_mute(priv->ad9361_phy, 1); 1867 // reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 1868 // reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); 1869 // if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { 1870 // priv->rfkill_off = 0;// 0 off, 1 on 1871 // printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str); 1872 // } 1873 // else 1874 // printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); 1875 1876 priv->last_auto_fpga_lbt_th = 134;//just to avoid uninitialized 1877 priv->rssi_correction = 43;//this will be set in real-time by _rf_set_channel() 1878 1879 //priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode 1880 priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode 1881 1882 priv->xpu_cfg = XPU_NORMAL; 1883 1884 priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL; 1885 priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL; 1886 1887 printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) ); 1888 if (priv->rf_bw == 20000000) { 1889 priv->rx_intf_cfg = RX_INTF_BYPASS; 1890 priv->tx_intf_cfg = TX_INTF_BYPASS; 1891 //priv->rx_freq_offset_to_lo_MHz = 0; 1892 //priv->tx_freq_offset_to_lo_MHz = 0; 1893 } else if (priv->rf_bw == 40000000) { 1894 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work 1895 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work 1896 1897 // // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps 1898 priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0; 1899 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364 1900 // // try another antenna option 1901 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1; 1902 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; 1903 1904 #if 0 1905 if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) { 1906 priv->rx_freq_offset_to_lo_MHz = -10; 1907 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) { 1908 priv->rx_freq_offset_to_lo_MHz = 10; 1909 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) { 1910 priv->rx_freq_offset_to_lo_MHz = 0; 1911 } else { 1912 printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg); 1913 } 1914 #endif 1915 } else { 1916 printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw); 1917 } 1918 1919 printk("%s openwifi_dev_probe: test_mode %d\n", sdr_compatible_str, test_mode); 1920 1921 priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2)); 1922 priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2); 1923 1924 priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK; 1925 priv->ctrl_out.index =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); 1926 1927 //let's by default turn radio on when probing 1928 err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); 1929 if (err) { 1930 printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err); 1931 err = -EIO; 1932 goto err_free_dev; 1933 } 1934 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER); 1935 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg); 1936 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE); 1937 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg); 1938 1939 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); 1940 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { 1941 priv->rfkill_off = 1;// 0 off, 1 on 1942 printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str); 1943 } else 1944 printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); 1945 1946 memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val)); 1947 memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val)); 1948 memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val)); 1949 1950 // //set ad9361 in certain mode 1951 #if 0 1952 err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw); 1953 printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); 1954 err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw); 1955 printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); 1956 1957 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); 1958 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); 1959 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); 1960 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); 1961 printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); 1962 printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); 1963 #endif 1964 1965 dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle. 1966 1967 SET_IEEE80211_DEV(dev, &pdev->dev); 1968 platform_set_drvdata(pdev, dev); 1969 1970 BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates)); 1971 BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates)); 1972 BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels)); 1973 BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels)); 1974 1975 memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates)); 1976 memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates)); 1977 memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels)); 1978 memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels)); 1979 1980 priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM) 1981 priv->channel = 44; //currently useless. this can be changed by band _rf_set_channel() 1982 priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT 1983 priv->ampdu_reference = 0; 1984 1985 priv->band_2GHz.band = NL80211_BAND_2GHZ; 1986 priv->band_2GHz.channels = priv->channels_2GHz; 1987 priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz); 1988 priv->band_2GHz.bitrates = priv->rates_2GHz; 1989 priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz); 1990 priv->band_2GHz.ht_cap.ht_supported = true; 1991 priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; 1992 priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; 1993 priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; 1994 memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs)); 1995 priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff; 1996 priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 1997 dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz); 1998 1999 priv->band_5GHz.band = NL80211_BAND_5GHZ; 2000 priv->band_5GHz.channels = priv->channels_5GHz; 2001 priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz); 2002 priv->band_5GHz.bitrates = priv->rates_5GHz; 2003 priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz); 2004 priv->band_5GHz.ht_cap.ht_supported = true; 2005 priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; 2006 priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; 2007 priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; 2008 memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs)); 2009 priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff; 2010 priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 2011 dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz); 2012 2013 printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str, 2014 priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates); 2015 2016 ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); 2017 ieee80211_hw_set(dev, RX_INCLUDES_FCS); 2018 ieee80211_hw_set(dev, BEACON_TX_STATUS); 2019 ieee80211_hw_set(dev, AMPDU_AGGREGATION); 2020 2021 dev->vif_data_size = sizeof(struct openwifi_vif); 2022 dev->wiphy->interface_modes = 2023 BIT(NL80211_IFTYPE_MONITOR)| 2024 BIT(NL80211_IFTYPE_P2P_GO) | 2025 BIT(NL80211_IFTYPE_P2P_CLIENT) | 2026 BIT(NL80211_IFTYPE_AP) | 2027 BIT(NL80211_IFTYPE_STATION) | 2028 BIT(NL80211_IFTYPE_ADHOC) | 2029 BIT(NL80211_IFTYPE_MESH_POINT) | 2030 BIT(NL80211_IFTYPE_OCB); 2031 dev->wiphy->iface_combinations = &openwifi_if_comb; 2032 dev->wiphy->n_iface_combinations = 1; 2033 2034 dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK; 2035 dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK; 2036 2037 dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation 2038 //dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config 2039 wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd); 2040 2041 chip_name = "ZYNQ"; 2042 2043 /* we declare to MAC80211 all the queues except for beacon queue 2044 * that will be eventually handled by DRV. 2045 * TX rings are arranged in such a way that lower is the IDX, 2046 * higher is the priority, in order to achieve direct mapping 2047 * with mac80211, however the beacon queue is an exception and it 2048 * is mapped on the highst tx ring IDX. 2049 */ 2050 dev->queues = MAX_NUM_HW_QUEUE; 2051 //dev->queues = 1; 2052 2053 ieee80211_hw_set(dev, SIGNAL_DBM); 2054 2055 wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 2056 2057 priv->rf = &ad9361_rf_ops; 2058 2059 memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map)); 2060 priv->slice_idx = 0xFFFFFFFF; 2061 2062 sg_init_table(&(priv->tx_sg), 1); 2063 2064 get_random_bytes(&rand_val, sizeof(rand_val)); 2065 rand_val%=250; 2066 priv->mac_addr[0]=0x66; priv->mac_addr[1]=0x55; priv->mac_addr[2]=0x44; priv->mac_addr[3]=0x33; priv->mac_addr[4]=0x22; 2067 priv->mac_addr[5]=rand_val+1; 2068 //priv->mac_addr[5]=0x11; 2069 if (!is_valid_ether_addr(priv->mac_addr)) { 2070 printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str); 2071 eth_random_addr(priv->mac_addr); 2072 } else { 2073 printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]); 2074 } 2075 SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr); 2076 2077 spin_lock_init(&priv->lock); 2078 2079 err = ieee80211_register_hw(dev); 2080 if (err) { 2081 pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str); 2082 goto err_free_dev; 2083 } else { 2084 printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err); 2085 } 2086 2087 // // //--------------------hook leds (not complete yet)-------------------------------- 2088 // tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field 2089 // if (!tmp_dev) { 2090 // printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str); 2091 // err = -ENOMEM; 2092 // goto err_free_dev; 2093 // } 2094 2095 // tmp_pdev = to_platform_device(tmp_dev); 2096 // if (!tmp_pdev) { 2097 // printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str); 2098 // err = -ENOMEM; 2099 // goto err_free_dev; 2100 // } 2101 2102 // tmp_led_priv = platform_get_drvdata(tmp_pdev); 2103 // if (!tmp_led_priv) { 2104 // printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str); 2105 // err = -ENOMEM; 2106 // goto err_free_dev; 2107 // } 2108 // printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds); 2109 // if (tmp_led_priv->num_leds!=4){ 2110 // printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds); 2111 // err = -ENOMEM; 2112 // goto err_free_dev; 2113 // } 2114 // gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it 2115 // gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it 2116 // priv->num_led = tmp_led_priv->num_leds; 2117 // priv->led[0] = &(tmp_led_priv->leds[0].cdev); 2118 // priv->led[1] = &(tmp_led_priv->leds[1].cdev); 2119 // priv->led[2] = &(tmp_led_priv->leds[2].cdev); 2120 // priv->led[3] = &(tmp_led_priv->leds[3].cdev); 2121 2122 // snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy)); 2123 // snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy)); 2124 // snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy)); 2125 // snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy)); 2126 2127 wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n", 2128 priv->mac_addr, chip_name, priv->rf->name); 2129 2130 openwifi_rfkill_init(dev); 2131 return 0; 2132 2133 err_free_dev: 2134 ieee80211_free_hw(dev); 2135 2136 return err; 2137 } 2138 2139 static int openwifi_dev_remove(struct platform_device *pdev) 2140 { 2141 struct ieee80211_hw *dev = platform_get_drvdata(pdev); 2142 2143 if (!dev) { 2144 pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev); 2145 return(-1); 2146 } 2147 2148 openwifi_rfkill_exit(dev); 2149 ieee80211_unregister_hw(dev); 2150 ieee80211_free_hw(dev); 2151 return(0); 2152 } 2153 2154 static struct platform_driver openwifi_dev_driver = { 2155 .driver = { 2156 .name = "sdr,sdr", 2157 .owner = THIS_MODULE, 2158 .of_match_table = openwifi_dev_of_ids, 2159 }, 2160 .probe = openwifi_dev_probe, 2161 .remove = openwifi_dev_remove, 2162 }; 2163 2164 module_platform_driver(openwifi_dev_driver); 2165