xref: /openwifi/driver/sdr.c (revision 55c2866f7cb229c035f9e48a8cbdf4d66bd1846c)
1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu
2 // SPDX-FileCopyrightText: 2019 UGent
3 // SPDX-License-Identifier: AGPL-3.0-or-later
4 
5 #include <linux/bitops.h>
6 #include <linux/dmapool.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/of_address.h>
10 #include <linux/of_platform.h>
11 #include <linux/of_irq.h>
12 #include <linux/slab.h>
13 #include <linux/clk.h>
14 #include <linux/io-64-nonatomic-lo-hi.h>
15 
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 
24 #include <linux/init.h>
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/of_dma.h>
28 #include <linux/platform_device.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/wait.h>
32 #include <linux/sched/task.h>
33 #include <linux/dma/xilinx_dma.h>
34 #include <linux/spi/spi.h>
35 #include <net/mac80211.h>
36 
37 #include <linux/clk.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk-provider.h>
40 
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43 
44 #include <linux/gpio.h>
45 #include <linux/leds.h>
46 
47 #define IIO_AD9361_USE_PRIVATE_H_
48 #include "ad9361/ad9361_regs.h"
49 #include "ad9361/ad9361.h"
50 #include "ad9361/ad9361_private.h"
51 
52 #include <../../drivers/iio/frequency/cf_axi_dds.h>
53 
54 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
55 #include "hw_def.h"
56 #include "sdr.h"
57 #include "git_rev.h"
58 
59 // driver API of component driver
60 extern struct tx_intf_driver_api *tx_intf_api;
61 extern struct rx_intf_driver_api *rx_intf_api;
62 extern struct openofdm_tx_driver_api *openofdm_tx_api;
63 extern struct openofdm_rx_driver_api *openofdm_rx_api;
64 extern struct xpu_driver_api *xpu_api;
65 
66 static int test_mode = 0; // 0 normal; 1 rx test
67 
68 MODULE_AUTHOR("Xianjun Jiao");
69 MODULE_DESCRIPTION("SDR driver");
70 MODULE_LICENSE("GPL v2");
71 
72 module_param(test_mode, int, 0);
73 MODULE_PARM_DESC(myint, "test_mode. 0 normal; 1 rx test");
74 
75 // ---------------rfkill---------------------------------------
76 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
77 {
78 	int reg;
79 
80 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
81 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
82 	else
83 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
84 
85 	if (reg == AD9361_RADIO_ON_TX_ATT)
86 		return true;// 0 off, 1 on
87 	return false;
88 }
89 
90 void openwifi_rfkill_init(struct ieee80211_hw *hw)
91 {
92 	struct openwifi_priv *priv = hw->priv;
93 
94 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
95 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
96 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
97 	wiphy_rfkill_start_polling(hw->wiphy);
98 }
99 
100 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
101 {
102 	bool enabled;
103 	struct openwifi_priv *priv = hw->priv;
104 
105 	enabled = openwifi_is_radio_enabled(priv);
106 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
107 	if (unlikely(enabled != priv->rfkill_off)) {
108 		priv->rfkill_off = enabled;
109 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
110 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
111 	}
112 }
113 
114 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
115 {
116 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
117 	wiphy_rfkill_stop_polling(hw->wiphy);
118 }
119 //----------------rfkill end-----------------------------------
120 
121 //static void ad9361_rf_init(void);
122 //static void ad9361_rf_stop(void);
123 //static void ad9361_rf_calc_rssi(void);
124 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
125 				  struct ieee80211_conf *conf)
126 {
127 	struct openwifi_priv *priv = dev->priv;
128 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz + priv->drv_rx_reg_val[DRV_RX_REG_IDX_EXTRA_FO];
129 	u32 actual_tx_lo, reg_val;
130 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
131 
132 	if (change_flag) {
133 		priv->actual_rx_lo = actual_rx_lo;
134 
135 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
136 
137 		ad9361_clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) );
138 		ad9361_clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) );
139 
140 		if (actual_rx_lo<2412) {
141 			priv->rssi_correction = 153;
142 		} else if (actual_rx_lo<=2484) {
143 			priv->rssi_correction = 153;
144 		} else if (actual_rx_lo<5160) {
145 			priv->rssi_correction = 153;
146 		} else if (actual_rx_lo<=5240) {
147 			priv->rssi_correction = 145;
148 		} else if (actual_rx_lo<=5320) {
149 			priv->rssi_correction = 148;
150 		} else {
151 			priv->rssi_correction = 148;
152 		}
153 
154 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
155 		reg_val=xpu_api->XPU_REG_LBT_TH_read();
156 		xpu_api->XPU_REG_LBT_TH_write( (reg_val & 0xFFFF0000) | ((priv->rssi_correction-62-16)<<1)); // wei's magic value is 135, here is 134 @ ch 44
157 
158 		if (actual_rx_lo < 2500) {
159 			//priv->slot_time = 20; //20 is default slot time in ERP(OFDM)/11g 2.4G; short one is 9.
160 			//xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_2_4GHZ<<16);
161 			if (priv->band != BAND_2_4GHZ) {
162 				priv->band = BAND_2_4GHZ;
163 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
164 			}
165 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2)*10)<<16) | 10 ); // high 16 bits to cover sig valid of ACK packet, low 16 bits is adjustment of fcs valid waiting time.  let's add 2us for those device that is really "slow"!
166 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2+2)*10)<<16) | 10 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
167 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 0 );
168 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((10)*10)<<16);
169 		}
170 		else {
171 			//priv->slot_time = 9; //default slot time of OFDM PHY (OFDM by default means 5GHz)
172 			// xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_5_8GHZ<<16);
173 			if (priv->band != BAND_5_8GHZ) {
174 				priv->band = BAND_5_8GHZ;
175 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
176 			}
177 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2)*10)<<16) | 10 ); // because 5GHz needs longer SIFS (16 instead of 10), we need 58 instead of 48 for XPU low mac setting.  let's add 2us for those device that is really "slow"!
178 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2+2)*10)<<16) | 10 );//add 2us for longer fir.  BUT corrding to FPGA probing test, we do not need this
179 			// //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 60*10 );
180 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 50*10 );// for longer fir we need this delay 1us shorter
181 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((16)*10)<<16);
182 		}
183 		//printk("%s ad9361_rf_set_channel %dM rssi_correction %d\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction);
184 		// //-- use less
185 		//clk_prepare_enable(priv->ad9361_phy->clks[RX_RFPLL]);
186 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
187 		//ad9361_set_trx_clock_chain_default(priv->ad9361_phy);
188 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
189 	}
190 	printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag);
191 }
192 
193 const struct openwifi_rf_ops ad9361_rf_ops = {
194 	.name		= "ad9361",
195 //	.init		= ad9361_rf_init,
196 //	.stop		= ad9361_rf_stop,
197 	.set_chan	= ad9361_rf_set_channel,
198 //	.calc_rssi	= ad9361_rf_calc_rssi,
199 };
200 
201 u16 reverse16(u16 d) {
202 	union u16_byte2 tmp0, tmp1;
203 	tmp0.a = d;
204 	tmp1.c[0] = tmp0.c[1];
205 	tmp1.c[1] = tmp0.c[0];
206 	return(tmp1.a);
207 }
208 
209 u32 reverse32(u32 d) {
210 	union u32_byte4 tmp0, tmp1;
211 	tmp0.a = d;
212 	tmp1.c[0] = tmp0.c[3];
213 	tmp1.c[1] = tmp0.c[2];
214 	tmp1.c[2] = tmp0.c[1];
215 	tmp1.c[3] = tmp0.c[0];
216 	return(tmp1.a);
217 }
218 
219 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
220 {
221 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
222 	int i;
223 
224 	ring->stop_flag = 0;
225 	ring->bd_wr_idx = 0;
226 	ring->bd_rd_idx = 0;
227 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
228 	if (ring->bds==NULL) {
229 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
230 		return -ENOMEM;
231 	}
232 
233 	for (i = 0; i < NUM_TX_BD; i++) {
234 		ring->bds[i].skb_linked=0; // for tx, skb is from upper layer
235 		//at frist right after skb allocated, head, data, tail are the same.
236 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from uppler layer in tx routine
237 	}
238 
239 	return 0;
240 }
241 
242 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
243 {
244 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
245 	int i;
246 
247 	ring->stop_flag = 0;
248 	ring->bd_wr_idx = 0;
249 	ring->bd_rd_idx = 0;
250 	for (i = 0; i < NUM_TX_BD; i++) {
251 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
252 			continue;
253 		if (ring->bds[i].dma_mapping_addr != 0)
254 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
255 //		if (ring->bds[i].skb_linked!=NULL)
256 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
257 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
258 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
259 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08llx\n", sdr_compatible_str,
260 			ring_idx, i, (void*)(ring->bds[i].skb_linked), ring->bds[i].dma_mapping_addr);
261 
262 		ring->bds[i].skb_linked=0;
263 		ring->bds[i].dma_mapping_addr = 0;
264 	}
265 	if (ring->bds)
266 		kfree(ring->bds);
267 	ring->bds = NULL;
268 }
269 
270 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
271 {
272 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
273 	if (!priv->rx_cyclic_buf) {
274 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
275 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
276 		return(-1);
277 	}
278 	return 0;
279 }
280 
281 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
282 {
283 	if (priv->rx_cyclic_buf)
284 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
285 
286 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
287 	priv->rx_cyclic_buf = 0;
288 }
289 
290 static int rx_dma_setup(struct ieee80211_hw *dev){
291 	struct openwifi_priv *priv = dev->priv;
292 	struct dma_device *rx_dev = priv->rx_chan->device;
293 
294 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
295 	if (!(priv->rxd)) {
296 		openwifi_free_rx_ring(priv);
297 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
298 		return(-1);
299 	}
300 	priv->rxd->callback = 0;
301 	priv->rxd->callback_param = 0;
302 
303 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
304 
305 	if (dma_submit_error(priv->rx_cookie)) {
306 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
307 		return(-1);
308 	}
309 
310 	dma_async_issue_pending(priv->rx_chan);
311 	return(0);
312 }
313 
314 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
315 {
316 	struct ieee80211_hw *dev = dev_id;
317 	struct openwifi_priv *priv = dev->priv;
318 	struct ieee80211_rx_status rx_status = {0};
319 	struct sk_buff *skb;
320 	struct ieee80211_hdr *hdr;
321 	u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0, ht_flag, short_gi;//, fc_di;
322 	// u32 dma_driver_buf_idx_mod;
323 	u8 *pdata_tmp, fcs_ok, target_buf_idx;//, phy_rx_sn_hw;
324 	s8 signal;
325 	u16 rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0;
326 	bool content_ok = false, len_overflow = false;
327 	struct dma_tx_state state;
328 	static u8 target_buf_idx_old = 0xFF;
329 
330 	spin_lock(&priv->lock);
331 	priv->rx_chan->device->device_tx_status(priv->rx_chan,priv->rx_cookie,&state);
332 	target_buf_idx = ((state.residue-1)&(NUM_RX_BD-1));
333 
334 	while( target_buf_idx_old!=target_buf_idx ) { // loop all rx buffers that have new rx packets
335 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
336 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
337 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
338 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
339 		rssi_val =     (*((u16*)(pdata_tmp+8 )));
340 		len =          (*((u16*)(pdata_tmp+12)));
341 
342 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
343 
344 		rate_idx =     (*((u16*)(pdata_tmp+14)));
345 		short_gi =     ((rate_idx&0x20)!=0);
346 		rate_idx =     (rate_idx&0xDF);
347 
348 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
349 
350 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
351 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
352 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
353 		fcs_ok = ((fcs_ok&0x80)!=0);
354 		ht_flag = ((rate_idx&0x10)!=0);
355 
356 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
357 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
358 			// 	printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
359 			// }
360 			content_ok = true;
361 		} else {
362 			printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str);
363 			content_ok = false;
364 		}
365 
366 		rssi_val = (rssi_val>>1);
367 		if ( (rssi_val+128)<priv->rssi_correction )
368 			signal = -128;
369 		else
370 			signal = rssi_val - priv->rssi_correction;
371 
372 		// fc_di =        (*((u32*)(pdata_tmp+16)));
373 		// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
374 		// addr1_low32  = (*((u32*)(pdata_tmp+16+4+2)));
375 		// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
376 		// addr2_low32  = (*((u32*)(pdata_tmp+16+6+4+2)));
377 		// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
378 		// addr3_low32  = (*((u32*)(pdata_tmp+16+12+4+2)));
379 		if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) {
380 			hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
381 			addr1_low32  = *((u32*)(hdr->addr1+2));
382 			addr1_high16 = *((u16*)(hdr->addr1));
383 			if (len>=20) {
384 				addr2_low32  = *((u32*)(hdr->addr2+2));
385 				addr2_high16 = *((u16*)(hdr->addr2));
386 			}
387 			if (len>=26) {
388 				addr3_low32  = *((u32*)(hdr->addr3+2));
389 				addr3_high16 = *((u16*)(hdr->addr3));
390 			}
391 			if (len>=28)
392 				sc = hdr->seq_ctrl;
393 
394 			if ( addr1_low32!=0xffffffff || addr1_high16!=0xffff )
395 				printk("%s openwifi_rx_interrupt:%4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
396 					len, ht_flag, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
397 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
398 					sc, fcs_ok, target_buf_idx_old, signal);
399 		}
400 
401 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
402 		if (content_ok) {
403 			skb = dev_alloc_skb(len);
404 			if (skb) {
405 				skb_put_data(skb,pdata_tmp+16,len);
406 
407 				rx_status.antenna = 0;
408 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
409 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
410 				rx_status.signal = signal;
411 				rx_status.freq = dev->conf.chandef.chan->center_freq;
412 				rx_status.band = dev->conf.chandef.chan->band;
413 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
414 				rx_status.flag |= RX_FLAG_MACTIME_START;
415 				if (!fcs_ok)
416 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
417 				if (rate_idx <= 15)
418 					rx_status.encoding = RX_ENC_LEGACY;
419 				else
420 					rx_status.encoding = RX_ENC_HT;
421 				rx_status.bw = RATE_INFO_BW_20;
422 				if (short_gi)
423 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
424 
425 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
426 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
427 			} else
428 				printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
429 		}
430 		loop_count++;
431 	}
432 
433 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) )
434 		printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
435 
436 // openwifi_rx_interrupt_out:
437 	spin_unlock(&priv->lock);
438 	return IRQ_HANDLED;
439 }
440 
441 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
442 {
443 	struct ieee80211_hw *dev = dev_id;
444 	struct openwifi_priv *priv = dev->priv;
445 	struct openwifi_ring *ring;
446 	struct sk_buff *skb;
447 	struct ieee80211_tx_info *info;
448 	u32 reg_val, hw_queue_len, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0;//, i;
449 	u8 tx_result_report;
450 	// u16 prio_rd_idx_store[64]={0};
451 
452 	spin_lock(&priv->lock);
453 
454 	while(1) { // loop all packets that have been sent by FPGA
455 		reg_val = tx_intf_api->TX_INTF_REG_PKT_INFO_read();
456 		if (reg_val!=0xFFFFFFFF) {
457 			prio = ((0x7FFFF & reg_val)>>(5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
458 			cw = ((0xF0000000 & reg_val) >> 28);
459 			num_slot_random = ((0xFF80000 &reg_val)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
460 			if(cw > 10) {
461 				cw = 10 ;
462 				num_slot_random += 512 ;
463 			}
464 
465 			ring = &(priv->tx_ring[prio]);
466 			ring->bd_rd_idx = ((reg_val>>5)&MAX_PHY_TX_SN);
467 			skb = ring->bds[ring->bd_rd_idx].skb_linked;
468 
469 			dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
470 					skb->len, DMA_MEM_TO_DEV);
471 
472 			if ( ring->stop_flag == 1) {
473 				// Wake up Linux queue if FPGA and driver ring have room
474 				queue_idx = ((reg_val>>(5+NUM_BIT_MAX_PHY_TX_SN))&(MAX_NUM_HW_QUEUE-1));
475 				dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
476 				hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
477 
478 				// printk("%s openwifi_tx_interrupt: WARNING loop %d prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d call %d\n", sdr_compatible_str,
479 				// loop_count, prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, priv->call_counter);
480 
481 				if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) {
482 					// printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter);
483 					printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str,
484 					prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx);
485 					ieee80211_wake_queue(dev, prio);
486 					ring->stop_flag = 0;
487 				}
488 			}
489 
490 			if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) ) {
491 				printk("%s openwifi_tx_interrupt: WARNING %08x %08x %08x %08x\n", sdr_compatible_str, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
492 				continue;
493 			}
494 
495 			skb_pull(skb, LEN_PHY_HEADER);
496 			//skb_trim(skb, num_byte_pad_skb);
497 			info = IEEE80211_SKB_CB(skb);
498 			ieee80211_tx_info_clear_status(info);
499 
500 			tx_result_report = (reg_val&0x1F);
501 			if ( !(info->flags & IEEE80211_TX_CTL_NO_ACK) ) {
502 				if ((tx_result_report&0x10)==0)
503 					info->flags |= IEEE80211_TX_STAT_ACK;
504 
505 				// printk("%s openwifi_tx_interrupt: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
506 				// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
507 				// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
508 				// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
509 				// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
510 			}
511 
512 			info->status.rates[0].count = (tx_result_report&0xF) + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
513 			info->status.rates[1].idx = -1;
514 			info->status.rates[2].idx = -1;
515 			info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
516 
517 			if ( (tx_result_report&0x10) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
518 				printk("%s openwifi_tx_interrupt: WARNING tx_result %02x prio%d wr%d rd%d\n", sdr_compatible_str, tx_result_report, prio, ring->bd_wr_idx, ring->bd_rd_idx);
519 			if ( ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) )
520 				printk("%s openwifi_tx_interrupt: tx_result %02x prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, tx_result_report, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random,cw);
521 
522 			ieee80211_tx_status_irqsafe(dev, skb);
523 
524 			loop_count++;
525 
526 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
527 
528 		} else
529 			break;
530 	}
531 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
532 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
533 
534 	spin_unlock(&priv->lock);
535 	return IRQ_HANDLED;
536 }
537 
538 u32 gen_parity(u32 v){
539 	v ^= v >> 1;
540 	v ^= v >> 2;
541 	v = (v & 0x11111111U) * 0x11111111U;
542 	return (v >> 28) & 1;
543 }
544 
545 u8 gen_ht_sig_crc(u64 m)
546 {
547 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, ht_sig_crc;
548 
549 	for (i = 0; i < 34; i++)
550 	{
551 		temp = c[7] ^ ((m >> i) & 0x01);
552 
553 		c[7] = c[6];
554 		c[6] = c[5];
555 		c[5] = c[4];
556 		c[4] = c[3];
557 		c[3] = c[2];
558 		c[2] = c[1] ^ temp;
559 		c[1] = c[0] ^ temp;
560 		c[0] = temp;
561 	}
562 	ht_sig_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
563 
564 	return ht_sig_crc;
565 }
566 
567 u32 calc_phy_header(u8 rate_hw_value, bool use_ht_rate, bool use_short_gi, u32 len, u8 *bytes){
568 	//u32 signal_word = 0 ;
569 	u8  SIG_RATE = 0, HT_SIG_RATE;
570 	u8	len_2to0, len_10to3, len_msb,b0,b1,b2, header_parity ;
571 	u32 l_len, ht_len, ht_sig1, ht_sig2;
572 
573 	// printk("rate_hw_value=%u\tuse_ht_rate=%u\tuse_short_gi=%u\tlen=%u\n", rate_hw_value, use_ht_rate, use_short_gi, len);
574 
575 	// HT-mixed mode ht signal
576 
577 	if(use_ht_rate)
578 	{
579 		SIG_RATE = wifi_mcs_table_11b_force_up[4];
580 		HT_SIG_RATE = rate_hw_value;
581 		l_len  = 24 * len / wifi_n_dbps_ht_table[rate_hw_value];
582 		ht_len = len;
583 	}
584 	else
585 	{
586 		// rate_hw_value = (rate_hw_value<=4?0:(rate_hw_value-4));
587 		// SIG_RATE = wifi_mcs_table_phy_tx[rate_hw_value];
588 		SIG_RATE = wifi_mcs_table_11b_force_up[rate_hw_value];
589 		l_len = len;
590 	}
591 
592 	len_2to0 = l_len & 0x07 ;
593 	len_10to3 = (l_len >> 3 ) & 0xFF ;
594 	len_msb = (l_len >> 11) & 0x01 ;
595 
596 	b0=SIG_RATE | (len_2to0 << 5) ;
597 	b1 = len_10to3 ;
598 	header_parity = gen_parity((len_msb << 16)| (b1<<8) | b0) ;
599 	b2 = ( len_msb | (header_parity << 1) ) ;
600 
601 	memset(bytes,0,16);
602 	bytes[0] = b0 ;
603 	bytes[1] = b1 ;
604     bytes[2] = b2;
605 
606 	// HT-mixed mode signal
607 	if(use_ht_rate)
608 	{
609 		ht_sig1 = (HT_SIG_RATE & 0x7F) | ((ht_len << 8) & 0xFFFF00);
610 		ht_sig2 = 0x04 | (use_short_gi << 7);
611 		ht_sig2 = ht_sig2 | (gen_ht_sig_crc(ht_sig1 | ht_sig2 << 24) << 10);
612 
613 	    bytes[3]  = 1;
614 	    bytes[8]  = (ht_sig1 & 0xFF);
615 	    bytes[9]  = (ht_sig1 >> 8)  & 0xFF;
616 	    bytes[10] = (ht_sig1 >> 16) & 0xFF;
617 	    bytes[11] = (ht_sig2 & 0xFF);
618 	    bytes[12] = (ht_sig2 >> 8)  & 0xFF;
619 	    bytes[13] = (ht_sig2 >> 16) & 0xFF;
620 
621 		return(HT_SIG_RATE);
622 	}
623 	else
624 	{
625 		//signal_word = b0+(b1<<8)+(b2<<16) ;
626 		//return signal_word;
627 		return(SIG_RATE);
628 	}
629 }
630 
631 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
632 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
633 {
634 	return container_of(led_cdev, struct gpio_led_data, cdev);
635 }
636 
637 static void openwifi_tx(struct ieee80211_hw *dev,
638 		       struct ieee80211_tx_control *control,
639 		       struct sk_buff *skb)
640 {
641 	struct openwifi_priv *priv = dev->priv;
642 	unsigned long flags;
643 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
644 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
645 	struct openwifi_ring *ring;
646 	dma_addr_t dma_mapping_addr;
647 	unsigned int prio, i;
648 	u32 num_dma_symbol, len_mac_pdu, num_dma_byte, len_phy_packet, num_byte_pad;
649 	u32 rate_signal_value,rate_hw_value,ack_flag;
650 	u32 pkt_need_ack, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, dma_reg, cts_reg;//, openofdm_state_history;
651 	u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value = 0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration;
652 	u8 fc_flag,fc_type,fc_subtype,retry_limit_raw,*dma_buf,retry_limit_hw_value,rc_flags;
653 	bool use_rts_cts, use_cts_protect, use_ht_rate=false, use_short_gi, addr_flag, cts_use_traffic_rate=false, force_use_cts_protect=false;
654 	__le16 frame_control,duration_id;
655 	u32 dma_fifo_no_room_flag, hw_queue_len;
656 	enum dma_status status;
657 	// static bool led_status=0;
658 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
659 
660 	// if ( (priv->phy_tx_sn&7) ==0 ) {
661 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
662 	// 	if (openofdm_state_history!=openofdm_state_history_old){
663 	// 		led_status = (~led_status);
664 	// 		openofdm_state_history_old = openofdm_state_history;
665 	// 		gpiod_set_value(led_dat->gpiod, led_status);
666 	// 	}
667 	// }
668 
669 	if (test_mode==1){
670 		printk("%s openwifi_tx: WARNING test_mode==1\n", sdr_compatible_str);
671 		goto openwifi_tx_early_out;
672 	}
673 
674 	if (skb->data_len>0) {// more data are not in linear data area skb->data
675 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
676 		goto openwifi_tx_early_out;
677 	}
678 
679 	len_mac_pdu = skb->len;
680 	len_phy_packet = len_mac_pdu + LEN_PHY_HEADER;
681 	num_dma_symbol = (len_phy_packet>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_phy_packet&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
682 
683 	// get Linux priority/queue setting info and target mac address
684 	prio = skb_get_queue_mapping(skb);
685 	addr1_low32  = *((u32*)(hdr->addr1+2));
686 	ring = &(priv->tx_ring[prio]);
687 
688 	// -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" -----------
689 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
690 		queue_idx = prio;
691 	} else {// customized prio to queue_idx mapping
692 		//if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only
693 		// check current packet belonging to which slice/hw-queue
694 			for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
695 				if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
696 					break;
697 				}
698 			}
699 		//}
700 		queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. becuase the queue 2 is the longest.
701 	}
702 	// -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------
703 
704 	// check whether the packet is bigger than DMA buffer size
705 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
706 	if (num_dma_byte > TX_BD_BUF_SIZE) {
707 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING num_dma_byte > TX_BD_BUF_SIZE\n");
708 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
709 		goto openwifi_tx_early_out;
710 	}
711 	num_byte_pad = num_dma_byte-len_phy_packet;
712 
713 	// get other info from packet header
714 	addr1_high16 = *((u16*)(hdr->addr1));
715 	if (len_mac_pdu>=20) {
716 		addr2_low32  = *((u32*)(hdr->addr2+2));
717 		addr2_high16 = *((u16*)(hdr->addr2));
718 	}
719 	if (len_mac_pdu>=26) {
720 		addr3_low32  = *((u32*)(hdr->addr3+2));
721 		addr3_high16 = *((u16*)(hdr->addr3));
722 	}
723 
724 	duration_id = hdr->duration_id;
725 	frame_control=hdr->frame_control;
726 	ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK);
727 	fc_type = ((frame_control)>>2)&3;
728 	fc_subtype = ((frame_control)>>4)&0xf;
729 	fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) );
730 	//if it is broadcasting or multicasting addr
731 	addr_flag = ( (addr1_low32==0 && addr1_high16==0) ||
732 	              (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) ||
733 				  (addr1_high16==0x3333) ||
734 				  (addr1_high16==0x0001 && hdr->addr1[2]==0x5E)  );
735 	if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame
736 		pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent
737 	} else {
738 		pkt_need_ack = 0;
739 	}
740 
741 	// get Linux rate (MCS) setting
742 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
743 	//rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
744 	if (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0 && fc_type==2 && (!addr_flag)) //rate override command
745 		rate_hw_value = priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE];
746 
747 	retry_limit_raw = info->control.rates[0].count;
748 
749 	rc_flags = info->control.rates[0].flags;
750 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
751 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
752 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
753 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
754 
755 	if (use_rts_cts)
756 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
757 
758 	if (use_cts_protect) {
759 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
760 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mac_pdu,info));
761 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
762 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
763 		sifs = (priv->actual_rx_lo<2500?10:16);
764 		if (pkt_need_ack)
765 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
766 		traffic_pkt_duration = 20 + 4*(((22+len_mac_pdu*8)/wifi_n_dbps_table[rate_hw_value])+1);
767 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
768 	}
769 
770 // this is 11b stuff
771 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
772 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
773 
774 	if (len_mac_pdu>=28) {
775 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
776 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
777 				priv->seqno += 0x10;
778 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
779 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
780 		}
781 		sc = hdr->seq_ctrl;
782 	}
783 
784 	if ( (!addr_flag) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) )
785 		printk("%s openwifi_tx: %4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
786 			len_mac_pdu, (use_ht_rate == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
787 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
788 			sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx,
789 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
790 			ring->bd_wr_idx,ring->bd_rd_idx);
791 
792 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
793 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
794 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
795 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
796 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
797 
798 	// -----------end of preprocess some info from header and skb----------------
799 
800 	// /* HW will perform RTS-CTS when only RTS flags is set.
801 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
802 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
803 	//  */
804 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
805 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
806 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
807 	// 					len_mac_pdu, info);
808 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
809 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
810 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
811 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
812 	// 					len_mac_pdu, info);
813 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
814 	// }
815 
816 	// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
817 	if (skb_headroom(skb)<LEN_PHY_HEADER) {
818 		struct sk_buff *skb_new; // in case original skb headroom is not enough to host phy header needed by FPGA IP core
819 		printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_PHY_HEADER\n", sdr_compatible_str, ring->bd_wr_idx);
820 		if ((skb_new = skb_realloc_headroom(skb, LEN_PHY_HEADER)) == NULL) {
821 			printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
822 			goto openwifi_tx_early_out;
823 		}
824 		if (skb->sk != NULL)
825 			skb_set_owner_w(skb_new, skb->sk);
826 		dev_kfree_skb(skb);
827 		skb = skb_new;
828 	}
829 
830 	skb_push( skb, LEN_PHY_HEADER );
831 	rate_signal_value = calc_phy_header(rate_hw_value, use_ht_rate, use_short_gi, len_mac_pdu+LEN_PHY_CRC, skb->data); //fill the phy header
832 
833 
834 	//make sure dma length is integer times of DDC_NUM_BYTE_PER_DMA_SYMBOL
835 	if (skb_tailroom(skb)<num_byte_pad) {
836 		printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
837 		// skb_pull(skb, LEN_PHY_HEADER);
838 		goto openwifi_tx_early_out;
839 	}
840 	skb_put( skb, num_byte_pad );
841 
842 	retry_limit_hw_value = (retry_limit_raw - 1)&0xF;
843 	dma_buf = skb->data;
844 
845 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
846 	cts_reg = (((use_cts_protect|force_use_cts_protect)<<31)|(cts_use_traffic_rate<<30)|(cts_duration<<8)|(cts_rate_signal_value<<4)|rate_signal_value);
847 	dma_reg = ( (( ((prio<<(NUM_BIT_MAX_NUM_HW_QUEUE+NUM_BIT_MAX_PHY_TX_SN))|(ring->bd_wr_idx<<NUM_BIT_MAX_NUM_HW_QUEUE)|queue_idx) )<<18)|(retry_limit_hw_value<<14)|(pkt_need_ack<<13)|num_dma_symbol );
848 
849 	/* We must be sure that tx_flags is written last because the HW
850 	 * looks at it to check if the rest of data is valid or not
851 	 */
852 	//wmb();
853 	// entry->flags = cpu_to_le32(tx_flags);
854 	/* We must be sure this has been written before followings HW
855 	 * register write, because this write will made the HW attempts
856 	 * to DMA the just-written data
857 	 */
858 	//wmb();
859 
860 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
861 
862 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
863 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
864 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
865 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD)  || ring->stop_flag==1 ) {
866 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
867 		printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str,
868 		prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
869 		ring->stop_flag = 1;
870 		goto openwifi_tx_early_out_after_lock;
871 	}
872 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
873 
874 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
875 	if (status!=DMA_COMPLETE) {
876 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
877 		goto openwifi_tx_early_out_after_lock;
878 	}
879 
880 	if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) ) {
881 		printk("%s openwifi_tx: WARNING 1 %d %08x %08x %08x %08x\n", sdr_compatible_str, num_byte_pad, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
882 		goto openwifi_tx_early_out_after_lock;
883 	}
884 
885 //-------------------------fire skb DMA to hardware----------------------------------
886 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
887 				 num_dma_byte, DMA_MEM_TO_DEV);
888 
889 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
890 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
891 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
892 		goto openwifi_tx_early_out_after_lock;
893 	}
894 
895 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
896 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
897 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
898 
899 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
900 	tx_intf_api->TX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(dma_reg);
901 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
902 	if (!(priv->txd)) {
903 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
904 		goto openwifi_tx_after_dma_mapping;
905 	}
906 
907 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
908 
909 	if (dma_submit_error(priv->tx_cookie)) {
910 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
911 		goto openwifi_tx_after_dma_mapping;
912 	}
913 
914 	// seems everything ok. let's mark this pkt in bd descriptor ring
915 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
916 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
917 
918 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
919 
920 	dma_async_issue_pending(priv->tx_chan);
921 
922 	if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) )
923 		printk("%s openwifi_tx: WARNING 2 %08x %08x %08x %08x\n", sdr_compatible_str, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
924 
925 	spin_unlock_irqrestore(&priv->lock, flags);
926 
927 	return;
928 
929 openwifi_tx_after_dma_mapping:
930 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
931 
932 openwifi_tx_early_out_after_lock:
933 	// skb_pull(skb, LEN_PHY_HEADER);
934 	dev_kfree_skb(skb);
935 	spin_unlock_irqrestore(&priv->lock, flags);
936 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
937 	return;
938 
939 openwifi_tx_early_out:
940 	dev_kfree_skb(skb);
941 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
942 }
943 
944 static int openwifi_start(struct ieee80211_hw *dev)
945 {
946 	struct openwifi_priv *priv = dev->priv;
947 	int ret, i, rssi_half_db_offset, agc_gain_delay;//rssi_half_db_th,
948 	u32 reg;
949 
950 	for (i=0; i<MAX_NUM_VIF; i++) {
951 		priv->vif[i] = NULL;
952 	}
953 
954 	memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
955 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
956 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
957 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
958 
959 	//turn on radio
960 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
961 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
962 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
963 	} else {
964 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
965 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
966 	}
967 	if (reg == AD9361_RADIO_ON_TX_ATT) {
968 		priv->rfkill_off = 1;// 0 off, 1 on
969 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
970 	}
971 	else
972 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
973 
974 	if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
975 		priv->ctrl_out.index=0x16;
976 	else
977 		priv->ctrl_out.index=0x17;
978 
979 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
980 	if (ret < 0) {
981 		printk("%s openwifi_start: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, ret);
982 	} else {
983 		printk("%s openwifi_start: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
984 	}
985 
986 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
987 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
988 
989 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
990 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
991 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
992 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
993 	xpu_api->hw_init(priv->xpu_cfg);
994 
995 	agc_gain_delay = 50; //samples
996 	rssi_half_db_offset = 150; // to be consistent
997 	xpu_api->XPU_REG_RSSI_DB_CFG_write(0x80000000|((rssi_half_db_offset<<16)|agc_gain_delay) );
998 	xpu_api->XPU_REG_RSSI_DB_CFG_write((~0x80000000)&((rssi_half_db_offset<<16)|agc_gain_delay) );
999 
1000 	openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write(0);
1001 	// rssi_half_db_th = 87<<1; // -62dBm // will settup in runtime in _rf_set_channel
1002 	// xpu_api->XPU_REG_LBT_TH_write(rssi_half_db_th); // set IQ rssi th step .5dB to xxx and enable it
1003 	reg=xpu_api->XPU_REG_LBT_TH_read();
1004 	xpu_api->XPU_REG_LBT_TH_write((reg & 0xFF00FFFF) | (75 << 16) ); // bit 23:16 of LBT TH reg is set to control the duration to force ch_idle after decoding a packet due to imperfection of agc and signals
1005 	// xpu_api->XPU_REG_CSMA_CFG_write(3); // cw_min -- already set in xpu.c
1006 
1007 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((40)<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz (Attention, current tx core has around 1.19us starting delay that makes the ack fall behind 10us SIFS in 2.4GHz! Need to improve TX in 2.4GHz!)
1008 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51)<<16)|0 );//now our tx send out I/Q immediately
1009 	xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51+23)<<16)|(0+23) );//we have more time when we use FIR in AD9361
1010 
1011 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP0_write( (1<<31) | (((45+2+2)*10 + 15)<<16) | 10 );//2.4GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1012 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP1_write( (1<<31) | (((51+2+2)*10 + 15)<<16) | 10 );//5GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1013 
1014 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write( ((16*10)<<16)|(10*10) );//high 16bit 5GHz; low 16 bit 2.4GHz. counter speed 10MHz is assumed
1015 
1016 	// //xpu_api->XPU_REG_BB_RF_DELAY_write(51); // fine tuned value at 0.005us. old: dac-->ant port: 0.6us, 57 taps fir at 40MHz: 1.425us; round trip: 2*(0.6+1.425)=4.05us; 4.05*10=41
1017 	// xpu_api->XPU_REG_BB_RF_DELAY_write(47);//add .5us for slightly longer fir -- already in xpu.c
1018 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1019 
1020 	// setup time schedule of 4 slices
1021 	// slice 0
1022 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write(50000-1); // total 50ms
1023 	xpu_api->XPU_REG_SLICE_COUNT_START_write(0); //start 0ms
1024 	xpu_api->XPU_REG_SLICE_COUNT_END_write(50000-1); //end 50ms
1025 
1026 	// slice 1
1027 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((1<<20)|(50000-1)); // total 50ms
1028 	xpu_api->XPU_REG_SLICE_COUNT_START_write((1<<20)|(0)); //start 0ms
1029 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(20000-1)); //end 20ms
1030 	xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(50000-1)); //end 20ms
1031 
1032 	// slice 2
1033 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((2<<20)|(50000-1)); // total 50ms
1034 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(20000)); //start 20ms
1035 	xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(0)); //start 20ms
1036 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(40000-1)); //end 20ms
1037 	xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(50000-1)); //end 20ms
1038 
1039 	// slice 3
1040 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((3<<20)|(50000-1)); // total 50ms
1041 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(40000)); //start 40ms
1042 	xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(0)); //start 40ms
1043 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1044 	xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1045 
1046 	// all slice sync rest
1047 	xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1048 	xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1049 
1050 	//xpu_api->XPU_REG_MAC_ADDR_HIGH_write( (*( (u16*)(priv->mac_addr + 4) )) );
1051 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1052 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1053 
1054 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1055 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1056 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1057 
1058 	if (test_mode==1) {
1059 		printk("%s openwifi_start: test_mode==1\n",sdr_compatible_str);
1060 		goto normal_out;
1061 	}
1062 
1063 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1064 	if (IS_ERR(priv->rx_chan)) {
1065 		ret = PTR_ERR(priv->rx_chan);
1066 		pr_err("%s openwifi_start: No Rx channel %d\n",sdr_compatible_str,ret);
1067 		goto err_dma;
1068 	}
1069 
1070 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1071 	if (IS_ERR(priv->tx_chan)) {
1072 		ret = PTR_ERR(priv->tx_chan);
1073 		pr_err("%s openwifi_start: No Tx channel %d\n",sdr_compatible_str,ret);
1074 		goto err_dma;
1075 	}
1076 	printk("%s openwifi_start: DMA channel setup successfully.\n",sdr_compatible_str);
1077 
1078 	ret = openwifi_init_rx_ring(priv);
1079 	if (ret) {
1080 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1081 		goto err_free_rings;
1082 	}
1083 
1084 	priv->seqno=0;
1085 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1086 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1087 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1088 			goto err_free_rings;
1089 		}
1090 	}
1091 
1092 	if ( (ret = rx_dma_setup(dev)) ) {
1093 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1094 		goto err_free_rings;
1095 	}
1096 
1097 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1098 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1099 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1100 	if (ret) {
1101 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1102 		goto err_free_rings;
1103 	} else {
1104 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1105 	}
1106 
1107 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1108 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1109 			IRQF_SHARED, "sdr,tx_itrpt1", dev);
1110 	if (ret) {
1111 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1112 		goto err_free_rings;
1113 	} else {
1114 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1115 	}
1116 
1117 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1118 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1119 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1120 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1121 
1122 	//ieee80211_wake_queue(dev, 0);
1123 
1124 normal_out:
1125 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1126 	return 0;
1127 
1128 err_free_rings:
1129 	openwifi_free_rx_ring(priv);
1130 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1131 		openwifi_free_tx_ring(priv, i);
1132 
1133 err_dma:
1134 	ret = -1;
1135 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1136 	return ret;
1137 }
1138 
1139 static void openwifi_stop(struct ieee80211_hw *dev)
1140 {
1141 	struct openwifi_priv *priv = dev->priv;
1142 	u32 reg, reg1;
1143 	int i;
1144 
1145 	if (test_mode==1){
1146 		pr_info("%s openwifi_stop: test_mode==1\n", sdr_compatible_str);
1147 		goto normal_out;
1148 	}
1149 
1150 	//turn off radio
1151 	#if 1
1152 	ad9361_tx_mute(priv->ad9361_phy, 1);
1153 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1154 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1155 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1156 		priv->rfkill_off = 0;// 0 off, 1 on
1157 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1158 	}
1159 	else
1160 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1161 	#endif
1162 
1163 	//ieee80211_stop_queue(dev, 0);
1164 
1165 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1166 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1167 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1168 
1169 	for (i=0; i<MAX_NUM_VIF; i++) {
1170 		priv->vif[i] = NULL;
1171 	}
1172 
1173 	openwifi_free_rx_ring(priv);
1174 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1175 		openwifi_free_tx_ring(priv, i);
1176 
1177 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1178 	dmaengine_terminate_all(priv->rx_chan);
1179 	dma_release_channel(priv->rx_chan);
1180 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1181 	dmaengine_terminate_all(priv->tx_chan);
1182 	dma_release_channel(priv->tx_chan);
1183 
1184 	//priv->rf->stop(dev);
1185 
1186 	free_irq(priv->irq_rx, dev);
1187 	free_irq(priv->irq_tx, dev);
1188 
1189 normal_out:
1190 	printk("%s openwifi_stop\n", sdr_compatible_str);
1191 }
1192 
1193 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1194 			   struct ieee80211_vif *vif)
1195 {
1196 	u32 tsft_low, tsft_high;
1197 
1198 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1199 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1200 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1201 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1202 }
1203 
1204 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1205 {
1206 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1207 	u32 tsft_low  = (tsf&0xffffffff);
1208 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1209 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1210 }
1211 
1212 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1213 {
1214 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1215 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1216 }
1217 
1218 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1219 {
1220 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1221 	return(0);
1222 }
1223 
1224 static void openwifi_beacon_work(struct work_struct *work)
1225 {
1226 	struct openwifi_vif *vif_priv =
1227 		container_of(work, struct openwifi_vif, beacon_work.work);
1228 	struct ieee80211_vif *vif =
1229 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1230 	struct ieee80211_hw *dev = vif_priv->dev;
1231 	struct ieee80211_mgmt *mgmt;
1232 	struct sk_buff *skb;
1233 
1234 	/* don't overflow the tx ring */
1235 	if (ieee80211_queue_stopped(dev, 0))
1236 		goto resched;
1237 
1238 	/* grab a fresh beacon */
1239 	skb = ieee80211_beacon_get(dev, vif);
1240 	if (!skb)
1241 		goto resched;
1242 
1243 	/*
1244 	 * update beacon timestamp w/ TSF value
1245 	 * TODO: make hardware update beacon timestamp
1246 	 */
1247 	mgmt = (struct ieee80211_mgmt *)skb->data;
1248 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1249 
1250 	/* TODO: use actual beacon queue */
1251 	skb_set_queue_mapping(skb, 0);
1252 	openwifi_tx(dev, NULL, skb);
1253 
1254 resched:
1255 	/*
1256 	 * schedule next beacon
1257 	 * TODO: use hardware support for beacon timing
1258 	 */
1259 	schedule_delayed_work(&vif_priv->beacon_work,
1260 			usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1261 }
1262 
1263 static int openwifi_add_interface(struct ieee80211_hw *dev,
1264 				 struct ieee80211_vif *vif)
1265 {
1266 	int i;
1267 	struct openwifi_priv *priv = dev->priv;
1268 	struct openwifi_vif *vif_priv;
1269 
1270 	switch (vif->type) {
1271 	case NL80211_IFTYPE_AP:
1272 	case NL80211_IFTYPE_STATION:
1273 	case NL80211_IFTYPE_ADHOC:
1274 	case NL80211_IFTYPE_MONITOR:
1275 	case NL80211_IFTYPE_MESH_POINT:
1276 		break;
1277 	default:
1278 		return -EOPNOTSUPP;
1279 	}
1280 	// let's support more than 1 interface
1281 	for (i=0; i<MAX_NUM_VIF; i++) {
1282 		if (priv->vif[i] == NULL)
1283 			break;
1284 	}
1285 
1286 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1287 
1288 	if (i==MAX_NUM_VIF)
1289 		return -EBUSY;
1290 
1291 	priv->vif[i] = vif;
1292 
1293 	/* Initialize driver private area */
1294 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1295 	vif_priv->idx = i;
1296 
1297 	vif_priv->dev = dev;
1298 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1299 	vif_priv->enable_beacon = false;
1300 
1301 	printk("%s openwifi_add_interface end with vif idx %d\n", sdr_compatible_str,vif_priv->idx);
1302 
1303 	return 0;
1304 }
1305 
1306 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1307 				     struct ieee80211_vif *vif)
1308 {
1309 	struct openwifi_vif *vif_priv;
1310 	struct openwifi_priv *priv = dev->priv;
1311 
1312 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1313 	priv->vif[vif_priv->idx] = NULL;
1314 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1315 }
1316 
1317 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1318 {
1319 	struct openwifi_priv *priv = dev->priv;
1320 	struct ieee80211_conf *conf = &dev->conf;
1321 
1322 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
1323 		priv->rf->set_chan(dev, conf);
1324 	else
1325 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1326 
1327 	return 0;
1328 }
1329 
1330 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1331 				     struct ieee80211_vif *vif,
1332 				     struct ieee80211_bss_conf *info,
1333 				     u32 changed)
1334 {
1335 	struct openwifi_priv *priv = dev->priv;
1336 	struct openwifi_vif *vif_priv;
1337 	u32 bssid_low, bssid_high;
1338 
1339 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1340 
1341 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1342 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1343 	if (changed & BSS_CHANGED_BSSID) {
1344 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1345 		// write new bssid to our HW, and do not change bssid filter
1346 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1347 		bssid_low = ( *( (u32*)(info->bssid) ) );
1348 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1349 
1350 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1351 		//bssid_high = (bssid_high|bssid_filter_high);
1352 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1353 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1354 	}
1355 
1356 	if (changed & BSS_CHANGED_BEACON_INT) {
1357 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1358 	}
1359 
1360 	if (changed & BSS_CHANGED_TXPOWER)
1361 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1362 
1363 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1364 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1365 
1366 	if (changed & BSS_CHANGED_BASIC_RATES)
1367 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1368 
1369 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1370 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1371 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1372 		if (info->use_short_slot && priv->use_short_slot==false) {
1373 			priv->use_short_slot=true;
1374 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1375 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1376 			priv->use_short_slot=false;
1377 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1378 		}
1379 	}
1380 
1381 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1382 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1383 		vif_priv->enable_beacon = info->enable_beacon;
1384 	}
1385 
1386 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1387 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1388 		if (vif_priv->enable_beacon)
1389 			schedule_work(&vif_priv->beacon_work.work);
1390 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1391 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1392 	}
1393 }
1394 // helper function
1395 u32 log2val(u32 val){
1396 	u32 ret_val = 0 ;
1397 	while(val>1){
1398 		val = val >> 1 ;
1399 		ret_val ++ ;
1400 	}
1401 	return ret_val ;
1402 }
1403 
1404 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
1405 	      const struct ieee80211_tx_queue_params *params)
1406 {
1407 	printk("%s openwifi_conf_tx: WARNING [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
1408 		  sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1409 	u32 reg19_val, reg8_val, cw_min_exp, cw_max_exp;
1410 	reg19_val=xpu_api->XPU_REG_CSMA_CFG_read();
1411 	reg8_val=xpu_api->XPU_REG_LBT_TH_read();
1412 	cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
1413 	cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
1414 	switch(queue){
1415 		case 0: reg19_val = (reg19_val & 0xFFFFFF00) | cw_min_exp | (cw_max_exp << 4); break ;
1416 		case 1: reg19_val = (reg19_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8); break ;
1417 		case 2: reg19_val = (reg19_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16); break ;
1418 		case 3: reg8_val = (reg8_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24); break ;
1419 		default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
1420 	}
1421 	reg19_val = reg19_val | 0x10000000 ; // enable dynamic contention window.
1422 	xpu_api->XPU_REG_LBT_TH_write(reg8_val);
1423 	xpu_api->XPU_REG_CSMA_CFG_write(reg19_val);
1424 	//printk("reg19 val target val %08x, reg8 target val %08x", reg19_val, reg8_val);
1425 	//reg19_val=xpu_api->XPU_REG_CSMA_CFG_read();
1426 	//reg8_val=xpu_api->XPU_REG_LBT_TH_read();
1427 	//printk("reg19 val read back %08x, reg8 read back %08x", reg19_val, reg8_val);
1428 	return(0);
1429 }
1430 
1431 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1432 				     struct netdev_hw_addr_list *mc_list)
1433 {
1434 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1435 	return netdev_hw_addr_list_count(mc_list);
1436 }
1437 
1438 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1439 				     unsigned int changed_flags,
1440 				     unsigned int *total_flags,
1441 				     u64 multicast)
1442 {
1443 	u32 filter_flag;
1444 
1445 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1446 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1447 
1448 	filter_flag = (*total_flags);
1449 
1450 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1451 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1452 
1453 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1454 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1455 		filter_flag = (filter_flag|MONITOR_ALL);
1456 	else
1457 		filter_flag = (filter_flag&(~MONITOR_ALL));
1458 
1459 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1460 		filter_flag = (filter_flag|MY_BEACON);
1461 
1462 	filter_flag = (filter_flag|FIF_PSPOLL);
1463 
1464 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
1465 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
1466 
1467 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
1468 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
1469 }
1470 
1471 static int openwifi_testmode_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void *data, int len)
1472 {
1473 	struct openwifi_priv *priv = hw->priv;
1474 	struct nlattr *tb[OPENWIFI_ATTR_MAX + 1];
1475 	struct sk_buff *skb;
1476 	int err;
1477 	u32 tmp=-1, reg_cat, reg_addr, reg_val, reg_addr_idx, tsft_high, tsft_low;
1478 
1479 	err = nla_parse(tb, OPENWIFI_ATTR_MAX, data, len, openwifi_testmode_policy, NULL);
1480 	if (err)
1481 		return err;
1482 
1483 	if (!tb[OPENWIFI_ATTR_CMD])
1484 		return -EINVAL;
1485 
1486 	switch (nla_get_u32(tb[OPENWIFI_ATTR_CMD])) {
1487 	case OPENWIFI_CMD_SET_GAP:
1488 		if (!tb[OPENWIFI_ATTR_GAP])
1489 			return -EINVAL;
1490 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_GAP]);
1491 		printk("%s openwifi radio inter frame gap set to %d usec\n", sdr_compatible_str, tmp);
1492 		xpu_api->XPU_REG_CSMA_CFG_write(tmp); // unit us
1493 		return 0;
1494 	case OPENWIFI_CMD_GET_GAP:
1495 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1496 		if (!skb)
1497 			return -ENOMEM;
1498 		tmp = xpu_api->XPU_REG_CSMA_CFG_read();
1499 		if (nla_put_u32(skb, OPENWIFI_ATTR_GAP, tmp))
1500 			goto nla_put_failure;
1501 		return cfg80211_testmode_reply(skb);
1502 	case OPENWIFI_CMD_SET_SLICE_IDX:
1503 		if (!tb[OPENWIFI_ATTR_SLICE_IDX])
1504 			return -EINVAL;
1505 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_IDX]);
1506 		printk("%s set openwifi slice_idx in hex: %08x\n", sdr_compatible_str, tmp);
1507 		if (tmp == MAX_NUM_HW_QUEUE) {
1508 			printk("%s set openwifi slice_idx reset all queue counter.\n", sdr_compatible_str);
1509 			xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1510 			xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1511 		} else {
1512 			priv->slice_idx = tmp;
1513 		}
1514 		return 0;
1515 	case OPENWIFI_CMD_GET_SLICE_IDX:
1516 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1517 		if (!skb)
1518 			return -ENOMEM;
1519 		tmp = priv->slice_idx;
1520 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_IDX, tmp))
1521 			goto nla_put_failure;
1522 		printk("%s get openwifi slice_idx in hex: %08x\n", sdr_compatible_str, tmp);
1523 		return cfg80211_testmode_reply(skb);
1524 	case OPENWIFI_CMD_SET_ADDR:
1525 		if (!tb[OPENWIFI_ATTR_ADDR])
1526 			return -EINVAL;
1527 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_ADDR]);
1528 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1529 			printk("%s set openwifi slice_target_mac_addr(low32) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1530 		} else {
1531 			printk("%s set openwifi slice_target_mac_addr(low32) in hex: %08x to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1532 			priv->dest_mac_addr_queue_map[priv->slice_idx] = reverse32(tmp);
1533 		}
1534 		return 0;
1535 	case OPENWIFI_CMD_GET_ADDR:
1536 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1537 		if (!skb)
1538 			return -ENOMEM;
1539 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1540 			tmp = -1;
1541 		} else {
1542 			tmp = reverse32(priv->dest_mac_addr_queue_map[priv->slice_idx]);
1543 		}
1544 		if (nla_put_u32(skb, OPENWIFI_ATTR_ADDR, tmp))
1545 			goto nla_put_failure;
1546 		printk("%s get openwifi slice_target_mac_addr(low32) in hex: %08x of slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1547 		return cfg80211_testmode_reply(skb);
1548 
1549 	case OPENWIFI_CMD_SET_SLICE_TOTAL:
1550 		if (!tb[OPENWIFI_ATTR_SLICE_TOTAL])
1551 			return -EINVAL;
1552 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL]);
1553 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1554 			printk("%s set SLICE_TOTAL(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1555 		} else {
1556 			printk("%s set SLICE_TOTAL(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1557 			xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((priv->slice_idx<<20)|tmp);
1558 		}
1559 		return 0;
1560 	case OPENWIFI_CMD_GET_SLICE_TOTAL:
1561 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1562 		if (!skb)
1563 			return -ENOMEM;
1564 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL_read());
1565 		printk("%s get SLICE_TOTAL(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1566 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL, tmp))
1567 			goto nla_put_failure;
1568 		return cfg80211_testmode_reply(skb);
1569 
1570 	case OPENWIFI_CMD_SET_SLICE_START:
1571 		if (!tb[OPENWIFI_ATTR_SLICE_START])
1572 			return -EINVAL;
1573 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START]);
1574 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1575 			printk("%s set SLICE_START(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1576 		} else {
1577 			printk("%s set SLICE_START(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1578 			xpu_api->XPU_REG_SLICE_COUNT_START_write((priv->slice_idx<<20)|tmp);
1579 		}
1580 		return 0;
1581 	case OPENWIFI_CMD_GET_SLICE_START:
1582 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1583 		if (!skb)
1584 			return -ENOMEM;
1585 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_START_read());
1586 		printk("%s get SLICE_START(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1587 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START, tmp))
1588 			goto nla_put_failure;
1589 		return cfg80211_testmode_reply(skb);
1590 
1591 	case OPENWIFI_CMD_SET_SLICE_END:
1592 		if (!tb[OPENWIFI_ATTR_SLICE_END])
1593 			return -EINVAL;
1594 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END]);
1595 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1596 			printk("%s set SLICE_END(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1597 		} else {
1598 			printk("%s set SLICE_END(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1599 			xpu_api->XPU_REG_SLICE_COUNT_END_write((priv->slice_idx<<20)|tmp);
1600 		}
1601 		return 0;
1602 	case OPENWIFI_CMD_GET_SLICE_END:
1603 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1604 		if (!skb)
1605 			return -ENOMEM;
1606 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_END_read());
1607 		printk("%s get SLICE_END(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1608 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END, tmp))
1609 			goto nla_put_failure;
1610 		return cfg80211_testmode_reply(skb);
1611 
1612 	// case OPENWIFI_CMD_SET_SLICE_TOTAL1:
1613 	// 	if (!tb[OPENWIFI_ATTR_SLICE_TOTAL1])
1614 	// 		return -EINVAL;
1615 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL1]);
1616 	// 	printk("%s set SLICE_TOTAL1(duration) to %d usec\n", sdr_compatible_str, tmp);
1617 	// 	// xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_write(tmp);
1618 	// 	return 0;
1619 	// case OPENWIFI_CMD_GET_SLICE_TOTAL1:
1620 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1621 	// 	if (!skb)
1622 	// 		return -ENOMEM;
1623 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_read());
1624 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL1, tmp))
1625 	// 		goto nla_put_failure;
1626 	// 	return cfg80211_testmode_reply(skb);
1627 
1628 	// case OPENWIFI_CMD_SET_SLICE_START1:
1629 	// 	if (!tb[OPENWIFI_ATTR_SLICE_START1])
1630 	// 		return -EINVAL;
1631 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START1]);
1632 	// 	printk("%s set SLICE_START1(duration) to %d usec\n", sdr_compatible_str, tmp);
1633 	// 	// xpu_api->XPU_REG_SLICE_COUNT_START1_write(tmp);
1634 	// 	return 0;
1635 	// case OPENWIFI_CMD_GET_SLICE_START1:
1636 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1637 	// 	if (!skb)
1638 	// 		return -ENOMEM;
1639 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_START1_read());
1640 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START1, tmp))
1641 	// 		goto nla_put_failure;
1642 	// 	return cfg80211_testmode_reply(skb);
1643 
1644 	// case OPENWIFI_CMD_SET_SLICE_END1:
1645 	// 	if (!tb[OPENWIFI_ATTR_SLICE_END1])
1646 	// 		return -EINVAL;
1647 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END1]);
1648 	// 	printk("%s set SLICE_END1(duration) to %d usec\n", sdr_compatible_str, tmp);
1649 	// 	// xpu_api->XPU_REG_SLICE_COUNT_END1_write(tmp);
1650 	// 	return 0;
1651 	// case OPENWIFI_CMD_GET_SLICE_END1:
1652 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1653 	// 	if (!skb)
1654 	// 		return -ENOMEM;
1655 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_END1_read());
1656 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END1, tmp))
1657 	// 		goto nla_put_failure;
1658 	// 	return cfg80211_testmode_reply(skb);
1659 
1660 	case OPENWIFI_CMD_SET_RSSI_TH:
1661 		if (!tb[OPENWIFI_ATTR_RSSI_TH])
1662 			return -EINVAL;
1663 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_RSSI_TH]);
1664 		printk("%s set RSSI_TH to %d\n", sdr_compatible_str, tmp);
1665 		tmp = (tmp | (xpu_api->XPU_REG_LBT_TH_read() & 0xFFFF0000));
1666 		xpu_api->XPU_REG_LBT_TH_write(tmp);
1667 		return 0;
1668 	case OPENWIFI_CMD_GET_RSSI_TH:
1669 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1670 		if (!skb)
1671 			return -ENOMEM;
1672 		tmp = xpu_api->XPU_REG_LBT_TH_read();
1673 		if (nla_put_u32(skb, OPENWIFI_ATTR_RSSI_TH, tmp))
1674 			goto nla_put_failure;
1675 		return cfg80211_testmode_reply(skb);
1676 
1677 	case OPENWIFI_CMD_SET_TSF:
1678 		printk("openwifi_set_tsf_1");
1679 		if ( (!tb[OPENWIFI_ATTR_HIGH_TSF]) || (!tb[OPENWIFI_ATTR_LOW_TSF]) )
1680 				return -EINVAL;
1681 		printk("openwifi_set_tsf_2");
1682 		tsft_high = nla_get_u32(tb[OPENWIFI_ATTR_HIGH_TSF]);
1683 		tsft_low  = nla_get_u32(tb[OPENWIFI_ATTR_LOW_TSF]);
1684 		xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1685 		printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1686 		return 0;
1687 
1688 	case REG_CMD_SET:
1689 		if ( (!tb[REG_ATTR_ADDR]) || (!tb[REG_ATTR_VAL]) )
1690 			return -EINVAL;
1691 		reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
1692 		reg_val  = nla_get_u32(tb[REG_ATTR_VAL]);
1693 		reg_cat = ((reg_addr>>16)&0xFFFF);
1694 		reg_addr = (reg_addr&0xFFFF);
1695 		reg_addr_idx = (reg_addr>>2);
1696 		printk("%s recv set cmd reg cat %d addr %08x val %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_val, reg_addr_idx);
1697 		if (reg_cat==1)
1698 			printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
1699 		else if (reg_cat==2)
1700 			rx_intf_api->reg_write(reg_addr,reg_val);
1701 		else if (reg_cat==3)
1702 			tx_intf_api->reg_write(reg_addr,reg_val);
1703 		else if (reg_cat==4)
1704 			openofdm_rx_api->reg_write(reg_addr,reg_val);
1705 		else if (reg_cat==5)
1706 			openofdm_tx_api->reg_write(reg_addr,reg_val);
1707 		else if (reg_cat==6)
1708 			xpu_api->reg_write(reg_addr,reg_val);
1709 		else if (reg_cat==7) {
1710 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1711 				priv->drv_rx_reg_val[reg_addr_idx]=reg_val;
1712 				if (reg_addr_idx==DRV_RX_REG_IDX_FREQ_BW_CFG) {
1713 					if (reg_val==0)
1714 						priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1715 					else
1716 						priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
1717 
1718 					priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1719 					//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1720 				}
1721 			} else
1722 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1723 		}
1724 		else if (reg_cat==8) {
1725 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1726 				priv->drv_tx_reg_val[reg_addr_idx]=reg_val;
1727 				if (reg_addr_idx==DRV_TX_REG_IDX_FREQ_BW_CFG) {
1728 					if (reg_val==0) {
1729 						priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
1730 						ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true);
1731 					} else {
1732 						priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1;
1733 						ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true);
1734 					}
1735 
1736 					//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1737 					priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1738 				}
1739 			} else
1740 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1741 		}
1742 		else if (reg_cat==9) {
1743 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG)
1744 				priv->drv_xpu_reg_val[reg_addr_idx]=reg_val;
1745 			else
1746 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1747 		}
1748 		else
1749 			printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
1750 
1751 		return 0;
1752 	case REG_CMD_GET:
1753 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1754 		if (!skb)
1755 			return -ENOMEM;
1756 		reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
1757 		reg_cat = ((reg_addr>>16)&0xFFFF);
1758 		reg_addr = (reg_addr&0xFFFF);
1759 		reg_addr_idx = (reg_addr>>2);
1760 		printk("%s recv get cmd reg cat %d addr %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_addr_idx);
1761 		if (reg_cat==1) {
1762 			printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
1763 			tmp = 0xFFFFFFFF;
1764 		}
1765 		else if (reg_cat==2)
1766 			tmp = rx_intf_api->reg_read(reg_addr);
1767 		else if (reg_cat==3)
1768 			tmp = tx_intf_api->reg_read(reg_addr);
1769 		else if (reg_cat==4)
1770 			tmp = openofdm_rx_api->reg_read(reg_addr);
1771 		else if (reg_cat==5)
1772 			tmp = openofdm_tx_api->reg_read(reg_addr);
1773 		else if (reg_cat==6)
1774 			tmp = xpu_api->reg_read(reg_addr);
1775 		else if (reg_cat==7) {
1776 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1777 				if (reg_addr_idx==DRV_RX_REG_IDX_FREQ_BW_CFG) {
1778 					priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1779 					//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1780 
1781 					if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
1782 						priv->drv_rx_reg_val[reg_addr_idx]=0;
1783 					else if	(priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT1)
1784 						priv->drv_rx_reg_val[reg_addr_idx]=1;
1785 				}
1786 				tmp = priv->drv_rx_reg_val[reg_addr_idx];
1787 			} else
1788 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1789 		}
1790 		else if (reg_cat==8) {
1791 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1792 				if (reg_addr_idx==DRV_TX_REG_IDX_FREQ_BW_CFG) {
1793 					//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1794 					priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1795 					if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)
1796 						priv->drv_tx_reg_val[reg_addr_idx]=0;
1797 					else if	(priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
1798 						priv->drv_tx_reg_val[reg_addr_idx]=1;
1799 				}
1800 				tmp = priv->drv_tx_reg_val[reg_addr_idx];
1801 			} else
1802 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1803 		}
1804 		else if (reg_cat==9) {
1805 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG)
1806 				tmp = priv->drv_xpu_reg_val[reg_addr_idx];
1807 			else
1808 				printk("%s reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1809 		}
1810 		else
1811 			printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
1812 
1813 		if (nla_put_u32(skb, REG_ATTR_VAL, tmp))
1814 			goto nla_put_failure;
1815 		return cfg80211_testmode_reply(skb);
1816 
1817 	default:
1818 		return -EOPNOTSUPP;
1819 	}
1820 
1821  nla_put_failure:
1822 	dev_kfree_skb(skb);
1823 	return -ENOBUFS;
1824 }
1825 
1826 static const struct ieee80211_ops openwifi_ops = {
1827 	.tx			       = openwifi_tx,
1828 	.start			   = openwifi_start,
1829 	.stop			   = openwifi_stop,
1830 	.add_interface	   = openwifi_add_interface,
1831 	.remove_interface  = openwifi_remove_interface,
1832 	.config			   = openwifi_config,
1833 	.bss_info_changed  = openwifi_bss_info_changed,
1834 	.conf_tx		   = openwifi_conf_tx,
1835 	.prepare_multicast = openwifi_prepare_multicast,
1836 	.configure_filter  = openwifi_configure_filter,
1837 	.rfkill_poll	   = openwifi_rfkill_poll,
1838 	.get_tsf		   = openwifi_get_tsf,
1839 	.set_tsf		   = openwifi_set_tsf,
1840 	.reset_tsf		   = openwifi_reset_tsf,
1841 	.set_rts_threshold = openwifi_set_rts_threshold,
1842 	.testmode_cmd	   = openwifi_testmode_cmd,
1843 };
1844 
1845 static const struct of_device_id openwifi_dev_of_ids[] = {
1846 	{ .compatible = "sdr,sdr", },
1847 	{}
1848 };
1849 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
1850 
1851 static int custom_match_spi_dev(struct device *dev, void *data)
1852 {
1853     const char *name = data;
1854 
1855 	bool ret = sysfs_streq(name, dev->of_node->name);
1856 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
1857 	return ret;
1858 }
1859 
1860 static int custom_match_platform_dev(struct device *dev, void *data)
1861 {
1862 	struct platform_device *plat_dev = to_platform_device(dev);
1863 	const char *name = data;
1864 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
1865 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
1866 
1867 	if (match_flag) {
1868 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
1869 	}
1870 	return(match_flag);
1871 }
1872 
1873 static int openwifi_dev_probe(struct platform_device *pdev)
1874 {
1875 	struct ieee80211_hw *dev;
1876 	struct openwifi_priv *priv;
1877 	int err=1, rand_val;
1878 	const char *chip_name, *fpga_model;
1879 	u32 reg;//, reg1;
1880 
1881 	struct device_node *np = pdev->dev.of_node;
1882 
1883 	struct device *tmp_dev;
1884 	struct platform_device *tmp_pdev;
1885 	struct iio_dev *tmp_indio_dev;
1886 	// struct gpio_leds_priv *tmp_led_priv;
1887 
1888 	printk("\n");
1889 
1890 	if (np) {
1891 		const struct of_device_id *match;
1892 
1893 		match = of_match_node(openwifi_dev_of_ids, np);
1894 		if (match) {
1895 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
1896 			err = 0;
1897 		}
1898 	}
1899 
1900 	if (err)
1901 		return err;
1902 
1903 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
1904 	if (!dev) {
1905 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
1906 		err = -ENOMEM;
1907 		goto err_free_dev;
1908 	}
1909 
1910 	priv = dev->priv;
1911 	priv->pdev = pdev;
1912 
1913 	err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
1914 	if(err < 0) {
1915 		printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
1916 		priv->fpga_type = SMALL_FPGA;
1917 	} else {
1918 		// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
1919 		if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
1920 			priv->fpga_type = LARGE_FPGA;
1921 		// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
1922 		else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
1923 			priv->fpga_type = SMALL_FPGA;
1924 	}
1925 
1926 	// //-------------find ad9361-phy driver for lo/channel control---------------
1927 	priv->actual_rx_lo = 0;
1928 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
1929 	if (tmp_dev == NULL) {
1930 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
1931 		err = -ENOMEM;
1932 		goto err_free_dev;
1933 	}
1934 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
1935 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
1936 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
1937 		err = -ENOMEM;
1938 		goto err_free_dev;
1939 	}
1940 
1941 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
1942 	if (!(priv->ad9361_phy)) {
1943 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
1944 		err = -ENOMEM;
1945 		goto err_free_dev;
1946 	}
1947 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
1948 
1949 	priv->ctrl_out.en_mask=0xFF;
1950 	priv->ctrl_out.index=0x16;
1951 	err = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
1952 	if (err < 0) {
1953 		printk("%s openwifi_dev_probe: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, err);
1954 	} else {
1955 		printk("%s openwifi_dev_probe: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
1956 	}
1957 
1958 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
1959 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
1960 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
1961 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
1962 
1963 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
1964 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
1965 	if (!tmp_dev) {
1966 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
1967 		err = -ENOMEM;
1968 		goto err_free_dev;
1969 	}
1970 
1971 	tmp_pdev = to_platform_device(tmp_dev);
1972 	if (!tmp_pdev) {
1973 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
1974 		err = -ENOMEM;
1975 		goto err_free_dev;
1976 	}
1977 
1978 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
1979 	if (!tmp_indio_dev) {
1980 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
1981 		err = -ENOMEM;
1982 		goto err_free_dev;
1983 	}
1984 
1985 	priv->dds_st = iio_priv(tmp_indio_dev);
1986 	if (!(priv->dds_st)) {
1987 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
1988 		err = -ENOMEM;
1989 		goto err_free_dev;
1990 	}
1991 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
1992 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
1993 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
1994 
1995 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
1996 	// turn off radio by muting tx
1997 	// ad9361_tx_mute(priv->ad9361_phy, 1);
1998 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1999 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2000 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
2001 	// 	priv->rfkill_off = 0;// 0 off, 1 on
2002 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
2003 	// }
2004 	// else
2005 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
2006 
2007 	priv->rssi_correction = 43;//this will be set in real-time by _rf_set_channel()
2008 
2009 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2010 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2011 
2012 	priv->xpu_cfg = XPU_NORMAL;
2013 
2014 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
2015 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
2016 
2017 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
2018 	if (priv->rf_bw == 20000000) {
2019 		priv->rx_intf_cfg = RX_INTF_BYPASS;
2020 		priv->tx_intf_cfg = TX_INTF_BYPASS;
2021 		//priv->rx_freq_offset_to_lo_MHz = 0;
2022 		//priv->tx_freq_offset_to_lo_MHz = 0;
2023 	} else if (priv->rf_bw == 40000000) {
2024 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
2025 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
2026 
2027 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
2028 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2029 		priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
2030 		// // try another antenna option
2031 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
2032 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
2033 
2034 		#if 0
2035 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
2036 			priv->rx_freq_offset_to_lo_MHz = -10;
2037 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
2038 			priv->rx_freq_offset_to_lo_MHz = 10;
2039 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
2040 			priv->rx_freq_offset_to_lo_MHz = 0;
2041 		} else {
2042 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
2043 		}
2044 		#endif
2045 	} else {
2046 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
2047 	}
2048 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
2049 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
2050 	printk("%s openwifi_dev_probe: test_mode %d\n", sdr_compatible_str, test_mode);
2051 
2052 	//let's by default turn radio on when probing
2053 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
2054 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
2055 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
2056 	} else {
2057 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
2058 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2059 	}
2060 	if (reg == AD9361_RADIO_ON_TX_ATT) {
2061 		priv->rfkill_off = 1;// 0 off, 1 on
2062 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
2063 	}
2064 	else
2065 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
2066 
2067 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
2068 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
2069 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
2070 
2071 	// //set ad9361 in certain mode
2072 	#if 0
2073 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
2074 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2075 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
2076 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2077 
2078 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
2079 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
2080 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
2081 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
2082 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
2083 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
2084 	#endif
2085 
2086 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
2087 
2088 	SET_IEEE80211_DEV(dev, &pdev->dev);
2089 	platform_set_drvdata(pdev, dev);
2090 
2091 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
2092 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
2093 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
2094 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
2095 
2096 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
2097 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
2098 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
2099 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
2100 
2101 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
2102 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
2103 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
2104 
2105 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
2106 	priv->band_2GHz.channels = priv->channels_2GHz;
2107 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
2108 	priv->band_2GHz.bitrates = priv->rates_2GHz;
2109 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
2110 	priv->band_2GHz.ht_cap.ht_supported = true;
2111 	priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
2112 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
2113 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2114 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2115 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
2116 
2117 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
2118 	priv->band_5GHz.channels = priv->channels_5GHz;
2119 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
2120 	priv->band_5GHz.bitrates = priv->rates_5GHz;
2121 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
2122 	priv->band_5GHz.ht_cap.ht_supported = true;
2123 	priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
2124 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
2125 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2126 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2127 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2128 
2129 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2130 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2131 
2132 	ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING);
2133 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2134 	ieee80211_hw_set(dev, BEACON_TX_STATUS);
2135 
2136 	dev->vif_data_size = sizeof(struct openwifi_vif);
2137 	dev->wiphy->interface_modes =
2138 			BIT(NL80211_IFTYPE_MONITOR)|
2139 			BIT(NL80211_IFTYPE_P2P_GO) |
2140 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
2141 			BIT(NL80211_IFTYPE_AP) |
2142 			BIT(NL80211_IFTYPE_STATION) |
2143 			BIT(NL80211_IFTYPE_ADHOC) |
2144 			BIT(NL80211_IFTYPE_MESH_POINT) |
2145 			BIT(NL80211_IFTYPE_OCB);
2146 	dev->wiphy->iface_combinations = &openwifi_if_comb;
2147 	dev->wiphy->n_iface_combinations = 1;
2148 
2149 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2150 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2151 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2152 
2153 	chip_name = "ZYNQ";
2154 
2155 	/* we declare to MAC80211 all the queues except for beacon queue
2156 	 * that will be eventually handled by DRV.
2157 	 * TX rings are arranged in such a way that lower is the IDX,
2158 	 * higher is the priority, in order to achieve direct mapping
2159 	 * with mac80211, however the beacon queue is an exception and it
2160 	 * is mapped on the highst tx ring IDX.
2161 	 */
2162 	dev->queues = MAX_NUM_HW_QUEUE;
2163 	//dev->queues = 1;
2164 
2165 	ieee80211_hw_set(dev, SIGNAL_DBM);
2166 
2167 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2168 
2169 	priv->rf = &ad9361_rf_ops;
2170 
2171 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2172 	priv->slice_idx = 0xFFFFFFFF;
2173 
2174 	sg_init_table(&(priv->tx_sg), 1);
2175 
2176 	get_random_bytes(&rand_val, sizeof(rand_val));
2177     rand_val%=250;
2178 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
2179 	priv->mac_addr[5]=rand_val+1;
2180 	//priv->mac_addr[5]=0x11;
2181 	if (!is_valid_ether_addr(priv->mac_addr)) {
2182 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2183 		eth_random_addr(priv->mac_addr);
2184 	} else {
2185 		printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2186 	}
2187 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2188 
2189 	spin_lock_init(&priv->lock);
2190 
2191 	err = ieee80211_register_hw(dev);
2192 	if (err) {
2193 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2194 		goto err_free_dev;
2195 	} else {
2196 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2197 	}
2198 
2199 	// // //--------------------hook leds (not complete yet)--------------------------------
2200 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatiable" field
2201 	// if (!tmp_dev) {
2202 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2203 	// 	err = -ENOMEM;
2204 	// 	goto err_free_dev;
2205 	// }
2206 
2207 	// tmp_pdev = to_platform_device(tmp_dev);
2208 	// if (!tmp_pdev) {
2209 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2210 	// 	err = -ENOMEM;
2211 	// 	goto err_free_dev;
2212 	// }
2213 
2214 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2215 	// if (!tmp_led_priv) {
2216 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2217 	// 	err = -ENOMEM;
2218 	// 	goto err_free_dev;
2219 	// }
2220 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2221 	// if (tmp_led_priv->num_leds!=4){
2222 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2223 	// 	err = -ENOMEM;
2224 	// 	goto err_free_dev;
2225 	// }
2226 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2227 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2228 	// priv->num_led = tmp_led_priv->num_leds;
2229 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2230 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2231 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2232 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2233 
2234 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2235 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2236 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2237 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2238 
2239 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2240 		   priv->mac_addr, chip_name, priv->rf->name);
2241 
2242 	openwifi_rfkill_init(dev);
2243 	return 0;
2244 
2245  err_free_dev:
2246 	ieee80211_free_hw(dev);
2247 
2248 	return err;
2249 }
2250 
2251 static int openwifi_dev_remove(struct platform_device *pdev)
2252 {
2253 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2254 
2255 	if (!dev) {
2256 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2257 		return(-1);
2258 	}
2259 
2260 	openwifi_rfkill_exit(dev);
2261 	ieee80211_unregister_hw(dev);
2262 	ieee80211_free_hw(dev);
2263 	return(0);
2264 }
2265 
2266 static struct platform_driver openwifi_dev_driver = {
2267 	.driver = {
2268 		.name = "sdr,sdr",
2269 		.owner = THIS_MODULE,
2270 		.of_match_table = openwifi_dev_of_ids,
2271 	},
2272 	.probe = openwifi_dev_probe,
2273 	.remove = openwifi_dev_remove,
2274 };
2275 
2276 module_platform_driver(openwifi_dev_driver);
2277