xref: /openwifi/driver/sdr.c (revision 261bb9eef73c3da1bda8d992c145e07cdacfaaac)
1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu
2 // SPDX-FileCopyrightText: 2019 UGent
3 // SPDX-License-Identifier: AGPL-3.0-or-later
4 
5 #include <linux/bitops.h>
6 #include <linux/dmapool.h>
7 #include <linux/io.h>
8 #include <linux/iopoll.h>
9 #include <linux/of_address.h>
10 #include <linux/of_platform.h>
11 #include <linux/of_irq.h>
12 #include <linux/slab.h>
13 #include <linux/clk.h>
14 #include <linux/io-64-nonatomic-lo-hi.h>
15 
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/slab.h>
21 #include <linux/delay.h>
22 #include <linux/etherdevice.h>
23 
24 #include <linux/init.h>
25 #include <linux/kthread.h>
26 #include <linux/module.h>
27 #include <linux/of_dma.h>
28 #include <linux/platform_device.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/wait.h>
32 #include <linux/sched/task.h>
33 #include <linux/dma/xilinx_dma.h>
34 #include <linux/spi/spi.h>
35 #include <net/mac80211.h>
36 
37 #include <linux/clk.h>
38 #include <linux/clkdev.h>
39 #include <linux/clk-provider.h>
40 
41 #include <linux/iio/iio.h>
42 #include <linux/iio/sysfs.h>
43 
44 #include <linux/gpio.h>
45 #include <linux/leds.h>
46 
47 #define IIO_AD9361_USE_PRIVATE_H_
48 #include <../../drivers/iio/adc/ad9361_regs.h>
49 #include <../../drivers/iio/adc/ad9361.h>
50 #include <../../drivers/iio/adc/ad9361_private.h>
51 
52 #include <../../drivers/iio/frequency/cf_axi_dds.h>
53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num);
54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb,
55 			       bool tx1, bool tx2, bool immed);
56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy,
57 				  struct ctrl_outs_control *ctrl);
58 
59 #include "../user_space/sdrctl_src/nl80211_testmode_def.h"
60 #include "hw_def.h"
61 #include "sdr.h"
62 #include "git_rev.h"
63 
64 // driver API of component driver
65 extern struct tx_intf_driver_api *tx_intf_api;
66 extern struct rx_intf_driver_api *rx_intf_api;
67 extern struct openofdm_tx_driver_api *openofdm_tx_api;
68 extern struct openofdm_rx_driver_api *openofdm_rx_api;
69 extern struct xpu_driver_api *xpu_api;
70 
71 static int test_mode = 0; // 0 normal; 1 rx test
72 
73 MODULE_AUTHOR("Xianjun Jiao");
74 MODULE_DESCRIPTION("SDR driver");
75 MODULE_LICENSE("GPL v2");
76 
77 module_param(test_mode, int, 0);
78 MODULE_PARM_DESC(myint, "test_mode. 0 normal; 1 rx test");
79 
80 // ---------------rfkill---------------------------------------
81 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
82 {
83 	int reg;
84 
85 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
86 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
87 	else
88 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
89 
90 	if (reg == AD9361_RADIO_ON_TX_ATT)
91 		return true;// 0 off, 1 on
92 	return false;
93 }
94 
95 void openwifi_rfkill_init(struct ieee80211_hw *hw)
96 {
97 	struct openwifi_priv *priv = hw->priv;
98 
99 	priv->rfkill_off = openwifi_is_radio_enabled(priv);
100 	printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
101 	wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
102 	wiphy_rfkill_start_polling(hw->wiphy);
103 }
104 
105 void openwifi_rfkill_poll(struct ieee80211_hw *hw)
106 {
107 	bool enabled;
108 	struct openwifi_priv *priv = hw->priv;
109 
110 	enabled = openwifi_is_radio_enabled(priv);
111 	// printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
112 	if (unlikely(enabled != priv->rfkill_off)) {
113 		priv->rfkill_off = enabled;
114 		printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
115 		wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
116 	}
117 }
118 
119 void openwifi_rfkill_exit(struct ieee80211_hw *hw)
120 {
121 	printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
122 	wiphy_rfkill_stop_polling(hw->wiphy);
123 }
124 //----------------rfkill end-----------------------------------
125 
126 //static void ad9361_rf_init(void);
127 //static void ad9361_rf_stop(void);
128 //static void ad9361_rf_calc_rssi(void);
129 static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
130 				  struct ieee80211_conf *conf)
131 {
132 	struct openwifi_priv *priv = dev->priv;
133 	u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz + priv->drv_rx_reg_val[DRV_RX_REG_IDX_EXTRA_FO];
134 	u32 actual_tx_lo;
135 	bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
136 	int static_lbt_th, auto_lbt_th, fpga_lbt_th;
137 
138 	if (change_flag) {
139 		priv->actual_rx_lo = actual_rx_lo;
140 
141 		actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
142 
143 		clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) );
144 		clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) );
145 
146 		if (actual_rx_lo<2412) {
147 			priv->rssi_correction = 153;
148 		} else if (actual_rx_lo<=2484) {
149 			priv->rssi_correction = 153;
150 		} else if (actual_rx_lo<5160) {
151 			priv->rssi_correction = 153;
152 		} else if (actual_rx_lo<=5240) {
153 			priv->rssi_correction = 145;
154 		} else if (actual_rx_lo<=5320) {
155 			priv->rssi_correction = 148;
156 		} else {
157 			priv->rssi_correction = 148;
158 		}
159 
160 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm
161 		// xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44
162 		auto_lbt_th = ((priv->rssi_correction-62-16)<<1);
163 		static_lbt_th = priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH];
164 		fpga_lbt_th = (static_lbt_th==0?auto_lbt_th:static_lbt_th);
165 		xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th);
166 
167 		priv->last_auto_fpga_lbt_th = auto_lbt_th;
168 
169 		if (actual_rx_lo < 2500) {
170 			//priv->slot_time = 20; //20 is default slot time in ERP(OFDM)/11g 2.4G; short one is 9.
171 			//xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_2_4GHZ<<16);
172 			if (priv->band != BAND_2_4GHZ) {
173 				priv->band = BAND_2_4GHZ;
174 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
175 			}
176 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2)*10)<<16) | 10 ); // high 16 bits to cover sig valid of ACK packet, low 16 bits is adjustment of fcs valid waiting time.  let's add 2us for those device that is really "slow"!
177 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2+2)*10)<<16) | 10 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
178 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 0 );
179 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((10)*10)<<16);
180 		}
181 		else {
182 			//priv->slot_time = 9; //default slot time of OFDM PHY (OFDM by default means 5GHz)
183 			// xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_5_8GHZ<<16);
184 			if (priv->band != BAND_5_8GHZ) {
185 				priv->band = BAND_5_8GHZ;
186 				xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
187 			}
188 			// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2)*10)<<16) | 10 ); // because 5GHz needs longer SIFS (16 instead of 10), we need 58 instead of 48 for XPU low mac setting.  let's add 2us for those device that is really "slow"!
189 			// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2+2)*10)<<16) | 10 );//add 2us for longer fir.  BUT corrding to FPGA probing test, we do not need this
190 			// //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 60*10 );
191 			// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 50*10 );// for longer fir we need this delay 1us shorter
192 			// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((16)*10)<<16);
193 		}
194 		//printk("%s ad9361_rf_set_channel %dM rssi_correction %d\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction);
195 		// //-- use less
196 		//clk_prepare_enable(priv->ad9361_phy->clks[RX_RFPLL]);
197 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
198 		//ad9361_set_trx_clock_chain_default(priv->ad9361_phy);
199 		//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
200 		printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d (auto %d static %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,auto_lbt_th,static_lbt_th);
201 	}
202 }
203 
204 const struct openwifi_rf_ops ad9361_rf_ops = {
205 	.name		= "ad9361",
206 //	.init		= ad9361_rf_init,
207 //	.stop		= ad9361_rf_stop,
208 	.set_chan	= ad9361_rf_set_channel,
209 //	.calc_rssi	= ad9361_rf_calc_rssi,
210 };
211 
212 u16 reverse16(u16 d) {
213 	union u16_byte2 tmp0, tmp1;
214 	tmp0.a = d;
215 	tmp1.c[0] = tmp0.c[1];
216 	tmp1.c[1] = tmp0.c[0];
217 	return(tmp1.a);
218 }
219 
220 u32 reverse32(u32 d) {
221 	union u32_byte4 tmp0, tmp1;
222 	tmp0.a = d;
223 	tmp1.c[0] = tmp0.c[3];
224 	tmp1.c[1] = tmp0.c[2];
225 	tmp1.c[2] = tmp0.c[1];
226 	tmp1.c[3] = tmp0.c[0];
227 	return(tmp1.a);
228 }
229 
230 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx)
231 {
232 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
233 	int i;
234 
235 	ring->stop_flag = 0;
236 	ring->bd_wr_idx = 0;
237 	ring->bd_rd_idx = 0;
238 	ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
239 	if (ring->bds==NULL) {
240 		printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
241 		return -ENOMEM;
242 	}
243 
244 	for (i = 0; i < NUM_TX_BD; i++) {
245 		ring->bds[i].skb_linked=0; // for tx, skb is from upper layer
246 		//at first right after skb allocated, head, data, tail are the same.
247 		ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine
248 	}
249 
250 	return 0;
251 }
252 
253 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx)
254 {
255 	struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]);
256 	int i;
257 
258 	ring->stop_flag = 0;
259 	ring->bd_wr_idx = 0;
260 	ring->bd_rd_idx = 0;
261 	for (i = 0; i < NUM_TX_BD; i++) {
262 		if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
263 			continue;
264 		if (ring->bds[i].dma_mapping_addr != 0)
265 			dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV);
266 //		if (ring->bds[i].skb_linked!=NULL)
267 //			dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception
268 		if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
269 		     (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
270 			printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str,
271 			ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr));
272 
273 		ring->bds[i].skb_linked=0;
274 		ring->bds[i].dma_mapping_addr = 0;
275 	}
276 	if (ring->bds)
277 		kfree(ring->bds);
278 	ring->bds = NULL;
279 }
280 
281 static int openwifi_init_rx_ring(struct openwifi_priv *priv)
282 {
283 	int i;
284 	u8 *pdata_tmp;
285 
286 	priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
287 	if (!priv->rx_cyclic_buf) {
288 		printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
289 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
290 		return(-1);
291 	}
292 
293 	// Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA
294 	for (i=0; i<NUM_RX_BD; i++) {
295 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning
296 		(*((u32*)(pdata_tmp+0 ))) = 0;
297 		(*((u32*)(pdata_tmp+4 ))) = 0;
298 	}
299 	printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str);
300 
301 	return 0;
302 }
303 
304 static void openwifi_free_rx_ring(struct openwifi_priv *priv)
305 {
306 	if (priv->rx_cyclic_buf)
307 		dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
308 
309 	priv->rx_cyclic_buf_dma_mapping_addr = 0;
310 	priv->rx_cyclic_buf = 0;
311 }
312 
313 static int rx_dma_setup(struct ieee80211_hw *dev){
314 	struct openwifi_priv *priv = dev->priv;
315 	struct dma_device *rx_dev = priv->rx_chan->device;
316 
317 	priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
318 	if (!(priv->rxd)) {
319 		openwifi_free_rx_ring(priv);
320 		printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd));
321 		return(-1);
322 	}
323 	priv->rxd->callback = 0;
324 	priv->rxd->callback_param = 0;
325 
326 	priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
327 
328 	if (dma_submit_error(priv->rx_cookie)) {
329 		printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
330 		return(-1);
331 	}
332 
333 	dma_async_issue_pending(priv->rx_chan);
334 	return(0);
335 }
336 
337 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
338 {
339 	struct ieee80211_hw *dev = dev_id;
340 	struct openwifi_priv *priv = dev->priv;
341 	struct ieee80211_rx_status rx_status = {0};
342 	struct sk_buff *skb;
343 	struct ieee80211_hdr *hdr;
344 	u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di;
345 	bool ht_flag, short_gi, ht_aggr, ht_aggr_last;
346 	// u32 dma_driver_buf_idx_mod;
347 	u8 *pdata_tmp, fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw;
348 	s8 signal;
349 	u16 agc_status_and_pkt_exist_flag, rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0;
350 	bool content_ok = false, len_overflow = false;
351 
352 #ifdef USE_NEW_RX_INTERRUPT
353 	int i;
354 	spin_lock(&priv->lock);
355 	for (i=0; i<NUM_RX_BD; i++) {
356 		pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE;
357 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid
358 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
359 			continue;
360 #else
361 	static u8 target_buf_idx_old = 0;
362 	spin_lock(&priv->lock);
363 	while(1) { // loop all rx buffers that have new rx packets
364 		pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning
365 		agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10)));
366 		if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer
367 			break;
368 #endif
369 
370 		tsft_low =     (*((u32*)(pdata_tmp+0 )));
371 		tsft_high =    (*((u32*)(pdata_tmp+4 )));
372 		rssi_val =     (*((u16*)(pdata_tmp+8 )));
373 		len =          (*((u16*)(pdata_tmp+12)));
374 
375 		len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
376 
377 		rate_idx =     (*((u16*)(pdata_tmp+14)));
378 		ht_flag  =     ((rate_idx&0x10)!=0);
379 		short_gi =     ((rate_idx&0x20)!=0);
380 		ht_aggr  =     (ht_flag & ((rate_idx&0x40)!=0));
381 		ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0));
382 		rate_idx =     (rate_idx&0x1F);
383 
384 		fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
385 
386 		//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
387 		// phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
388 		// dma_driver_buf_idx_mod = (state.residue&0x7f);
389 		fcs_ok = ((fcs_ok&0x80)!=0);
390 
391 		if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) {
392 			// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
393 			// 	printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
394 			// }
395 			content_ok = true;
396 		} else {
397 			printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str);
398 			content_ok = false;
399 		}
400 
401 		rssi_val = (rssi_val>>1);
402 		if ( (rssi_val+128)<priv->rssi_correction )
403 			signal = -128;
404 		else
405 			signal = rssi_val - priv->rssi_correction;
406 
407 		// fc_di =        (*((u32*)(pdata_tmp+16)));
408 		// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
409 		// addr1_low32  = (*((u32*)(pdata_tmp+16+4+2)));
410 		// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
411 		// addr2_low32  = (*((u32*)(pdata_tmp+16+6+4+2)));
412 		// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
413 		// addr3_low32  = (*((u32*)(pdata_tmp+16+12+4+2)));
414 		if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) {
415 			hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
416 			addr1_low32  = *((u32*)(hdr->addr1+2));
417 			addr1_high16 = *((u16*)(hdr->addr1));
418 			if (len>=20) {
419 				addr2_low32  = *((u32*)(hdr->addr2+2));
420 				addr2_high16 = *((u16*)(hdr->addr2));
421 			}
422 			if (len>=26) {
423 				addr3_low32  = *((u32*)(hdr->addr3+2));
424 				addr3_high16 = *((u16*)(hdr->addr3));
425 			}
426 			if (len>=28)
427 				sc = hdr->seq_ctrl;
428 
429 			if ( (addr1_low32!=0xffffffff || addr1_high16!=0xffff) || (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&4) )
430 				printk("%s openwifi_rx_interrupt:%4dbytes ht%d aggr%d/%d sgi%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str,
431 					len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id,
432 					reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
433 #ifdef USE_NEW_RX_INTERRUPT
434 					sc, fcs_ok, i, signal);
435 #else
436 					sc, fcs_ok, target_buf_idx_old, signal);
437 #endif
438 		}
439 
440 		// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
441 		if (content_ok) {
442 			skb = dev_alloc_skb(len);
443 			if (skb) {
444 				skb_put_data(skb,pdata_tmp+16,len);
445 
446 				rx_status.antenna = 0;
447 				// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
448 				rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
449 				rx_status.signal = signal;
450 				rx_status.freq = dev->conf.chandef.chan->center_freq;
451 				rx_status.band = dev->conf.chandef.chan->band;
452 				rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
453 				rx_status.flag |= RX_FLAG_MACTIME_START;
454 				if (!fcs_ok)
455 					rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
456 				if (rate_idx <= 15)
457 					rx_status.encoding = RX_ENC_LEGACY;
458 				else
459 					rx_status.encoding = RX_ENC_HT;
460 				rx_status.bw = RATE_INFO_BW_20;
461 				if (short_gi)
462 					rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI;
463 				if(ht_aggr)
464 				{
465 					rx_status.ampdu_reference = priv->ampdu_reference;
466 					rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
467 					if (ht_aggr_last)
468 						rx_status.flag |= RX_FLAG_AMPDU_IS_LAST;
469 				}
470 
471 				memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
472 				ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
473 			} else
474 				printk("%s openwifi_rx_interrupt: WARNING dev_alloc_skb failed!\n", sdr_compatible_str);
475 
476 			if(ht_aggr_last)
477 				priv->ampdu_reference++;
478 		}
479 		(*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed
480 		loop_count++;
481 #ifndef USE_NEW_RX_INTERRUPT
482 		target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1));
483 #endif
484 	}
485 
486 	if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) )
487 		printk("%s openwifi_rx_interrupt: WARNING loop_count %d\n", sdr_compatible_str,loop_count);
488 
489 // openwifi_rx_interrupt_out:
490 	spin_unlock(&priv->lock);
491 	return IRQ_HANDLED;
492 }
493 
494 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
495 {
496 	struct ieee80211_hw *dev = dev_id;
497 	struct openwifi_priv *priv = dev->priv;
498 	struct openwifi_ring *ring;
499 	struct sk_buff *skb;
500 	struct ieee80211_tx_info *info;
501 	u32 reg_val, hw_queue_len, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0;//, i;
502 	u8 tx_result_report;
503 	// u16 prio_rd_idx_store[64]={0};
504 
505 	spin_lock(&priv->lock);
506 
507 	while(1) { // loop all packets that have been sent by FPGA
508 		reg_val = tx_intf_api->TX_INTF_REG_PKT_INFO_read();
509 		if (reg_val!=0xFFFFFFFF) {
510 			prio = ((0x7FFFF & reg_val)>>(5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
511 			cw = ((0xF0000000 & reg_val) >> 28);
512 			num_slot_random = ((0xFF80000 &reg_val)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE));
513 			if(cw > 10) {
514 				cw = 10 ;
515 				num_slot_random += 512 ;
516 			}
517 
518 			ring = &(priv->tx_ring[prio]);
519 			ring->bd_rd_idx = ((reg_val>>5)&MAX_PHY_TX_SN);
520 			skb = ring->bds[ring->bd_rd_idx].skb_linked;
521 
522 			dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr,
523 					skb->len, DMA_MEM_TO_DEV);
524 
525 			if ( ring->stop_flag == 1) {
526 				// Wake up Linux queue if FPGA and driver ring have room
527 				queue_idx = ((reg_val>>(5+NUM_BIT_MAX_PHY_TX_SN))&(MAX_NUM_HW_QUEUE-1));
528 				dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
529 				hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
530 
531 				// printk("%s openwifi_tx_interrupt: WARNING loop %d prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d call %d\n", sdr_compatible_str,
532 				// loop_count, prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx, priv->call_counter);
533 
534 				if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) {
535 					// printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter);
536 					printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str,
537 					prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, ring->bd_rd_idx);
538 					ieee80211_wake_queue(dev, prio);
539 					ring->stop_flag = 0;
540 				}
541 			}
542 
543 			if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) ) {
544 				printk("%s openwifi_tx_interrupt: WARNING %08x %08x %08x %08x\n", sdr_compatible_str, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
545 				continue;
546 			}
547 
548 			skb_pull(skb, LEN_PHY_HEADER);
549 			//skb_trim(skb, num_byte_pad_skb);
550 			info = IEEE80211_SKB_CB(skb);
551 			ieee80211_tx_info_clear_status(info);
552 
553 			tx_result_report = (reg_val&0x1F);
554 			if ( !(info->flags & IEEE80211_TX_CTL_NO_ACK) ) {
555 				if ((tx_result_report&0x10)==0)
556 					info->flags |= IEEE80211_TX_STAT_ACK;
557 
558 				// printk("%s openwifi_tx_interrupt: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
559 				// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
560 				// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
561 				// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
562 				// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
563 			}
564 
565 			info->status.rates[0].count = (tx_result_report&0xF) + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
566 			info->status.rates[1].idx = -1;
567 			info->status.rates[2].idx = -1;
568 			info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES	4
569 
570 			if ( (tx_result_report&0x10) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
571 				printk("%s openwifi_tx_interrupt: WARNING tx_result %02x prio%d wr%d rd%d\n", sdr_compatible_str, tx_result_report, prio, ring->bd_wr_idx, ring->bd_rd_idx);
572 			if ( ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK))||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) )
573 				printk("%s openwifi_tx_interrupt: tx_result %02x prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, tx_result_report, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random,cw);
574 
575 			ieee80211_tx_status_irqsafe(dev, skb);
576 
577 			loop_count++;
578 
579 			// printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx);
580 
581 		} else
582 			break;
583 	}
584 	if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) )
585 		printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count);
586 
587 	spin_unlock(&priv->lock);
588 	return IRQ_HANDLED;
589 }
590 
591 u32 gen_parity(u32 v){
592 	v ^= v >> 1;
593 	v ^= v >> 2;
594 	v = (v & 0x11111111U) * 0x11111111U;
595 	return (v >> 28) & 1;
596 }
597 
598 u8 gen_ht_sig_crc(u64 m)
599 {
600 	u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, ht_sig_crc;
601 
602 	for (i = 0; i < 34; i++)
603 	{
604 		temp = c[7] ^ ((m >> i) & 0x01);
605 
606 		c[7] = c[6];
607 		c[6] = c[5];
608 		c[5] = c[4];
609 		c[4] = c[3];
610 		c[3] = c[2];
611 		c[2] = c[1] ^ temp;
612 		c[1] = c[0] ^ temp;
613 		c[0] = temp;
614 	}
615 	ht_sig_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7);
616 
617 	return ht_sig_crc;
618 }
619 
620 u32 calc_phy_header(u8 rate_hw_value, bool use_ht_rate, bool use_short_gi, u32 len, u8 *bytes){
621 	//u32 signal_word = 0 ;
622 	u8  SIG_RATE = 0, HT_SIG_RATE;
623 	u8	len_2to0, len_10to3, len_msb,b0,b1,b2, header_parity ;
624 	u32 l_len, ht_len, ht_sig1, ht_sig2;
625 
626 	// printk("rate_hw_value=%u\tuse_ht_rate=%u\tuse_short_gi=%u\tlen=%u\n", rate_hw_value, use_ht_rate, use_short_gi, len);
627 
628 	// HT-mixed mode ht signal
629 
630 	if(use_ht_rate)
631 	{
632 		SIG_RATE = wifi_mcs_table_11b_force_up[4];
633 		HT_SIG_RATE = rate_hw_value;
634 		l_len  = 24 * len / wifi_n_dbps_ht_table[rate_hw_value];
635 		ht_len = len;
636 	}
637 	else
638 	{
639 		// rate_hw_value = (rate_hw_value<=4?0:(rate_hw_value-4));
640 		// SIG_RATE = wifi_mcs_table_phy_tx[rate_hw_value];
641 		SIG_RATE = wifi_mcs_table_11b_force_up[rate_hw_value];
642 		l_len = len;
643 	}
644 
645 	len_2to0 = l_len & 0x07 ;
646 	len_10to3 = (l_len >> 3 ) & 0xFF ;
647 	len_msb = (l_len >> 11) & 0x01 ;
648 
649 	b0=SIG_RATE | (len_2to0 << 5) ;
650 	b1 = len_10to3 ;
651 	header_parity = gen_parity((len_msb << 16)| (b1<<8) | b0) ;
652 	b2 = ( len_msb | (header_parity << 1) ) ;
653 
654 	memset(bytes,0,16);
655 	bytes[0] = b0 ;
656 	bytes[1] = b1 ;
657     bytes[2] = b2;
658 
659 	// HT-mixed mode signal
660 	if(use_ht_rate)
661 	{
662 		ht_sig1 = (HT_SIG_RATE & 0x7F) | ((ht_len << 8) & 0xFFFF00);
663 		ht_sig2 = 0x04 | (use_short_gi << 7);
664 		ht_sig2 = ht_sig2 | (gen_ht_sig_crc(ht_sig1 | ht_sig2 << 24) << 10);
665 
666 	    bytes[3]  = 1;
667 	    bytes[8]  = (ht_sig1 & 0xFF);
668 	    bytes[9]  = (ht_sig1 >> 8)  & 0xFF;
669 	    bytes[10] = (ht_sig1 >> 16) & 0xFF;
670 	    bytes[11] = (ht_sig2 & 0xFF);
671 	    bytes[12] = (ht_sig2 >> 8)  & 0xFF;
672 	    bytes[13] = (ht_sig2 >> 16) & 0xFF;
673 
674 		return(HT_SIG_RATE);
675 	}
676 	else
677 	{
678 		//signal_word = b0+(b1<<8)+(b2<<16) ;
679 		//return signal_word;
680 		return(SIG_RATE);
681 	}
682 }
683 
684 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
685 			cdev_to_gpio_led_data(struct led_classdev *led_cdev)
686 {
687 	return container_of(led_cdev, struct gpio_led_data, cdev);
688 }
689 
690 static void openwifi_tx(struct ieee80211_hw *dev,
691 		       struct ieee80211_tx_control *control,
692 		       struct sk_buff *skb)
693 {
694 	struct openwifi_priv *priv = dev->priv;
695 	unsigned long flags;
696 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
697 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
698 	struct openwifi_ring *ring;
699 	dma_addr_t dma_mapping_addr;
700 	unsigned int prio, i;
701 	u32 num_dma_symbol, len_mac_pdu, num_dma_byte, len_phy_packet, num_byte_pad;
702 	u32 rate_signal_value,rate_hw_value,ack_flag;
703 	u32 pkt_need_ack, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, dma_reg, cts_reg;//, openofdm_state_history;
704 	u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value = 0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration;
705 	u8 fc_flag,fc_type,fc_subtype,retry_limit_raw,*dma_buf,retry_limit_hw_value,rc_flags;
706 	bool use_rts_cts, use_cts_protect, use_ht_rate=false, use_short_gi, addr_flag, cts_use_traffic_rate=false, force_use_cts_protect=false;
707 	__le16 frame_control,duration_id;
708 	u32 dma_fifo_no_room_flag, hw_queue_len;
709 	enum dma_status status;
710 	// static bool led_status=0;
711 	// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
712 
713 	// if ( (priv->phy_tx_sn&7) ==0 ) {
714 	// 	openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
715 	// 	if (openofdm_state_history!=openofdm_state_history_old){
716 	// 		led_status = (~led_status);
717 	// 		openofdm_state_history_old = openofdm_state_history;
718 	// 		gpiod_set_value(led_dat->gpiod, led_status);
719 	// 	}
720 	// }
721 
722 	if (test_mode==1){
723 		printk("%s openwifi_tx: WARNING test_mode==1\n", sdr_compatible_str);
724 		goto openwifi_tx_early_out;
725 	}
726 
727 	if (skb->data_len>0) {// more data are not in linear data area skb->data
728 		printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str);
729 		goto openwifi_tx_early_out;
730 	}
731 
732 	len_mac_pdu = skb->len;
733 	len_phy_packet = len_mac_pdu + LEN_PHY_HEADER;
734 	num_dma_symbol = (len_phy_packet>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_phy_packet&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
735 
736 	// get Linux priority/queue setting info and target mac address
737 	prio = skb_get_queue_mapping(skb);
738 	addr1_low32  = *((u32*)(hdr->addr1+2));
739 	ring = &(priv->tx_ring[prio]);
740 
741 	// -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" -----------
742 	if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config
743 		queue_idx = prio;
744 	} else {// customized prio to queue_idx mapping
745 		//if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only
746 		// check current packet belonging to which slice/hw-queue
747 			for (i=0; i<MAX_NUM_HW_QUEUE; i++) {
748 				if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
749 					break;
750 				}
751 			}
752 		//}
753 		queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest.
754 	}
755 	// -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------
756 
757 	// check whether the packet is bigger than DMA buffer size
758 	num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
759 	if (num_dma_byte > TX_BD_BUF_SIZE) {
760 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING num_dma_byte > TX_BD_BUF_SIZE\n");
761 		printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx);
762 		goto openwifi_tx_early_out;
763 	}
764 	num_byte_pad = num_dma_byte-len_phy_packet;
765 
766 	// get other info from packet header
767 	addr1_high16 = *((u16*)(hdr->addr1));
768 	if (len_mac_pdu>=20) {
769 		addr2_low32  = *((u32*)(hdr->addr2+2));
770 		addr2_high16 = *((u16*)(hdr->addr2));
771 	}
772 	if (len_mac_pdu>=26) {
773 		addr3_low32  = *((u32*)(hdr->addr3+2));
774 		addr3_high16 = *((u16*)(hdr->addr3));
775 	}
776 
777 	duration_id = hdr->duration_id;
778 	frame_control=hdr->frame_control;
779 	ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK);
780 	fc_type = ((frame_control)>>2)&3;
781 	fc_subtype = ((frame_control)>>4)&0xf;
782 	fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) );
783 	//if it is broadcasting or multicasting addr
784 	addr_flag = ( (addr1_low32==0 && addr1_high16==0) ||
785 	              (addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) ||
786 				  (addr1_high16==0x3333) ||
787 				  (addr1_high16==0x0001 && hdr->addr1[2]==0x5E)  );
788 	if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame
789 		pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent
790 	} else {
791 		pkt_need_ack = 0;
792 	}
793 
794 	// get Linux rate (MCS) setting
795 	rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
796 	//rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
797 	if (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0 && fc_type==2 && (!addr_flag)) //rate override command
798 		rate_hw_value = priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE];
799 
800 	retry_limit_raw = info->control.rates[0].count;
801 
802 	rc_flags = info->control.rates[0].flags;
803 	use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
804 	use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
805 	use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0);
806 	use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0);
807 
808 	if (use_rts_cts)
809 		printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx);
810 
811 	if (use_cts_protect) {
812 		cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
813 		cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mac_pdu,info));
814 	} else if (force_use_cts_protect) { // could override mac80211 setting here.
815 		cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
816 		sifs = (priv->actual_rx_lo<2500?10:16);
817 		if (pkt_need_ack)
818 			ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
819 		traffic_pkt_duration = 20 + 4*(((22+len_mac_pdu*8)/wifi_n_dbps_table[rate_hw_value])+1);
820 		cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
821 	}
822 
823 // this is 11b stuff
824 //	if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
825 //		printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
826 
827 	if (len_mac_pdu>=28) {
828 		if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
829 			if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
830 				priv->seqno += 0x10;
831 			hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
832 			hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
833 		}
834 		sc = hdr->seq_ctrl;
835 	}
836 
837 	if ( ( (!addr_flag)||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) )
838 		printk("%s openwifi_tx: %4dbytes ht%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str,
839 			len_mac_pdu, (use_ht_rate == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id,
840 			reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
841 			sc, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx,
842 			// use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
843 			ring->bd_wr_idx,ring->bd_rd_idx);
844 
845 		// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
846 		// 	info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
847 		// 	info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
848 		// 	info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
849 		// 	info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
850 
851 	// -----------end of preprocess some info from header and skb----------------
852 
853 	// /* HW will perform RTS-CTS when only RTS flags is set.
854 	//  * HW will perform CTS-to-self when both RTS and CTS flags are set.
855 	//  * RTS rate and RTS duration will be used also for CTS-to-self.
856 	//  */
857 	// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
858 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
859 	// 	rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
860 	// 					len_mac_pdu, info);
861 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
862 	// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
863 	// 	tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
864 	// 	rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
865 	// 					len_mac_pdu, info);
866 	// 	printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
867 	// }
868 
869 	// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
870 	if (skb_headroom(skb)<LEN_PHY_HEADER) {
871 		struct sk_buff *skb_new; // in case original skb headroom is not enough to host phy header needed by FPGA IP core
872 		printk("%s openwifi_tx: WARNING sn %d skb_headroom(skb)<LEN_PHY_HEADER\n", sdr_compatible_str, ring->bd_wr_idx);
873 		if ((skb_new = skb_realloc_headroom(skb, LEN_PHY_HEADER)) == NULL) {
874 			printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx);
875 			goto openwifi_tx_early_out;
876 		}
877 		if (skb->sk != NULL)
878 			skb_set_owner_w(skb_new, skb->sk);
879 		dev_kfree_skb(skb);
880 		skb = skb_new;
881 	}
882 
883 	skb_push( skb, LEN_PHY_HEADER );
884 	rate_signal_value = calc_phy_header(rate_hw_value, use_ht_rate, use_short_gi, len_mac_pdu+LEN_PHY_CRC, skb->data); //fill the phy header
885 
886 	//make sure dma length is integer times of DDC_NUM_BYTE_PER_DMA_SYMBOL
887 	if (skb_tailroom(skb)<num_byte_pad) {
888 		printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str, ring->bd_wr_idx);
889 		// skb_pull(skb, LEN_PHY_HEADER);
890 		goto openwifi_tx_early_out;
891 	}
892 	skb_put( skb, num_byte_pad );
893 
894 	retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) );
895 	dma_buf = skb->data;
896 
897 	cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
898 	cts_reg = (((use_cts_protect|force_use_cts_protect)<<31)|(cts_use_traffic_rate<<30)|(cts_duration<<8)|(cts_rate_signal_value<<4)|rate_signal_value);
899 	dma_reg = ( (( ((prio<<(NUM_BIT_MAX_NUM_HW_QUEUE+NUM_BIT_MAX_PHY_TX_SN))|(ring->bd_wr_idx<<NUM_BIT_MAX_NUM_HW_QUEUE)|queue_idx) )<<18)|(retry_limit_hw_value<<14)|(pkt_need_ack<<13)|num_dma_symbol );
900 
901 	/* We must be sure that tx_flags is written last because the HW
902 	 * looks at it to check if the rest of data is valid or not
903 	 */
904 	//wmb();
905 	// entry->flags = cpu_to_le32(tx_flags);
906 	/* We must be sure this has been written before following HW
907 	 * register write, because this write will make the HW attempts
908 	 * to DMA the just-written data
909 	 */
910 	//wmb();
911 
912 	spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt
913 
914 	// -------------check whether FPGA dma fifo and queue (queue_idx) has enough room-------------
915 	dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read();
916 	hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read();
917 	if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD)  || ring->stop_flag==1 ) {
918 		ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read
919 		printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str,
920 		prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx);
921 		ring->stop_flag = 1;
922 		goto openwifi_tx_early_out_after_lock;
923 	}
924 	// --------end of check whether FPGA fifo (queue_idx) has enough room------------
925 
926 	status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL);
927 	if (status!=DMA_COMPLETE) {
928 		printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str);
929 		goto openwifi_tx_early_out_after_lock;
930 	}
931 
932 	if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) ) {
933 		printk("%s openwifi_tx: WARNING 1 %d %08x %08x %08x %08x\n", sdr_compatible_str, num_byte_pad, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
934 		goto openwifi_tx_early_out_after_lock;
935 	}
936 
937 //-------------------------fire skb DMA to hardware----------------------------------
938 	dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
939 				 num_dma_byte, DMA_MEM_TO_DEV);
940 
941 	if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
942 		// dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n");
943 		printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx);
944 		goto openwifi_tx_early_out_after_lock;
945 	}
946 
947 	sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start
948 	sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
949 	sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
950 
951 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
952 	tx_intf_api->TX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(dma_reg);
953 	priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
954 	if (!(priv->txd)) {
955 		printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd));
956 		goto openwifi_tx_after_dma_mapping;
957 	}
958 
959 	priv->tx_cookie = priv->txd->tx_submit(priv->txd);
960 
961 	if (dma_submit_error(priv->tx_cookie)) {
962 		printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie));
963 		goto openwifi_tx_after_dma_mapping;
964 	}
965 
966 	// seems everything is ok. let's mark this pkt in bd descriptor ring
967 	ring->bds[ring->bd_wr_idx].skb_linked = skb;
968 	ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
969 
970 	ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
971 
972 	dma_async_issue_pending(priv->tx_chan);
973 
974 	if ( (*(u32*)(&(skb->data[4]))) || ((*(u32*)(&(skb->data[12])))&0xFFFF0000) )
975 		printk("%s openwifi_tx: WARNING 2 %08x %08x %08x %08x\n", sdr_compatible_str, *(u32*)(&(skb->data[12])), *(u32*)(&(skb->data[8])), *(u32*)(&(skb->data[4])), *(u32*)(&(skb->data[0])));
976 
977 	spin_unlock_irqrestore(&priv->lock, flags);
978 
979 	return;
980 
981 openwifi_tx_after_dma_mapping:
982 	dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
983 
984 openwifi_tx_early_out_after_lock:
985 	// skb_pull(skb, LEN_PHY_HEADER);
986 	dev_kfree_skb(skb);
987 	spin_unlock_irqrestore(&priv->lock, flags);
988 	// printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
989 	return;
990 
991 openwifi_tx_early_out:
992 	dev_kfree_skb(skb);
993 	// printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
994 }
995 
996 static int openwifi_start(struct ieee80211_hw *dev)
997 {
998 	struct openwifi_priv *priv = dev->priv;
999 	int ret, i, rssi_half_db_offset, agc_gain_delay;//rssi_half_db_th,
1000 	u32 reg;
1001 
1002 	for (i=0; i<MAX_NUM_VIF; i++) {
1003 		priv->vif[i] = NULL;
1004 	}
1005 
1006 	memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val));
1007 	memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val));
1008 	memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val));
1009 	priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;
1010 
1011 	//turn on radio
1012 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
1013 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
1014 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1015 	} else {
1016 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
1017 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1018 	}
1019 	if (reg == AD9361_RADIO_ON_TX_ATT) {
1020 		priv->rfkill_off = 1;// 0 off, 1 on
1021 		printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
1022 	}
1023 	else
1024 		printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
1025 
1026 	if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
1027 		priv->ctrl_out.index=0x16;
1028 	else
1029 		priv->ctrl_out.index=0x17;
1030 
1031 	ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
1032 	if (ret < 0) {
1033 		printk("%s openwifi_start: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, ret);
1034 	} else {
1035 		printk("%s openwifi_start: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
1036 	}
1037 
1038 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1039 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1040 
1041 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
1042 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
1043 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
1044 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
1045 	xpu_api->hw_init(priv->xpu_cfg);
1046 
1047 	agc_gain_delay = 50; //samples
1048 	rssi_half_db_offset = 150; // to be consistent
1049 	xpu_api->XPU_REG_RSSI_DB_CFG_write(0x80000000|((rssi_half_db_offset<<16)|agc_gain_delay) );
1050 	xpu_api->XPU_REG_RSSI_DB_CFG_write((~0x80000000)&((rssi_half_db_offset<<16)|agc_gain_delay) );
1051 
1052 	openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write(0);
1053 	// rssi_half_db_th = 87<<1; // -62dBm // will setup in runtime in _rf_set_channel
1054 	// xpu_api->XPU_REG_LBT_TH_write(rssi_half_db_th); // set IQ rssi th step .5dB to xxx and enable it
1055 	xpu_api->XPU_REG_FORCE_IDLE_MISC_write(75); //control the duration to force ch_idle after decoding a packet due to imperfection of agc and signals
1056 
1057 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((40)<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz (Attention, current tx core has around 1.19us starting delay that makes the ack fall behind 10us SIFS in 2.4GHz! Need to improve TX in 2.4GHz!)
1058 	//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51)<<16)|0 );//now our tx send out I/Q immediately
1059 	xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((51+23)<<16)|(0+23) );//we have more time when we use FIR in AD9361
1060 
1061 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP0_write( (1<<31) | (((45+2+2)*10 + 15)<<16) | 10 );//2.4GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1062 	xpu_api->XPU_REG_RECV_ACK_COUNT_TOP1_write( (1<<31) | (((51+2+2)*10 + 15)<<16) | 10 );//5GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
1063 
1064 	tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write( ((16*10)<<16)|(10*10) );//high 16bit 5GHz; low 16 bit 2.4GHz. counter speed 10MHz is assumed
1065 
1066 	// //xpu_api->XPU_REG_BB_RF_DELAY_write(51); // fine tuned value at 0.005us. old: dac-->ant port: 0.6us, 57 taps fir at 40MHz: 1.425us; round trip: 2*(0.6+1.425)=4.05us; 4.05*10=41
1067 	// xpu_api->XPU_REG_BB_RF_DELAY_write(47);//add .5us for slightly longer fir -- already in xpu.c
1068 	xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
1069 
1070 	// setup time schedule of 4 slices
1071 	// slice 0
1072 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write(50000-1); // total 50ms
1073 	xpu_api->XPU_REG_SLICE_COUNT_START_write(0); //start 0ms
1074 	xpu_api->XPU_REG_SLICE_COUNT_END_write(50000-1); //end 50ms
1075 
1076 	// slice 1
1077 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((1<<20)|(50000-1)); // total 50ms
1078 	xpu_api->XPU_REG_SLICE_COUNT_START_write((1<<20)|(0)); //start 0ms
1079 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(20000-1)); //end 20ms
1080 	xpu_api->XPU_REG_SLICE_COUNT_END_write((1<<20)|(50000-1)); //end 20ms
1081 
1082 	// slice 2
1083 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((2<<20)|(50000-1)); // total 50ms
1084 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(20000)); //start 20ms
1085 	xpu_api->XPU_REG_SLICE_COUNT_START_write((2<<20)|(0)); //start 20ms
1086 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(40000-1)); //end 20ms
1087 	xpu_api->XPU_REG_SLICE_COUNT_END_write((2<<20)|(50000-1)); //end 20ms
1088 
1089 	// slice 3
1090 	xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((3<<20)|(50000-1)); // total 50ms
1091 	//xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(40000)); //start 40ms
1092 	xpu_api->XPU_REG_SLICE_COUNT_START_write((3<<20)|(0)); //start 40ms
1093 	//xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1094 	xpu_api->XPU_REG_SLICE_COUNT_END_write((3<<20)|(50000-1)); //end 20ms
1095 
1096 	// all slice sync rest
1097 	xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1098 	xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1099 
1100 	//xpu_api->XPU_REG_MAC_ADDR_HIGH_write( (*( (u16*)(priv->mac_addr + 4) )) );
1101 	printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
1102 	printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
1103 
1104 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1105 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
1106 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1107 
1108 	if (test_mode==1) {
1109 		printk("%s openwifi_start: test_mode==1\n",sdr_compatible_str);
1110 		goto normal_out;
1111 	}
1112 
1113 	priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
1114 	if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) {
1115 		ret = PTR_ERR(priv->rx_chan);
1116 		pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan);
1117 		goto err_dma;
1118 	}
1119 
1120 	priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
1121 	if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) {
1122 		ret = PTR_ERR(priv->tx_chan);
1123 		pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan);
1124 		goto err_dma;
1125 	}
1126 	printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan);
1127 
1128 	ret = openwifi_init_rx_ring(priv);
1129 	if (ret) {
1130 		printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
1131 		goto err_free_rings;
1132 	}
1133 
1134 	priv->seqno=0;
1135 	for (i=0; i<MAX_NUM_SW_QUEUE; i++) {
1136 		if ((ret = openwifi_init_tx_ring(priv, i))) {
1137 			printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret);
1138 			goto err_free_rings;
1139 		}
1140 	}
1141 
1142 	if ( (ret = rx_dma_setup(dev)) ) {
1143 		printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
1144 		goto err_free_rings;
1145 	}
1146 
1147 	priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
1148 	ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
1149 			IRQF_SHARED, "sdr,rx_pkt_intr", dev);
1150 	if (ret) {
1151 		wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
1152 		goto err_free_rings;
1153 	} else {
1154 		printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
1155 	}
1156 
1157 	priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
1158 	ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
1159 			IRQF_SHARED, "sdr,tx_itrpt", dev);
1160 	if (ret) {
1161 		wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
1162 		goto err_free_rings;
1163 	} else {
1164 		printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
1165 	}
1166 
1167 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
1168 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt
1169 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
1170 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
1171 
1172 	//ieee80211_wake_queue(dev, 0);
1173 
1174 normal_out:
1175 	printk("%s openwifi_start: normal end\n", sdr_compatible_str);
1176 	return 0;
1177 
1178 err_free_rings:
1179 	openwifi_free_rx_ring(priv);
1180 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1181 		openwifi_free_tx_ring(priv, i);
1182 
1183 err_dma:
1184 	ret = -1;
1185 	printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
1186 	return ret;
1187 }
1188 
1189 static void openwifi_stop(struct ieee80211_hw *dev)
1190 {
1191 	struct openwifi_priv *priv = dev->priv;
1192 	u32 reg, reg1;
1193 	int i;
1194 
1195 	if (test_mode==1){
1196 		pr_info("%s openwifi_stop: test_mode==1\n", sdr_compatible_str);
1197 		goto normal_out;
1198 	}
1199 
1200 	//turn off radio
1201 	#if 1
1202 	ad9361_tx_mute(priv->ad9361_phy, 1);
1203 	reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
1204 	reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
1205 	if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
1206 		priv->rfkill_off = 0;// 0 off, 1 on
1207 		printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
1208 	}
1209 	else
1210 		printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
1211 	#endif
1212 
1213 	//ieee80211_stop_queue(dev, 0);
1214 
1215 	tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt
1216 	rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
1217 	rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
1218 
1219 	for (i=0; i<MAX_NUM_VIF; i++) {
1220 		priv->vif[i] = NULL;
1221 	}
1222 
1223 	openwifi_free_rx_ring(priv);
1224 	for (i=0; i<MAX_NUM_SW_QUEUE; i++)
1225 		openwifi_free_tx_ring(priv, i);
1226 
1227 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
1228 	dmaengine_terminate_all(priv->rx_chan);
1229 	dma_release_channel(priv->rx_chan);
1230 	pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
1231 	dmaengine_terminate_all(priv->tx_chan);
1232 	dma_release_channel(priv->tx_chan);
1233 
1234 	//priv->rf->stop(dev);
1235 
1236 	free_irq(priv->irq_rx, dev);
1237 	free_irq(priv->irq_tx, dev);
1238 
1239 normal_out:
1240 	printk("%s openwifi_stop\n", sdr_compatible_str);
1241 }
1242 
1243 static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
1244 			   struct ieee80211_vif *vif)
1245 {
1246 	u32 tsft_low, tsft_high;
1247 
1248 	tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
1249 	tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
1250 	//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1251 	return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
1252 }
1253 
1254 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
1255 {
1256 	u32 tsft_high = ((tsf >> 32)&0xffffffff);
1257 	u32 tsft_low  = (tsf&0xffffffff);
1258 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1259 	printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1260 }
1261 
1262 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
1263 {
1264 	xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
1265 	printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
1266 }
1267 
1268 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
1269 {
1270 	printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
1271 	return(0);
1272 }
1273 
1274 static void openwifi_beacon_work(struct work_struct *work)
1275 {
1276 	struct openwifi_vif *vif_priv =
1277 		container_of(work, struct openwifi_vif, beacon_work.work);
1278 	struct ieee80211_vif *vif =
1279 		container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
1280 	struct ieee80211_hw *dev = vif_priv->dev;
1281 	struct ieee80211_mgmt *mgmt;
1282 	struct sk_buff *skb;
1283 
1284 	/* don't overflow the tx ring */
1285 	if (ieee80211_queue_stopped(dev, 0))
1286 		goto resched;
1287 
1288 	/* grab a fresh beacon */
1289 	skb = ieee80211_beacon_get(dev, vif);
1290 	if (!skb)
1291 		goto resched;
1292 
1293 	/*
1294 	 * update beacon timestamp w/ TSF value
1295 	 * TODO: make hardware update beacon timestamp
1296 	 */
1297 	mgmt = (struct ieee80211_mgmt *)skb->data;
1298 	mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
1299 
1300 	/* TODO: use actual beacon queue */
1301 	skb_set_queue_mapping(skb, 0);
1302 	openwifi_tx(dev, NULL, skb);
1303 
1304 resched:
1305 	/*
1306 	 * schedule next beacon
1307 	 * TODO: use hardware support for beacon timing
1308 	 */
1309 	schedule_delayed_work(&vif_priv->beacon_work,
1310 			usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
1311 }
1312 
1313 static int openwifi_add_interface(struct ieee80211_hw *dev,
1314 				 struct ieee80211_vif *vif)
1315 {
1316 	int i;
1317 	struct openwifi_priv *priv = dev->priv;
1318 	struct openwifi_vif *vif_priv;
1319 
1320 	switch (vif->type) {
1321 	case NL80211_IFTYPE_AP:
1322 	case NL80211_IFTYPE_STATION:
1323 	case NL80211_IFTYPE_ADHOC:
1324 	case NL80211_IFTYPE_MONITOR:
1325 	case NL80211_IFTYPE_MESH_POINT:
1326 		break;
1327 	default:
1328 		return -EOPNOTSUPP;
1329 	}
1330 	// let's support more than 1 interface
1331 	for (i=0; i<MAX_NUM_VIF; i++) {
1332 		if (priv->vif[i] == NULL)
1333 			break;
1334 	}
1335 
1336 	printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
1337 
1338 	if (i==MAX_NUM_VIF)
1339 		return -EBUSY;
1340 
1341 	priv->vif[i] = vif;
1342 
1343 	/* Initialize driver private area */
1344 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1345 	vif_priv->idx = i;
1346 
1347 	vif_priv->dev = dev;
1348 	INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
1349 	vif_priv->enable_beacon = false;
1350 
1351 	printk("%s openwifi_add_interface end with vif idx %d\n", sdr_compatible_str,vif_priv->idx);
1352 
1353 	return 0;
1354 }
1355 
1356 static void openwifi_remove_interface(struct ieee80211_hw *dev,
1357 				     struct ieee80211_vif *vif)
1358 {
1359 	struct openwifi_vif *vif_priv;
1360 	struct openwifi_priv *priv = dev->priv;
1361 
1362 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1363 	priv->vif[vif_priv->idx] = NULL;
1364 	printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
1365 }
1366 
1367 static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
1368 {
1369 	struct openwifi_priv *priv = dev->priv;
1370 	struct ieee80211_conf *conf = &dev->conf;
1371 
1372 	if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
1373 		priv->rf->set_chan(dev, conf);
1374 	else
1375 		printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
1376 
1377 	return 0;
1378 }
1379 
1380 static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
1381 				     struct ieee80211_vif *vif,
1382 				     struct ieee80211_bss_conf *info,
1383 				     u32 changed)
1384 {
1385 	struct openwifi_priv *priv = dev->priv;
1386 	struct openwifi_vif *vif_priv;
1387 	u32 bssid_low, bssid_high;
1388 
1389 	vif_priv = (struct openwifi_vif *)&vif->drv_priv;
1390 
1391 	//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
1392 	//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
1393 	if (changed & BSS_CHANGED_BSSID) {
1394 		printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
1395 		// write new bssid to our HW, and do not change bssid filter
1396 		//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
1397 		bssid_low = ( *( (u32*)(info->bssid) ) );
1398 		bssid_high = ( *( (u16*)(info->bssid+4) ) );
1399 
1400 		//bssid_filter_high = (bssid_filter_high&0x80000000);
1401 		//bssid_high = (bssid_high|bssid_filter_high);
1402 		xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
1403 		xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
1404 	}
1405 
1406 	if (changed & BSS_CHANGED_BEACON_INT) {
1407 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
1408 	}
1409 
1410 	if (changed & BSS_CHANGED_TXPOWER)
1411 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
1412 
1413 	if (changed & BSS_CHANGED_ERP_CTS_PROT)
1414 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
1415 
1416 	if (changed & BSS_CHANGED_BASIC_RATES)
1417 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
1418 
1419 	if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
1420 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
1421 		changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
1422 		if (info->use_short_slot && priv->use_short_slot==false) {
1423 			priv->use_short_slot=true;
1424 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1425 		} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
1426 			priv->use_short_slot=false;
1427 			xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
1428 		}
1429 	}
1430 
1431 	if (changed & BSS_CHANGED_BEACON_ENABLED) {
1432 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
1433 		vif_priv->enable_beacon = info->enable_beacon;
1434 	}
1435 
1436 	if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
1437 		cancel_delayed_work_sync(&vif_priv->beacon_work);
1438 		if (vif_priv->enable_beacon)
1439 			schedule_work(&vif_priv->beacon_work.work);
1440 		printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
1441 		changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
1442 	}
1443 }
1444 // helper function
1445 u32 log2val(u32 val){
1446 	u32 ret_val = 0 ;
1447 	while(val>1){
1448 		val = val >> 1 ;
1449 		ret_val ++ ;
1450 	}
1451 	return ret_val ;
1452 }
1453 
1454 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
1455 	      const struct ieee80211_tx_queue_params *params)
1456 {
1457 	u32 reg_val, cw_min_exp, cw_max_exp;
1458 
1459 	printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n",
1460 		  sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
1461 
1462 	reg_val=xpu_api->XPU_REG_CSMA_CFG_read();
1463 	cw_min_exp = (log2val(params->cw_min + 1) & 0x0F);
1464 	cw_max_exp = (log2val(params->cw_max + 1) & 0x0F);
1465 	switch(queue){
1466 		case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) );  break;
1467 		case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) );  break;
1468 		case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break;
1469 		case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break;
1470 		default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0);
1471 	}
1472 	xpu_api->XPU_REG_CSMA_CFG_write(reg_val);
1473 	return(0);
1474 }
1475 
1476 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
1477 				     struct netdev_hw_addr_list *mc_list)
1478 {
1479 	printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
1480 	return netdev_hw_addr_list_count(mc_list);
1481 }
1482 
1483 static void openwifi_configure_filter(struct ieee80211_hw *dev,
1484 				     unsigned int changed_flags,
1485 				     unsigned int *total_flags,
1486 				     u64 multicast)
1487 {
1488 	u32 filter_flag;
1489 
1490 	(*total_flags) &= SDR_SUPPORTED_FILTERS;
1491 	(*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer
1492 
1493 	filter_flag = (*total_flags);
1494 
1495 	filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
1496 	//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
1497 
1498 	//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
1499 	if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
1500 		filter_flag = (filter_flag|MONITOR_ALL);
1501 	else
1502 		filter_flag = (filter_flag&(~MONITOR_ALL));
1503 
1504 	if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
1505 		filter_flag = (filter_flag|MY_BEACON);
1506 
1507 	filter_flag = (filter_flag|FIF_PSPOLL);
1508 
1509 	xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
1510 	//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
1511 
1512 	printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
1513 	(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
1514 }
1515 
1516 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params)
1517 {
1518 	struct ieee80211_sta *sta = params->sta;
1519 	enum ieee80211_ampdu_mlme_action action = params->action;
1520 	struct openwifi_priv *priv = hw->priv;
1521 
1522 	switch (action)
1523 	{
1524 		case IEEE80211_AMPDU_TX_START:
1525 			ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
1526 			break;
1527 		case IEEE80211_AMPDU_TX_STOP_CONT:
1528 		case IEEE80211_AMPDU_TX_STOP_FLUSH:
1529 		case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
1530 			ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid);
1531 			break;
1532 		case IEEE80211_AMPDU_TX_OPERATIONAL:
1533 			break;
1534 		case IEEE80211_AMPDU_RX_START:
1535 			xpu_api->XPU_REG_AMPDU_ACTION_write((params->tid & 0x000F)<<1 | 1);
1536 			break;
1537 		case IEEE80211_AMPDU_RX_STOP:
1538 			xpu_api->XPU_REG_AMPDU_ACTION_write((params->tid & 0x000F)<<1 | 0);
1539 			break;
1540 		default:
1541 			return -EOPNOTSUPP;
1542 	}
1543 
1544 	return 0;
1545 }
1546 
1547 static int openwifi_testmode_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void *data, int len)
1548 {
1549 	struct openwifi_priv *priv = hw->priv;
1550 	struct nlattr *tb[OPENWIFI_ATTR_MAX + 1];
1551 	struct sk_buff *skb;
1552 	int err;
1553 	u32 tmp=-1, reg_cat, reg_addr, reg_val, reg_addr_idx, tsft_high, tsft_low;
1554 
1555 	err = nla_parse(tb, OPENWIFI_ATTR_MAX, data, len, openwifi_testmode_policy, NULL);
1556 	if (err)
1557 		return err;
1558 
1559 	if (!tb[OPENWIFI_ATTR_CMD])
1560 		return -EINVAL;
1561 
1562 	switch (nla_get_u32(tb[OPENWIFI_ATTR_CMD])) {
1563 	case OPENWIFI_CMD_SET_GAP:
1564 		if (!tb[OPENWIFI_ATTR_GAP])
1565 			return -EINVAL;
1566 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_GAP]);
1567 		printk("%s openwifi radio inter frame gap set to %d usec\n", sdr_compatible_str, tmp);
1568 		xpu_api->XPU_REG_CSMA_CFG_write(tmp); // unit us
1569 		return 0;
1570 	case OPENWIFI_CMD_GET_GAP:
1571 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1572 		if (!skb)
1573 			return -ENOMEM;
1574 		tmp = xpu_api->XPU_REG_CSMA_CFG_read();
1575 		if (nla_put_u32(skb, OPENWIFI_ATTR_GAP, tmp))
1576 			goto nla_put_failure;
1577 		return cfg80211_testmode_reply(skb);
1578 	case OPENWIFI_CMD_SET_SLICE_IDX:
1579 		if (!tb[OPENWIFI_ATTR_SLICE_IDX])
1580 			return -EINVAL;
1581 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_IDX]);
1582 		printk("%s set openwifi slice_idx in hex: %08x\n", sdr_compatible_str, tmp);
1583 		if (tmp == MAX_NUM_HW_QUEUE) {
1584 			printk("%s set openwifi slice_idx reset all queue counter.\n", sdr_compatible_str);
1585 			xpu_api->XPU_REG_MULTI_RST_write(1<<7); //bit7 reset the counter for all queues at the same time
1586 			xpu_api->XPU_REG_MULTI_RST_write(0<<7);
1587 		} else {
1588 			priv->slice_idx = tmp;
1589 		}
1590 		return 0;
1591 	case OPENWIFI_CMD_GET_SLICE_IDX:
1592 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1593 		if (!skb)
1594 			return -ENOMEM;
1595 		tmp = priv->slice_idx;
1596 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_IDX, tmp))
1597 			goto nla_put_failure;
1598 		printk("%s get openwifi slice_idx in hex: %08x\n", sdr_compatible_str, tmp);
1599 		return cfg80211_testmode_reply(skb);
1600 	case OPENWIFI_CMD_SET_ADDR:
1601 		if (!tb[OPENWIFI_ATTR_ADDR])
1602 			return -EINVAL;
1603 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_ADDR]);
1604 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1605 			printk("%s set openwifi slice_target_mac_addr(low32) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1606 		} else {
1607 			printk("%s set openwifi slice_target_mac_addr(low32) in hex: %08x to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1608 			priv->dest_mac_addr_queue_map[priv->slice_idx] = reverse32(tmp);
1609 		}
1610 		return 0;
1611 	case OPENWIFI_CMD_GET_ADDR:
1612 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1613 		if (!skb)
1614 			return -ENOMEM;
1615 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1616 			tmp = -1;
1617 		} else {
1618 			tmp = reverse32(priv->dest_mac_addr_queue_map[priv->slice_idx]);
1619 		}
1620 		if (nla_put_u32(skb, OPENWIFI_ATTR_ADDR, tmp))
1621 			goto nla_put_failure;
1622 		printk("%s get openwifi slice_target_mac_addr(low32) in hex: %08x of slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1623 		return cfg80211_testmode_reply(skb);
1624 
1625 	case OPENWIFI_CMD_SET_SLICE_TOTAL:
1626 		if (!tb[OPENWIFI_ATTR_SLICE_TOTAL])
1627 			return -EINVAL;
1628 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL]);
1629 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1630 			printk("%s set SLICE_TOTAL(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1631 		} else {
1632 			printk("%s set SLICE_TOTAL(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1633 			xpu_api->XPU_REG_SLICE_COUNT_TOTAL_write((priv->slice_idx<<20)|tmp);
1634 		}
1635 		return 0;
1636 	case OPENWIFI_CMD_GET_SLICE_TOTAL:
1637 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1638 		if (!skb)
1639 			return -ENOMEM;
1640 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL_read());
1641 		printk("%s get SLICE_TOTAL(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1642 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL, tmp))
1643 			goto nla_put_failure;
1644 		return cfg80211_testmode_reply(skb);
1645 
1646 	case OPENWIFI_CMD_SET_SLICE_START:
1647 		if (!tb[OPENWIFI_ATTR_SLICE_START])
1648 			return -EINVAL;
1649 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START]);
1650 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1651 			printk("%s set SLICE_START(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1652 		} else {
1653 			printk("%s set SLICE_START(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1654 			xpu_api->XPU_REG_SLICE_COUNT_START_write((priv->slice_idx<<20)|tmp);
1655 		}
1656 		return 0;
1657 	case OPENWIFI_CMD_GET_SLICE_START:
1658 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1659 		if (!skb)
1660 			return -ENOMEM;
1661 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_START_read());
1662 		printk("%s get SLICE_START(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1663 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START, tmp))
1664 			goto nla_put_failure;
1665 		return cfg80211_testmode_reply(skb);
1666 
1667 	case OPENWIFI_CMD_SET_SLICE_END:
1668 		if (!tb[OPENWIFI_ATTR_SLICE_END])
1669 			return -EINVAL;
1670 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END]);
1671 		if (priv->slice_idx>=MAX_NUM_HW_QUEUE) {
1672 			printk("%s set SLICE_END(duration) WARNING: current slice idx %d is invalid!\n", sdr_compatible_str, priv->slice_idx);
1673 		} else {
1674 			printk("%s set SLICE_END(duration) %d usec to slice %d\n", sdr_compatible_str, tmp, priv->slice_idx);
1675 			xpu_api->XPU_REG_SLICE_COUNT_END_write((priv->slice_idx<<20)|tmp);
1676 		}
1677 		return 0;
1678 	case OPENWIFI_CMD_GET_SLICE_END:
1679 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1680 		if (!skb)
1681 			return -ENOMEM;
1682 		tmp = (xpu_api->XPU_REG_SLICE_COUNT_END_read());
1683 		printk("%s get SLICE_END(duration) %d usec of slice %d\n", sdr_compatible_str, tmp&0xFFFFF, tmp>>20);
1684 		if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END, tmp))
1685 			goto nla_put_failure;
1686 		return cfg80211_testmode_reply(skb);
1687 
1688 	// case OPENWIFI_CMD_SET_SLICE_TOTAL1:
1689 	// 	if (!tb[OPENWIFI_ATTR_SLICE_TOTAL1])
1690 	// 		return -EINVAL;
1691 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL1]);
1692 	// 	printk("%s set SLICE_TOTAL1(duration) to %d usec\n", sdr_compatible_str, tmp);
1693 	// 	// xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_write(tmp);
1694 	// 	return 0;
1695 	// case OPENWIFI_CMD_GET_SLICE_TOTAL1:
1696 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1697 	// 	if (!skb)
1698 	// 		return -ENOMEM;
1699 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_read());
1700 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL1, tmp))
1701 	// 		goto nla_put_failure;
1702 	// 	return cfg80211_testmode_reply(skb);
1703 
1704 	// case OPENWIFI_CMD_SET_SLICE_START1:
1705 	// 	if (!tb[OPENWIFI_ATTR_SLICE_START1])
1706 	// 		return -EINVAL;
1707 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START1]);
1708 	// 	printk("%s set SLICE_START1(duration) to %d usec\n", sdr_compatible_str, tmp);
1709 	// 	// xpu_api->XPU_REG_SLICE_COUNT_START1_write(tmp);
1710 	// 	return 0;
1711 	// case OPENWIFI_CMD_GET_SLICE_START1:
1712 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1713 	// 	if (!skb)
1714 	// 		return -ENOMEM;
1715 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_START1_read());
1716 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START1, tmp))
1717 	// 		goto nla_put_failure;
1718 	// 	return cfg80211_testmode_reply(skb);
1719 
1720 	// case OPENWIFI_CMD_SET_SLICE_END1:
1721 	// 	if (!tb[OPENWIFI_ATTR_SLICE_END1])
1722 	// 		return -EINVAL;
1723 	// 	tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END1]);
1724 	// 	printk("%s set SLICE_END1(duration) to %d usec\n", sdr_compatible_str, tmp);
1725 	// 	// xpu_api->XPU_REG_SLICE_COUNT_END1_write(tmp);
1726 	// 	return 0;
1727 	// case OPENWIFI_CMD_GET_SLICE_END1:
1728 	// 	skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1729 	// 	if (!skb)
1730 	// 		return -ENOMEM;
1731 	// 	// tmp = (xpu_api->XPU_REG_SLICE_COUNT_END1_read());
1732 	// 	if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END1, tmp))
1733 	// 		goto nla_put_failure;
1734 	// 	return cfg80211_testmode_reply(skb);
1735 
1736 	case OPENWIFI_CMD_SET_RSSI_TH:
1737 		if (!tb[OPENWIFI_ATTR_RSSI_TH])
1738 			return -EINVAL;
1739 		tmp = nla_get_u32(tb[OPENWIFI_ATTR_RSSI_TH]);
1740 		// printk("%s set RSSI_TH to %d\n", sdr_compatible_str, tmp);
1741 		// xpu_api->XPU_REG_LBT_TH_write(tmp);
1742 		// return 0;
1743 		printk("%s WARNING Please use command: sdrctl dev sdr0 set reg drv_xpu 0 reg_value! (1~2047, 0 means AUTO)!\n", sdr_compatible_str);
1744 		return -EOPNOTSUPP;
1745 	case OPENWIFI_CMD_GET_RSSI_TH:
1746 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1747 		if (!skb)
1748 			return -ENOMEM;
1749 		tmp = xpu_api->XPU_REG_LBT_TH_read();
1750 		if (nla_put_u32(skb, OPENWIFI_ATTR_RSSI_TH, tmp))
1751 			goto nla_put_failure;
1752 		return cfg80211_testmode_reply(skb);
1753 
1754 	case OPENWIFI_CMD_SET_TSF:
1755 		printk("openwifi_set_tsf_1");
1756 		if ( (!tb[OPENWIFI_ATTR_HIGH_TSF]) || (!tb[OPENWIFI_ATTR_LOW_TSF]) )
1757 				return -EINVAL;
1758 		printk("openwifi_set_tsf_2");
1759 		tsft_high = nla_get_u32(tb[OPENWIFI_ATTR_HIGH_TSF]);
1760 		tsft_low  = nla_get_u32(tb[OPENWIFI_ATTR_LOW_TSF]);
1761 		xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
1762 		printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
1763 		return 0;
1764 
1765 	case REG_CMD_SET:
1766 		if ( (!tb[REG_ATTR_ADDR]) || (!tb[REG_ATTR_VAL]) )
1767 			return -EINVAL;
1768 		reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
1769 		reg_val  = nla_get_u32(tb[REG_ATTR_VAL]);
1770 		reg_cat = ((reg_addr>>16)&0xFFFF);
1771 		reg_addr = (reg_addr&0xFFFF);
1772 		reg_addr_idx = (reg_addr>>2);
1773 		printk("%s recv set cmd reg cat %d addr %08x val %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_val, reg_addr_idx);
1774 		if (reg_cat==1)
1775 			printk("%s WARNING reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
1776 		else if (reg_cat==2)
1777 			rx_intf_api->reg_write(reg_addr,reg_val);
1778 		else if (reg_cat==3)
1779 			tx_intf_api->reg_write(reg_addr,reg_val);
1780 		else if (reg_cat==4)
1781 			openofdm_rx_api->reg_write(reg_addr,reg_val);
1782 		else if (reg_cat==5)
1783 			openofdm_tx_api->reg_write(reg_addr,reg_val);
1784 		else if (reg_cat==6)
1785 			xpu_api->reg_write(reg_addr,reg_val);
1786 		else if (reg_cat==7) {
1787 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1788 				priv->drv_rx_reg_val[reg_addr_idx]=reg_val;
1789 				if (reg_addr_idx==DRV_RX_REG_IDX_FREQ_BW_CFG) {
1790 					if (reg_val==0)
1791 						priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
1792 					else
1793 						priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
1794 
1795 					priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1796 					//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1797 				}
1798 			} else
1799 				printk("%s WARNING reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1800 		}
1801 		else if (reg_cat==8) {
1802 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1803 				priv->drv_tx_reg_val[reg_addr_idx]=reg_val;
1804 				if (reg_addr_idx==DRV_TX_REG_IDX_FREQ_BW_CFG) {
1805 					if (reg_val==0) {
1806 						priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
1807 						ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true);
1808 					} else {
1809 						priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1;
1810 						ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true);
1811 					}
1812 
1813 					//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1814 					priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1815 				}
1816 			} else
1817 				printk("%s WARNING reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1818 		}
1819 		else if (reg_cat==9) {
1820 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1821 				priv->drv_xpu_reg_val[reg_addr_idx]=reg_val;
1822 				if (reg_addr_idx==DRV_XPU_REG_IDX_LBT_TH) {
1823 					if (reg_val) {
1824 						xpu_api->XPU_REG_LBT_TH_write(reg_val);
1825 						printk("%s override FPGA LBT threshold to %d. The last_auto_fpga_lbt_th %d\n", sdr_compatible_str, reg_val, priv->last_auto_fpga_lbt_th);
1826 					} else {
1827 						xpu_api->XPU_REG_LBT_TH_write(priv->last_auto_fpga_lbt_th);
1828 						printk("%s Restore last_auto_fpga_lbt_th %d to FPGA. ad9361_rf_set_channel will take control\n", sdr_compatible_str, priv->last_auto_fpga_lbt_th);
1829 					}
1830 				}
1831 			} else
1832 				printk("%s WARNING reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1833 		}
1834 		else
1835 			printk("%s WARNING reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
1836 
1837 		return 0;
1838 	case REG_CMD_GET:
1839 		skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
1840 		if (!skb)
1841 			return -ENOMEM;
1842 		reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
1843 		reg_cat = ((reg_addr>>16)&0xFFFF);
1844 		reg_addr = (reg_addr&0xFFFF);
1845 		reg_addr_idx = (reg_addr>>2);
1846 		printk("%s recv get cmd reg cat %d addr %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_addr_idx);
1847 		if (reg_cat==1) {
1848 			printk("%s WARNING reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
1849 			tmp = 0xFFFFFFFF;
1850 		}
1851 		else if (reg_cat==2)
1852 			tmp = rx_intf_api->reg_read(reg_addr);
1853 		else if (reg_cat==3)
1854 			tmp = tx_intf_api->reg_read(reg_addr);
1855 		else if (reg_cat==4)
1856 			tmp = openofdm_rx_api->reg_read(reg_addr);
1857 		else if (reg_cat==5)
1858 			tmp = openofdm_tx_api->reg_read(reg_addr);
1859 		else if (reg_cat==6)
1860 			tmp = xpu_api->reg_read(reg_addr);
1861 		else if (reg_cat==7) {
1862 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1863 				if (reg_addr_idx==DRV_RX_REG_IDX_FREQ_BW_CFG) {
1864 					priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1865 					//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1866 
1867 					if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
1868 						priv->drv_rx_reg_val[reg_addr_idx]=0;
1869 					else if	(priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT1)
1870 						priv->drv_rx_reg_val[reg_addr_idx]=1;
1871 				}
1872 				tmp = priv->drv_rx_reg_val[reg_addr_idx];
1873 			} else
1874 				printk("%s WARNING reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1875 		}
1876 		else if (reg_cat==8) {
1877 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG) {
1878 				if (reg_addr_idx==DRV_TX_REG_IDX_FREQ_BW_CFG) {
1879 					//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
1880 					priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
1881 					if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)
1882 						priv->drv_tx_reg_val[reg_addr_idx]=0;
1883 					else if	(priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
1884 						priv->drv_tx_reg_val[reg_addr_idx]=1;
1885 				}
1886 				tmp = priv->drv_tx_reg_val[reg_addr_idx];
1887 			} else
1888 				printk("%s WARNING reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1889 		}
1890 		else if (reg_cat==9) {
1891 			if (reg_addr_idx>=0 && reg_addr_idx<MAX_NUM_DRV_REG)
1892 				tmp = priv->drv_xpu_reg_val[reg_addr_idx];
1893 			else
1894 				printk("%s WARNING reg_addr_idx %d is out of range!\n", sdr_compatible_str, reg_addr_idx);
1895 		}
1896 		else
1897 			printk("%s WARNING reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
1898 
1899 		if (nla_put_u32(skb, REG_ATTR_VAL, tmp))
1900 			goto nla_put_failure;
1901 		return cfg80211_testmode_reply(skb);
1902 
1903 	default:
1904 		return -EOPNOTSUPP;
1905 	}
1906 
1907  nla_put_failure:
1908 	dev_kfree_skb(skb);
1909 	return -ENOBUFS;
1910 }
1911 
1912 static const struct ieee80211_ops openwifi_ops = {
1913 	.tx			       = openwifi_tx,
1914 	.start			   = openwifi_start,
1915 	.stop			   = openwifi_stop,
1916 	.add_interface	   = openwifi_add_interface,
1917 	.remove_interface  = openwifi_remove_interface,
1918 	.config			   = openwifi_config,
1919 	.bss_info_changed  = openwifi_bss_info_changed,
1920 	.conf_tx		   = openwifi_conf_tx,
1921 	.prepare_multicast = openwifi_prepare_multicast,
1922 	.configure_filter  = openwifi_configure_filter,
1923 	.rfkill_poll	   = openwifi_rfkill_poll,
1924 	.get_tsf		   = openwifi_get_tsf,
1925 	.set_tsf		   = openwifi_set_tsf,
1926 	.reset_tsf		   = openwifi_reset_tsf,
1927 	.set_rts_threshold = openwifi_set_rts_threshold,
1928 	.ampdu_action      = openwifi_ampdu_action,
1929 	.testmode_cmd	   = openwifi_testmode_cmd,
1930 };
1931 
1932 static const struct of_device_id openwifi_dev_of_ids[] = {
1933 	{ .compatible = "sdr,sdr", },
1934 	{}
1935 };
1936 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
1937 
1938 static int custom_match_spi_dev(struct device *dev, void *data)
1939 {
1940     const char *name = data;
1941 
1942 	bool ret = sysfs_streq(name, dev->of_node->name);
1943 	printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
1944 	return ret;
1945 }
1946 
1947 static int custom_match_platform_dev(struct device *dev, void *data)
1948 {
1949 	struct platform_device *plat_dev = to_platform_device(dev);
1950 	const char *name = data;
1951 	char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
1952 	bool match_flag = (name_in_sys_bus_platform_devices != NULL);
1953 
1954 	if (match_flag) {
1955 		printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
1956 	}
1957 	return(match_flag);
1958 }
1959 
1960 static int openwifi_dev_probe(struct platform_device *pdev)
1961 {
1962 	struct ieee80211_hw *dev;
1963 	struct openwifi_priv *priv;
1964 	int err=1, rand_val;
1965 	const char *chip_name, *fpga_model;
1966 	u32 reg;//, reg1;
1967 
1968 	struct device_node *np = pdev->dev.of_node;
1969 
1970 	struct device *tmp_dev;
1971 	struct platform_device *tmp_pdev;
1972 	struct iio_dev *tmp_indio_dev;
1973 	// struct gpio_leds_priv *tmp_led_priv;
1974 
1975 	printk("\n");
1976 
1977 	if (np) {
1978 		const struct of_device_id *match;
1979 
1980 		match = of_match_node(openwifi_dev_of_ids, np);
1981 		if (match) {
1982 			printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
1983 			err = 0;
1984 		}
1985 	}
1986 
1987 	if (err)
1988 		return err;
1989 
1990 	dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
1991 	if (!dev) {
1992 		printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
1993 		err = -ENOMEM;
1994 		goto err_free_dev;
1995 	}
1996 
1997 	priv = dev->priv;
1998 	priv->pdev = pdev;
1999 
2000 	err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model);
2001 	if(err < 0) {
2002 		printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err);
2003 		priv->fpga_type = SMALL_FPGA;
2004 	} else {
2005 		// LARGE FPGAs (i.e. ZCU102, Z7035, ZC706)
2006 		if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL)
2007 			priv->fpga_type = LARGE_FPGA;
2008 		// SMALL FPGA: (i.e. ZED, ZC702, Z7020)
2009 		else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL)
2010 			priv->fpga_type = SMALL_FPGA;
2011 	}
2012 
2013 	// //-------------find ad9361-phy driver for lo/channel control---------------
2014 	priv->actual_rx_lo = 0;
2015 	tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
2016 	if (tmp_dev == NULL) {
2017 		printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
2018 		err = -ENOMEM;
2019 		goto err_free_dev;
2020 	}
2021 	printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data));
2022 	if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) {
2023 		printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str);
2024 		err = -ENOMEM;
2025 		goto err_free_dev;
2026 	}
2027 
2028 	priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
2029 	if (!(priv->ad9361_phy)) {
2030 		printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
2031 		err = -ENOMEM;
2032 		goto err_free_dev;
2033 	}
2034 	printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias);
2035 
2036 	priv->ctrl_out.en_mask=0xFF;
2037 	priv->ctrl_out.index=0x16;
2038 	err = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
2039 	if (err < 0) {
2040 		printk("%s openwifi_dev_probe: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, err);
2041 	} else {
2042 		printk("%s openwifi_dev_probe: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
2043 	}
2044 
2045 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
2046 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
2047 	reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
2048 	printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
2049 
2050 	// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
2051 	tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
2052 	if (!tmp_dev) {
2053 		printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
2054 		err = -ENOMEM;
2055 		goto err_free_dev;
2056 	}
2057 
2058 	tmp_pdev = to_platform_device(tmp_dev);
2059 	if (!tmp_pdev) {
2060 		printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
2061 		err = -ENOMEM;
2062 		goto err_free_dev;
2063 	}
2064 
2065 	tmp_indio_dev = platform_get_drvdata(tmp_pdev);
2066 	if (!tmp_indio_dev) {
2067 		printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
2068 		err = -ENOMEM;
2069 		goto err_free_dev;
2070 	}
2071 
2072 	priv->dds_st = iio_priv(tmp_indio_dev);
2073 	if (!(priv->dds_st)) {
2074 		printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
2075 		err = -ENOMEM;
2076 		goto err_free_dev;
2077 	}
2078 	printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
2079 	cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
2080 	printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
2081 
2082 	// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
2083 	// turn off radio by muting tx
2084 	// ad9361_tx_mute(priv->ad9361_phy, 1);
2085 	// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
2086 	// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2087 	// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
2088 	// 	priv->rfkill_off = 0;// 0 off, 1 on
2089 	// 	printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
2090 	// }
2091 	// else
2092 	// 	printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
2093 
2094 	priv->last_auto_fpga_lbt_th = 134;//just to avoid uninitialized
2095 	priv->rssi_correction = 43;//this will be set in real-time by _rf_set_channel()
2096 
2097 	//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2098 	priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
2099 
2100 	priv->xpu_cfg = XPU_NORMAL;
2101 
2102 	priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
2103 	priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
2104 
2105 	printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
2106 	if (priv->rf_bw == 20000000) {
2107 		priv->rx_intf_cfg = RX_INTF_BYPASS;
2108 		priv->tx_intf_cfg = TX_INTF_BYPASS;
2109 		//priv->rx_freq_offset_to_lo_MHz = 0;
2110 		//priv->tx_freq_offset_to_lo_MHz = 0;
2111 	} else if (priv->rf_bw == 40000000) {
2112 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
2113 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
2114 
2115 		// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
2116 		priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
2117 		priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364
2118 		// // try another antenna option
2119 		//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
2120 		//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
2121 
2122 		#if 0
2123 		if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
2124 			priv->rx_freq_offset_to_lo_MHz = -10;
2125 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
2126 			priv->rx_freq_offset_to_lo_MHz = 10;
2127 		} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
2128 			priv->rx_freq_offset_to_lo_MHz = 0;
2129 		} else {
2130 			printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
2131 		}
2132 		#endif
2133 	} else {
2134 		printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
2135 	}
2136 	priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
2137 	priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
2138 	printk("%s openwifi_dev_probe: test_mode %d\n", sdr_compatible_str, test_mode);
2139 
2140 	//let's by default turn radio on when probing
2141 	if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
2142 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
2143 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
2144 	} else {
2145 		ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
2146 		reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
2147 	}
2148 	if (reg == AD9361_RADIO_ON_TX_ATT) {
2149 		priv->rfkill_off = 1;// 0 off, 1 on
2150 		printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
2151 	} else
2152 		printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
2153 
2154 	memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
2155 	memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
2156 	memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
2157 
2158 	// //set ad9361 in certain mode
2159 	#if 0
2160 	err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
2161 	printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2162 	err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
2163 	printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
2164 
2165 	rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
2166 	tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type);
2167 	openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
2168 	openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
2169 	printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
2170 	printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
2171 	#endif
2172 
2173 	dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
2174 
2175 	SET_IEEE80211_DEV(dev, &pdev->dev);
2176 	platform_set_drvdata(pdev, dev);
2177 
2178 	BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
2179 	BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
2180 	BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
2181 	BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
2182 
2183 	memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
2184 	memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
2185 	memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
2186 	memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
2187 
2188 	priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
2189 	priv->channel = 44;  //currently useless. this can be changed by band _rf_set_channel()
2190 	priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
2191 	priv->ampdu_reference = 0;
2192 
2193 	priv->band_2GHz.band = NL80211_BAND_2GHZ;
2194 	priv->band_2GHz.channels = priv->channels_2GHz;
2195 	priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
2196 	priv->band_2GHz.bitrates = priv->rates_2GHz;
2197 	priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
2198 	priv->band_2GHz.ht_cap.ht_supported = true;
2199 	priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
2200 	priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2201 	priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2202 	memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs));
2203 	priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2204 	priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2205 	dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
2206 
2207 	priv->band_5GHz.band = NL80211_BAND_5GHZ;
2208 	priv->band_5GHz.channels = priv->channels_5GHz;
2209 	priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
2210 	priv->band_5GHz.bitrates = priv->rates_5GHz;
2211 	priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
2212 	priv->band_5GHz.ht_cap.ht_supported = true;
2213 	priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20;
2214 	priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K;
2215 	priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2;
2216 	memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs));
2217 	priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff;
2218 	priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
2219 	dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
2220 
2221 	printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
2222 	priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
2223 
2224 	ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING);
2225 	ieee80211_hw_set(dev, RX_INCLUDES_FCS);
2226 	ieee80211_hw_set(dev, BEACON_TX_STATUS);
2227 	ieee80211_hw_set(dev, AMPDU_AGGREGATION);
2228 
2229 	dev->vif_data_size = sizeof(struct openwifi_vif);
2230 	dev->wiphy->interface_modes =
2231 			BIT(NL80211_IFTYPE_MONITOR)|
2232 			BIT(NL80211_IFTYPE_P2P_GO) |
2233 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
2234 			BIT(NL80211_IFTYPE_AP) |
2235 			BIT(NL80211_IFTYPE_STATION) |
2236 			BIT(NL80211_IFTYPE_ADHOC) |
2237 			BIT(NL80211_IFTYPE_MESH_POINT) |
2238 			BIT(NL80211_IFTYPE_OCB);
2239 	dev->wiphy->iface_combinations = &openwifi_if_comb;
2240 	dev->wiphy->n_iface_combinations = 1;
2241 
2242 	dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
2243 	//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
2244 	wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
2245 
2246 	chip_name = "ZYNQ";
2247 
2248 	/* we declare to MAC80211 all the queues except for beacon queue
2249 	 * that will be eventually handled by DRV.
2250 	 * TX rings are arranged in such a way that lower is the IDX,
2251 	 * higher is the priority, in order to achieve direct mapping
2252 	 * with mac80211, however the beacon queue is an exception and it
2253 	 * is mapped on the highst tx ring IDX.
2254 	 */
2255 	dev->queues = MAX_NUM_HW_QUEUE;
2256 	//dev->queues = 1;
2257 
2258 	ieee80211_hw_set(dev, SIGNAL_DBM);
2259 
2260 	wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
2261 
2262 	priv->rf = &ad9361_rf_ops;
2263 
2264 	memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
2265 	priv->slice_idx = 0xFFFFFFFF;
2266 
2267 	sg_init_table(&(priv->tx_sg), 1);
2268 
2269 	get_random_bytes(&rand_val, sizeof(rand_val));
2270     rand_val%=250;
2271 	priv->mac_addr[0]=0x66;	priv->mac_addr[1]=0x55;	priv->mac_addr[2]=0x44;	priv->mac_addr[3]=0x33;	priv->mac_addr[4]=0x22;
2272 	priv->mac_addr[5]=rand_val+1;
2273 	//priv->mac_addr[5]=0x11;
2274 	if (!is_valid_ether_addr(priv->mac_addr)) {
2275 		printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
2276 		eth_random_addr(priv->mac_addr);
2277 	} else {
2278 		printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
2279 	}
2280 	SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
2281 
2282 	spin_lock_init(&priv->lock);
2283 
2284 	err = ieee80211_register_hw(dev);
2285 	if (err) {
2286 		pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
2287 		goto err_free_dev;
2288 	} else {
2289 		printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
2290 	}
2291 
2292 	// // //--------------------hook leds (not complete yet)--------------------------------
2293 	// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field
2294 	// if (!tmp_dev) {
2295 	// 	printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
2296 	// 	err = -ENOMEM;
2297 	// 	goto err_free_dev;
2298 	// }
2299 
2300 	// tmp_pdev = to_platform_device(tmp_dev);
2301 	// if (!tmp_pdev) {
2302 	// 	printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
2303 	// 	err = -ENOMEM;
2304 	// 	goto err_free_dev;
2305 	// }
2306 
2307 	// tmp_led_priv = platform_get_drvdata(tmp_pdev);
2308 	// if (!tmp_led_priv) {
2309 	// 	printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
2310 	// 	err = -ENOMEM;
2311 	// 	goto err_free_dev;
2312 	// }
2313 	// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
2314 	// if (tmp_led_priv->num_leds!=4){
2315 	// 	printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
2316 	// 	err = -ENOMEM;
2317 	// 	goto err_free_dev;
2318 	// }
2319 	// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
2320 	// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
2321 	// priv->num_led = tmp_led_priv->num_leds;
2322 	// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
2323 	// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
2324 	// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
2325 	// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
2326 
2327 	// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
2328 	// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
2329 	// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
2330 	// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
2331 
2332 	wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
2333 		   priv->mac_addr, chip_name, priv->rf->name);
2334 
2335 	openwifi_rfkill_init(dev);
2336 	return 0;
2337 
2338  err_free_dev:
2339 	ieee80211_free_hw(dev);
2340 
2341 	return err;
2342 }
2343 
2344 static int openwifi_dev_remove(struct platform_device *pdev)
2345 {
2346 	struct ieee80211_hw *dev = platform_get_drvdata(pdev);
2347 
2348 	if (!dev) {
2349 		pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev);
2350 		return(-1);
2351 	}
2352 
2353 	openwifi_rfkill_exit(dev);
2354 	ieee80211_unregister_hw(dev);
2355 	ieee80211_free_hw(dev);
2356 	return(0);
2357 }
2358 
2359 static struct platform_driver openwifi_dev_driver = {
2360 	.driver = {
2361 		.name = "sdr,sdr",
2362 		.owner = THIS_MODULE,
2363 		.of_match_table = openwifi_dev_of_ids,
2364 	},
2365 	.probe = openwifi_dev_probe,
2366 	.remove = openwifi_dev_remove,
2367 };
2368 
2369 module_platform_driver(openwifi_dev_driver);
2370