xref: /openwifi/driver/sdr.c (revision 534627041ea428b517805335be6171cb6612939c)
1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos
2 // SPDX-FileCopyrightText: 2022 UGent
3 // SPDX-License-Identifier: AGPL-3.0-or-later
4 
5 #include <linux/bitops.h>
6 #include <linux/dmapool.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/of_address.h>
10 #include <linux/of_platform.h>
11 #include <linux/of_irq.h>
12 #include <linux/slab.h>
13 #include <linux/clk.h>
14 #include <linux/io-64-nonatomic-lo-hi.h>
15 
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 
24 #include <linux/init.h>
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/of_dma.h>
28 #include <linux/platform_device.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/wait.h>
32 #include <linux/sched/task.h>
33 #include <linux/dma/xilinx_dma.h>
34 #include <linux/spi/spi.h>
35 #include <net/mac80211.h>
36 
37 #include <linux/clk.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk-provider.h>
40 
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43 
44 #include <linux/gpio.h>
45 #include <linux/leds.h>
46 
47 #define IIO_AD9361_USE_PRIVATE_H_
48 #include <../../drivers/iio/adc/ad9361_regs.h>
49 #include <../../drivers/iio/adc/ad9361.h>
50 #include <../../drivers/iio/adc/ad9361_private.h>
51 
52 #include <../../drivers/iio/frequency/cf_axi_dds.h>
53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num);
54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb,
55 			       bool tx1, bool tx2, bool immed);
56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy,
57 				  struct ctrl_outs_control *ctrl);
58 
59 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
60 #include "hw_def.h"
61 #include "sdr.h"
62 #include "git_rev.h"
63 
64 // driver API of component driver
65 extern struct tx_intf_driver_api *tx_intf_api;
66 extern struct rx_intf_driver_api *rx_intf_api;
67 extern struct openofdm_tx_driver_api *openofdm_tx_api;
68 extern struct openofdm_rx_driver_api *openofdm_rx_api;
69 extern struct xpu_driver_api *xpu_api;
70 
71 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes);
72 u8 gen_mpdu_delim_crc(u16 m);
73 u32 reverse32(u32 d);
74 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant);
75 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant);
76 int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction);
77 int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction);
78 int rssi_correction_lookup_table(u32 freq_MHz);
79 
80 #include "sdrctl_intf.c"
81 #include "sysfs_intf.c"
82 
83 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1)
84 // Internal indication variables after parsing test_mode
85 static bool AGGR_ENABLE = false;
86 static bool TX_OFFSET_TUNING_ENABLE = false;
87 
88 static int init_tx_att = 0;
89 
90 MODULE_AUTHOR("Xianjun Jiao");
91 MODULE_DESCRIPTION("SDR driver");
92 MODULE_LICENSE("GPL v2");
93 
94 module_param(test_mode, int, 0);
95 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)");
96 
97 module_param(init_tx_att, int, 0);
98 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000	example: set to 3000 for 3dB attenuation");
99 
100 // ---------------rfkill---------------------------------------
101 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
102 {
103 	int reg;
104 
105 	if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH)
106 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
107 	else
108 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
109 
110 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]))
111 		return true;// 0 off, 1 on
112 	return false;
113 }
114 
115 void openwifi_rfkill_init(struct ieee80211_hw *hw)
116 {
117 	struct openwifi_priv *priv = hw->priv;
118 
119 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
120 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
121 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
122 	wiphy_rfkill_start_polling(hw->wiphy);
123 }
124 
125 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
126 {
127 	bool enabled;
128 	struct openwifi_priv *priv = hw->priv;
129 
130 	enabled = openwifi_is_radio_enabled(priv);
131 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
132 	if (unlikely(enabled != priv->rfkill_off)) {
133 		priv->rfkill_off = enabled;
134 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
135 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
136 	}
137 }
138 
139 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
140 {
141 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
142 	wiphy_rfkill_stop_polling(hw->wiphy);
143 }
144 //----------------rfkill end-----------------------------------
145 
146 inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction)
147 {
148 	return ((rssi_correction+rssi_dbm)<<1);
149 }
150 
151 inline int rssi_correction_lookup_table(u32 freq_MHz)
152 {
153 	int rssi_correction;
154 
155 	if (freq_MHz<2412) {
156 		rssi_correction = 153;
157 	} else if (freq_MHz<=2484) {
158 		rssi_correction = 153;
159 	} else if (freq_MHz<5160) {
160 		rssi_correction = 153;
161 	} else if (freq_MHz<=5240) {
162 		rssi_correction = 145;
163 	} else if (freq_MHz<=5320) {
164 		rssi_correction = 148;
165 	} else {
166 		rssi_correction = 148;
167 	}
168 
169 	return rssi_correction;
170 }
171 
172 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
173 				  struct ieee80211_conf *conf)
174 {
175 	struct openwifi_priv *priv = dev->priv;
176 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz + priv->drv_rx_reg_val[DRV_RX_REG_IDX_EXTRA_FO];
177 	u32 actual_tx_lo;
178 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
179 	int static_lbt_th, auto_lbt_th, fpga_lbt_th;
180 
181 	if (change_flag) {
182 		priv->actual_rx_lo = actual_rx_lo;
183 		priv->actual_tx_lo = actual_tx_lo;
184 
185 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
186 
187 		clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) );
188 		clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) );
189 
190 		if (actual_rx_lo<2412) {
191 			priv->rssi_correction = 153;
192 		} else if (actual_rx_lo<=2484) {
193 			priv->rssi_correction = 153;
194 		} else if (actual_rx_lo<5160) {
195 			priv->rssi_correction = 153;
196 		} else if (actual_rx_lo<=5240) {
197 			priv->rssi_correction = 145;
198 		} else if (actual_rx_lo<=5320) {
199 			priv->rssi_correction = 148;
200 		} else {
201 			priv->rssi_correction = 148;
202 		}
203 
204 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
205 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44
206 		auto_lbt_th = ((priv->rssi_correction-62-16)<<1);
207 		static_lbt_th = priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH];
208 		fpga_lbt_th = (static_lbt_th==0?auto_lbt_th:static_lbt_th);
209 		xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th);
210 
211 		priv->last_auto_fpga_lbt_th = auto_lbt_th;
212 
213 		if (actual_rx_lo < 2500) {
214 			if (priv->band != BAND_2_4GHZ) {
215 				priv->band = BAND_2_4GHZ;
216 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
217 			}
218 		} else {
219 			if (priv->band != BAND_5_8GHZ) {
220 				priv->band = BAND_5_8GHZ;
221 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
222 			}
223 		}
224 		printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d (auto %d static %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,auto_lbt_th,static_lbt_th);
225 	}
226 }
227 
228 const struct openwifi_rf_ops ad9361_rf_ops = {
229 	.name		= "ad9361",
230 //	.init		= ad9361_rf_init,
231 //	.stop		= ad9361_rf_stop,
232 	.set_chan	= ad9361_rf_set_channel,
233 //	.calc_rssi	= ad9361_rf_calc_rssi,
234 };
235 
236 u16 reverse16(u16 d) {
237 	union u16_byte2 tmp0, tmp1;
238 	tmp0.a = d;
239 	tmp1.c[0] = tmp0.c[1];
240 	tmp1.c[1] = tmp0.c[0];
241 	return(tmp1.a);
242 }
243 
244 u32 reverse32(u32 d) {
245 	union u32_byte4 tmp0, tmp1;
246 	tmp0.a = d;
247 	tmp1.c[0] = tmp0.c[3];
248 	tmp1.c[1] = tmp0.c[2];
249 	tmp1.c[2] = tmp0.c[1];
250 	tmp1.c[3] = tmp0.c[0];
251 	return(tmp1.a);
252 }
253 
254 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
255 {
256 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
257 	int i;
258 
259 	ring->stop_flag = 0;
260 	ring->bd_wr_idx = 0;
261 	ring->bd_rd_idx = 0;
262 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
263 	if (ring->bds==NULL) {
264 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
265 		return -ENOMEM;
266 	}
267 
268 	for (i = 0; i < NUM_TX_BD; i++) {
269 		ring->bds[i].skb_linked=0; // for tx, skb is from upper layer
270 		//at first right after skb allocated, head, data, tail are the same.
271 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine
272 		ring->bds[i].seq_no = 0;
273 	}
274 
275 	return 0;
276 }
277 
278 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
279 {
280 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
281 	int i;
282 
283 	ring->stop_flag = 0;
284 	ring->bd_wr_idx = 0;
285 	ring->bd_rd_idx = 0;
286 	for (i = 0; i < NUM_TX_BD; i++) {
287 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
288 			continue;
289 		if (ring->bds[i].dma_mapping_addr != 0)
290 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
291 //		if (ring->bds[i].skb_linked!=NULL)
292 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
293 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
294 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
295 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str,
296 			ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr));
297 
298 		ring->bds[i].skb_linked=0;
299 		ring->bds[i].dma_mapping_addr = 0;
300 		ring->bds[i].seq_no = 0;
301 	}
302 	if (ring->bds)
303 		kfree(ring->bds);
304 	ring->bds = NULL;
305 }
306 
307 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
308 {
309 	int i;
310 	u8 *pdata_tmp;
311 
312 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
313 	if (!priv->rx_cyclic_buf) {
314 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
315 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
316 		return(-1);
317 	}
318 
319 	// Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
320 	for (i=0; i<NUM_RX_BD; i++) {
321 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning
322 		(*((u32*)(pdata_tmp+0 ))) = 0;
323 		(*((u32*)(pdata_tmp+4 ))) = 0;
324 	}
325 	printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str);
326 
327 	return 0;
328 }
329 
330 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
331 {
332 	if (priv->rx_cyclic_buf)
333 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
334 
335 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
336 	priv->rx_cyclic_buf = 0;
337 }
338 
339 static int rx_dma_setup(struct ieee80211_hw *dev){
340 	struct openwifi_priv *priv = dev->priv;
341 	struct dma_device *rx_dev = priv->rx_chan->device;
342 
343 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
344 	if (!(priv->rxd)) {
345 		openwifi_free_rx_ring(priv);
346 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
347 		return(-1);
348 	}
349 	priv->rxd->callback = 0;
350 	priv->rxd->callback_param = 0;
351 
352 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
353 
354 	if (dma_submit_error(priv->rx_cookie)) {
355 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
356 		return(-1);
357 	}
358 
359 	dma_async_issue_pending(priv->rx_chan);
360 	return(0);
361 }
362 
363 inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction)
364 {
365 	int rssi_db, rssi_dbm;
366 
367 	rssi_db = (rssi_half_db>>1);
368 
369 	rssi_dbm = rssi_db - rssi_correction;
370 
371 	rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm);
372 
373 	return rssi_dbm;
374 }
375 
376 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
377 {
378 	struct ieee80211_hw *dev = dev_id;
379 	struct openwifi_priv *priv = dev->priv;
380 	struct ieee80211_rx_status rx_status = {0};
381 	struct sk_buff *skb;
382 	struct ieee80211_hdr *hdr;
383 	u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di;
384 	bool ht_flag, short_gi, ht_aggr, ht_aggr_last;
385 	// u32 dma_driver_buf_idx_mod;
386 	u8 *pdata_tmp, fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw;
387 	s8 signal;
388 	u16 agc_status_and_pkt_exist_flag, rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0;
389 	bool content_ok = false, len_overflow = false;
390 
391 #ifdef USE_NEW_RX_INTERRUPT
392 	int i;
393 	spin_lock(&priv->lock);
394 	for (i=0; i<NUM_RX_BD; i++) {
395 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE;
396 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid
397 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
398 			continue;
399 #else
400 	static u8 target_buf_idx_old = 0;
401 	spin_lock(&priv->lock);
402 	while(1) { // loop all rx buffers that have new rx packets
403 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
404 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10)));
405 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
406 			break;
407 #endif
408 
409 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
410 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
411 		rssi_val =     (*((u16*)(pdata_tmp+8 )));
412 		len =          (*((u16*)(pdata_tmp+12)));
413 
414 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
415 
416 		rate_idx =     (*((u16*)(pdata_tmp+14)));
417 		ht_flag  =     ((rate_idx&0x10)!=0);
418 		short_gi =     ((rate_idx&0x20)!=0);
419 		ht_aggr  =     (ht_flag & ((rate_idx&0x40)!=0));
420 		ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0));
421 		rate_idx =     (rate_idx&0x1F);
422 
423 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
424 
425 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
426 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
427 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
428 		fcs_ok = ((fcs_ok&0x80)!=0);
429 
430 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
431 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
432 			// 	printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
433 			// }
434 			content_ok = true;
435 		} else {
436 			printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str);
437 			content_ok = false;
438 		}
439 
440 		rssi_val = (rssi_val>>1);
441 		if ( (rssi_val+128)<priv->rssi_correction )
442 			signal = -128;
443 		else
444 			signal = rssi_val - priv->rssi_correction;
445 
446 		// fc_di =        (*((u32*)(pdata_tmp+16)));
447 		// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
448 		// addr1_low32  = (*((u32*)(pdata_tmp+16+4+2)));
449 		// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
450 		// addr2_low32  = (*((u32*)(pdata_tmp+16+6+4+2)));
451 		// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
452 		// addr3_low32  = (*((u32*)(pdata_tmp+16+12+4+2)));
453 		if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) {
454 			hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
455 			addr1_low32  = *((u32*)(hdr->addr1+2));
456 			addr1_high16 = *((u16*)(hdr->addr1));
457 			if (len>=20) {
458 				addr2_low32  = *((u32*)(hdr->addr2+2));
459 				addr2_high16 = *((u16*)(hdr->addr2));
460 			}
461 			if (len>=26) {
462 				addr3_low32  = *((u32*)(hdr->addr3+2));
463 				addr3_high16 = *((u16*)(hdr->addr3));
464 			}
465 			if (len>=28)
466 				sc = hdr->seq_ctrl;
467 
468 			if ( (addr1_low32!=0xffffffff || addr1_high16!=0xffff) || (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&4) )
469 				printk("%s openwifi_rx_interrupt:%4dbytes ht%d aggr%d/%d sgi%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
470 					len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
471 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
472 #ifdef USE_NEW_RX_INTERRUPT
473 					sc, fcs_ok, i, signal);
474 #else
475 					sc, fcs_ok, target_buf_idx_old, signal);
476 #endif
477 		}
478 
479 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
480 		if (content_ok) {
481 			skb = dev_alloc_skb(len);
482 			if (skb) {
483 				skb_put_data(skb,pdata_tmp+16,len);
484 
485 				rx_status.antenna = priv->runtime_rx_ant_cfg;
486 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
487 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
488 				rx_status.signal = signal;
489 				rx_status.freq = dev->conf.chandef.chan->center_freq;
490 				rx_status.band = dev->conf.chandef.chan->band;
491 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
492 				rx_status.flag |= RX_FLAG_MACTIME_START;
493 				if (!fcs_ok)
494 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
495 				if (rate_idx <= 15)
496 					rx_status.encoding = RX_ENC_LEGACY;
497 				else
498 					rx_status.encoding = RX_ENC_HT;
499 				rx_status.bw = RATE_INFO_BW_20;
500 				if (short_gi)
501 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
502 				if(ht_aggr)
503 				{
504 					rx_status.ampdu_reference = priv->ampdu_reference;
505 					rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
506 					if (ht_aggr_last)
507 						rx_status.flag |= RX_FLAG_AMPDU_IS_LAST;
508 				}
509 
510 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
511 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
512 			} else
513 				printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
514 
515 			if(ht_aggr_last)
516 				priv->ampdu_reference++;
517 		}
518 		(*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed
519 		loop_count++;
520 #ifndef USE_NEW_RX_INTERRUPT
521 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
522 #endif
523 	}
524 
525 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) )
526 		printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
527 
528 // openwifi_rx_interrupt_out:
529 	spin_unlock(&priv->lock);
530 	return IRQ_HANDLED;
531 }
532 
533 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
534 {
535 	struct ieee80211_hw *dev = dev_id;
536 	struct openwifi_priv *priv = dev->priv;
537 	struct openwifi_ring *ring;
538 	struct sk_buff *skb;
539 	struct ieee80211_tx_info *info;
540 	u32 reg_val1, hw_queue_len, reg_val2, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0;
541 	u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx;
542 	u8 nof_retx=-1, last_bd_rd_idx, i;
543 	u64 blk_ack_bitmap;
544 	// u16 prio_rd_idx_store[64]={0};
545 	bool tx_fail=false;
546 
547 	spin_lock(&priv->lock);
548 
549 	while(1) { // loop all packets that have been sent by FPGA
550 		reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read();
551         reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read();
552 		blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32);
553 
554 		if (reg_val1!=0xFFFFFFFF) {
555 			nof_retx = (reg_val1&0xF);
556 			last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1));
557 			prio = ((reg_val1>>17)&0x3);
558 			num_slot_random = ((reg_val1>>19)&0x1FF);
559 			//num_slot_random = ((0xFF80000 &reg_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
560 			cw = ((reg_val1>>28)&0xF);
561 			//cw = ((0xF0000000 & reg_val1) >> 28);
562 			if(cw > 10) {
563 				cw = 10 ;
564 				num_slot_random += 512 ;
565 			}
566 			pkt_cnt = (reg_val2&0x3F);
567 			blk_ack_ssn = ((reg_val2>>6)&0xFFF);
568 
569 			ring = &(priv->tx_ring[prio]);
570 
571 			if ( ring->stop_flag == 1) {
572 				// Wake up Linux queue if FPGA and driver ring have room
573 				queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1));
574 				dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
575 				hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
576 
577 				if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) {
578 					// printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter);
579 					printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str,
580 					prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, last_bd_rd_idx);
581 					ieee80211_wake_queue(dev, prio);
582 					ring->stop_flag = 0;
583 				}
584 			}
585 
586 			for(i = 1; i <= pkt_cnt; i++)
587 			{
588 				ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64;
589 				seq_no = ring->bds[ring->bd_rd_idx].seq_no;
590 				skb = ring->bds[ring->bd_rd_idx].skb_linked;
591 
592 				dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
593 						skb->len, DMA_MEM_TO_DEV);
594 
595 				info = IEEE80211_SKB_CB(skb);
596 				ieee80211_tx_info_clear_status(info);
597 
598 				// Aggregation packet
599 				if(pkt_cnt > 1)
600 				{
601 					start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF));
602 					tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0);
603 					info->flags |= IEEE80211_TX_STAT_AMPDU;
604 					info->status.ampdu_len = 1;
605 					info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1;
606 
607 					skb_pull(skb, LEN_MPDU_DELIM);
608 					//skb_trim(skb, num_byte_pad_skb);
609 				}
610 				// Normal packet
611 				else
612 				{
613 					tx_fail = ((blk_ack_bitmap&0x1)==0);
614 					info->flags &= (~IEEE80211_TX_CTL_AMPDU);
615 				}
616 
617 				if (tx_fail == false)
618 					info->flags |= IEEE80211_TX_STAT_ACK;
619 
620 				info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
621 				info->status.rates[1].idx = -1;
622 				info->status.rates[2].idx = -1;
623 				info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
624 				info->status.antenna = priv->runtime_tx_ant_cfg;
625 
626 				if ( tx_fail && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
627 					printk("%s openwifi_tx_interrupt: WARNING pkt_no %d/%d tx_result [nof_retx %d pass %d] prio%d wr%d rd%d\n", sdr_compatible_str, i, pkt_cnt, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx);
628 				if ( ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK))||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) )
629 					printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw);
630 
631 				ieee80211_tx_status_irqsafe(dev, skb);
632 			}
633 
634 			loop_count++;
635 
636 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
637 
638 		} else
639 			break;
640 	}
641 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
642 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
643 
644 	spin_unlock(&priv->lock);
645 	return IRQ_HANDLED;
646 }
647 
648 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000};
649 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes)
650 {
651 	u32 i, crc = 0;
652 	u8 idx;
653 	for( i = 0; i < num_bytes; i++)
654 	{
655 		idx = (crc & 0x0F) ^ (data_in[i] & 0x0F);
656 		crc = (crc >> 4) ^ crc_table[idx];
657 
658 		idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F);
659 		crc = (crc >> 4) ^ crc_table[idx];
660 	}
661 
662 	return crc;
663 }
664 
665 u8 gen_mpdu_delim_crc(u16 m)
666 {
667 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc;
668 
669 	for (i = 0; i < 16; i++)
670 	{
671 		temp = c[7] ^ ((m >> i) & 0x01);
672 
673 		c[7] = c[6];
674 		c[6] = c[5];
675 		c[5] = c[4];
676 		c[4] = c[3];
677 		c[3] = c[2];
678 		c[2] = c[1] ^ temp;
679 		c[1] = c[0] ^ temp;
680 		c[0] = temp;
681 	}
682 	mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
683 
684 	return mpdu_delim_crc;
685 }
686 
687 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
688 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
689 {
690 	return container_of(led_cdev, struct gpio_led_data, cdev);
691 }
692 
693 static void openwifi_tx(struct ieee80211_hw *dev,
694 		       struct ieee80211_tx_control *control,
695 		       struct sk_buff *skb)
696 {
697 	struct openwifi_priv *priv = dev->priv;
698 	unsigned long flags;
699 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
700 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
701 	struct openwifi_ring *ring = NULL;
702 	dma_addr_t dma_mapping_addr;
703 	unsigned int prio=0, i;
704 	u32 num_dma_symbol, len_mpdu = 0, len_mpdu_delim_pad = 0, num_dma_byte, len_psdu, num_byte_pad;
705 	u32 rate_signal_value,rate_hw_value=0,ack_flag;
706 	u32 pkt_need_ack=0, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history;
707 	u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration;
708 	u8 fc_flag,fc_type,fc_subtype,retry_limit_raw=0,use_short_gi=0,*dma_buf,retry_limit_hw_value,rc_flags,*qos_hdr;
709 	bool use_rts_cts, use_cts_protect=false, ht_aggr_start=false, use_ht_rate=false, use_ht_aggr=false, addr_flag, cts_use_traffic_rate=false, force_use_cts_protect=false;
710 	__le16 frame_control,duration_id;
711 	u32 dma_fifo_no_room_flag, hw_queue_len;
712 	enum dma_status status;
713 
714 	static u32 addr1_low32_prev = -1, rate_hw_value_prev = -1, pkt_need_ack_prev = -1;
715 	static u16 addr1_high16_prev = -1;
716 	static __le16 duration_id_prev = -1;
717 	static unsigned int prio_prev = -1;
718 	static u8 retry_limit_raw_prev = -1;
719 	static u8 use_short_gi_prev = -1;
720 
721 	// static bool led_status=0;
722 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
723 
724 	// if ( (priv->phy_tx_sn&7) ==0 ) {
725 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
726 	// 	if (openofdm_state_history!=openofdm_state_history_old){
727 	// 		led_status = (~led_status);
728 	// 		openofdm_state_history_old = openofdm_state_history;
729 	// 		gpiod_set_value(led_dat->gpiod, led_status);
730 	// 	}
731 	// }
732 
733 	if (skb->data_len>0) {// more data are not in linear data area skb->data
734 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
735 		goto openwifi_tx_early_out;
736 	}
737 
738 	len_mpdu = skb->len;
739 
740 	// get Linux priority/queue setting info and target mac address
741 	prio = skb_get_queue_mapping(skb);
742 	addr1_low32  = *((u32*)(hdr->addr1+2));
743 	ring = &(priv->tx_ring[prio]);
744 
745 	// -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" -----------
746 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
747 		queue_idx = prio;
748 	} else {// customized prio to queue_idx mapping
749 		//if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only
750 		// check current packet belonging to which slice/hw-queue
751 			for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
752 				if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
753 					break;
754 				}
755 			}
756 		//}
757 		queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest.
758 	}
759 	// -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------
760 	// get other info from packet header
761 	addr1_high16 = *((u16*)(hdr->addr1));
762 	if (len_mpdu>=20) {
763 		addr2_low32  = *((u32*)(hdr->addr2+2));
764 		addr2_high16 = *((u16*)(hdr->addr2));
765 	}
766 	if (len_mpdu>=26) {
767 		addr3_low32  = *((u32*)(hdr->addr3+2));
768 		addr3_high16 = *((u16*)(hdr->addr3));
769 	}
770 
771 	duration_id = hdr->duration_id;
772 	frame_control=hdr->frame_control;
773 	ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK);
774 	fc_type = ((frame_control)>>2)&3;
775 	fc_subtype = ((frame_control)>>4)&0xf;
776 	fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) );
777 	//if it is broadcasting or multicasting addr
778 	addr_flag = ( (addr1_low32==0 && addr1_high16==0) ||
779 	              (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) ||
780 				  (addr1_high16==0x3333) ||
781 				  (addr1_high16==0x0001 && hdr->addr1[2]==0x5E)  );
782 	if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame
783 		pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent
784 	} else {
785 		pkt_need_ack = 0;
786 	}
787 
788 	// get Linux rate (MCS) setting
789 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
790 	//rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
791 	if (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0 && fc_type==2 && (!addr_flag)) //rate override command
792 		rate_hw_value = priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE];
793 
794 	retry_limit_raw = info->control.rates[0].count;
795 
796 	rc_flags = info->control.rates[0].flags;
797 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
798 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
799 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
800 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
801 	use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0);
802 
803 	if (use_rts_cts)
804 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
805 
806 	if (use_cts_protect) {
807 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
808 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info));
809 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
810 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
811 		sifs = (priv->actual_rx_lo<2500?10:16);
812 		if (pkt_need_ack)
813 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
814 		traffic_pkt_duration = 20 + 4*(((22+len_mpdu*8)/wifi_n_dbps_table[rate_hw_value])+1);
815 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
816 	}
817 
818 // this is 11b stuff
819 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
820 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
821 
822 	if (len_mpdu>=28) {
823 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
824 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
825 				priv->seqno += 0x10;
826 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
827 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
828 		}
829 		sc = hdr->seq_ctrl;
830 	}
831 
832 	if ( ( (!addr_flag)||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) )
833 		printk("%s openwifi_tx: %4dbytes ht%d aggr%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
834 			len_mpdu, (use_ht_rate == false ? 0 : 1), (use_ht_aggr == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
835 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
836 			sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx,
837 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
838 			ring->bd_wr_idx,ring->bd_rd_idx);
839 
840 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
841 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
842 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
843 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
844 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
845 
846 	// -----------end of preprocess some info from header and skb----------------
847 
848 	// /* HW will perform RTS-CTS when only RTS flags is set.
849 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
850 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
851 	//  */
852 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
853 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
854 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
855 	// 					len_mpdu, info);
856 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
857 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
858 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
859 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
860 	// 					len_mpdu, info);
861 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
862 	// }
863 
864 	if(use_ht_aggr)
865 	{
866 		qos_hdr = ieee80211_get_qos_ctl(hdr);
867 		if(ieee80211_is_data_qos(frame_control) == false || qos_hdr[0] != priv->tid)
868 		{
869 			printk("%s openwifi_tx: WARNING packet is either not qos or tid %u does not match registered tid %u\n", sdr_compatible_str, qos_hdr[0], priv->tid);
870 			goto openwifi_tx_early_out;
871 		}
872 
873 		// psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ]
874 		len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4);
875 		len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad;
876 
877 		if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) ||
878 			(rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) ||
879 			(prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) )
880 		{
881 			addr1_low32_prev = addr1_low32;
882 			addr1_high16_prev = addr1_high16;
883 			duration_id_prev = duration_id;
884 			rate_hw_value_prev = rate_hw_value;
885 			use_short_gi_prev = use_short_gi;
886 			prio_prev = prio;
887 			retry_limit_raw_prev = retry_limit_raw;
888 			pkt_need_ack_prev = pkt_need_ack;
889 
890 			ht_aggr_start = true;
891 		}
892 	}
893 	else
894 	{
895 		// psdu = [ MPDU ]
896 		len_psdu = len_mpdu;
897 
898 		addr1_low32_prev = -1;
899 		addr1_high16_prev = -1;
900 		duration_id_prev = -1;
901 		use_short_gi_prev = -1;
902 		rate_hw_value_prev = -1;
903 		prio_prev = -1;
904 		retry_limit_raw_prev = -1;
905 		pkt_need_ack_prev = -1;
906 	}
907 	num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
908 
909 	// check whether the packet is bigger than DMA buffer size
910 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
911 	if (num_dma_byte > TX_BD_BUF_SIZE) {
912 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
913 		goto openwifi_tx_early_out;
914 	}
915 
916 	// Copy MPDU delimiter and padding into sk_buff
917 	if(use_ht_aggr)
918 	{
919 		// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
920 		if (skb_headroom(skb)<LEN_MPDU_DELIM) {
921 			struct sk_buff *skb_new; // in case original skb headroom is not enough to host MPDU delimiter
922 			printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_MPDU_DELIM\n", sdr_compatible_str, ring->bd_wr_idx);
923 			if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) {
924 				printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
925 				goto openwifi_tx_early_out;
926 			}
927 			if (skb->sk != NULL)
928 				skb_set_owner_w(skb_new, skb->sk);
929 			dev_kfree_skb(skb);
930 			skb = skb_new;
931 		}
932 		skb_push( skb, LEN_MPDU_DELIM );
933 		dma_buf = skb->data;
934 
935 		// fill in MPDU delimiter
936 		*((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0;
937 		*((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf));
938 		*((u8 *)(dma_buf+3)) = 0x4e;
939 
940 		// Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter
941 		num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu);
942 		if (skb_tailroom(skb)<num_byte_pad) {
943 			printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
944 			goto openwifi_tx_early_out;
945 		}
946 		skb_put( skb, num_byte_pad );
947 
948 		// fill in MPDU CRC
949 		*((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu);
950 
951 		// fill in MPDU delimiter padding
952 		memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad);
953 
954 		// num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary.
955 		// If they have different lengths, add "empty MPDU delimiter" for alignment
956 		if(num_dma_byte == len_psdu + 4)
957 		{
958 			*((u32*)(dma_buf+len_psdu)) = 0x4e140000;
959 			len_psdu = num_dma_byte;
960 		}
961 	}
962 	else
963 	{
964 		// Extend sk_buff to hold padding
965 		num_byte_pad = num_dma_byte - len_mpdu;
966 		if (skb_tailroom(skb)<num_byte_pad) {
967 			printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
968 			goto openwifi_tx_early_out;
969 		}
970 		skb_put( skb, num_byte_pad );
971 
972 		dma_buf = skb->data;
973 	}
974 //	for(i = 0; i <= num_dma_symbol; i++)
975 //		printk("%16llx\n", (*(u64*)(&(dma_buf[i*8]))));
976 
977 	rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]);
978 
979 	retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) );
980 
981 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
982 	cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value);
983 	tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | (len_mpdu+LEN_PHY_CRC) );
984 	phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu );
985 
986 	/* We must be sure that tx_flags is written last because the HW
987 	 * looks at it to check if the rest of data is valid or not
988 	 */
989 	//wmb();
990 	// entry->flags = cpu_to_le32(tx_flags);
991 	/* We must be sure this has been written before following HW
992 	 * register write, because this write will make the HW attempts
993 	 * to DMA the just-written data
994 	 */
995 	//wmb();
996 
997 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
998 
999 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
1000 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
1001 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
1002 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD)  || ring->stop_flag==1 ) {
1003 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
1004 		printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str,
1005 		prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
1006 		ring->stop_flag = 1;
1007 		goto openwifi_tx_early_out_after_lock;
1008 	}
1009 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
1010 
1011 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
1012 	if (status!=DMA_COMPLETE) {
1013 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
1014 		goto openwifi_tx_early_out_after_lock;
1015 	}
1016 
1017 //-------------------------fire skb DMA to hardware----------------------------------
1018 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
1019 				 num_dma_byte, DMA_MEM_TO_DEV);
1020 
1021 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
1022 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
1023 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
1024 		goto openwifi_tx_early_out_after_lock;
1025 	}
1026 
1027 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
1028 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
1029 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
1030 
1031 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
1032 	tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config);
1033 	tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config);
1034 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
1035 	if (!(priv->txd)) {
1036 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
1037 		goto openwifi_tx_after_dma_mapping;
1038 	}
1039 
1040 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
1041 
1042 	if (dma_submit_error(priv->tx_cookie)) {
1043 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
1044 		goto openwifi_tx_after_dma_mapping;
1045 	}
1046 
1047 	// seems everything is ok. let's mark this pkt in bd descriptor ring
1048 	ring->bds[ring->bd_wr_idx].seq_no = (sc&IEEE80211_SCTL_SEQ)>>4;
1049 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
1050 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
1051 
1052 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
1053 
1054 	dma_async_issue_pending(priv->tx_chan);
1055 
1056 	spin_unlock_irqrestore(&priv->lock, flags);
1057 
1058 	return;
1059 
1060 openwifi_tx_after_dma_mapping:
1061 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
1062 
1063 openwifi_tx_early_out_after_lock:
1064 	dev_kfree_skb(skb);
1065 	spin_unlock_irqrestore(&priv->lock, flags);
1066 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1067 	return;
1068 
1069 openwifi_tx_early_out:
1070 	//dev_kfree_skb(skb);
1071 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
1072 }
1073 
1074 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant)
1075 {
1076 	struct openwifi_priv *priv = dev->priv;
1077 	u8 fpga_tx_ant_setting, target_rx_ant;
1078 	u32 atten_mdb_tx0, atten_mdb_tx1;
1079 	struct ctrl_outs_control ctrl_out;
1080 	int ret;
1081 
1082 	printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant);
1083 
1084 	if (tx_ant >= 4 || tx_ant == 0) {
1085 		return -EINVAL;
1086 	} else if (rx_ant >= 3 || rx_ant == 0) {
1087 		return -EINVAL;
1088 	}
1089 
1090 	fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16));
1091 	target_rx_ant = ((rx_ant&1)?0:1);
1092 
1093 	// try rf chip setting firstly, only update internal state variable when rf chip succeed
1094 	atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1095 	atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT);
1096 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true);
1097 	if (ret < 0) {
1098 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0);
1099 		return -EINVAL;
1100 	} else {
1101 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0);
1102 	}
1103 	ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true);
1104 	if (ret < 0) {
1105 		printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1);
1106 		return -EINVAL;
1107 	} else {
1108 		printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1);
1109 	}
1110 
1111 	ctrl_out.en_mask = priv->ctrl_out.en_mask;
1112 	ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
1113 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out));
1114 	if (ret < 0) {
1115 		printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1116 		return -EINVAL;
1117 	} else {
1118 		printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index);
1119 	}
1120 
1121 	tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting);
1122 	ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read();
1123 	if (ret != fpga_tx_ant_setting) {
1124 		printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret);
1125 		return -EINVAL;
1126 	} else {
1127 		printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1128 	}
1129 
1130 	rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant);
1131 	ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read();
1132 	if (ret != target_rx_ant) {
1133 		printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret);
1134 		return -EINVAL;
1135 	} else {
1136 		printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret);
1137 	}
1138 
1139 	// update internal state variable
1140 	priv->runtime_tx_ant_cfg = tx_ant;
1141 	priv->runtime_rx_ant_cfg = rx_ant;
1142 
1143 	if (TX_OFFSET_TUNING_ENABLE)
1144 		priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE
1145 	else {
1146 		if (tx_ant == 3)
1147 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH;
1148 		else
1149 			priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1150 	}
1151 
1152 	priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1);
1153 	priv->ctrl_out.index=ctrl_out.index;
1154 
1155 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1156 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1157 
1158 	return 0;
1159 }
1160 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant)
1161 {
1162 	struct openwifi_priv *priv = dev->priv;
1163 
1164 	*tx_ant = priv->runtime_tx_ant_cfg;
1165 	*rx_ant = priv->runtime_rx_ant_cfg;
1166 
1167 	printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant);
1168 
1169 	printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str,
1170 	priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index);
1171 
1172 	printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str,
1173 	tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read());
1174 
1175 	printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str,
1176 	ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER));
1177 
1178 	return 0;
1179 }
1180 
1181 static int openwifi_start(struct ieee80211_hw *dev)
1182 {
1183 	struct openwifi_priv *priv = dev->priv;
1184 	int ret, i;
1185 	u32 reg;
1186 
1187 	for (i=0; i<MAX_NUM_VIF; i++) {
1188 		priv->vif[i] = NULL;
1189 	}
1190 
1191 	// //keep software registers persistent between NIC down and up for multiple times
1192 	/*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
1193 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
1194 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
1195 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
1196 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/
1197 
1198 	//turn on radio
1199 	openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
1200 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
1201 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
1202 		priv->rfkill_off = 1;// 0 off, 1 on
1203 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
1204 	}
1205 	else
1206 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
1207 
1208 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1209 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1210 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1211 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1212 	xpu_api->hw_init(priv->xpu_cfg);
1213 
1214 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1215 
1216 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1217 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1218 
1219 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1220 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1221 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1222 
1223 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1224 	if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) {
1225 		ret = PTR_ERR(priv->rx_chan);
1226 		pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan);
1227 		goto err_dma;
1228 	}
1229 
1230 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1231 	if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) {
1232 		ret = PTR_ERR(priv->tx_chan);
1233 		pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan);
1234 		goto err_dma;
1235 	}
1236 	printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan);
1237 
1238 	ret = openwifi_init_rx_ring(priv);
1239 	if (ret) {
1240 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1241 		goto err_free_rings;
1242 	}
1243 
1244 	priv->seqno=0;
1245 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1246 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1247 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1248 			goto err_free_rings;
1249 		}
1250 	}
1251 
1252 	if ( (ret = rx_dma_setup(dev)) ) {
1253 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1254 		goto err_free_rings;
1255 	}
1256 
1257 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1258 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1259 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1260 	if (ret) {
1261 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1262 		goto err_free_rings;
1263 	} else {
1264 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1265 	}
1266 
1267 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1268 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1269 			IRQF_SHARED, "sdr,tx_itrpt", dev);
1270 	if (ret) {
1271 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1272 		goto err_free_rings;
1273 	} else {
1274 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1275 	}
1276 
1277 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1278 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1279 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1280 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1281 
1282 
1283 // normal_out:
1284 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1285 	return 0;
1286 
1287 err_free_rings:
1288 	openwifi_free_rx_ring(priv);
1289 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1290 		openwifi_free_tx_ring(priv, i);
1291 
1292 err_dma:
1293 	ret = -1;
1294 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1295 	return ret;
1296 }
1297 
1298 static void openwifi_stop(struct ieee80211_hw *dev)
1299 {
1300 	struct openwifi_priv *priv = dev->priv;
1301 	u32 reg, reg1;
1302 	int i;
1303 
1304 
1305 	//turn off radio
1306 	#if 1
1307 	ad9361_tx_mute(priv->ad9361_phy, 1);
1308 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1309 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1310 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1311 		priv->rfkill_off = 0;// 0 off, 1 on
1312 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1313 	}
1314 	else
1315 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1316 	#endif
1317 
1318 	//ieee80211_stop_queue(dev, 0);
1319 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1320 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1321 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1322 
1323 	for (i=0; i<MAX_NUM_VIF; i++) {
1324 		priv->vif[i] = NULL;
1325 	}
1326 
1327 	openwifi_free_rx_ring(priv);
1328 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1329 		openwifi_free_tx_ring(priv, i);
1330 
1331 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1332 	dmaengine_terminate_all(priv->rx_chan);
1333 	dma_release_channel(priv->rx_chan);
1334 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1335 	dmaengine_terminate_all(priv->tx_chan);
1336 	dma_release_channel(priv->tx_chan);
1337 
1338 	//priv->rf->stop(dev);
1339 
1340 	free_irq(priv->irq_rx, dev);
1341 	free_irq(priv->irq_tx, dev);
1342 
1343 // normal_out:
1344 	printk("%s openwifi_stop\n", sdr_compatible_str);
1345 }
1346 
1347 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1348 			   struct ieee80211_vif *vif)
1349 {
1350 	u32 tsft_low, tsft_high;
1351 
1352 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1353 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1354 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1355 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1356 }
1357 
1358 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1359 {
1360 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1361 	u32 tsft_low  = (tsf&0xffffffff);
1362 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1363 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1364 }
1365 
1366 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1367 {
1368 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1369 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1370 }
1371 
1372 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1373 {
1374 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1375 	return(0);
1376 }
1377 
1378 static void openwifi_beacon_work(struct work_struct *work)
1379 {
1380 	struct openwifi_vif *vif_priv =
1381 		container_of(work, struct openwifi_vif, beacon_work.work);
1382 	struct ieee80211_vif *vif =
1383 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1384 	struct ieee80211_hw *dev = vif_priv->dev;
1385 	struct ieee80211_mgmt *mgmt;
1386 	struct sk_buff *skb;
1387 
1388 	/* don't overflow the tx ring */
1389 	if (ieee80211_queue_stopped(dev, 0))
1390 		goto resched;
1391 
1392 	/* grab a fresh beacon */
1393 	skb = ieee80211_beacon_get(dev, vif);
1394 	if (!skb)
1395 		goto resched;
1396 
1397 	/*
1398 	 * update beacon timestamp w/ TSF value
1399 	 * TODO: make hardware update beacon timestamp
1400 	 */
1401 	mgmt = (struct ieee80211_mgmt *)skb->data;
1402 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1403 
1404 	/* TODO: use actual beacon queue */
1405 	skb_set_queue_mapping(skb, 0);
1406 	openwifi_tx(dev, NULL, skb);
1407 
1408 resched:
1409 	/*
1410 	 * schedule next beacon
1411 	 * TODO: use hardware support for beacon timing
1412 	 */
1413 	schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1414 	// printk("%s openwifi_beacon_work beacon_int %d\n", sdr_compatible_str, vif->bss_conf.beacon_int);
1415 }
1416 
1417 static int openwifi_add_interface(struct ieee80211_hw *dev,
1418 				 struct ieee80211_vif *vif)
1419 {
1420 	int i;
1421 	struct openwifi_priv *priv = dev->priv;
1422 	struct openwifi_vif *vif_priv;
1423 
1424 	switch (vif->type) {
1425 	case NL80211_IFTYPE_AP:
1426 	case NL80211_IFTYPE_STATION:
1427 	case NL80211_IFTYPE_ADHOC:
1428 	case NL80211_IFTYPE_MONITOR:
1429 	case NL80211_IFTYPE_MESH_POINT:
1430 		break;
1431 	default:
1432 		return -EOPNOTSUPP;
1433 	}
1434 	// let's support more than 1 interface
1435 	for (i=0; i<MAX_NUM_VIF; i++) {
1436 		if (priv->vif[i] == NULL)
1437 			break;
1438 	}
1439 
1440 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1441 
1442 	if (i==MAX_NUM_VIF)
1443 		return -EBUSY;
1444 
1445 	priv->vif[i] = vif;
1446 
1447 	/* Initialize driver private area */
1448 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1449 	vif_priv->idx = i;
1450 
1451 	vif_priv->dev = dev;
1452 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1453 	vif_priv->enable_beacon = false;
1454 
1455 	priv->mac_addr[0] = vif->addr[0];
1456 	priv->mac_addr[1] = vif->addr[1];
1457 	priv->mac_addr[2] = vif->addr[2];
1458 	priv->mac_addr[3] = vif->addr[3];
1459 	priv->mac_addr[4] = vif->addr[4];
1460 	priv->mac_addr[5] = vif->addr[5];
1461 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); // set mac addr in fpga
1462 
1463 	printk("%s openwifi_add_interface end with vif idx %d addr %02x:%02x:%02x:%02x:%02x:%02x\n", sdr_compatible_str,vif_priv->idx,
1464 	vif->addr[0],vif->addr[1],vif->addr[2],vif->addr[3],vif->addr[4],vif->addr[5]);
1465 
1466 	return 0;
1467 }
1468 
1469 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1470 				     struct ieee80211_vif *vif)
1471 {
1472 	struct openwifi_vif *vif_priv;
1473 	struct openwifi_priv *priv = dev->priv;
1474 
1475 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1476 	priv->vif[vif_priv->idx] = NULL;
1477 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1478 }
1479 
1480 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1481 {
1482 	struct openwifi_priv *priv = dev->priv;
1483 	struct ieee80211_conf *conf = &dev->conf;
1484 
1485 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
1486 		priv->rf->set_chan(dev, conf);
1487 	else
1488 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1489 
1490 	return 0;
1491 }
1492 
1493 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1494 				     struct ieee80211_vif *vif,
1495 				     struct ieee80211_bss_conf *info,
1496 				     u32 changed)
1497 {
1498 	struct openwifi_priv *priv = dev->priv;
1499 	struct openwifi_vif *vif_priv;
1500 	u32 bssid_low, bssid_high;
1501 
1502 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1503 
1504 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1505 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1506 	if (changed & BSS_CHANGED_BSSID) {
1507 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1508 		// write new bssid to our HW, and do not change bssid filter
1509 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1510 		bssid_low = ( *( (u32*)(info->bssid) ) );
1511 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1512 
1513 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1514 		//bssid_high = (bssid_high|bssid_filter_high);
1515 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1516 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1517 	}
1518 
1519 	if (changed & BSS_CHANGED_BEACON_INT) {
1520 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1521 	}
1522 
1523 	if (changed & BSS_CHANGED_TXPOWER)
1524 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1525 
1526 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1527 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1528 
1529 	if (changed & BSS_CHANGED_BASIC_RATES)
1530 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1531 
1532 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1533 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1534 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1535 		if (info->use_short_slot && priv->use_short_slot==false) {
1536 			priv->use_short_slot=true;
1537 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1538 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1539 			priv->use_short_slot=false;
1540 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1541 		}
1542 	}
1543 
1544 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1545 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1546 		vif_priv->enable_beacon = info->enable_beacon;
1547 	}
1548 
1549 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1550 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1551 		if (vif_priv->enable_beacon) {
1552 			schedule_work(&vif_priv->beacon_work.work);
1553 			printk("%s openwifi_bss_info_changed WARNING enable_beacon\n",sdr_compatible_str);
1554 		}
1555 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1556 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1557 	}
1558 }
1559 // helper function
1560 u32 log2val(u32 val){
1561 	u32 ret_val = 0 ;
1562 	while(val>1){
1563 		val = val >> 1 ;
1564 		ret_val ++ ;
1565 	}
1566 	return ret_val ;
1567 }
1568 
1569 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
1570 	      const struct ieee80211_tx_queue_params *params)
1571 {
1572 	u32 reg_val, cw_min_exp, cw_max_exp;
1573 
1574 	printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
1575 		  sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1576 
1577 	reg_val=xpu_api->XPU_REG_CSMA_CFG_read();
1578 	cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
1579 	cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
1580 	switch(queue){
1581 		case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) );  break;
1582 		case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) );  break;
1583 		case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break;
1584 		case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break;
1585 		default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
1586 	}
1587 	xpu_api->XPU_REG_CSMA_CFG_write(reg_val);
1588 	return(0);
1589 }
1590 
1591 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1592 				     struct netdev_hw_addr_list *mc_list)
1593 {
1594 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1595 	return netdev_hw_addr_list_count(mc_list);
1596 }
1597 
1598 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1599 				     unsigned int changed_flags,
1600 				     unsigned int *total_flags,
1601 				     u64 multicast)
1602 {
1603 	u32 filter_flag;
1604 
1605 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1606 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1607 
1608 	filter_flag = (*total_flags);
1609 
1610 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1611 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1612 
1613 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1614 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1615 		filter_flag = (filter_flag|MONITOR_ALL);
1616 	else
1617 		filter_flag = (filter_flag&(~MONITOR_ALL));
1618 
1619 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1620 		filter_flag = (filter_flag|MY_BEACON);
1621 
1622 	filter_flag = (filter_flag|FIF_PSPOLL);
1623 
1624 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
1625 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
1626 
1627 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
1628 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
1629 }
1630 
1631 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params)
1632 {
1633 	struct ieee80211_sta *sta = params->sta;
1634 	enum ieee80211_ampdu_mlme_action action = params->action;
1635 	// struct openwifi_priv *priv = hw->priv;
1636 	u16 max_tx_bytes, buf_size;
1637 	u32 ampdu_action_config;
1638 
1639 	if (!AGGR_ENABLE) {
1640 		return -EOPNOTSUPP;
1641 	}
1642 
1643 	switch (action)
1644 	{
1645 		case IEEE80211_AMPDU_TX_START:
1646 			ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
1647 			printk("%s openwifi_ampdu_action: start TX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1648 			break;
1649 		case IEEE80211_AMPDU_TX_STOP_CONT:
1650 		case IEEE80211_AMPDU_TX_STOP_FLUSH:
1651 		case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
1652 			ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
1653 			printk("%s openwifi_ampdu_action: stop TX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1654 			break;
1655 		case IEEE80211_AMPDU_TX_OPERATIONAL:
1656 			buf_size = 4;
1657 //			buf_size = (params->buf_size) - 1;
1658 			max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1;
1659 			ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes );
1660 			tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config);
1661 			printk("%s openwifi_ampdu_action: TX operational. tid %d max_tx_bytes %d ampdu_density %d buf_size %d\n",
1662 			sdr_compatible_str, params->tid, max_tx_bytes, sta->ht_cap.ampdu_density, buf_size);
1663 			break;
1664 		case IEEE80211_AMPDU_RX_START:
1665 			printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1666 			break;
1667 		case IEEE80211_AMPDU_RX_STOP:
1668 			printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid);
1669 			break;
1670 		default:
1671 			return -EOPNOTSUPP;
1672 	}
1673 
1674 	return 0;
1675 }
1676 
1677 static const struct ieee80211_ops openwifi_ops = {
1678 	.tx			       = openwifi_tx,
1679 	.start			   = openwifi_start,
1680 	.stop			   = openwifi_stop,
1681 	.add_interface	   = openwifi_add_interface,
1682 	.remove_interface  = openwifi_remove_interface,
1683 	.config			   = openwifi_config,
1684 	.set_antenna       = openwifi_set_antenna,
1685 	.get_antenna       = openwifi_get_antenna,
1686 	.bss_info_changed  = openwifi_bss_info_changed,
1687 	.conf_tx		   = openwifi_conf_tx,
1688 	.prepare_multicast = openwifi_prepare_multicast,
1689 	.configure_filter  = openwifi_configure_filter,
1690 	.rfkill_poll	   = openwifi_rfkill_poll,
1691 	.get_tsf		   = openwifi_get_tsf,
1692 	.set_tsf		   = openwifi_set_tsf,
1693 	.reset_tsf		   = openwifi_reset_tsf,
1694 	.set_rts_threshold = openwifi_set_rts_threshold,
1695 	.ampdu_action      = openwifi_ampdu_action,
1696 	.testmode_cmd	   = openwifi_testmode_cmd,
1697 };
1698 
1699 static const struct of_device_id openwifi_dev_of_ids[] = {
1700 	{ .compatible = "sdr,sdr", },
1701 	{}
1702 };
1703 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
1704 
1705 static int custom_match_spi_dev(struct device *dev, void *data)
1706 {
1707     const char *name = data;
1708 
1709 	bool ret = sysfs_streq(name, dev->of_node->name);
1710 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
1711 	return ret;
1712 }
1713 
1714 static int custom_match_platform_dev(struct device *dev, void *data)
1715 {
1716 	struct platform_device *plat_dev = to_platform_device(dev);
1717 	const char *name = data;
1718 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
1719 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
1720 
1721 	if (match_flag) {
1722 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
1723 	}
1724 	return(match_flag);
1725 }
1726 
1727 static int openwifi_dev_probe(struct platform_device *pdev)
1728 {
1729 	struct ieee80211_hw *dev;
1730 	struct openwifi_priv *priv;
1731 	int err=1, rand_val;
1732 	const char *chip_name, *fpga_model;
1733 	u32 reg, i;//, reg1;
1734 
1735 	struct device_node *np = pdev->dev.of_node;
1736 
1737 	struct device *tmp_dev;
1738 	struct platform_device *tmp_pdev;
1739 	struct iio_dev *tmp_indio_dev;
1740 	// struct gpio_leds_priv *tmp_led_priv;
1741 
1742 	printk("\n");
1743 
1744 	if (np) {
1745 		const struct of_device_id *match;
1746 
1747 		match = of_match_node(openwifi_dev_of_ids, np);
1748 		if (match) {
1749 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
1750 			err = 0;
1751 		}
1752 	}
1753 
1754 	if (err)
1755 		return err;
1756 
1757 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
1758 	if (!dev) {
1759 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
1760 		err = -ENOMEM;
1761 		goto err_free_dev;
1762 	}
1763 
1764 	priv = dev->priv;
1765 	priv->pdev = pdev;
1766 
1767 	err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
1768 	if(err < 0) {
1769 		printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
1770 		priv->fpga_type = SMALL_FPGA;
1771 	} else {
1772 		// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
1773 		if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
1774 			priv->fpga_type = LARGE_FPGA;
1775 		// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
1776 		else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
1777 			priv->fpga_type = SMALL_FPGA;
1778 	}
1779 
1780 	// //-------------find ad9361-phy driver for lo/channel control---------------
1781 	priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
1782 	priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux
1783 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
1784 	if (tmp_dev == NULL) {
1785 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
1786 		err = -ENODEV;
1787 		goto err_free_dev;
1788 	}
1789 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
1790 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
1791 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
1792 		err = -ENODEV;
1793 		goto err_free_dev;
1794 	}
1795 
1796 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
1797 	if (!(priv->ad9361_phy)) {
1798 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
1799 		err = -ENODEV;
1800 		goto err_free_dev;
1801 	}
1802 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
1803 
1804 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
1805 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
1806 	if (!tmp_dev) {
1807 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
1808 		err = -ENODEV;
1809 		goto err_free_dev;
1810 	}
1811 
1812 	tmp_pdev = to_platform_device(tmp_dev);
1813 	if (!tmp_pdev) {
1814 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
1815 		err = -ENODEV;
1816 		goto err_free_dev;
1817 	}
1818 
1819 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
1820 	if (!tmp_indio_dev) {
1821 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
1822 		err = -ENODEV;
1823 		goto err_free_dev;
1824 	}
1825 
1826 	priv->dds_st = iio_priv(tmp_indio_dev);
1827 	if (!(priv->dds_st)) {
1828 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
1829 		err = -ENODEV;
1830 		goto err_free_dev;
1831 	}
1832 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
1833 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
1834 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
1835 
1836 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
1837 	// turn off radio by muting tx
1838 	// ad9361_tx_mute(priv->ad9361_phy, 1);
1839 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1840 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1841 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1842 	// 	priv->rfkill_off = 0;// 0 off, 1 on
1843 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
1844 	// }
1845 	// else
1846 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1847 
1848 	// //-----------------------------parse the test_mode input--------------------------------
1849 	if (test_mode&1)
1850 		AGGR_ENABLE = true;
1851 
1852 	// if (test_mode&2)
1853 	// 	TX_OFFSET_TUNING_ENABLE = false;
1854 
1855 	priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel()
1856 	priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized
1857 
1858 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1859 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
1860 
1861 	priv->xpu_cfg = XPU_NORMAL;
1862 
1863 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
1864 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
1865 
1866 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
1867 	if (priv->rf_bw == 20000000) { //DO NOT USE. Not used for long time.
1868 		priv->rx_intf_cfg = RX_INTF_BYPASS;
1869 		priv->tx_intf_cfg = TX_INTF_BYPASS;
1870 		//priv->rx_freq_offset_to_lo_MHz = 0;
1871 		//priv->tx_freq_offset_to_lo_MHz = 0;
1872 	} else if (priv->rf_bw == 40000000) {
1873 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
1874 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
1875 
1876 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
1877 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1878 		if (TX_OFFSET_TUNING_ENABLE)
1879 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
1880 		else
1881 			priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1882 		// // try another antenna option
1883 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
1884 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
1885 
1886 		#if 0
1887 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
1888 			priv->rx_freq_offset_to_lo_MHz = -10;
1889 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
1890 			priv->rx_freq_offset_to_lo_MHz = 10;
1891 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
1892 			priv->rx_freq_offset_to_lo_MHz = 0;
1893 		} else {
1894 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
1895 		}
1896 		#endif
1897 	} else {
1898 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
1899 		err = -EBADRQC;
1900 		goto err_free_dev;
1901 	}
1902 
1903 	printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att);
1904 
1905 	priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2));
1906 	priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2);
1907 
1908 	priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK;
1909 	priv->ctrl_out.index  =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1);
1910 
1911 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
1912 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
1913 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
1914 	memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val));
1915 
1916 	priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att;
1917 
1918 	//let's by default turn radio on when probing
1919 	err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg);
1920 	if (err) {
1921 		printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err);
1922 		err = -EIO;
1923 		goto err_free_dev;
1924 	}
1925 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
1926 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
1927 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
1928 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
1929 
1930 	reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2));
1931 	if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) {
1932 		priv->rfkill_off = 1;// 0 off, 1 on
1933 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
1934 	} else
1935 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]);
1936 
1937 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
1938 
1939 	// //set ad9361 in certain mode
1940 	#if 0
1941 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
1942 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
1943 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
1944 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
1945 
1946 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1947 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1948 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1949 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1950 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1951 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1952 	#endif
1953 
1954 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
1955 
1956 	SET_IEEE80211_DEV(dev, &pdev->dev);
1957 	platform_set_drvdata(pdev, dev);
1958 
1959 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
1960 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
1961 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
1962 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
1963 
1964 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
1965 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
1966 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
1967 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
1968 
1969 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
1970 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
1971 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
1972 	priv->ampdu_reference = 0;
1973 
1974 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
1975 	priv->band_2GHz.channels = priv->channels_2GHz;
1976 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
1977 	priv->band_2GHz.bitrates = priv->rates_2GHz;
1978 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
1979 	priv->band_2GHz.ht_cap.ht_supported = true;
1980 	// priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
1981 	if (AGGR_ENABLE) {
1982 		priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
1983 		priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
1984 	}
1985 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
1986 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
1987 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1988 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
1989 
1990 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
1991 	priv->band_5GHz.channels = priv->channels_5GHz;
1992 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
1993 	priv->band_5GHz.bitrates = priv->rates_5GHz;
1994 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
1995 	priv->band_5GHz.ht_cap.ht_supported = true;
1996 	// priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue
1997 	if (AGGR_ENABLE) {
1998 		priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
1999 		priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2000 	}
2001 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
2002 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2003 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2004 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2005 
2006 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2007 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2008 
2009 	// ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); // remove this because we don't want: mac80211.h: host buffers frame for PS and we fetch them via ieee80211_get_buffered_bc()
2010 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2011 	ieee80211_hw_set(dev, BEACON_TX_STATUS);//mac80211.h: The device/driver provides TX status for sent beacons.
2012 
2013 	ieee80211_hw_set(dev, REPORTS_TX_ACK_STATUS);//mac80211.h: Hardware can provide ack status reports of Tx frames to the stack
2014 
2015 	// * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device
2016 	// *	autonomously manages the PS status of connected stations. When
2017 	// *	this flag is set mac80211 will not trigger PS mode for connected
2018 	// *	stations based on the PM bit of incoming frames.
2019 	// *	Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure
2020 	// *	the PS mode of connected stations.
2021 	ieee80211_hw_set(dev, AP_LINK_PS);
2022 
2023 	if (AGGR_ENABLE) {
2024 		ieee80211_hw_set(dev, AMPDU_AGGREGATION);
2025 	}
2026 
2027 	dev->extra_tx_headroom = LEN_MPDU_DELIM;
2028 
2029 	dev->vif_data_size = sizeof(struct openwifi_vif);
2030 	dev->wiphy->interface_modes =
2031 			BIT(NL80211_IFTYPE_MONITOR)|
2032 			BIT(NL80211_IFTYPE_P2P_GO) |
2033 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
2034 			BIT(NL80211_IFTYPE_AP) |
2035 			BIT(NL80211_IFTYPE_STATION) |
2036 			BIT(NL80211_IFTYPE_ADHOC) |
2037 			BIT(NL80211_IFTYPE_MESH_POINT) |
2038 			BIT(NL80211_IFTYPE_OCB);
2039 	dev->wiphy->iface_combinations = &openwifi_if_comb;
2040 	dev->wiphy->n_iface_combinations = 1;
2041 
2042 	dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK;
2043 	dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK;
2044 
2045 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2046 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2047 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2048 
2049 	chip_name = "ZYNQ";
2050 
2051 	/* we declare to MAC80211 all the queues except for beacon queue
2052 	 * that will be eventually handled by DRV.
2053 	 * TX rings are arranged in such a way that lower is the IDX,
2054 	 * higher is the priority, in order to achieve direct mapping
2055 	 * with mac80211, however the beacon queue is an exception and it
2056 	 * is mapped on the highst tx ring IDX.
2057 	 */
2058 	dev->queues = MAX_NUM_HW_QUEUE;
2059 	//dev->queues = 1;
2060 
2061 	ieee80211_hw_set(dev, SIGNAL_DBM);
2062 
2063 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2064 
2065 	priv->rf = &ad9361_rf_ops;
2066 
2067 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2068 	priv->slice_idx = 0xFFFFFFFF;
2069 
2070 	sg_init_table(&(priv->tx_sg), 1);
2071 
2072 	get_random_bytes(&rand_val, sizeof(rand_val));
2073     rand_val%=250;
2074 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
2075 	priv->mac_addr[5]=rand_val+1;
2076 	//priv->mac_addr[5]=0x11;
2077 	if (!is_valid_ether_addr(priv->mac_addr)) {
2078 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2079 		eth_random_addr(priv->mac_addr);
2080 	}
2081 	printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2082 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2083 
2084 	spin_lock_init(&priv->lock);
2085 
2086 	err = ieee80211_register_hw(dev);
2087 	if (err) {
2088 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2089 		err = -EIO;
2090 		goto err_free_dev;
2091 	} else {
2092 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2093 	}
2094 
2095 	// // //--------------------hook leds (not complete yet)--------------------------------
2096 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
2097 	// if (!tmp_dev) {
2098 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2099 	// 	err = -ENOMEM;
2100 	// 	goto err_free_dev;
2101 	// }
2102 
2103 	// tmp_pdev = to_platform_device(tmp_dev);
2104 	// if (!tmp_pdev) {
2105 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2106 	// 	err = -ENOMEM;
2107 	// 	goto err_free_dev;
2108 	// }
2109 
2110 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2111 	// if (!tmp_led_priv) {
2112 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2113 	// 	err = -ENOMEM;
2114 	// 	goto err_free_dev;
2115 	// }
2116 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2117 	// if (tmp_led_priv->num_leds!=4){
2118 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2119 	// 	err = -ENOMEM;
2120 	// 	goto err_free_dev;
2121 	// }
2122 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2123 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2124 	// priv->num_led = tmp_led_priv->num_leds;
2125 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2126 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2127 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2128 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2129 
2130 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2131 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2132 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2133 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2134 
2135 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2136 		   priv->mac_addr, chip_name, priv->rf->name);
2137 
2138 	openwifi_rfkill_init(dev);
2139 	return 0;
2140 
2141  err_free_dev:
2142 	ieee80211_free_hw(dev);
2143 
2144 	return err;
2145 }
2146 
2147 static int openwifi_dev_remove(struct platform_device *pdev)
2148 {
2149 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2150 
2151 	if (!dev) {
2152 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2153 		return(-1);
2154 	}
2155 
2156 	openwifi_rfkill_exit(dev);
2157 	ieee80211_unregister_hw(dev);
2158 	ieee80211_free_hw(dev);
2159 	return(0);
2160 }
2161 
2162 static struct platform_driver openwifi_dev_driver = {
2163 	.driver = {
2164 		.name = "sdr,sdr",
2165 		.owner = THIS_MODULE,
2166 		.of_match_table = openwifi_dev_of_ids,
2167 	},
2168 	.probe = openwifi_dev_probe,
2169 	.remove = openwifi_dev_remove,
2170 };
2171 
2172 module_platform_driver(openwifi_dev_driver);
2173