1 // Author: Xianjun Jiao, Michael Mehari, Wei Liu, Jetmir Haxhibeqiri, Pablo Avila Campos 2 // SPDX-FileCopyrightText: 2022 UGent 3 // SPDX-License-Identifier: AGPL-3.0-or-later 4 5 #include <linux/bitops.h> 6 #include <linux/dmapool.h> 7 #include <linux/io.h> 8 #include <linux/iopoll.h> 9 #include <linux/of_address.h> 10 #include <linux/of_platform.h> 11 #include <linux/of_irq.h> 12 #include <linux/slab.h> 13 #include <linux/clk.h> 14 #include <linux/io-64-nonatomic-lo-hi.h> 15 16 #include <linux/delay.h> 17 #include <linux/interrupt.h> 18 19 #include <linux/dmaengine.h> 20 #include <linux/slab.h> 21 #include <linux/delay.h> 22 #include <linux/etherdevice.h> 23 24 #include <linux/init.h> 25 #include <linux/kthread.h> 26 #include <linux/module.h> 27 #include <linux/of_dma.h> 28 #include <linux/platform_device.h> 29 #include <linux/random.h> 30 #include <linux/slab.h> 31 #include <linux/wait.h> 32 #include <linux/sched/task.h> 33 #include <linux/dma/xilinx_dma.h> 34 #include <linux/spi/spi.h> 35 #include <net/mac80211.h> 36 37 #include <linux/clk.h> 38 #include <linux/clkdev.h> 39 #include <linux/clk-provider.h> 40 41 #include <linux/iio/iio.h> 42 #include <linux/iio/sysfs.h> 43 44 #include <linux/gpio.h> 45 #include <linux/leds.h> 46 47 #define IIO_AD9361_USE_PRIVATE_H_ 48 #include <../../drivers/iio/adc/ad9361_regs.h> 49 #include <../../drivers/iio/adc/ad9361.h> 50 #include <../../drivers/iio/adc/ad9361_private.h> 51 52 #include <../../drivers/iio/frequency/cf_axi_dds.h> 53 extern int ad9361_get_tx_atten(struct ad9361_rf_phy *phy, u32 tx_num); 54 extern int ad9361_set_tx_atten(struct ad9361_rf_phy *phy, u32 atten_mdb, 55 bool tx1, bool tx2, bool immed); 56 extern int ad9361_ctrl_outs_setup(struct ad9361_rf_phy *phy, 57 struct ctrl_outs_control *ctrl); 58 extern int ad9361_do_calib_run(struct ad9361_rf_phy *phy, u32 cal, int arg); 59 60 #include "../user_space/sdrctl_src/nl80211_testmode_def.h" 61 #include "hw_def.h" 62 #include "sdr.h" 63 #include "git_rev.h" 64 65 // driver API of component driver 66 extern struct tx_intf_driver_api *tx_intf_api; 67 extern struct rx_intf_driver_api *rx_intf_api; 68 extern struct openofdm_tx_driver_api *openofdm_tx_api; 69 extern struct openofdm_rx_driver_api *openofdm_rx_api; 70 extern struct xpu_driver_api *xpu_api; 71 72 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes); 73 u8 gen_mpdu_delim_crc(u16 m); 74 u32 reverse32(u32 d); 75 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant); 76 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant); 77 int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction); 78 int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction); 79 int rssi_correction_lookup_table(u32 freq_MHz); 80 81 #include "sdrctl_intf.c" 82 #include "sysfs_intf.c" 83 84 static int test_mode = 0; // bit0: aggregation enable(1)/disable(0); NO USE ANY MORE: bit1: tx offset tuning enable(0)/disable(1) 85 // Internal indication variables after parsing test_mode 86 static bool AGGR_ENABLE = false; 87 static bool TX_OFFSET_TUNING_ENABLE = false; 88 89 static int init_tx_att = 0; 90 91 MODULE_AUTHOR("Xianjun Jiao"); 92 MODULE_DESCRIPTION("SDR driver"); 93 MODULE_LICENSE("GPL v2"); 94 95 module_param(test_mode, int, 0); 96 MODULE_PARM_DESC(myint, "test_mode. bit0: aggregation enable(1)/disable(0)"); 97 98 module_param(init_tx_att, int, 0); 99 MODULE_PARM_DESC(myint, "init_tx_att. TX attenuation in dB*1000 example: set to 3000 for 3dB attenuation"); 100 101 // ---------------rfkill--------------------------------------- 102 static bool openwifi_is_radio_enabled(struct openwifi_priv *priv) 103 { 104 int reg; 105 106 if (priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH) 107 reg = ad9361_get_tx_atten(priv->ad9361_phy, 1); 108 else 109 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 110 111 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) 112 return true;// 0 off, 1 on 113 return false; 114 } 115 116 void openwifi_rfkill_init(struct ieee80211_hw *hw) 117 { 118 struct openwifi_priv *priv = hw->priv; 119 120 priv->rfkill_off = openwifi_is_radio_enabled(priv); 121 printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off"); 122 wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off); 123 wiphy_rfkill_start_polling(hw->wiphy); 124 } 125 126 void openwifi_rfkill_poll(struct ieee80211_hw *hw) 127 { 128 bool enabled; 129 struct openwifi_priv *priv = hw->priv; 130 131 enabled = openwifi_is_radio_enabled(priv); 132 // printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); 133 if (unlikely(enabled != priv->rfkill_off)) { 134 priv->rfkill_off = enabled; 135 printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off"); 136 wiphy_rfkill_set_hw_state(hw->wiphy, !enabled); 137 } 138 } 139 140 void openwifi_rfkill_exit(struct ieee80211_hw *hw) 141 { 142 printk("%s openwifi_rfkill_exit\n", sdr_compatible_str); 143 wiphy_rfkill_stop_polling(hw->wiphy); 144 } 145 //----------------rfkill end----------------------------------- 146 147 inline int rssi_dbm_to_rssi_half_db(int rssi_dbm, int rssi_correction) 148 { 149 return ((rssi_correction+rssi_dbm)<<1); 150 } 151 152 inline int rssi_correction_lookup_table(u32 freq_MHz) 153 { 154 int rssi_correction; 155 156 if (freq_MHz<2412) { 157 rssi_correction = 153; 158 } else if (freq_MHz<=2484) { 159 rssi_correction = 153; 160 } else if (freq_MHz<5160) { 161 rssi_correction = 153; 162 } else if (freq_MHz<=5240) { 163 rssi_correction = 145; 164 } else if (freq_MHz<=5320) { 165 rssi_correction = 148; 166 } else { 167 rssi_correction = 148; 168 } 169 170 return rssi_correction; 171 } 172 173 static void ad9361_rf_set_channel(struct ieee80211_hw *dev, 174 struct ieee80211_conf *conf) 175 { 176 struct openwifi_priv *priv = dev->priv; 177 u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz; 178 u32 actual_tx_lo; 179 u32 spi_disable; 180 u32 diff_tx_lo; 181 bool change_flag = (actual_rx_lo != priv->actual_rx_lo); 182 int static_lbt_th, auto_lbt_th, fpga_lbt_th, receiver_rssi_dbm_th; 183 struct timeval tv; 184 unsigned long time_before = 0; 185 unsigned long time_after = 0; 186 187 if (change_flag) { 188 actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz; 189 diff_tx_lo = priv->last_tx_quad_cal_lo > actual_tx_lo ? priv->last_tx_quad_cal_lo - actual_tx_lo : actual_tx_lo - priv->last_tx_quad_cal_lo; 190 191 // -------------------Tx Lo tuning------------------- 192 clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_tx_lo ) + priv->rf_reg_val[RF_TX_REG_IDX_FO] )>>1) ); 193 priv->actual_tx_lo = actual_tx_lo; 194 195 // -------------------Rx Lo tuning------------------- 196 clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ( ((u64)1000000ull)*((u64)actual_rx_lo ) + priv->rf_reg_val[RF_RX_REG_IDX_FO] )>>1) ); 197 priv->actual_rx_lo = actual_rx_lo; 198 199 // call Tx Quadrature calibration if frequency change is more than 100MHz 200 if (diff_tx_lo > 100) { 201 priv->last_tx_quad_cal_lo = actual_tx_lo; 202 do_gettimeofday(&tv); 203 time_before = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec ); 204 spi_disable = xpu_api->XPU_REG_SPI_DISABLE_read(); // disable FPGA SPI module 205 xpu_api->XPU_REG_SPI_DISABLE_write(1); 206 ad9361_do_calib_run(priv->ad9361_phy, TX_QUAD_CAL, (int)priv->ad9361_phy->state->last_tx_quad_cal_phase); 207 // restore original SPI disable state 208 xpu_api->XPU_REG_SPI_DISABLE_write(spi_disable); 209 do_gettimeofday(&tv); 210 time_after = tv.tv_usec + ((u64)1000000ull)*((u64)tv.tv_sec ); 211 } 212 213 // get rssi correction value from lookup table 214 priv->rssi_correction = rssi_correction_lookup_table(actual_rx_lo); 215 216 // set appropriate lbt threshold 217 // xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1); // -62dBm 218 // xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62-16)<<1); // wei's magic value is 135, here is 134 @ ch 44 219 // auto_lbt_th = ((priv->rssi_correction-62-16)<<1); 220 auto_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction); // -78dBm, the same as above ((priv->rssi_correction-62-16)<<1) 221 static_lbt_th = rssi_dbm_to_rssi_half_db(-(priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]), priv->rssi_correction); 222 fpga_lbt_th = (priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_LBT_TH]==0?auto_lbt_th:static_lbt_th); 223 xpu_api->XPU_REG_LBT_TH_write(fpga_lbt_th); 224 priv->last_auto_fpga_lbt_th = auto_lbt_th; 225 226 // Set rssi_half_db threshold (-85dBm equivalent) to receiver. Receiver will not react to signal lower than this rssi. See test records (OPENOFDM_RX_POWER_THRES_INIT in hw_def.h) 227 receiver_rssi_dbm_th = (priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH]==0?OPENOFDM_RX_RSSI_DBM_TH_DEFAULT:(-priv->drv_rx_reg_val[DRV_RX_REG_IDX_DEMOD_TH])); 228 openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write((OPENOFDM_RX_DC_RUNNING_SUM_TH_INIT<<16)|rssi_dbm_to_rssi_half_db(receiver_rssi_dbm_th, priv->rssi_correction)); 229 230 if (actual_rx_lo < 2500) { 231 if (priv->band != BAND_2_4GHZ) { 232 priv->band = BAND_2_4GHZ; 233 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 234 } 235 } else { 236 if (priv->band != BAND_5_8GHZ) { 237 priv->band = BAND_5_8GHZ; 238 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 239 } 240 } 241 printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d) fpga_lbt_th %d(%ddBm) (auto %d static %d) tx_quad_cal duration %lu us\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag,fpga_lbt_th,rssi_half_db_to_rssi_dbm(fpga_lbt_th, priv->rssi_correction),auto_lbt_th,static_lbt_th, time_after-time_before); 242 } 243 } 244 245 const struct openwifi_rf_ops ad9361_rf_ops = { 246 .name = "ad9361", 247 // .init = ad9361_rf_init, 248 // .stop = ad9361_rf_stop, 249 .set_chan = ad9361_rf_set_channel, 250 // .calc_rssi = ad9361_rf_calc_rssi, 251 }; 252 253 u16 reverse16(u16 d) { 254 union u16_byte2 tmp0, tmp1; 255 tmp0.a = d; 256 tmp1.c[0] = tmp0.c[1]; 257 tmp1.c[1] = tmp0.c[0]; 258 return(tmp1.a); 259 } 260 261 u32 reverse32(u32 d) { 262 union u32_byte4 tmp0, tmp1; 263 tmp0.a = d; 264 tmp1.c[0] = tmp0.c[3]; 265 tmp1.c[1] = tmp0.c[2]; 266 tmp1.c[2] = tmp0.c[1]; 267 tmp1.c[3] = tmp0.c[0]; 268 return(tmp1.a); 269 } 270 271 static int openwifi_init_tx_ring(struct openwifi_priv *priv, int ring_idx) 272 { 273 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); 274 int i; 275 276 ring->stop_flag = 0; 277 ring->bd_wr_idx = 0; 278 ring->bd_rd_idx = 0; 279 ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL); 280 if (ring->bds==NULL) { 281 printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str); 282 return -ENOMEM; 283 } 284 285 for (i = 0; i < NUM_TX_BD; i++) { 286 ring->bds[i].skb_linked=0; // for tx, skb is from upper layer 287 //at first right after skb allocated, head, data, tail are the same. 288 ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from upper layer in tx routine 289 ring->bds[i].seq_no = 0; 290 } 291 292 return 0; 293 } 294 295 static void openwifi_free_tx_ring(struct openwifi_priv *priv, int ring_idx) 296 { 297 struct openwifi_ring *ring = &(priv->tx_ring[ring_idx]); 298 int i; 299 300 ring->stop_flag = 0; 301 ring->bd_wr_idx = 0; 302 ring->bd_rd_idx = 0; 303 for (i = 0; i < NUM_TX_BD; i++) { 304 if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0) 305 continue; 306 if (ring->bds[i].dma_mapping_addr != 0) 307 dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].skb_linked->len, DMA_MEM_TO_DEV); 308 // if (ring->bds[i].skb_linked!=NULL) 309 // dev_kfree_skb(ring->bds[i].skb_linked); // only use dev_kfree_skb when there is exception 310 if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) || 311 (ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0)) 312 printk("%s openwifi_free_tx_ring: WARNING ring %d i %d skb_linked %p dma_mapping_addr %08x\n", sdr_compatible_str, 313 ring_idx, i, (void*)(ring->bds[i].skb_linked), (unsigned int)(ring->bds[i].dma_mapping_addr)); 314 315 ring->bds[i].skb_linked=0; 316 ring->bds[i].dma_mapping_addr = 0; 317 ring->bds[i].seq_no = 0; 318 } 319 if (ring->bds) 320 kfree(ring->bds); 321 ring->bds = NULL; 322 } 323 324 static int openwifi_init_rx_ring(struct openwifi_priv *priv) 325 { 326 int i; 327 u8 *pdata_tmp; 328 329 priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL); 330 if (!priv->rx_cyclic_buf) { 331 printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str); 332 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); 333 return(-1); 334 } 335 336 // Set tsft_low and tsft_high to 0. If they are not zero, it means there is a packet in the buffer by DMA 337 for (i=0; i<NUM_RX_BD; i++) { 338 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; // our header insertion is at the beginning 339 (*((u32*)(pdata_tmp+0 ))) = 0; 340 (*((u32*)(pdata_tmp+4 ))) = 0; 341 } 342 printk("%s openwifi_init_rx_ring: tsft_low and tsft_high are cleared!\n", sdr_compatible_str); 343 344 return 0; 345 } 346 347 static void openwifi_free_rx_ring(struct openwifi_priv *priv) 348 { 349 if (priv->rx_cyclic_buf) 350 dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr); 351 352 priv->rx_cyclic_buf_dma_mapping_addr = 0; 353 priv->rx_cyclic_buf = 0; 354 } 355 356 static int rx_dma_setup(struct ieee80211_hw *dev){ 357 struct openwifi_priv *priv = dev->priv; 358 struct dma_device *rx_dev = priv->rx_chan->device; 359 360 priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT); 361 if (!(priv->rxd)) { 362 openwifi_free_rx_ring(priv); 363 printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %p\n", sdr_compatible_str, (void*)(priv->rxd)); 364 return(-1); 365 } 366 priv->rxd->callback = 0; 367 priv->rxd->callback_param = 0; 368 369 priv->rx_cookie = priv->rxd->tx_submit(priv->rxd); 370 371 if (dma_submit_error(priv->rx_cookie)) { 372 printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie)); 373 return(-1); 374 } 375 376 dma_async_issue_pending(priv->rx_chan); 377 return(0); 378 } 379 380 inline int rssi_half_db_to_rssi_dbm(int rssi_half_db, int rssi_correction) 381 { 382 int rssi_db, rssi_dbm; 383 384 rssi_db = (rssi_half_db>>1); 385 386 rssi_dbm = rssi_db - rssi_correction; 387 388 rssi_dbm = (rssi_dbm < (-128)? (-128) : rssi_dbm); 389 390 return rssi_dbm; 391 } 392 393 static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id) 394 { 395 struct ieee80211_hw *dev = dev_id; 396 struct openwifi_priv *priv = dev->priv; 397 struct ieee80211_rx_status rx_status = {0}; 398 struct sk_buff *skb; 399 struct ieee80211_hdr *hdr; 400 u32 addr1_low32, addr2_low32=0, addr3_low32=0, len, rate_idx, tsft_low, tsft_high, loop_count=0;//, fc_di; 401 bool ht_flag, short_gi, ht_aggr, ht_aggr_last; 402 // u32 dma_driver_buf_idx_mod; 403 u8 *pdata_tmp; 404 u8 fcs_ok;//, target_buf_idx;//, phy_rx_sn_hw; 405 s8 signal; 406 u16 agc_status_and_pkt_exist_flag, rssi_half_db, addr1_high16, addr2_high16=0, addr3_high16=0, seq_no=0; 407 bool content_ok, len_overflow; 408 409 #ifdef USE_NEW_RX_INTERRUPT 410 int i; 411 spin_lock(&priv->lock); 412 for (i=0; i<NUM_RX_BD; i++) { 413 pdata_tmp = priv->rx_cyclic_buf + i*RX_BD_BUF_SIZE; 414 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); //check rx_intf_pl_to_m_axis.v. FPGA TODO: add pkt exist 1bit flag next to gpio_status_lock_by_sig_valid 415 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer 416 continue; 417 #else 418 static u8 target_buf_idx_old = 0; 419 spin_lock(&priv->lock); 420 while(1) { // loop all rx buffers that have new rx packets 421 pdata_tmp = priv->rx_cyclic_buf + target_buf_idx_old*RX_BD_BUF_SIZE; // our header insertion is at the beginning 422 agc_status_and_pkt_exist_flag = (*((u16*)(pdata_tmp+10))); 423 if ( agc_status_and_pkt_exist_flag==0 ) // no packet in the buffer 424 break; 425 #endif 426 427 tsft_low = (*((u32*)(pdata_tmp+0 ))); 428 tsft_high = (*((u32*)(pdata_tmp+4 ))); 429 rssi_half_db = (*((u16*)(pdata_tmp+8 ))); 430 len = (*((u16*)(pdata_tmp+12))); 431 432 len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false); 433 434 rate_idx = (*((u16*)(pdata_tmp+14))); 435 ht_flag = ((rate_idx&0x10)!=0); 436 short_gi = ((rate_idx&0x20)!=0); 437 ht_aggr = (ht_flag & ((rate_idx&0x40)!=0)); 438 ht_aggr_last = (ht_flag & ((rate_idx&0x80)!=0)); 439 rate_idx = (rate_idx&0x1F); 440 441 fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) ); 442 443 //phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1)); 444 // phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation 445 // dma_driver_buf_idx_mod = (state.residue&0x7f); 446 fcs_ok = ((fcs_ok&0x80)!=0); 447 448 if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=23)) { 449 // if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) { 450 // printk("%s openwifi_rx: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod); 451 // } 452 content_ok = true; 453 } else { 454 printk("%s openwifi_rx: WARNING content!\n", sdr_compatible_str); 455 content_ok = false; 456 } 457 458 signal = rssi_half_db_to_rssi_dbm(rssi_half_db, priv->rssi_correction); 459 460 // fc_di = (*((u32*)(pdata_tmp+16))); 461 // addr1_high16 = (*((u16*)(pdata_tmp+16+4))); 462 // addr1_low32 = (*((u32*)(pdata_tmp+16+4+2))); 463 // addr2_high16 = (*((u16*)(pdata_tmp+16+6+4))); 464 // addr2_low32 = (*((u32*)(pdata_tmp+16+6+4+2))); 465 // addr3_high16 = (*((u16*)(pdata_tmp+16+12+4))); 466 // addr3_low32 = (*((u32*)(pdata_tmp+16+12+4+2))); 467 if ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&2) || ( (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) && fcs_ok==0 ) ) { 468 hdr = (struct ieee80211_hdr *)(pdata_tmp+16); 469 addr1_low32 = *((u32*)(hdr->addr1+2)); 470 addr1_high16 = *((u16*)(hdr->addr1)); 471 if (len>=20) { 472 addr2_low32 = *((u32*)(hdr->addr2+2)); 473 addr2_high16 = *((u16*)(hdr->addr2)); 474 } 475 if (len>=26) { 476 addr3_low32 = *((u32*)(hdr->addr3+2)); 477 addr3_high16 = *((u16*)(hdr->addr3)); 478 } 479 if (len>=28) 480 seq_no = ( (hdr->seq_ctrl&IEEE80211_SCTL_SEQ)>>4 ); 481 482 if ( (addr1_low32!=0xffffffff || addr1_high16!=0xffff) || (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&4) ) 483 printk("%s openwifi_rx:%4dbytes ht%d aggr%d/%d sgi%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d buf_idx%d %ddBm\n", sdr_compatible_str, 484 len, ht_flag, ht_aggr, ht_aggr_last, short_gi, wifi_rate_table[rate_idx], hdr->frame_control, hdr->duration_id, 485 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), 486 #ifdef USE_NEW_RX_INTERRUPT 487 seq_no, fcs_ok, i, signal); 488 #else 489 seq_no, fcs_ok, target_buf_idx_old, signal); 490 #endif 491 } 492 493 // priv->phy_rx_sn_hw_old = phy_rx_sn_hw; 494 if (content_ok) { 495 skb = dev_alloc_skb(len); 496 if (skb) { 497 skb_put_data(skb,pdata_tmp+16,len); 498 499 rx_status.antenna = priv->runtime_rx_ant_cfg; 500 // def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M) 501 rx_status.rate_idx = wifi_rate_table_mapping[rate_idx]; 502 rx_status.signal = signal; 503 rx_status.freq = dev->conf.chandef.chan->center_freq; 504 rx_status.band = dev->conf.chandef.chan->band; 505 rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); 506 rx_status.flag |= RX_FLAG_MACTIME_START; 507 if (!fcs_ok) 508 rx_status.flag |= RX_FLAG_FAILED_FCS_CRC; 509 if (rate_idx <= 15) 510 rx_status.encoding = RX_ENC_LEGACY; 511 else 512 rx_status.encoding = RX_ENC_HT; 513 rx_status.bw = RATE_INFO_BW_20; 514 if (short_gi) 515 rx_status.enc_flags |= RX_ENC_FLAG_SHORT_GI; 516 if(ht_aggr) 517 { 518 rx_status.ampdu_reference = priv->ampdu_reference; 519 rx_status.flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 520 if (ht_aggr_last) 521 rx_status.flag |= RX_FLAG_AMPDU_IS_LAST; 522 } 523 524 memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more. 525 ieee80211_rx_irqsafe(dev, skb); // call mac80211 function 526 } else 527 printk("%s openwifi_rx: WARNING dev_alloc_skb failed!\n", sdr_compatible_str); 528 529 if(ht_aggr_last) 530 priv->ampdu_reference++; 531 } 532 (*((u16*)(pdata_tmp+10))) = 0; // clear the field (set by rx_intf_pl_to_m_axis.v) to indicate the packet has been processed 533 loop_count++; 534 #ifndef USE_NEW_RX_INTERRUPT 535 target_buf_idx_old=((target_buf_idx_old+1)&(NUM_RX_BD-1)); 536 #endif 537 } 538 539 if ( loop_count!=1 && (priv->drv_rx_reg_val[DRV_RX_REG_IDX_PRINT_CFG]&1) ) 540 printk("%s openwifi_rx: WARNING loop_count %d\n", sdr_compatible_str,loop_count); 541 542 // openwifi_rx_out: 543 spin_unlock(&priv->lock); 544 return IRQ_HANDLED; 545 } 546 547 static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id) 548 { 549 struct ieee80211_hw *dev = dev_id; 550 struct openwifi_priv *priv = dev->priv; 551 struct openwifi_ring *ring; 552 struct sk_buff *skb; 553 struct ieee80211_tx_info *info; 554 u32 reg_val1, hw_queue_len, reg_val2, prio, queue_idx, dma_fifo_no_room_flag, num_slot_random, cw, loop_count=0; 555 u16 seq_no, pkt_cnt, blk_ack_ssn, start_idx; 556 u8 nof_retx=-1, last_bd_rd_idx, i; 557 u64 blk_ack_bitmap; 558 // u16 prio_rd_idx_store[64]={0}; 559 bool tx_fail=false; 560 561 spin_lock(&priv->lock); 562 563 while(1) { // loop all packets that have been sent by FPGA 564 reg_val1 = tx_intf_api->TX_INTF_REG_PKT_INFO1_read(); 565 reg_val2 = tx_intf_api->TX_INTF_REG_PKT_INFO2_read(); 566 blk_ack_bitmap = (tx_intf_api->TX_INTF_REG_PKT_INFO3_read() | ((u64)tx_intf_api->TX_INTF_REG_PKT_INFO4_read())<<32); 567 568 if (reg_val1!=0xFFFFFFFF) { 569 nof_retx = (reg_val1&0xF); 570 last_bd_rd_idx = ((reg_val1>>5)&(NUM_TX_BD-1)); 571 prio = ((reg_val1>>17)&0x3); 572 num_slot_random = ((reg_val1>>19)&0x1FF); 573 //num_slot_random = ((0xFF80000 ®_val1)>>(2+5+NUM_BIT_MAX_PHY_TX_SN+NUM_BIT_MAX_NUM_HW_QUEUE)); 574 cw = ((reg_val1>>28)&0xF); 575 //cw = ((0xF0000000 & reg_val1) >> 28); 576 if(cw > 10) { 577 cw = 10 ; 578 num_slot_random += 512 ; 579 } 580 pkt_cnt = (reg_val2&0x3F); 581 blk_ack_ssn = ((reg_val2>>6)&0xFFF); 582 583 ring = &(priv->tx_ring[prio]); 584 585 if ( ring->stop_flag == 1) { 586 // Wake up Linux queue if FPGA and driver ring have room 587 queue_idx = ((reg_val1>>15)&(MAX_NUM_HW_QUEUE-1)); 588 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); 589 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 590 591 if ( ((dma_fifo_no_room_flag>>queue_idx)&1)==0 && (NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))>=RING_ROOM_THRESHOLD ) { 592 // printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue loop %d call %d\n", sdr_compatible_str, loop_count, priv->call_counter); 593 printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue prio %d queue %d no room flag %x hw queue len %08x wr %d rd %d\n", sdr_compatible_str, 594 prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, ring->bd_wr_idx, last_bd_rd_idx); 595 ieee80211_wake_queue(dev, prio); 596 ring->stop_flag = 0; 597 } 598 } 599 600 for(i = 1; i <= pkt_cnt; i++) 601 { 602 ring->bd_rd_idx = (last_bd_rd_idx + i - pkt_cnt + 64)%64; 603 seq_no = ring->bds[ring->bd_rd_idx].seq_no; 604 skb = ring->bds[ring->bd_rd_idx].skb_linked; 605 606 dma_unmap_single(priv->tx_chan->device->dev,ring->bds[ring->bd_rd_idx].dma_mapping_addr, 607 skb->len, DMA_MEM_TO_DEV); 608 609 info = IEEE80211_SKB_CB(skb); 610 ieee80211_tx_info_clear_status(info); 611 612 // Aggregation packet 613 if(pkt_cnt > 1) 614 { 615 start_idx = (seq_no>=blk_ack_ssn) ? (seq_no-blk_ack_ssn) : (seq_no+((~blk_ack_ssn+1)&0x0FFF)); 616 tx_fail = (((blk_ack_bitmap>>start_idx)&0x1)==0); 617 info->flags |= IEEE80211_TX_STAT_AMPDU; 618 info->status.ampdu_len = 1; 619 info->status.ampdu_ack_len = (tx_fail == true) ? 0 : 1; 620 621 skb_pull(skb, LEN_MPDU_DELIM); 622 //skb_trim(skb, num_byte_pad_skb); 623 } 624 // Normal packet 625 else 626 { 627 tx_fail = ((blk_ack_bitmap&0x1)==0); 628 info->flags &= (~IEEE80211_TX_CTL_AMPDU); 629 } 630 631 if (tx_fail == false) 632 info->flags |= IEEE80211_TX_STAT_ACK; 633 634 info->status.rates[0].count = nof_retx + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate 635 info->status.rates[1].idx = -1; 636 info->status.rates[2].idx = -1; 637 info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES 4 638 info->status.antenna = priv->runtime_tx_ant_cfg; 639 640 if ( tx_fail && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) ) 641 printk("%s openwifi_tx_interrupt: WARNING pkt_no %d/%d tx_result [nof_retx %d pass %d] prio%d wr%d rd%d\n", sdr_compatible_str, i, pkt_cnt, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx); 642 if ( ( (!(info->flags & IEEE80211_TX_CTL_NO_ACK))||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&2) ) 643 printk("%s openwifi_tx_interrupt: tx_result [nof_retx %d pass %d] prio%d wr%d rd%d num_rand_slot %d cw %d \n", sdr_compatible_str, nof_retx+1, !tx_fail, prio, ring->bd_wr_idx, ring->bd_rd_idx, num_slot_random, cw); 644 645 ieee80211_tx_status_irqsafe(dev, skb); 646 } 647 648 loop_count++; 649 650 // printk("%s openwifi_tx_interrupt: loop %d prio %d rd %d\n", sdr_compatible_str, loop_count, prio, ring->bd_rd_idx); 651 652 } else 653 break; 654 } 655 if ( loop_count!=1 && ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG])&1) ) 656 printk("%s openwifi_tx_interrupt: WARNING loop_count %d\n", sdr_compatible_str, loop_count); 657 658 spin_unlock(&priv->lock); 659 return IRQ_HANDLED; 660 } 661 662 u32 crc_table[16] = {0x4DBDF21C, 0x500AE278, 0x76D3D2D4, 0x6B64C2B0, 0x3B61B38C, 0x26D6A3E8, 0x000F9344, 0x1DB88320, 0xA005713C, 0xBDB26158, 0x9B6B51F4, 0x86DC4190, 0xD6D930AC, 0xCB6E20C8, 0xEDB71064, 0xF0000000}; 663 u32 gen_mpdu_crc(u8 *data_in, u32 num_bytes) 664 { 665 u32 i, crc = 0; 666 u8 idx; 667 for( i = 0; i < num_bytes; i++) 668 { 669 idx = (crc & 0x0F) ^ (data_in[i] & 0x0F); 670 crc = (crc >> 4) ^ crc_table[idx]; 671 672 idx = (crc & 0x0F) ^ ((data_in[i] >> 4) & 0x0F); 673 crc = (crc >> 4) ^ crc_table[idx]; 674 } 675 676 return crc; 677 } 678 679 u8 gen_mpdu_delim_crc(u16 m) 680 { 681 u8 i, temp, c[8] = {1, 1, 1, 1, 1, 1, 1, 1}, mpdu_delim_crc; 682 683 for (i = 0; i < 16; i++) 684 { 685 temp = c[7] ^ ((m >> i) & 0x01); 686 687 c[7] = c[6]; 688 c[6] = c[5]; 689 c[5] = c[4]; 690 c[4] = c[3]; 691 c[3] = c[2]; 692 c[2] = c[1] ^ temp; 693 c[1] = c[0] ^ temp; 694 c[0] = temp; 695 } 696 mpdu_delim_crc = ((~c[7] & 0x01) << 0) | ((~c[6] & 0x01) << 1) | ((~c[5] & 0x01) << 2) | ((~c[4] & 0x01) << 3) | ((~c[3] & 0x01) << 4) | ((~c[2] & 0x01) << 5) | ((~c[1] & 0x01) << 6) | ((~c[0] & 0x01) << 7); 697 698 return mpdu_delim_crc; 699 } 700 701 static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c 702 cdev_to_gpio_led_data(struct led_classdev *led_cdev) 703 { 704 return container_of(led_cdev, struct gpio_led_data, cdev); 705 } 706 707 inline int calc_n_ofdm(int num_octet, int n_dbps) 708 { 709 int num_bit, num_ofdm_sym; 710 711 num_bit = 22+num_octet*8; 712 num_ofdm_sym = (num_bit/n_dbps) + ((num_bit%n_dbps)!=0); 713 714 return (num_ofdm_sym); 715 } 716 717 inline __le16 gen_ht_duration_id(__le16 frame_control, __le16 aid, u8 qos_hdr, bool use_ht_aggr, u16 rate_hw_value, u16 sifs) 718 { 719 // COTS wifi ht QoS data duration field analysis (lots of capture): 720 721 // ht non-aggr QoS data: 44, type 2 (data frame) sub-type 8 (1000) 21.7/52/57.8/58.5/65Mbps 722 // ack ht 36 + 4*[(22+14*8)/78] = 36 + 4*2 = 44 723 // ack legacy 20 + 4*[(22+14*8)/72] = 20 + 4*2 = 28 724 725 // ht non-aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 6.5Mbps 726 // ack ht 36 + 4*[(22+14*8)/26] = 36 + 4*6 = 60 727 // ack legacy 20 + 4*[(22+14*8)/24] = 20 + 4*6 = 44 728 729 // ht aggr QoS data: 52, type 2 (data frame) sub-type 8 (1000) 19.5/28.9/39/57.8/65/72.2Mbps 730 // ack ht 36 + 4*[(22+32*8)/78] = 36 + 4*4 = 52 731 // ack legacy 20 + 4*[(22+32*8)/72] = 20 + 4*4 = 36 732 733 // ht aggr QoS data: 60, type 2 (data frame) sub-type 8 (1000) 13/14.4Mbps 734 // ack ht 36 + 4*[(22+32*8)/52] = 36 + 4*6 = 60 735 // ack legacy 20 + 4*[(22+32*8)/48] = 20 + 4*6 = 44 736 737 // ht and legacy rate mapping is ont one on one, instead it is modulation combined with coding rate 738 // modulate coding ht-mcs ht-n_dbps legacy-mcs legacy-n_dbps 739 // BPSK 1/2 0 26 4 24 740 // QPSK 1/2 1 52 6 48 741 // QPSK 3/4 2 78 7 72 742 // 16QAM 1/2 3 104 8 96 743 // 16QAM 3/4 4 156 9 144 744 // 64QAM 2/3 5 208 10 192 745 // 64QAM 3/4 6 234 11 216 746 747 // conclusion: duration is: assume ack/blk-ack uses legacy, plus SIFS 748 749 // other observation: ht always use QoS data, not data (sub-type) 750 // other observation: management/control frame always in non-ht 751 752 __le16 dur = 0; 753 u16 n_dbps; 754 int num_octet, num_ofdm_sym; 755 756 if (ieee80211_is_pspoll(frame_control)) { 757 dur = (aid|0xc000); 758 } else if (ieee80211_is_data_qos(frame_control) && (~(qos_hdr&IEEE80211_QOS_CTL_ACK_POLICY_NOACK))) { 759 rate_hw_value = (rate_hw_value>6?6:rate_hw_value); 760 n_dbps = (rate_hw_value==0?wifi_n_dbps_table[4]:wifi_n_dbps_table[rate_hw_value+5]); 761 num_octet = (use_ht_aggr?32:14); //32 bytes for compressed block ack; 14 bytes for normal ack 762 num_ofdm_sym = calc_n_ofdm(num_octet, n_dbps); 763 dur = sifs + 20 + 4*num_ofdm_sym; // 20us legacy preamble 764 // printk("%s gen_ht_duration_id: num_octet %d n_dbps %d num_ofdm_sym %d dur %d\n", sdr_compatible_str, 765 // num_octet, n_dbps, num_ofdm_sym, dur); 766 } else { 767 printk("%s openwifi_tx: WARNING gen_ht_duration_id wrong pkt type!\n", sdr_compatible_str); 768 } 769 770 return dur; 771 } 772 773 static void openwifi_tx(struct ieee80211_hw *dev, 774 struct ieee80211_tx_control *control, 775 struct sk_buff *skb) 776 { 777 struct openwifi_priv *priv = dev->priv; 778 unsigned long flags; 779 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 780 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 781 struct openwifi_ring *ring = NULL; 782 struct sk_buff *skb_new; // temp skb for internal use 783 dma_addr_t dma_mapping_addr; 784 unsigned int i; 785 u16 rate_signal_value, rate_hw_value, len_mpdu, len_psdu, num_dma_symbol, len_mpdu_delim_pad=0, num_byte_pad; 786 u32 num_dma_byte, addr1_low32, addr2_low32=0, addr3_low32=0, tx_config, cts_reg, phy_hdr_config;//, openofdm_state_history; 787 u16 addr1_high16, addr2_high16=0, addr3_high16=0, sc, seq_no=0, cts_duration=0, cts_rate_hw_value=0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration, n_dbps; 788 u8 pkt_need_ack, retry_limit_raw,use_short_gi,*dma_buf,retry_limit_hw_value,rc_flags,qos_hdr,prio,queue_idx; 789 bool drv_seqno=false, use_rts_cts, use_cts_protect, ht_aggr_start=false, use_ht_rate, use_ht_aggr, cts_use_traffic_rate=false, force_use_cts_protect=false; 790 __le16 frame_control,duration_id; 791 u32 dma_fifo_no_room_flag, hw_queue_len, delay_count=0; 792 enum dma_status status; 793 794 static u32 addr1_low32_prev = -1; 795 static u16 rate_hw_value_prev = -1; 796 static u8 pkt_need_ack_prev = -1; 797 static u16 addr1_high16_prev = -1; 798 static __le16 duration_id_prev = -1; 799 static u8 prio_prev = -1; 800 static u8 retry_limit_raw_prev = -1; 801 static u8 use_short_gi_prev = -1; 802 803 // static bool led_status=0; 804 // struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]); 805 806 // if ( (priv->phy_tx_sn&7) ==0 ) { 807 // openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read(); 808 // if (openofdm_state_history!=openofdm_state_history_old){ 809 // led_status = (~led_status); 810 // openofdm_state_history_old = openofdm_state_history; 811 // gpiod_set_value(led_dat->gpiod, led_status); 812 // } 813 // } 814 815 if (skb->data_len>0) {// more data are not in linear data area skb->data 816 printk("%s openwifi_tx: WARNING skb->data_len>0\n", sdr_compatible_str); 817 goto openwifi_tx_early_out; 818 } 819 820 len_mpdu = skb->len; 821 822 // get Linux priority/queue setting info and target mac address 823 prio = skb_get_queue_mapping(skb); 824 if (prio >= MAX_NUM_HW_QUEUE) { 825 printk("%s openwifi_tx: WARNING prio%d\n", sdr_compatible_str, prio); 826 goto openwifi_tx_early_out; 827 } 828 829 addr1_low32 = *((u32*)(hdr->addr1+2)); 830 ring = &(priv->tx_ring[prio]); 831 832 // -------------- DO your idea here! Map Linux/SW "prio" to hardware "queue_idx" ----------- 833 if (priv->slice_idx == 0xFFFFFFFF) {// use Linux default prio setting, if there isn't any slice config 834 queue_idx = prio; 835 } else {// customized prio to queue_idx mapping 836 //if (fc_type==2 && fc_subtype==0 && (!addr_flag)) { // for unicast data packet only 837 // check current packet belonging to which slice/hw-queue 838 for (i=0; i<MAX_NUM_HW_QUEUE; i++) { 839 if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) { 840 break; 841 } 842 } 843 //} 844 queue_idx = (i>=MAX_NUM_HW_QUEUE?2:i); // if no address is hit, use FPGA queue 2. because the queue 2 is the longest. 845 } 846 // -------------------- end of Map Linux/SW "prio" to hardware "queue_idx" ------------------ 847 // get other info from packet header 848 addr1_high16 = *((u16*)(hdr->addr1)); 849 if (len_mpdu>=20) { 850 addr2_low32 = *((u32*)(hdr->addr2+2)); 851 addr2_high16 = *((u16*)(hdr->addr2)); 852 } 853 if (len_mpdu>=26) { 854 addr3_low32 = *((u32*)(hdr->addr3+2)); 855 addr3_high16 = *((u16*)(hdr->addr3)); 856 } 857 858 frame_control=hdr->frame_control; 859 pkt_need_ack = (!(info->flags&IEEE80211_TX_CTL_NO_ACK)); 860 861 retry_limit_raw = info->control.rates[0].count; 862 863 rc_flags = info->control.rates[0].flags; 864 use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0); 865 use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0); 866 use_ht_rate = ((rc_flags&IEEE80211_TX_RC_MCS)!=0); 867 use_short_gi = ((rc_flags&IEEE80211_TX_RC_SHORT_GI)!=0); 868 use_ht_aggr = ((info->flags&IEEE80211_TX_CTL_AMPDU)!=0); 869 qos_hdr = (*(ieee80211_get_qos_ctl(hdr))); 870 871 // get Linux rate (MCS) setting 872 rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value; 873 // drv_tx_reg_val[DRV_TX_REG_IDX_RATE] 874 // override rate legacy: 4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M 875 // drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT] 876 // override rate ht: 4:6.5M, 5:13M, 6:19.5M,7:26M, 8:39M, 9:52M, 10:58.5M, 11:65M 877 if ( ieee80211_is_data(hdr->frame_control) ) {//rate override command 878 if (use_ht_rate && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]>0) { 879 rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0xF)-4; 880 use_short_gi = ((priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE_HT]&0x10)==0x10); 881 } else if ((!use_ht_rate) && priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]>0) 882 rate_hw_value = (priv->drv_tx_reg_val[DRV_TX_REG_IDX_RATE]&0xF); 883 // TODO: need to map rate_hw_value back to info->control.rates[0].idx!!! 884 } 885 886 // Workaround for a FPGA bug: if aggr happens on ht mcs 0, the tx core will never end, running eneless and stuck the low MAC! 887 if (use_ht_aggr && rate_hw_value==0) 888 rate_hw_value = 1; 889 890 sifs = (priv->actual_rx_lo<2500?10:16); 891 892 if (use_ht_rate) { 893 // printk("%s openwifi_tx: rate_hw_value %d aggr %d sifs %d\n", sdr_compatible_str, rate_hw_value, use_ht_aggr, sifs); 894 hdr->duration_id = gen_ht_duration_id(frame_control, control->sta->aid, qos_hdr, use_ht_aggr, rate_hw_value, sifs); //linux only do it for 11a/g, not for 11n and later 895 } 896 duration_id = hdr->duration_id; 897 898 if (use_rts_cts) 899 printk("%s openwifi_tx: WARNING sn %d use_rts_cts is not supported!\n", sdr_compatible_str, ring->bd_wr_idx); 900 901 if (use_cts_protect) { 902 cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value; 903 cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mpdu,info)); 904 } else if (force_use_cts_protect) { // could override mac80211 setting here. 905 cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M) 906 if (pkt_need_ack) 907 ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL) 908 909 n_dbps = (use_ht_rate?wifi_n_dbps_ht_table[rate_hw_value+4]:wifi_n_dbps_table[rate_hw_value]); 910 traffic_pkt_duration = (use_ht_rate?36:20) + 4*calc_n_ofdm(len_mpdu, n_dbps); 911 cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration); 912 } 913 914 // this is 11b stuff 915 // if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 916 // printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str); 917 918 if (len_mpdu>=28) { 919 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 920 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) { 921 priv->seqno += 0x10; 922 drv_seqno = true; 923 } 924 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 925 hdr->seq_ctrl |= cpu_to_le16(priv->seqno); 926 } 927 sc = hdr->seq_ctrl; 928 seq_no = (sc&IEEE80211_SCTL_SEQ)>>4; 929 } 930 931 // printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str, 932 // info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags, 933 // info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags, 934 // info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags, 935 // info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags); 936 937 // -----------end of preprocess some info from header and skb---------------- 938 939 // /* HW will perform RTS-CTS when only RTS flags is set. 940 // * HW will perform CTS-to-self when both RTS and CTS flags are set. 941 // * RTS rate and RTS duration will be used also for CTS-to-self. 942 // */ 943 // if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 944 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; 945 // rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config 946 // len_mpdu, info); 947 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str); 948 // } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 949 // tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19; 950 // rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config 951 // len_mpdu, info); 952 // printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str); 953 // } 954 955 if(use_ht_aggr) 956 { 957 if(ieee80211_is_data_qos(frame_control) == false) 958 { 959 printk("%s openwifi_tx: WARNING packet is not QoS packet!\n", sdr_compatible_str); 960 goto openwifi_tx_early_out; 961 } 962 963 // psdu = [ MPDU DEL | MPDU | CRC | MPDU padding ] 964 len_mpdu_delim_pad = ((len_mpdu + LEN_PHY_CRC)%4 == 0) ? 0 :(4 - (len_mpdu + LEN_PHY_CRC)%4); 965 len_psdu = LEN_MPDU_DELIM + len_mpdu + LEN_PHY_CRC + len_mpdu_delim_pad; 966 967 if( (addr1_low32 != addr1_low32_prev) || (addr1_high16 != addr1_high16_prev) || (duration_id != duration_id_prev) || 968 (rate_hw_value != rate_hw_value_prev) || (use_short_gi != use_short_gi_prev) || 969 (prio != prio_prev) || (retry_limit_raw != retry_limit_raw_prev) || (pkt_need_ack != pkt_need_ack_prev) ) 970 { 971 addr1_low32_prev = addr1_low32; 972 addr1_high16_prev = addr1_high16; 973 duration_id_prev = duration_id; 974 rate_hw_value_prev = rate_hw_value; 975 use_short_gi_prev = use_short_gi; 976 prio_prev = prio; 977 retry_limit_raw_prev = retry_limit_raw; 978 pkt_need_ack_prev = pkt_need_ack; 979 980 ht_aggr_start = true; 981 } 982 } 983 else 984 { 985 // psdu = [ MPDU ] 986 len_psdu = len_mpdu; 987 988 // // Don't need to reset _prev variables every time when it is not ht aggr qos data. Reason: 989 // // 1. In 99.9999% cases, the ht always use qos data and goes to prio/queue_idx 2. By not resetting the variable to -1, we can have continuous aggregation packet operation in FPGA queue 2. 990 // // 2. In other words, the aggregation operation for queue 2 in FPGA won't be interrupted by other non aggregation packets (control/management/beacon/etc.) that go to queue 0 (or other queues than 2). 991 // // 3. From wired domain and upper level ( DSCP, AC (0~3), WMM management, 802.11D service classes and user priority (UP) ) to chip/FPGA queue index, thre should be some (complicated) mapping relationship. 992 // // 4. More decent design is setting these aggregation flags (ht_aggr_start) per queue/prio here in driver. But since now only queue 2 and 0 are used (data goes to queue 2, others go to queue 0) in normal (most) cases, let's not go to the decent (complicated) solution immediately. 993 // addr1_low32_prev = -1; 994 // addr1_high16_prev = -1; 995 // duration_id_prev = -1; 996 // use_short_gi_prev = -1; 997 // rate_hw_value_prev = -1; 998 // prio_prev = -1; 999 // retry_limit_raw_prev = -1; 1000 // pkt_need_ack_prev = -1; 1001 } 1002 num_dma_symbol = (len_psdu>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_psdu&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0); 1003 1004 if ( ( (!pkt_need_ack)||(priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&4) ) && (priv->drv_tx_reg_val[DRV_TX_REG_IDX_PRINT_CFG]&2) ) 1005 printk("%s openwifi_tx: %4dbytes ht%d aggr%d %3dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retr%d ack%d prio%d q%d wr%d rd%d\n", sdr_compatible_str, 1006 len_mpdu, (use_ht_rate == false ? 0 : 1), (use_ht_aggr == false ? 0 : 1), (use_ht_rate == false ? wifi_rate_all[rate_hw_value] : wifi_rate_all[rate_hw_value + 12]),frame_control,duration_id, 1007 reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32), 1008 seq_no, info->flags, retry_limit_raw, pkt_need_ack, prio, queue_idx, 1009 // use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration, 1010 ring->bd_wr_idx,ring->bd_rd_idx); 1011 1012 // check whether the packet is bigger than DMA buffer size 1013 num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS); 1014 if (num_dma_byte > TX_BD_BUF_SIZE) { 1015 printk("%s openwifi_tx: WARNING sn %d num_dma_byte > TX_BD_BUF_SIZE\n", sdr_compatible_str, ring->bd_wr_idx); 1016 goto openwifi_tx_early_out; 1017 } 1018 1019 // Copy MPDU delimiter and padding into sk_buff 1020 if(use_ht_aggr) 1021 { 1022 // when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary 1023 if (skb_headroom(skb)<LEN_MPDU_DELIM) {// in case original skb headroom is not enough to host MPDU delimiter 1024 printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_headroom(skb) %d < LEN_MPDU_DELIM %d\n", sdr_compatible_str, ring->bd_wr_idx, skb_headroom(skb), LEN_MPDU_DELIM); 1025 if ((skb_new = skb_realloc_headroom(skb, LEN_MPDU_DELIM)) == NULL) { 1026 printk("%s openwifi_tx: WARNING sn %d skb_realloc_headroom failed!\n", sdr_compatible_str, ring->bd_wr_idx); 1027 goto openwifi_tx_early_out; 1028 } 1029 if (skb->sk != NULL) 1030 skb_set_owner_w(skb_new, skb->sk); 1031 dev_kfree_skb(skb); 1032 skb = skb_new; 1033 } 1034 skb_push( skb, LEN_MPDU_DELIM ); 1035 dma_buf = skb->data; 1036 1037 // fill in MPDU delimiter 1038 *((u16*)(dma_buf+0)) = ((u16)(len_mpdu+LEN_PHY_CRC) << 4) & 0xFFF0; 1039 *((u8 *)(dma_buf+2)) = gen_mpdu_delim_crc(*((u16 *)dma_buf)); 1040 *((u8 *)(dma_buf+3)) = 0x4e; 1041 1042 // Extend sk_buff to hold CRC + MPDU padding + empty MPDU delimiter 1043 num_byte_pad = num_dma_byte - (LEN_MPDU_DELIM + len_mpdu); 1044 if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad 1045 printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad); 1046 if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) { 1047 printk("%s openwifi_tx: WARNING(AGGR) sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx); 1048 goto openwifi_tx_early_out; 1049 } 1050 if (skb->sk != NULL) 1051 skb_set_owner_w(skb_new, skb->sk); 1052 dev_kfree_skb(skb); 1053 skb = skb_new; 1054 } 1055 skb_put( skb, num_byte_pad ); 1056 1057 // fill in MPDU CRC 1058 *((u32*)(dma_buf+LEN_MPDU_DELIM+len_mpdu)) = gen_mpdu_crc(dma_buf+LEN_MPDU_DELIM, len_mpdu); 1059 1060 // fill in MPDU delimiter padding 1061 memset(dma_buf+LEN_MPDU_DELIM+len_mpdu+LEN_PHY_CRC, 0, len_mpdu_delim_pad); 1062 1063 // num_dma_byte is on 8-byte boundary and len_psdu is on 4 byte boundary. 1064 // If they have different lengths, add "empty MPDU delimiter" for alignment 1065 if(num_dma_byte == len_psdu + 4) 1066 { 1067 *((u32*)(dma_buf+len_psdu)) = 0x4e140000; 1068 len_psdu = num_dma_byte; 1069 } 1070 } 1071 else 1072 { 1073 // Extend sk_buff to hold padding 1074 num_byte_pad = num_dma_byte - len_mpdu; 1075 if (skb_tailroom(skb)<num_byte_pad) {// in case original skb tailroom is not enough to host num_byte_pad 1076 printk("%s openwifi_tx: WARNING sn %d skb_tailroom(skb) %d < num_byte_pad %d!\n", sdr_compatible_str, ring->bd_wr_idx, skb_tailroom(skb), num_byte_pad); 1077 if ((skb_new = skb_copy_expand(skb, skb_headroom(skb), num_byte_pad, GFP_KERNEL)) == NULL) { 1078 printk("%s openwifi_tx: WARNING sn %d skb_copy_expand failed!\n", sdr_compatible_str, ring->bd_wr_idx); 1079 goto openwifi_tx_early_out; 1080 } 1081 if (skb->sk != NULL) 1082 skb_set_owner_w(skb_new, skb->sk); 1083 dev_kfree_skb(skb); 1084 skb = skb_new; 1085 } 1086 skb_put( skb, num_byte_pad ); 1087 1088 dma_buf = skb->data; 1089 } 1090 // for(i = 0; i <= num_dma_symbol; i++) 1091 // printk("%16llx\n", (*(u64*)(&(dma_buf[i*8])))); 1092 1093 rate_signal_value = (use_ht_rate ? rate_hw_value : wifi_mcs_table_11b_force_up[rate_hw_value]); 1094 1095 retry_limit_hw_value = ( retry_limit_raw==0?0:((retry_limit_raw - 1)&0xF) ); 1096 1097 cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value]; 1098 cts_reg = ((use_cts_protect|force_use_cts_protect)<<31 | cts_use_traffic_rate<<30 | cts_duration<<8 | cts_rate_signal_value<<4 | rate_signal_value); 1099 tx_config = ( prio<<26 | ring->bd_wr_idx<<20 | queue_idx<<18 | retry_limit_hw_value<<14 | pkt_need_ack<<13 | num_dma_symbol ); 1100 phy_hdr_config = ( ht_aggr_start<<20 | rate_hw_value<<16 | use_ht_rate<<15 | use_short_gi<<14 | use_ht_aggr<<13 | len_psdu ); 1101 1102 /* We must be sure that tx_flags is written last because the HW 1103 * looks at it to check if the rest of data is valid or not 1104 */ 1105 //wmb(); 1106 // entry->flags = cpu_to_le32(tx_flags); 1107 /* We must be sure this has been written before following HW 1108 * register write, because this write will make the HW attempts 1109 * to DMA the just-written data 1110 */ 1111 //wmb(); 1112 1113 spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because ring->stop_flag is shared with interrupt 1114 1115 // -------------check whether FPGA dma fifo and queue (queue_idx) has enough room------------- 1116 dma_fifo_no_room_flag = tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read(); 1117 hw_queue_len = tx_intf_api->TX_INTF_REG_QUEUE_FIFO_DATA_COUNT_read(); 1118 if ( ((dma_fifo_no_room_flag>>queue_idx)&1) || ((NUM_TX_BD-((hw_queue_len>>(queue_idx*8))&0xFF))<RING_ROOM_THRESHOLD) || ring->stop_flag==1 ) { 1119 ieee80211_stop_queue(dev, prio); // here we should stop those prio related to the queue idx flag set in TX_INTF_REG_S_AXIS_FIFO_NO_ROOM_read 1120 printk("%s openwifi_tx: WARNING ieee80211_stop_queue prio %d queue %d no room flag %x hw queue len %08x request %d wr %d rd %d\n", sdr_compatible_str, 1121 prio, queue_idx, dma_fifo_no_room_flag, hw_queue_len, num_dma_symbol, ring->bd_wr_idx, ring->bd_rd_idx); 1122 ring->stop_flag = 1; 1123 goto openwifi_tx_early_out_after_lock; 1124 } 1125 // --------end of check whether FPGA fifo (queue_idx) has enough room------------ 1126 1127 status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL); 1128 while(delay_count<100 && status!=DMA_COMPLETE) { 1129 status = dma_async_is_tx_complete(priv->tx_chan, priv->tx_cookie, NULL, NULL); 1130 delay_count++; 1131 udelay(4); 1132 // udelay(priv->stat.dbg_ch1); 1133 } 1134 if (status!=DMA_COMPLETE) { 1135 printk("%s openwifi_tx: WARNING status!=DMA_COMPLETE\n", sdr_compatible_str); 1136 goto openwifi_tx_early_out_after_lock; 1137 } 1138 1139 //-------------------------fire skb DMA to hardware---------------------------------- 1140 dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf, 1141 num_dma_byte, DMA_MEM_TO_DEV); 1142 1143 if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) { 1144 // dev_err(priv->tx_chan->device->dev, "sdr,sdr openwifi_tx: WARNING TX DMA mapping error\n"); 1145 printk("%s openwifi_tx: WARNING sn %d TX DMA mapping error\n", sdr_compatible_str, ring->bd_wr_idx); 1146 goto openwifi_tx_early_out_after_lock; 1147 } 1148 1149 sg_init_table(&(priv->tx_sg), 1); // only need to be initialized once in openwifi_start 1150 sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr; 1151 sg_dma_len( &(priv->tx_sg) ) = num_dma_byte; 1152 1153 tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg); 1154 tx_intf_api->TX_INTF_REG_TX_CONFIG_write(tx_config); 1155 tx_intf_api->TX_INTF_REG_PHY_HDR_CONFIG_write(phy_hdr_config); 1156 priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL); 1157 if (!(priv->txd)) { 1158 printk("%s openwifi_tx: WARNING sn %d device_prep_slave_sg %p\n", sdr_compatible_str, ring->bd_wr_idx, (void*)(priv->txd)); 1159 goto openwifi_tx_after_dma_mapping; 1160 } 1161 1162 priv->tx_cookie = priv->txd->tx_submit(priv->txd); 1163 1164 if (dma_submit_error(priv->tx_cookie)) { 1165 printk("%s openwifi_tx: WARNING sn %d dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, ring->bd_wr_idx, (u32)(priv->tx_cookie)); 1166 goto openwifi_tx_after_dma_mapping; 1167 } 1168 1169 // seems everything is ok. let's mark this pkt in bd descriptor ring 1170 ring->bds[ring->bd_wr_idx].seq_no = seq_no; 1171 ring->bds[ring->bd_wr_idx].skb_linked = skb; 1172 ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr; 1173 1174 ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1)); 1175 1176 dma_async_issue_pending(priv->tx_chan); 1177 1178 spin_unlock_irqrestore(&priv->lock, flags); 1179 1180 return; 1181 1182 openwifi_tx_after_dma_mapping: 1183 dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV); 1184 1185 openwifi_tx_early_out_after_lock: 1186 dev_kfree_skb(skb); 1187 spin_unlock_irqrestore(&priv->lock, flags); 1188 // printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); 1189 return; 1190 1191 openwifi_tx_early_out: 1192 //dev_kfree_skb(skb); 1193 // printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx); 1194 } 1195 1196 static int openwifi_set_antenna(struct ieee80211_hw *dev, u32 tx_ant, u32 rx_ant) 1197 { 1198 struct openwifi_priv *priv = dev->priv; 1199 u8 fpga_tx_ant_setting, target_rx_ant; 1200 u32 atten_mdb_tx0, atten_mdb_tx1; 1201 struct ctrl_outs_control ctrl_out; 1202 int ret; 1203 1204 printk("%s openwifi_set_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str,tx_ant,rx_ant); 1205 1206 if (tx_ant >= 4 || tx_ant == 0) { 1207 return -EINVAL; 1208 } else if (rx_ant >= 3 || rx_ant == 0) { 1209 return -EINVAL; 1210 } 1211 1212 fpga_tx_ant_setting = ((tx_ant<=2)?(tx_ant):(tx_ant+16)); 1213 target_rx_ant = ((rx_ant&1)?0:1); 1214 1215 // try rf chip setting firstly, only update internal state variable when rf chip succeed 1216 atten_mdb_tx0 = ((tx_ant&1)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); 1217 atten_mdb_tx1 = ((tx_ant&2)?(AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]):AD9361_RADIO_OFF_TX_ATT); 1218 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx0, true, false, true); 1219 if (ret < 0) { 1220 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant0 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx0); 1221 return -EINVAL; 1222 } else { 1223 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant0 %d OK\n",sdr_compatible_str, atten_mdb_tx0); 1224 } 1225 ret = ad9361_set_tx_atten(priv->ad9361_phy, atten_mdb_tx1, false, true, true); 1226 if (ret < 0) { 1227 printk("%s openwifi_set_antenna: WARNING ad9361_set_tx_atten ant1 %d FAIL!\n",sdr_compatible_str, atten_mdb_tx1); 1228 return -EINVAL; 1229 } else { 1230 printk("%s openwifi_set_antenna: ad9361_set_tx_atten ant1 %d OK\n",sdr_compatible_str, atten_mdb_tx1); 1231 } 1232 1233 ctrl_out.en_mask = priv->ctrl_out.en_mask; 1234 ctrl_out.index = (target_rx_ant==0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); 1235 ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(ctrl_out)); 1236 if (ret < 0) { 1237 printk("%s openwifi_set_antenna: WARNING ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x FAIL!\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); 1238 return -EINVAL; 1239 } else { 1240 printk("%s openwifi_set_antenna: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, ctrl_out.en_mask, ctrl_out.index); 1241 } 1242 1243 tx_intf_api->TX_INTF_REG_ANT_SEL_write(fpga_tx_ant_setting); 1244 ret = tx_intf_api->TX_INTF_REG_ANT_SEL_read(); 1245 if (ret != fpga_tx_ant_setting) { 1246 printk("%s openwifi_set_antenna: WARNING TX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, fpga_tx_ant_setting, ret); 1247 return -EINVAL; 1248 } else { 1249 printk("%s openwifi_set_antenna: TX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); 1250 } 1251 1252 rx_intf_api->RX_INTF_REG_ANT_SEL_write(target_rx_ant); 1253 ret = rx_intf_api->RX_INTF_REG_ANT_SEL_read(); 1254 if (ret != target_rx_ant) { 1255 printk("%s openwifi_set_antenna: WARNING RX_INTF_REG_ANT_SEL_write target %d read back %d\n",sdr_compatible_str, target_rx_ant, ret); 1256 return -EINVAL; 1257 } else { 1258 printk("%s openwifi_set_antenna: RX_INTF_REG_ANT_SEL_write value %d\n",sdr_compatible_str, ret); 1259 } 1260 1261 // update internal state variable 1262 priv->runtime_tx_ant_cfg = tx_ant; 1263 priv->runtime_rx_ant_cfg = rx_ant; 1264 1265 if (TX_OFFSET_TUNING_ENABLE) 1266 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0:TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1);//NO USE 1267 else { 1268 if (tx_ant == 3) 1269 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH; 1270 else 1271 priv->tx_intf_cfg = ((tx_ant&1)?TX_INTF_BW_20MHZ_AT_0MHZ_ANT0:TX_INTF_BW_20MHZ_AT_0MHZ_ANT1); 1272 } 1273 1274 priv->rx_intf_cfg = (target_rx_ant==0?RX_INTF_BW_20MHZ_AT_0MHZ_ANT0:RX_INTF_BW_20MHZ_AT_0MHZ_ANT1); 1275 priv->ctrl_out.index=ctrl_out.index; 1276 1277 priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg]; 1278 priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg]; 1279 1280 return 0; 1281 } 1282 static int openwifi_get_antenna(struct ieee80211_hw *dev, u32 *tx_ant, u32 *rx_ant) 1283 { 1284 struct openwifi_priv *priv = dev->priv; 1285 1286 *tx_ant = priv->runtime_tx_ant_cfg; 1287 *rx_ant = priv->runtime_rx_ant_cfg; 1288 1289 printk("%s openwifi_get_antenna: tx_ant%d rx_ant%d\n",sdr_compatible_str, *tx_ant, *rx_ant); 1290 1291 printk("%s openwifi_get_antenna: drv tx cfg %d offset %d drv rx cfg %d offset %d drv ctrl_out sel %x\n",sdr_compatible_str, 1292 priv->tx_intf_cfg, priv->tx_freq_offset_to_lo_MHz, priv->rx_intf_cfg, priv->rx_freq_offset_to_lo_MHz, priv->ctrl_out.index); 1293 1294 printk("%s openwifi_get_antenna: fpga tx sel %d rx sel %d\n", sdr_compatible_str, 1295 tx_intf_api->TX_INTF_REG_ANT_SEL_read(), rx_intf_api->RX_INTF_REG_ANT_SEL_read()); 1296 1297 printk("%s openwifi_get_antenna: rf tx att0 %d tx att1 %d ctrl_out sel %x\n", sdr_compatible_str, 1298 ad9361_get_tx_atten(priv->ad9361_phy, 1), ad9361_get_tx_atten(priv->ad9361_phy, 2), ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER)); 1299 1300 return 0; 1301 } 1302 1303 static int openwifi_start(struct ieee80211_hw *dev) 1304 { 1305 struct openwifi_priv *priv = dev->priv; 1306 int ret, i; 1307 u32 reg; 1308 1309 for (i=0; i<MAX_NUM_VIF; i++) { 1310 priv->vif[i] = NULL; 1311 } 1312 1313 // //keep software registers persistent between NIC down and up for multiple times 1314 /*memset(priv->drv_tx_reg_val, 0, sizeof(priv->drv_tx_reg_val)); 1315 memset(priv->drv_rx_reg_val, 0, sizeof(priv->drv_rx_reg_val)); 1316 memset(priv->drv_xpu_reg_val, 0, sizeof(priv->drv_xpu_reg_val)); 1317 memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val)); 1318 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV;*/ 1319 1320 //turn on radio 1321 openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); 1322 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); 1323 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { 1324 priv->rfkill_off = 1;// 0 off, 1 on 1325 printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str); 1326 } 1327 else 1328 printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); 1329 1330 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); 1331 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); 1332 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); 1333 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); 1334 xpu_api->hw_init(priv->xpu_cfg); 1335 1336 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); 1337 1338 printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); 1339 printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); 1340 1341 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt 1342 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode 1343 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status 1344 1345 priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm"); 1346 if (IS_ERR(priv->rx_chan) || priv->rx_chan==NULL) { 1347 ret = PTR_ERR(priv->rx_chan); 1348 pr_err("%s openwifi_start: No Rx channel ret %d priv->rx_chan 0x%p\n",sdr_compatible_str, ret, priv->rx_chan); 1349 goto err_dma; 1350 } 1351 1352 priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s"); 1353 if (IS_ERR(priv->tx_chan) || priv->tx_chan==NULL) { 1354 ret = PTR_ERR(priv->tx_chan); 1355 pr_err("%s openwifi_start: No Tx channel ret %d priv->tx_chan 0x%p\n",sdr_compatible_str, ret, priv->tx_chan); 1356 goto err_dma; 1357 } 1358 printk("%s openwifi_start: DMA channel setup successfully. priv->rx_chan 0x%p priv->tx_chan 0x%p\n",sdr_compatible_str, priv->rx_chan, priv->tx_chan); 1359 1360 ret = openwifi_init_rx_ring(priv); 1361 if (ret) { 1362 printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret); 1363 goto err_free_rings; 1364 } 1365 1366 priv->seqno=0; 1367 for (i=0; i<MAX_NUM_SW_QUEUE; i++) { 1368 if ((ret = openwifi_init_tx_ring(priv, i))) { 1369 printk("%s openwifi_start: openwifi_init_tx_ring %d ret %d\n", sdr_compatible_str, i, ret); 1370 goto err_free_rings; 1371 } 1372 } 1373 1374 if ( (ret = rx_dma_setup(dev)) ) { 1375 printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret); 1376 goto err_free_rings; 1377 } 1378 1379 priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1); 1380 ret = request_irq(priv->irq_rx, openwifi_rx_interrupt, 1381 IRQF_SHARED, "sdr,rx_pkt_intr", dev); 1382 if (ret) { 1383 wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n"); 1384 goto err_free_rings; 1385 } else { 1386 printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx); 1387 } 1388 1389 priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3); 1390 ret = request_irq(priv->irq_tx, openwifi_tx_interrupt, 1391 IRQF_SHARED, "sdr,tx_itrpt", dev); 1392 if (ret) { 1393 wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n"); 1394 goto err_free_rings; 1395 } else { 1396 printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx); 1397 } 1398 1399 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM 1400 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x4); //enable tx interrupt 1401 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS 1402 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer 1403 1404 // disable ad9361 auto calibration and enable openwifi fpga spi control 1405 priv->ad9361_phy->state->auto_cal_en = false; // turn off auto Tx quadrature calib. 1406 priv->ad9361_phy->state->manual_tx_quad_cal_en = true; // turn on manual Tx quadrature calib. 1407 xpu_api->XPU_REG_SPI_DISABLE_write(0); 1408 1409 // normal_out: 1410 printk("%s openwifi_start: normal end\n", sdr_compatible_str); 1411 return 0; 1412 1413 err_free_rings: 1414 openwifi_free_rx_ring(priv); 1415 for (i=0; i<MAX_NUM_SW_QUEUE; i++) 1416 openwifi_free_tx_ring(priv, i); 1417 1418 err_dma: 1419 ret = -1; 1420 printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret); 1421 return ret; 1422 } 1423 1424 static void openwifi_stop(struct ieee80211_hw *dev) 1425 { 1426 struct openwifi_priv *priv = dev->priv; 1427 u32 reg, reg1; 1428 int i; 1429 1430 // enable ad9361 auto calibration and disable openwifi fpga spi control 1431 priv->ad9361_phy->state->auto_cal_en = true; // turn on auto Tx quadrature calib. 1432 priv->ad9361_phy->state->manual_tx_quad_cal_en = false; // turn off manual Tx quadrature calib. 1433 xpu_api->XPU_REG_SPI_DISABLE_write(1); 1434 1435 //turn off radio 1436 #if 1 1437 ad9361_tx_mute(priv->ad9361_phy, 1); 1438 reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 1439 reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); 1440 if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { 1441 priv->rfkill_off = 0;// 0 off, 1 on 1442 printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str); 1443 } 1444 else 1445 printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); 1446 #endif 1447 1448 //ieee80211_stop_queue(dev, 0); 1449 tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30004); //disable tx interrupt 1450 rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode 1451 rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status 1452 1453 for (i=0; i<MAX_NUM_VIF; i++) { 1454 priv->vif[i] = NULL; 1455 } 1456 1457 openwifi_free_rx_ring(priv); 1458 for (i=0; i<MAX_NUM_SW_QUEUE; i++) 1459 openwifi_free_tx_ring(priv, i); 1460 1461 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan)); 1462 dmaengine_terminate_all(priv->rx_chan); 1463 dma_release_channel(priv->rx_chan); 1464 pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan)); 1465 dmaengine_terminate_all(priv->tx_chan); 1466 dma_release_channel(priv->tx_chan); 1467 1468 //priv->rf->stop(dev); 1469 1470 free_irq(priv->irq_rx, dev); 1471 free_irq(priv->irq_tx, dev); 1472 1473 // normal_out: 1474 printk("%s openwifi_stop\n", sdr_compatible_str); 1475 } 1476 1477 static u64 openwifi_get_tsf(struct ieee80211_hw *dev, 1478 struct ieee80211_vif *vif) 1479 { 1480 u32 tsft_low, tsft_high; 1481 1482 tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read(); 1483 tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read(); 1484 //printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); 1485 return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) ); 1486 } 1487 1488 static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf) 1489 { 1490 u32 tsft_high = ((tsf >> 32)&0xffffffff); 1491 u32 tsft_low = (tsf&0xffffffff); 1492 xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low); 1493 printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low); 1494 } 1495 1496 static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) 1497 { 1498 xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); 1499 printk("%s openwifi_reset_tsf\n", sdr_compatible_str); 1500 } 1501 1502 static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value) 1503 { 1504 printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value); 1505 return(0); 1506 } 1507 1508 static void openwifi_beacon_work(struct work_struct *work) 1509 { 1510 struct openwifi_vif *vif_priv = 1511 container_of(work, struct openwifi_vif, beacon_work.work); 1512 struct ieee80211_vif *vif = 1513 container_of((void *)vif_priv, struct ieee80211_vif, drv_priv); 1514 struct ieee80211_hw *dev = vif_priv->dev; 1515 struct ieee80211_mgmt *mgmt; 1516 struct sk_buff *skb; 1517 1518 /* don't overflow the tx ring */ 1519 if (ieee80211_queue_stopped(dev, 0)) 1520 goto resched; 1521 1522 /* grab a fresh beacon */ 1523 skb = ieee80211_beacon_get(dev, vif); 1524 if (!skb) 1525 goto resched; 1526 1527 /* 1528 * update beacon timestamp w/ TSF value 1529 * TODO: make hardware update beacon timestamp 1530 */ 1531 mgmt = (struct ieee80211_mgmt *)skb->data; 1532 mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif)); 1533 1534 /* TODO: use actual beacon queue */ 1535 skb_set_queue_mapping(skb, 0); 1536 openwifi_tx(dev, NULL, skb); 1537 1538 resched: 1539 /* 1540 * schedule next beacon 1541 * TODO: use hardware support for beacon timing 1542 */ 1543 schedule_delayed_work(&vif_priv->beacon_work, usecs_to_jiffies(1024 * vif->bss_conf.beacon_int)); 1544 // printk("%s openwifi_beacon_work beacon_int %d\n", sdr_compatible_str, vif->bss_conf.beacon_int); 1545 } 1546 1547 static int openwifi_add_interface(struct ieee80211_hw *dev, 1548 struct ieee80211_vif *vif) 1549 { 1550 int i; 1551 struct openwifi_priv *priv = dev->priv; 1552 struct openwifi_vif *vif_priv; 1553 1554 switch (vif->type) { 1555 case NL80211_IFTYPE_AP: 1556 case NL80211_IFTYPE_STATION: 1557 case NL80211_IFTYPE_ADHOC: 1558 case NL80211_IFTYPE_MONITOR: 1559 case NL80211_IFTYPE_MESH_POINT: 1560 break; 1561 default: 1562 return -EOPNOTSUPP; 1563 } 1564 // let's support more than 1 interface 1565 for (i=0; i<MAX_NUM_VIF; i++) { 1566 if (priv->vif[i] == NULL) 1567 break; 1568 } 1569 1570 printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i); 1571 1572 if (i==MAX_NUM_VIF) 1573 return -EBUSY; 1574 1575 priv->vif[i] = vif; 1576 1577 /* Initialize driver private area */ 1578 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1579 vif_priv->idx = i; 1580 1581 vif_priv->dev = dev; 1582 INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work); 1583 vif_priv->enable_beacon = false; 1584 1585 priv->mac_addr[0] = vif->addr[0]; 1586 priv->mac_addr[1] = vif->addr[1]; 1587 priv->mac_addr[2] = vif->addr[2]; 1588 priv->mac_addr[3] = vif->addr[3]; 1589 priv->mac_addr[4] = vif->addr[4]; 1590 priv->mac_addr[5] = vif->addr[5]; 1591 xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr); // set mac addr in fpga 1592 1593 printk("%s openwifi_add_interface end with vif idx %d addr %02x:%02x:%02x:%02x:%02x:%02x\n", sdr_compatible_str,vif_priv->idx, 1594 vif->addr[0],vif->addr[1],vif->addr[2],vif->addr[3],vif->addr[4],vif->addr[5]); 1595 1596 return 0; 1597 } 1598 1599 static void openwifi_remove_interface(struct ieee80211_hw *dev, 1600 struct ieee80211_vif *vif) 1601 { 1602 struct openwifi_vif *vif_priv; 1603 struct openwifi_priv *priv = dev->priv; 1604 1605 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1606 priv->vif[vif_priv->idx] = NULL; 1607 printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx); 1608 } 1609 1610 static int openwifi_config(struct ieee80211_hw *dev, u32 changed) 1611 { 1612 struct openwifi_priv *priv = dev->priv; 1613 struct ieee80211_conf *conf = &dev->conf; 1614 1615 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) 1616 priv->rf->set_chan(dev, conf); 1617 else 1618 printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed); 1619 1620 return 0; 1621 } 1622 1623 static void openwifi_bss_info_changed(struct ieee80211_hw *dev, 1624 struct ieee80211_vif *vif, 1625 struct ieee80211_bss_conf *info, 1626 u32 changed) 1627 { 1628 struct openwifi_priv *priv = dev->priv; 1629 struct openwifi_vif *vif_priv; 1630 u32 bssid_low, bssid_high; 1631 1632 vif_priv = (struct openwifi_vif *)&vif->drv_priv; 1633 1634 //be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it! 1635 //printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]); 1636 if (changed & BSS_CHANGED_BSSID) { 1637 printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]); 1638 // write new bssid to our HW, and do not change bssid filter 1639 //u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read(); 1640 bssid_low = ( *( (u32*)(info->bssid) ) ); 1641 bssid_high = ( *( (u16*)(info->bssid+4) ) ); 1642 1643 //bssid_filter_high = (bssid_filter_high&0x80000000); 1644 //bssid_high = (bssid_high|bssid_filter_high); 1645 xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low); 1646 xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high); 1647 } 1648 1649 if (changed & BSS_CHANGED_BEACON_INT) { 1650 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int); 1651 } 1652 1653 if (changed & BSS_CHANGED_TXPOWER) 1654 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower); 1655 1656 if (changed & BSS_CHANGED_ERP_CTS_PROT) 1657 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot); 1658 1659 if (changed & BSS_CHANGED_BASIC_RATES) 1660 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates); 1661 1662 if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) { 1663 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str, 1664 changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot); 1665 if (info->use_short_slot && priv->use_short_slot==false) { 1666 priv->use_short_slot=true; 1667 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 1668 } else if ((!info->use_short_slot) && priv->use_short_slot==true) { 1669 priv->use_short_slot=false; 1670 xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) ); 1671 } 1672 } 1673 1674 if (changed & BSS_CHANGED_BEACON_ENABLED) { 1675 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str); 1676 vif_priv->enable_beacon = info->enable_beacon; 1677 } 1678 1679 if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) { 1680 cancel_delayed_work_sync(&vif_priv->beacon_work); 1681 if (vif_priv->enable_beacon) { 1682 schedule_work(&vif_priv->beacon_work.work); 1683 printk("%s openwifi_bss_info_changed WARNING enable_beacon\n",sdr_compatible_str); 1684 } 1685 printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str, 1686 changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON); 1687 } 1688 } 1689 // helper function 1690 u32 log2val(u32 val){ 1691 u32 ret_val = 0 ; 1692 while(val>1){ 1693 val = val >> 1 ; 1694 ret_val ++ ; 1695 } 1696 return ret_val ; 1697 } 1698 1699 static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue, 1700 const struct ieee80211_tx_queue_params *params) 1701 { 1702 u32 reg_val, cw_min_exp, cw_max_exp; 1703 1704 printk("%s openwifi_conf_tx: [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d, aifs and txop ignored\n", 1705 sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop); 1706 1707 reg_val=xpu_api->XPU_REG_CSMA_CFG_read(); 1708 cw_min_exp = (log2val(params->cw_min + 1) & 0x0F); 1709 cw_max_exp = (log2val(params->cw_max + 1) & 0x0F); 1710 switch(queue){ 1711 case 0: reg_val = ( (reg_val & 0xFFFFFF00) | ((cw_min_exp | (cw_max_exp << 4)) << 0) ); break; 1712 case 1: reg_val = ( (reg_val & 0xFFFF00FF) | ((cw_min_exp | (cw_max_exp << 4)) << 8) ); break; 1713 case 2: reg_val = ( (reg_val & 0xFF00FFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 16) ); break; 1714 case 3: reg_val = ( (reg_val & 0x00FFFFFF) | ((cw_min_exp | (cw_max_exp << 4)) << 24) ); break; 1715 default: printk("%s openwifi_conf_tx: WARNING queue %d does not exist",sdr_compatible_str, queue); return(0); 1716 } 1717 xpu_api->XPU_REG_CSMA_CFG_write(reg_val); 1718 return(0); 1719 } 1720 1721 static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev, 1722 struct netdev_hw_addr_list *mc_list) 1723 { 1724 printk("%s openwifi_prepare_multicast\n", sdr_compatible_str); 1725 return netdev_hw_addr_list_count(mc_list); 1726 } 1727 1728 static void openwifi_configure_filter(struct ieee80211_hw *dev, 1729 unsigned int changed_flags, 1730 unsigned int *total_flags, 1731 u64 multicast) 1732 { 1733 u32 filter_flag; 1734 1735 (*total_flags) &= SDR_SUPPORTED_FILTERS; 1736 (*total_flags) |= FIF_ALLMULTI; //because we need to pass all multicast (no matter it is for us or not) to upper layer 1737 1738 filter_flag = (*total_flags); 1739 1740 filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO); 1741 //filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm 1742 1743 //if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR) 1744 if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode 1745 filter_flag = (filter_flag|MONITOR_ALL); 1746 else 1747 filter_flag = (filter_flag&(~MONITOR_ALL)); 1748 1749 if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) ) 1750 filter_flag = (filter_flag|MY_BEACON); 1751 1752 filter_flag = (filter_flag|FIF_PSPOLL); 1753 1754 xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG); 1755 //xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt 1756 1757 printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str, 1758 (filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1); 1759 } 1760 1761 static int openwifi_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_ampdu_params *params) 1762 { 1763 struct ieee80211_sta *sta = params->sta; 1764 enum ieee80211_ampdu_mlme_action action = params->action; 1765 // struct openwifi_priv *priv = hw->priv; 1766 u16 max_tx_bytes, buf_size; 1767 u32 ampdu_action_config; 1768 1769 if (!AGGR_ENABLE) { 1770 return -EOPNOTSUPP; 1771 } 1772 1773 switch (action) 1774 { 1775 case IEEE80211_AMPDU_TX_START: 1776 ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); 1777 printk("%s openwifi_ampdu_action: start TX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1778 break; 1779 case IEEE80211_AMPDU_TX_STOP_CONT: 1780 case IEEE80211_AMPDU_TX_STOP_FLUSH: 1781 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: 1782 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, params->tid); 1783 printk("%s openwifi_ampdu_action: stop TX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1784 break; 1785 case IEEE80211_AMPDU_TX_OPERATIONAL: 1786 buf_size = 4; 1787 // buf_size = (params->buf_size) - 1; 1788 max_tx_bytes = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + sta->ht_cap.ampdu_factor)) - 1; 1789 ampdu_action_config = ( sta->ht_cap.ampdu_density<<24 | buf_size<<16 | max_tx_bytes ); 1790 tx_intf_api->TX_INTF_REG_AMPDU_ACTION_CONFIG_write(ampdu_action_config); 1791 printk("%s openwifi_ampdu_action: TX operational. tid %d max_tx_bytes %d ampdu_density %d buf_size %d\n", 1792 sdr_compatible_str, params->tid, max_tx_bytes, sta->ht_cap.ampdu_density, buf_size); 1793 break; 1794 case IEEE80211_AMPDU_RX_START: 1795 printk("%s openwifi_ampdu_action: start RX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1796 break; 1797 case IEEE80211_AMPDU_RX_STOP: 1798 printk("%s openwifi_ampdu_action: stop RX aggregation. tid %d\n", sdr_compatible_str, params->tid); 1799 break; 1800 default: 1801 return -EOPNOTSUPP; 1802 } 1803 1804 return 0; 1805 } 1806 1807 static const struct ieee80211_ops openwifi_ops = { 1808 .tx = openwifi_tx, 1809 .start = openwifi_start, 1810 .stop = openwifi_stop, 1811 .add_interface = openwifi_add_interface, 1812 .remove_interface = openwifi_remove_interface, 1813 .config = openwifi_config, 1814 .set_antenna = openwifi_set_antenna, 1815 .get_antenna = openwifi_get_antenna, 1816 .bss_info_changed = openwifi_bss_info_changed, 1817 .conf_tx = openwifi_conf_tx, 1818 .prepare_multicast = openwifi_prepare_multicast, 1819 .configure_filter = openwifi_configure_filter, 1820 .rfkill_poll = openwifi_rfkill_poll, 1821 .get_tsf = openwifi_get_tsf, 1822 .set_tsf = openwifi_set_tsf, 1823 .reset_tsf = openwifi_reset_tsf, 1824 .set_rts_threshold = openwifi_set_rts_threshold, 1825 .ampdu_action = openwifi_ampdu_action, 1826 .testmode_cmd = openwifi_testmode_cmd, 1827 }; 1828 1829 static const struct of_device_id openwifi_dev_of_ids[] = { 1830 { .compatible = "sdr,sdr", }, 1831 {} 1832 }; 1833 MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids); 1834 1835 static int custom_match_spi_dev(struct device *dev, void *data) 1836 { 1837 const char *name = data; 1838 1839 bool ret = sysfs_streq(name, dev->of_node->name); 1840 printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret); 1841 return ret; 1842 } 1843 1844 static int custom_match_platform_dev(struct device *dev, void *data) 1845 { 1846 struct platform_device *plat_dev = to_platform_device(dev); 1847 const char *name = data; 1848 char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name); 1849 bool match_flag = (name_in_sys_bus_platform_devices != NULL); 1850 1851 if (match_flag) { 1852 printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name); 1853 } 1854 return(match_flag); 1855 } 1856 1857 static int openwifi_dev_probe(struct platform_device *pdev) 1858 { 1859 struct ieee80211_hw *dev; 1860 struct openwifi_priv *priv; 1861 int err=1, rand_val; 1862 const char *chip_name, *fpga_model; 1863 u32 reg, i;//, reg1; 1864 1865 struct device_node *np = pdev->dev.of_node; 1866 1867 struct device *tmp_dev; 1868 struct platform_device *tmp_pdev; 1869 struct iio_dev *tmp_indio_dev; 1870 // struct gpio_leds_priv *tmp_led_priv; 1871 1872 printk("\n"); 1873 1874 if (np) { 1875 const struct of_device_id *match; 1876 1877 match = of_match_node(openwifi_dev_of_ids, np); 1878 if (match) { 1879 printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str); 1880 err = 0; 1881 } 1882 } 1883 1884 if (err) 1885 return err; 1886 1887 dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops); 1888 if (!dev) { 1889 printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str); 1890 err = -ENOMEM; 1891 goto err_free_dev; 1892 } 1893 1894 priv = dev->priv; 1895 priv->pdev = pdev; 1896 1897 err = of_property_read_string(of_find_node_by_path("/"), "model", &fpga_model); 1898 if(err < 0) { 1899 printk("%s openwifi_dev_probe: WARNING unknown openwifi FPGA model %d\n",sdr_compatible_str, err); 1900 priv->fpga_type = SMALL_FPGA; 1901 } else { 1902 // LARGE FPGAs (i.e. ZCU102, Z7035, ZC706) 1903 if(strstr(fpga_model, "ZCU102") != NULL || strstr(fpga_model, "Z7035") != NULL || strstr(fpga_model, "ZC706") != NULL) 1904 priv->fpga_type = LARGE_FPGA; 1905 // SMALL FPGA: (i.e. ZED, ZC702, Z7020) 1906 else if(strstr(fpga_model, "ZED") != NULL || strstr(fpga_model, "ZC702") != NULL || strstr(fpga_model, "Z7020") != NULL) 1907 priv->fpga_type = SMALL_FPGA; 1908 } 1909 1910 // //-------------find ad9361-phy driver for lo/channel control--------------- 1911 priv->actual_rx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux 1912 priv->actual_tx_lo = 1000; //Some value aligned with rf_init/rf_init_11n.sh that is not WiFi channel to force ad9361_rf_set_channel execution triggered by Linux 1913 priv->last_tx_quad_cal_lo = 1000; 1914 tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev ); 1915 if (tmp_dev == NULL) { 1916 printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str); 1917 err = -ENODEV; 1918 goto err_free_dev; 1919 } 1920 printk("%s bus_find_device ad9361-phy: %s. driver_data pointer %p\n", sdr_compatible_str, ((struct spi_device*)tmp_dev)->modalias, (void*)(((struct spi_device*)tmp_dev)->dev.driver_data)); 1921 if (((struct spi_device*)tmp_dev)->dev.driver_data == NULL) { 1922 printk(KERN_ERR "%s find_dev ad9361-phy failed. dev.driver_data == NULL\n",sdr_compatible_str); 1923 err = -ENODEV; 1924 goto err_free_dev; 1925 } 1926 1927 priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev); 1928 if (!(priv->ad9361_phy)) { 1929 printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str); 1930 err = -ENODEV; 1931 goto err_free_dev; 1932 } 1933 printk("%s ad9361_spi_to_phy ad9361-phy: %s\n", sdr_compatible_str, priv->ad9361_phy->spi->modalias); 1934 1935 // //-------------find driver: axi_ad9361 hdl ref design module, dac channel--------------- 1936 tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev ); 1937 if (!tmp_dev) { 1938 printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str); 1939 err = -ENODEV; 1940 goto err_free_dev; 1941 } 1942 1943 tmp_pdev = to_platform_device(tmp_dev); 1944 if (!tmp_pdev) { 1945 printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str); 1946 err = -ENODEV; 1947 goto err_free_dev; 1948 } 1949 1950 tmp_indio_dev = platform_get_drvdata(tmp_pdev); 1951 if (!tmp_indio_dev) { 1952 printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str); 1953 err = -ENODEV; 1954 goto err_free_dev; 1955 } 1956 1957 priv->dds_st = iio_priv(tmp_indio_dev); 1958 if (!(priv->dds_st)) { 1959 printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str); 1960 err = -ENODEV; 1961 goto err_free_dev; 1962 } 1963 printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name); 1964 cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA); 1965 printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str); 1966 1967 // //-------------find driver: axi_ad9361 hdl ref design module, adc channel--------------- 1968 // turn off radio by muting tx 1969 // ad9361_tx_mute(priv->ad9361_phy, 1); 1970 // reg = ad9361_get_tx_atten(priv->ad9361_phy, 2); 1971 // reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1); 1972 // if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) { 1973 // priv->rfkill_off = 0;// 0 off, 1 on 1974 // printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str); 1975 // } 1976 // else 1977 // printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT); 1978 1979 // //-----------------------------parse the test_mode input-------------------------------- 1980 if (test_mode&1) 1981 AGGR_ENABLE = true; 1982 1983 // if (test_mode&2) 1984 // TX_OFFSET_TUNING_ENABLE = false; 1985 1986 priv->rssi_correction = rssi_correction_lookup_table(5220);//5220MHz. this will be set in real-time by _rf_set_channel() 1987 priv->last_auto_fpga_lbt_th = rssi_dbm_to_rssi_half_db(-78, priv->rssi_correction);//-78dBm. a magic value. just to avoid uninitialized 1988 1989 //priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode 1990 priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode 1991 1992 priv->xpu_cfg = XPU_NORMAL; 1993 1994 priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL; 1995 priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL; 1996 1997 printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) ); 1998 if (priv->rf_bw == 20000000) { //DO NOT USE. Not used for long time. 1999 priv->rx_intf_cfg = RX_INTF_BYPASS; 2000 priv->tx_intf_cfg = TX_INTF_BYPASS; 2001 //priv->rx_freq_offset_to_lo_MHz = 0; 2002 //priv->tx_freq_offset_to_lo_MHz = 0; 2003 } else if (priv->rf_bw == 40000000) { 2004 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work 2005 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work 2006 2007 // // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps 2008 priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0; 2009 if (TX_OFFSET_TUNING_ENABLE) 2010 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; // Let's use rx0 tx0 as default mode, because it works for both 9361 and 9364 2011 else 2012 priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_0MHZ_ANT0; 2013 // // try another antenna option 2014 //priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1; 2015 //priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0; 2016 2017 #if 0 2018 if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) { 2019 priv->rx_freq_offset_to_lo_MHz = -10; 2020 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) { 2021 priv->rx_freq_offset_to_lo_MHz = 10; 2022 } else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) { 2023 priv->rx_freq_offset_to_lo_MHz = 0; 2024 } else { 2025 printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg); 2026 } 2027 #endif 2028 } else { 2029 printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw); 2030 err = -EBADRQC; 2031 goto err_free_dev; 2032 } 2033 2034 printk("%s openwifi_dev_probe: test_mode %d AGGR_ENABLE %d TX_OFFSET_TUNING_ENABLE %d init_tx_att %d\n", sdr_compatible_str, test_mode, AGGR_ENABLE, TX_OFFSET_TUNING_ENABLE, init_tx_att); 2035 2036 priv->runtime_tx_ant_cfg = ((priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT0 || priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)?1:(priv->tx_intf_cfg==TX_INTF_BW_20MHZ_AT_0MHZ_ANT_BOTH?3:2)); 2037 priv->runtime_rx_ant_cfg = (priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?1:2); 2038 2039 priv->ctrl_out.en_mask=AD9361_CTRL_OUT_EN_MASK; 2040 priv->ctrl_out.index =(priv->rx_intf_cfg==RX_INTF_BW_20MHZ_AT_0MHZ_ANT0?AD9361_CTRL_OUT_INDEX_ANT0:AD9361_CTRL_OUT_INDEX_ANT1); 2041 2042 memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val)); 2043 memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val)); 2044 memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val)); 2045 memset(priv->rf_reg_val,0,sizeof(priv->rf_reg_val)); 2046 2047 priv->rf_reg_val[RF_TX_REG_IDX_ATT] = init_tx_att; 2048 2049 //let's by default turn radio on when probing 2050 err = openwifi_set_antenna(dev, priv->runtime_tx_ant_cfg, priv->runtime_rx_ant_cfg); 2051 if (err) { 2052 printk("%s openwifi_dev_probe: WARNING openwifi_set_antenna FAIL %d\n",sdr_compatible_str, err); 2053 err = -EIO; 2054 goto err_free_dev; 2055 } 2056 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER); 2057 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg); 2058 reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE); 2059 printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg); 2060 2061 reg = ad9361_get_tx_atten(priv->ad9361_phy, ((priv->runtime_tx_ant_cfg==1 || priv->runtime_tx_ant_cfg==3)?1:2)); 2062 if (reg == (AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT])) { 2063 priv->rfkill_off = 1;// 0 off, 1 on 2064 printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str); 2065 } else 2066 printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT+priv->rf_reg_val[RF_TX_REG_IDX_ATT]); 2067 2068 priv->drv_xpu_reg_val[DRV_XPU_REG_IDX_GIT_REV] = GIT_REV; 2069 2070 // //set ad9361 in certain mode 2071 #if 0 2072 err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw); 2073 printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); 2074 err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw); 2075 printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err); 2076 2077 rx_intf_api->hw_init(priv->rx_intf_cfg,8,8); 2078 tx_intf_api->hw_init(priv->tx_intf_cfg,8,8,priv->fpga_type); 2079 openofdm_tx_api->hw_init(priv->openofdm_tx_cfg); 2080 openofdm_rx_api->hw_init(priv->openofdm_rx_cfg); 2081 printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg); 2082 printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz); 2083 #endif 2084 2085 dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle. 2086 2087 SET_IEEE80211_DEV(dev, &pdev->dev); 2088 platform_set_drvdata(pdev, dev); 2089 2090 BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates)); 2091 BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates)); 2092 BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels)); 2093 BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels)); 2094 2095 memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates)); 2096 memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates)); 2097 memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels)); 2098 memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels)); 2099 2100 priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM) 2101 priv->channel = 44; //currently useless. this can be changed by band _rf_set_channel() 2102 priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT 2103 priv->ampdu_reference = 0; 2104 2105 priv->band_2GHz.band = NL80211_BAND_2GHZ; 2106 priv->band_2GHz.channels = priv->channels_2GHz; 2107 priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz); 2108 priv->band_2GHz.bitrates = priv->rates_2GHz; 2109 priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz); 2110 priv->band_2GHz.ht_cap.ht_supported = true; 2111 // priv->band_2GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue 2112 if (AGGR_ENABLE) { 2113 priv->band_2GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; 2114 priv->band_2GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; 2115 } 2116 memset(&priv->band_2GHz.ht_cap.mcs, 0, sizeof(priv->band_2GHz.ht_cap.mcs)); 2117 priv->band_2GHz.ht_cap.mcs.rx_mask[0] = 0xff; 2118 priv->band_2GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 2119 dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz); 2120 2121 priv->band_5GHz.band = NL80211_BAND_5GHZ; 2122 priv->band_5GHz.channels = priv->channels_5GHz; 2123 priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz); 2124 priv->band_5GHz.bitrates = priv->rates_5GHz; 2125 priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz); 2126 priv->band_5GHz.ht_cap.ht_supported = true; 2127 // priv->band_5GHz.ht_cap.cap = IEEE80211_HT_CAP_SGI_20; //SGI -- short GI seems bring unnecessary stability issue 2128 if (AGGR_ENABLE) { 2129 priv->band_5GHz.ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_8K; 2130 priv->band_5GHz.ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_2; 2131 } 2132 memset(&priv->band_5GHz.ht_cap.mcs, 0, sizeof(priv->band_5GHz.ht_cap.mcs)); 2133 priv->band_5GHz.ht_cap.mcs.rx_mask[0] = 0xff; 2134 priv->band_5GHz.ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 2135 dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz); 2136 2137 printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str, 2138 priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates); 2139 2140 // ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING); // remove this because we don't want: mac80211.h: host buffers frame for PS and we fetch them via ieee80211_get_buffered_bc() 2141 ieee80211_hw_set(dev, RX_INCLUDES_FCS); 2142 ieee80211_hw_set(dev, BEACON_TX_STATUS);//mac80211.h: The device/driver provides TX status for sent beacons. 2143 2144 ieee80211_hw_set(dev, REPORTS_TX_ACK_STATUS);//mac80211.h: Hardware can provide ack status reports of Tx frames to the stack 2145 2146 // * @IEEE80211_HW_AP_LINK_PS: When operating in AP mode the device 2147 // * autonomously manages the PS status of connected stations. When 2148 // * this flag is set mac80211 will not trigger PS mode for connected 2149 // * stations based on the PM bit of incoming frames. 2150 // * Use ieee80211_start_ps()/ieee8021_end_ps() to manually configure 2151 // * the PS mode of connected stations. 2152 ieee80211_hw_set(dev, AP_LINK_PS); 2153 2154 if (AGGR_ENABLE) { 2155 ieee80211_hw_set(dev, AMPDU_AGGREGATION); 2156 } 2157 2158 dev->extra_tx_headroom = LEN_MPDU_DELIM; 2159 2160 dev->vif_data_size = sizeof(struct openwifi_vif); 2161 dev->wiphy->interface_modes = 2162 BIT(NL80211_IFTYPE_MONITOR)| 2163 BIT(NL80211_IFTYPE_P2P_GO) | 2164 BIT(NL80211_IFTYPE_P2P_CLIENT) | 2165 BIT(NL80211_IFTYPE_AP) | 2166 BIT(NL80211_IFTYPE_STATION) | 2167 BIT(NL80211_IFTYPE_ADHOC) | 2168 BIT(NL80211_IFTYPE_MESH_POINT) | 2169 BIT(NL80211_IFTYPE_OCB); 2170 dev->wiphy->iface_combinations = &openwifi_if_comb; 2171 dev->wiphy->n_iface_combinations = 1; 2172 2173 dev->wiphy->available_antennas_tx = NUM_TX_ANT_MASK; 2174 dev->wiphy->available_antennas_rx = NUM_RX_ANT_MASK; 2175 2176 dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation 2177 //dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config 2178 wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd); 2179 2180 chip_name = "ZYNQ"; 2181 2182 /* we declare to MAC80211 all the queues except for beacon queue 2183 * that will be eventually handled by DRV. 2184 * TX rings are arranged in such a way that lower is the IDX, 2185 * higher is the priority, in order to achieve direct mapping 2186 * with mac80211, however the beacon queue is an exception and it 2187 * is mapped on the highst tx ring IDX. 2188 */ 2189 dev->queues = MAX_NUM_HW_QUEUE; 2190 //dev->queues = 1; 2191 2192 ieee80211_hw_set(dev, SIGNAL_DBM); 2193 2194 wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST); 2195 2196 priv->rf = &ad9361_rf_ops; 2197 2198 memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map)); 2199 priv->slice_idx = 0xFFFFFFFF; 2200 2201 sg_init_table(&(priv->tx_sg), 1); 2202 2203 get_random_bytes(&rand_val, sizeof(rand_val)); 2204 rand_val%=250; 2205 priv->mac_addr[0]=0x66; priv->mac_addr[1]=0x55; priv->mac_addr[2]=0x44; priv->mac_addr[3]=0x33; priv->mac_addr[4]=0x22; 2206 priv->mac_addr[5]=rand_val+1; 2207 //priv->mac_addr[5]=0x11; 2208 if (!is_valid_ether_addr(priv->mac_addr)) { 2209 printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str); 2210 eth_random_addr(priv->mac_addr); 2211 } 2212 printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]); 2213 SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr); 2214 2215 spin_lock_init(&priv->lock); 2216 2217 err = ieee80211_register_hw(dev); 2218 if (err) { 2219 pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str); 2220 err = -EIO; 2221 goto err_free_dev; 2222 } else { 2223 printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err); 2224 } 2225 2226 // // //--------------------hook leds (not complete yet)-------------------------------- 2227 // tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatible" field 2228 // if (!tmp_dev) { 2229 // printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str); 2230 // err = -ENOMEM; 2231 // goto err_free_dev; 2232 // } 2233 2234 // tmp_pdev = to_platform_device(tmp_dev); 2235 // if (!tmp_pdev) { 2236 // printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str); 2237 // err = -ENOMEM; 2238 // goto err_free_dev; 2239 // } 2240 2241 // tmp_led_priv = platform_get_drvdata(tmp_pdev); 2242 // if (!tmp_led_priv) { 2243 // printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str); 2244 // err = -ENOMEM; 2245 // goto err_free_dev; 2246 // } 2247 // printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds); 2248 // if (tmp_led_priv->num_leds!=4){ 2249 // printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds); 2250 // err = -ENOMEM; 2251 // goto err_free_dev; 2252 // } 2253 // gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it 2254 // gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it 2255 // priv->num_led = tmp_led_priv->num_leds; 2256 // priv->led[0] = &(tmp_led_priv->leds[0].cdev); 2257 // priv->led[1] = &(tmp_led_priv->leds[1].cdev); 2258 // priv->led[2] = &(tmp_led_priv->leds[2].cdev); 2259 // priv->led[3] = &(tmp_led_priv->leds[3].cdev); 2260 2261 // snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy)); 2262 // snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy)); 2263 // snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy)); 2264 // snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy)); 2265 2266 wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n", 2267 priv->mac_addr, chip_name, priv->rf->name); 2268 2269 openwifi_rfkill_init(dev); 2270 return 0; 2271 2272 err_free_dev: 2273 ieee80211_free_hw(dev); 2274 2275 return err; 2276 } 2277 2278 static int openwifi_dev_remove(struct platform_device *pdev) 2279 { 2280 struct ieee80211_hw *dev = platform_get_drvdata(pdev); 2281 2282 if (!dev) { 2283 pr_info("%s openwifi_dev_remove: dev %p\n", sdr_compatible_str, (void*)dev); 2284 return(-1); 2285 } 2286 2287 openwifi_rfkill_exit(dev); 2288 ieee80211_unregister_hw(dev); 2289 ieee80211_free_hw(dev); 2290 return(0); 2291 } 2292 2293 static struct platform_driver openwifi_dev_driver = { 2294 .driver = { 2295 .name = "sdr,sdr", 2296 .owner = THIS_MODULE, 2297 .of_match_table = openwifi_dev_of_ids, 2298 }, 2299 .probe = openwifi_dev_probe, 2300 .remove = openwifi_dev_remove, 2301 }; 2302 2303 module_platform_driver(openwifi_dev_driver); 2304