xref: /nrf52832-nimble/rt-thread/components/net/lwip-2.1.0/src/core/ipv6/nd6.c (revision 104654410c56c573564690304ae786df310c91fc)
1 /**
2  * @file
3  *
4  * Neighbor discovery and stateless address autoconfiguration for IPv6.
5  * Aims to be compliant with RFC 4861 (Neighbor discovery) and RFC 4862
6  * (Address autoconfiguration).
7  */
8 
9 /*
10  * Copyright (c) 2010 Inico Technologies Ltd.
11  * All rights reserved.
12  *
13  * Redistribution and use in source and binary forms, with or without modification,
14  * are permitted provided that the following conditions are met:
15  *
16  * 1. Redistributions of source code must retain the above copyright notice,
17  *    this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright notice,
19  *    this list of conditions and the following disclaimer in the documentation
20  *    and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote products
22  *    derived from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
25  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
26  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
27  * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
29  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
32  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
33  * OF SUCH DAMAGE.
34  *
35  * This file is part of the lwIP TCP/IP stack.
36  *
37  * Author: Ivan Delamer <[email protected]>
38  *
39  *
40  * Please coordinate changes and requests with Ivan Delamer
41  * <[email protected]>
42  */
43 
44 #include "lwip/opt.h"
45 
46 #if LWIP_IPV6  /* don't build if not configured for use in lwipopts.h */
47 
48 #include "lwip/nd6.h"
49 #include "lwip/priv/nd6_priv.h"
50 #include "lwip/prot/nd6.h"
51 #include "lwip/prot/icmp6.h"
52 #include "lwip/pbuf.h"
53 #include "lwip/mem.h"
54 #include "lwip/memp.h"
55 #include "lwip/ip6.h"
56 #include "lwip/ip6_addr.h"
57 #include "lwip/inet_chksum.h"
58 #include "lwip/netif.h"
59 #include "lwip/icmp6.h"
60 #include "lwip/mld6.h"
61 #include "lwip/dhcp6.h"
62 #include "lwip/ip.h"
63 #include "lwip/stats.h"
64 #include "lwip/dns.h"
65 
66 #include <string.h>
67 
68 #ifdef LWIP_HOOK_FILENAME
69 #include LWIP_HOOK_FILENAME
70 #endif
71 
72 #if LWIP_IPV6_DUP_DETECT_ATTEMPTS > IP6_ADDR_TENTATIVE_COUNT_MASK
73 #error LWIP_IPV6_DUP_DETECT_ATTEMPTS > IP6_ADDR_TENTATIVE_COUNT_MASK
74 #endif
75 
76 /* Router tables. */
77 struct nd6_neighbor_cache_entry neighbor_cache[LWIP_ND6_NUM_NEIGHBORS];
78 struct nd6_destination_cache_entry destination_cache[LWIP_ND6_NUM_DESTINATIONS];
79 struct nd6_prefix_list_entry prefix_list[LWIP_ND6_NUM_PREFIXES];
80 struct nd6_router_list_entry default_router_list[LWIP_ND6_NUM_ROUTERS];
81 
82 /* Default values, can be updated by a RA message. */
83 u32_t reachable_time = LWIP_ND6_REACHABLE_TIME;
84 u32_t retrans_timer = LWIP_ND6_RETRANS_TIMER; /* @todo implement this value in timer */
85 
86 /* Index for cache entries. */
87 static u8_t nd6_cached_neighbor_index;
88 static netif_addr_idx_t nd6_cached_destination_index;
89 
90 /* Multicast address holder. */
91 static ip6_addr_t multicast_address;
92 
93 static u8_t nd6_tmr_rs_reduction;
94 
95 /* Static buffer to parse RA packet options */
96 union ra_options {
97   struct lladdr_option  lladdr;
98   struct mtu_option     mtu;
99   struct prefix_option  prefix;
100 #if LWIP_ND6_RDNSS_MAX_DNS_SERVERS
101   struct rdnss_option   rdnss;
102 #endif
103 };
104 static union ra_options nd6_ra_buffer;
105 
106 /* Forward declarations. */
107 static s8_t nd6_find_neighbor_cache_entry(const ip6_addr_t *ip6addr);
108 static s8_t nd6_new_neighbor_cache_entry(void);
109 static void nd6_free_neighbor_cache_entry(s8_t i);
110 static s16_t nd6_find_destination_cache_entry(const ip6_addr_t *ip6addr);
111 static s16_t nd6_new_destination_cache_entry(void);
112 static int nd6_is_prefix_in_netif(const ip6_addr_t *ip6addr, struct netif *netif);
113 static s8_t nd6_select_router(const ip6_addr_t *ip6addr, struct netif *netif);
114 static s8_t nd6_get_router(const ip6_addr_t *router_addr, struct netif *netif);
115 static s8_t nd6_new_router(const ip6_addr_t *router_addr, struct netif *netif);
116 static s8_t nd6_get_onlink_prefix(const ip6_addr_t *prefix, struct netif *netif);
117 static s8_t nd6_new_onlink_prefix(const ip6_addr_t *prefix, struct netif *netif);
118 static s8_t nd6_get_next_hop_entry(const ip6_addr_t *ip6addr, struct netif *netif);
119 static err_t nd6_queue_packet(s8_t neighbor_index, struct pbuf *q);
120 
121 #define ND6_SEND_FLAG_MULTICAST_DEST 0x01
122 #define ND6_SEND_FLAG_ALLNODES_DEST 0x02
123 #define ND6_SEND_FLAG_ANY_SRC 0x04
124 static void nd6_send_ns(struct netif *netif, const ip6_addr_t *target_addr, u8_t flags);
125 static void nd6_send_na(struct netif *netif, const ip6_addr_t *target_addr, u8_t flags);
126 static void nd6_send_neighbor_cache_probe(struct nd6_neighbor_cache_entry *entry, u8_t flags);
127 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
128 static err_t nd6_send_rs(struct netif *netif);
129 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
130 
131 #if LWIP_ND6_QUEUEING
132 static void nd6_free_q(struct nd6_q_entry *q);
133 #else /* LWIP_ND6_QUEUEING */
134 #define nd6_free_q(q) pbuf_free(q)
135 #endif /* LWIP_ND6_QUEUEING */
136 static void nd6_send_q(s8_t i);
137 
138 
139 /**
140  * A local address has been determined to be a duplicate. Take the appropriate
141  * action(s) on the address and the interface as a whole.
142  *
143  * @param netif the netif that owns the address
144  * @param addr_idx the index of the address detected to be a duplicate
145  */
146 static void
nd6_duplicate_addr_detected(struct netif * netif,s8_t addr_idx)147 nd6_duplicate_addr_detected(struct netif *netif, s8_t addr_idx)
148 {
149 
150   /* Mark the address as duplicate, but leave its lifetimes alone. If this was
151    * a manually assigned address, it will remain in existence as duplicate, and
152    * as such be unusable for any practical purposes until manual intervention.
153    * If this was an autogenerated address, the address will follow normal
154    * expiration rules, and thus disappear once its valid lifetime expires. */
155   netif_ip6_addr_set_state(netif, addr_idx, IP6_ADDR_DUPLICATED);
156 
157 #if LWIP_IPV6_AUTOCONFIG
158   /* If the affected address was the link-local address that we use to generate
159    * all other addresses, then we should not continue to use those derived
160    * addresses either, so mark them as duplicate as well. For autoconfig-only
161    * setups, this will make the interface effectively unusable, approaching the
162    * intention of RFC 4862 Sec. 5.4.5. @todo implement the full requirements */
163   if (addr_idx == 0) {
164     s8_t i;
165     for (i = 1; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
166       if (!ip6_addr_isinvalid(netif_ip6_addr_state(netif, i)) &&
167           !netif_ip6_addr_isstatic(netif, i)) {
168         netif_ip6_addr_set_state(netif, i, IP6_ADDR_DUPLICATED);
169       }
170     }
171   }
172 #endif /* LWIP_IPV6_AUTOCONFIG */
173 }
174 
175 #if LWIP_IPV6_AUTOCONFIG
176 /**
177  * We received a router advertisement that contains a prefix with the
178  * autoconfiguration flag set. Add or update an associated autogenerated
179  * address.
180  *
181  * @param netif the netif on which the router advertisement arrived
182  * @param prefix_opt a pointer to the prefix option data
183  * @param prefix_addr an aligned copy of the prefix address
184  */
185 static void
nd6_process_autoconfig_prefix(struct netif * netif,struct prefix_option * prefix_opt,const ip6_addr_t * prefix_addr)186 nd6_process_autoconfig_prefix(struct netif *netif,
187   struct prefix_option *prefix_opt, const ip6_addr_t *prefix_addr)
188 {
189   ip6_addr_t ip6addr;
190   u32_t valid_life, pref_life;
191   u8_t addr_state;
192   s8_t i, free_idx;
193 
194   /* The caller already checks RFC 4862 Sec. 5.5.3 points (a) and (b). We do
195    * the rest, starting with checks for (c) and (d) here. */
196   valid_life = lwip_htonl(prefix_opt->valid_lifetime);
197   pref_life = lwip_htonl(prefix_opt->preferred_lifetime);
198   if (pref_life > valid_life || prefix_opt->prefix_length != 64) {
199     return; /* silently ignore this prefix for autoconfiguration purposes */
200   }
201 
202   /* If an autogenerated address already exists for this prefix, update its
203    * lifetimes. An address is considered autogenerated if 1) it is not static
204    * (i.e., manually assigned), and 2) there is an advertised autoconfiguration
205    * prefix for it (the one we are processing here). This does not necessarily
206    * exclude the possibility that the address was actually assigned by, say,
207    * DHCPv6. If that distinction becomes important in the future, more state
208    * must be kept. As explained elsewhere we also update lifetimes of tentative
209    * and duplicate addresses. Skip address slot 0 (the link-local address). */
210   for (i = 1; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
211     addr_state = netif_ip6_addr_state(netif, i);
212     if (!ip6_addr_isinvalid(addr_state) && !netif_ip6_addr_isstatic(netif, i) &&
213         ip6_addr_netcmp(prefix_addr, netif_ip6_addr(netif, i))) {
214       /* Update the valid lifetime, as per RFC 4862 Sec. 5.5.3 point (e).
215        * The valid lifetime will never drop to zero as a result of this. */
216       u32_t remaining_life = netif_ip6_addr_valid_life(netif, i);
217       if (valid_life > ND6_2HRS || valid_life > remaining_life) {
218         netif_ip6_addr_set_valid_life(netif, i, valid_life);
219       } else if (remaining_life > ND6_2HRS) {
220         netif_ip6_addr_set_valid_life(netif, i, ND6_2HRS);
221       }
222       LWIP_ASSERT("bad valid lifetime", !netif_ip6_addr_isstatic(netif, i));
223       /* Update the preferred lifetime. No bounds checks are needed here. In
224        * rare cases the advertisement may un-deprecate the address, though.
225        * Deprecation is left to the timer code where it is handled anyway. */
226       if (pref_life > 0 && addr_state == IP6_ADDR_DEPRECATED) {
227         netif_ip6_addr_set_state(netif, i, IP6_ADDR_PREFERRED);
228       }
229       netif_ip6_addr_set_pref_life(netif, i, pref_life);
230       return; /* there should be at most one matching address */
231     }
232   }
233 
234   /* No autogenerated address exists for this prefix yet. See if we can add a
235    * new one. However, if IPv6 autoconfiguration is administratively disabled,
236    * do not generate new addresses, but do keep updating lifetimes for existing
237    * addresses. Also, when adding new addresses, we must protect explicitly
238    * against a valid lifetime of zero, because again, we use that as a special
239    * value. The generated address would otherwise expire immediately anyway.
240    * Finally, the original link-local address must be usable at all. We start
241    * creating addresses even if the link-local address is still in tentative
242    * state though, and deal with the fallout of that upon DAD collision. */
243   addr_state = netif_ip6_addr_state(netif, 0);
244   if (!netif->ip6_autoconfig_enabled || valid_life == IP6_ADDR_LIFE_STATIC ||
245       ip6_addr_isinvalid(addr_state) || ip6_addr_isduplicated(addr_state)) {
246     return;
247   }
248 
249   /* Construct the new address that we intend to use, and then see if that
250    * address really does not exist. It might have been added manually, after
251    * all. As a side effect, find a free slot. Note that we cannot use
252    * netif_add_ip6_address() here, as it would return ERR_OK if the address
253    * already did exist, resulting in that address being given lifetimes. */
254   IP6_ADDR(&ip6addr, prefix_addr->addr[0], prefix_addr->addr[1],
255     netif_ip6_addr(netif, 0)->addr[2], netif_ip6_addr(netif, 0)->addr[3]);
256   ip6_addr_assign_zone(&ip6addr, IP6_UNICAST, netif);
257 
258   free_idx = 0;
259   for (i = 1; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
260     if (!ip6_addr_isinvalid(netif_ip6_addr_state(netif, i))) {
261       if (ip6_addr_cmp(&ip6addr, netif_ip6_addr(netif, i))) {
262         return; /* formed address already exists */
263       }
264     } else if (free_idx == 0) {
265       free_idx = i;
266     }
267   }
268   if (free_idx == 0) {
269     return; /* no address slots available, try again on next advertisement */
270   }
271 
272   /* Assign the new address to the interface. */
273   ip_addr_copy_from_ip6(netif->ip6_addr[free_idx], ip6addr);
274   netif_ip6_addr_set_valid_life(netif, free_idx, valid_life);
275   netif_ip6_addr_set_pref_life(netif, free_idx, pref_life);
276   netif_ip6_addr_set_state(netif, free_idx, IP6_ADDR_TENTATIVE);
277 }
278 #endif /* LWIP_IPV6_AUTOCONFIG */
279 
280 /**
281  * Process an incoming neighbor discovery message
282  *
283  * @param p the nd packet, p->payload pointing to the icmpv6 header
284  * @param inp the netif on which this packet was received
285  */
286 void
nd6_input(struct pbuf * p,struct netif * inp)287 nd6_input(struct pbuf *p, struct netif *inp)
288 {
289   u8_t msg_type;
290   s8_t i;
291   s16_t dest_idx;
292 
293   ND6_STATS_INC(nd6.recv);
294 
295   msg_type = *((u8_t *)p->payload);
296   switch (msg_type) {
297   case ICMP6_TYPE_NA: /* Neighbor Advertisement. */
298   {
299     struct na_header *na_hdr;
300     struct lladdr_option *lladdr_opt;
301     ip6_addr_t target_address;
302 
303     /* Check that na header fits in packet. */
304     if (p->len < (sizeof(struct na_header))) {
305       /* @todo debug message */
306       pbuf_free(p);
307       ND6_STATS_INC(nd6.lenerr);
308       ND6_STATS_INC(nd6.drop);
309       return;
310     }
311 
312     na_hdr = (struct na_header *)p->payload;
313 
314     /* Create an aligned, zoned copy of the target address. */
315     ip6_addr_copy_from_packed(target_address, na_hdr->target_address);
316     ip6_addr_assign_zone(&target_address, IP6_UNICAST, inp);
317 
318     /* Check a subset of the other RFC 4861 Sec. 7.1.2 requirements. */
319     if (IP6H_HOPLIM(ip6_current_header()) != ND6_HOPLIM || na_hdr->code != 0 ||
320         ip6_addr_ismulticast(&target_address)) {
321       pbuf_free(p);
322       ND6_STATS_INC(nd6.proterr);
323       ND6_STATS_INC(nd6.drop);
324       return;
325     }
326 
327     /* @todo RFC MUST: if IP destination is multicast, Solicited flag is zero */
328     /* @todo RFC MUST: all included options have a length greater than zero */
329 
330     /* Unsolicited NA?*/
331     if (ip6_addr_ismulticast(ip6_current_dest_addr())) {
332       /* This is an unsolicited NA.
333        * link-layer changed?
334        * part of DAD mechanism? */
335 
336 #if LWIP_IPV6_DUP_DETECT_ATTEMPTS
337       /* If the target address matches this netif, it is a DAD response. */
338       for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
339         if (!ip6_addr_isinvalid(netif_ip6_addr_state(inp, i)) &&
340             !ip6_addr_isduplicated(netif_ip6_addr_state(inp, i)) &&
341             ip6_addr_cmp(&target_address, netif_ip6_addr(inp, i))) {
342           /* We are using a duplicate address. */
343           nd6_duplicate_addr_detected(inp, i);
344 
345           pbuf_free(p);
346           return;
347         }
348       }
349 #endif /* LWIP_IPV6_DUP_DETECT_ATTEMPTS */
350 
351       /* Check that link-layer address option also fits in packet. */
352       if (p->len < (sizeof(struct na_header) + 2)) {
353         /* @todo debug message */
354         pbuf_free(p);
355         ND6_STATS_INC(nd6.lenerr);
356         ND6_STATS_INC(nd6.drop);
357         return;
358       }
359 
360       lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct na_header));
361 
362       if (p->len < (sizeof(struct na_header) + (lladdr_opt->length << 3))) {
363         /* @todo debug message */
364         pbuf_free(p);
365         ND6_STATS_INC(nd6.lenerr);
366         ND6_STATS_INC(nd6.drop);
367         return;
368       }
369 
370       /* This is an unsolicited NA, most likely there was a LLADDR change. */
371       i = nd6_find_neighbor_cache_entry(&target_address);
372       if (i >= 0) {
373         if (na_hdr->flags & ND6_FLAG_OVERRIDE) {
374           MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
375         }
376       }
377     } else {
378       /* This is a solicited NA.
379        * neighbor address resolution response?
380        * neighbor unreachability detection response? */
381 
382       /* Find the cache entry corresponding to this na. */
383       i = nd6_find_neighbor_cache_entry(&target_address);
384       if (i < 0) {
385         /* We no longer care about this target address. drop it. */
386         pbuf_free(p);
387         return;
388       }
389 
390       /* Update cache entry. */
391       if ((na_hdr->flags & ND6_FLAG_OVERRIDE) ||
392           (neighbor_cache[i].state == ND6_INCOMPLETE)) {
393         /* Check that link-layer address option also fits in packet. */
394         if (p->len < (sizeof(struct na_header) + 2)) {
395           /* @todo debug message */
396           pbuf_free(p);
397           ND6_STATS_INC(nd6.lenerr);
398           ND6_STATS_INC(nd6.drop);
399           return;
400         }
401 
402         lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct na_header));
403 
404         if (p->len < (sizeof(struct na_header) + (lladdr_opt->length << 3))) {
405           /* @todo debug message */
406           pbuf_free(p);
407           ND6_STATS_INC(nd6.lenerr);
408           ND6_STATS_INC(nd6.drop);
409           return;
410         }
411 
412         MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
413       }
414 
415       neighbor_cache[i].netif = inp;
416       neighbor_cache[i].state = ND6_REACHABLE;
417       neighbor_cache[i].counter.reachable_time = reachable_time;
418 
419       /* Send queued packets, if any. */
420       if (neighbor_cache[i].q != NULL) {
421         nd6_send_q(i);
422       }
423     }
424 
425     break; /* ICMP6_TYPE_NA */
426   }
427   case ICMP6_TYPE_NS: /* Neighbor solicitation. */
428   {
429     struct ns_header *ns_hdr;
430     struct lladdr_option *lladdr_opt;
431     ip6_addr_t target_address;
432     u8_t accepted;
433 
434     /* Check that ns header fits in packet. */
435     if (p->len < sizeof(struct ns_header)) {
436       /* @todo debug message */
437       pbuf_free(p);
438       ND6_STATS_INC(nd6.lenerr);
439       ND6_STATS_INC(nd6.drop);
440       return;
441     }
442 
443     ns_hdr = (struct ns_header *)p->payload;
444 
445     /* Create an aligned, zoned copy of the target address. */
446     ip6_addr_copy_from_packed(target_address, ns_hdr->target_address);
447     ip6_addr_assign_zone(&target_address, IP6_UNICAST, inp);
448 
449     /* Check a subset of the other RFC 4861 Sec. 7.1.1 requirements. */
450     if (IP6H_HOPLIM(ip6_current_header()) != ND6_HOPLIM || ns_hdr->code != 0 ||
451        ip6_addr_ismulticast(&target_address)) {
452       pbuf_free(p);
453       ND6_STATS_INC(nd6.proterr);
454       ND6_STATS_INC(nd6.drop);
455       return;
456     }
457 
458     /* @todo RFC MUST: all included options have a length greater than zero */
459     /* @todo RFC MUST: if IP source is 'any', destination is solicited-node multicast address */
460     /* @todo RFC MUST: if IP source is 'any', there is no source LL address option */
461 
462     /* Check if there is a link-layer address provided. Only point to it if in this buffer. */
463     if (p->len >= (sizeof(struct ns_header) + 2)) {
464       lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct ns_header));
465       if (p->len < (sizeof(struct ns_header) + (lladdr_opt->length << 3))) {
466         lladdr_opt = NULL;
467       }
468     } else {
469       lladdr_opt = NULL;
470     }
471 
472     /* Check if the target address is configured on the receiving netif. */
473     accepted = 0;
474     for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; ++i) {
475       if ((ip6_addr_isvalid(netif_ip6_addr_state(inp, i)) ||
476            (ip6_addr_istentative(netif_ip6_addr_state(inp, i)) &&
477             ip6_addr_isany(ip6_current_src_addr()))) &&
478           ip6_addr_cmp(&target_address, netif_ip6_addr(inp, i))) {
479         accepted = 1;
480         break;
481       }
482     }
483 
484     /* NS not for us? */
485     if (!accepted) {
486       pbuf_free(p);
487       return;
488     }
489 
490     /* Check for ANY address in src (DAD algorithm). */
491     if (ip6_addr_isany(ip6_current_src_addr())) {
492       /* Sender is validating this address. */
493       for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; ++i) {
494         if (!ip6_addr_isinvalid(netif_ip6_addr_state(inp, i)) &&
495             ip6_addr_cmp(&target_address, netif_ip6_addr(inp, i))) {
496           /* Send a NA back so that the sender does not use this address. */
497           nd6_send_na(inp, netif_ip6_addr(inp, i), ND6_FLAG_OVERRIDE | ND6_SEND_FLAG_ALLNODES_DEST);
498           if (ip6_addr_istentative(netif_ip6_addr_state(inp, i))) {
499             /* We shouldn't use this address either. */
500             nd6_duplicate_addr_detected(inp, i);
501           }
502         }
503       }
504     } else {
505       /* Sender is trying to resolve our address. */
506       /* Verify that they included their own link-layer address. */
507       if (lladdr_opt == NULL) {
508         /* Not a valid message. */
509         pbuf_free(p);
510         ND6_STATS_INC(nd6.proterr);
511         ND6_STATS_INC(nd6.drop);
512         return;
513       }
514 
515       i = nd6_find_neighbor_cache_entry(ip6_current_src_addr());
516       if (i>= 0) {
517         /* We already have a record for the solicitor. */
518         if (neighbor_cache[i].state == ND6_INCOMPLETE) {
519           neighbor_cache[i].netif = inp;
520           MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
521 
522           /* Delay probe in case we get confirmation of reachability from upper layer (TCP). */
523           neighbor_cache[i].state = ND6_DELAY;
524           neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
525         }
526       } else {
527         /* Add their IPv6 address and link-layer address to neighbor cache.
528          * We will need it at least to send a unicast NA message, but most
529          * likely we will also be communicating with this node soon. */
530         i = nd6_new_neighbor_cache_entry();
531         if (i < 0) {
532           /* We couldn't assign a cache entry for this neighbor.
533            * we won't be able to reply. drop it. */
534           pbuf_free(p);
535           ND6_STATS_INC(nd6.memerr);
536           return;
537         }
538         neighbor_cache[i].netif = inp;
539         MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
540         ip6_addr_set(&(neighbor_cache[i].next_hop_address), ip6_current_src_addr());
541 
542         /* Receiving a message does not prove reachability: only in one direction.
543          * Delay probe in case we get confirmation of reachability from upper layer (TCP). */
544         neighbor_cache[i].state = ND6_DELAY;
545         neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
546       }
547 
548       /* Send back a NA for us. Allocate the reply pbuf. */
549       nd6_send_na(inp, &target_address, ND6_FLAG_SOLICITED | ND6_FLAG_OVERRIDE);
550     }
551 
552     break; /* ICMP6_TYPE_NS */
553   }
554   case ICMP6_TYPE_RA: /* Router Advertisement. */
555   {
556     struct ra_header *ra_hdr;
557     u8_t *buffer; /* Used to copy options. */
558     u16_t offset;
559 #if LWIP_ND6_RDNSS_MAX_DNS_SERVERS
560     /* There can be multiple RDNSS options per RA */
561     u8_t rdnss_server_idx = 0;
562 #endif /* LWIP_ND6_RDNSS_MAX_DNS_SERVERS */
563 
564     /* Check that RA header fits in packet. */
565     if (p->len < sizeof(struct ra_header)) {
566       /* @todo debug message */
567       pbuf_free(p);
568       ND6_STATS_INC(nd6.lenerr);
569       ND6_STATS_INC(nd6.drop);
570       return;
571     }
572 
573     ra_hdr = (struct ra_header *)p->payload;
574 
575     /* Check a subset of the other RFC 4861 Sec. 6.1.2 requirements. */
576     if (!ip6_addr_islinklocal(ip6_current_src_addr()) ||
577         IP6H_HOPLIM(ip6_current_header()) != ND6_HOPLIM || ra_hdr->code != 0) {
578       pbuf_free(p);
579       ND6_STATS_INC(nd6.proterr);
580       ND6_STATS_INC(nd6.drop);
581       return;
582     }
583 
584     /* @todo RFC MUST: all included options have a length greater than zero */
585 
586     /* If we are sending RS messages, stop. */
587 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
588     /* ensure at least one solicitation is sent (see RFC 4861, ch. 6.3.7) */
589     if ((inp->rs_count < LWIP_ND6_MAX_MULTICAST_SOLICIT) ||
590         (nd6_send_rs(inp) == ERR_OK)) {
591       inp->rs_count = 0;
592     } else {
593       inp->rs_count = 1;
594     }
595 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
596 
597     /* Get the matching default router entry. */
598     i = nd6_get_router(ip6_current_src_addr(), inp);
599     if (i < 0) {
600       /* Create a new router entry. */
601       i = nd6_new_router(ip6_current_src_addr(), inp);
602     }
603 
604     if (i < 0) {
605       /* Could not create a new router entry. */
606       pbuf_free(p);
607       ND6_STATS_INC(nd6.memerr);
608       return;
609     }
610 
611     /* Re-set invalidation timer. */
612     default_router_list[i].invalidation_timer = lwip_htons(ra_hdr->router_lifetime);
613 
614     /* Re-set default timer values. */
615 #if LWIP_ND6_ALLOW_RA_UPDATES
616     if (ra_hdr->retrans_timer > 0) {
617       retrans_timer = lwip_htonl(ra_hdr->retrans_timer);
618     }
619     if (ra_hdr->reachable_time > 0) {
620       reachable_time = lwip_htonl(ra_hdr->reachable_time);
621     }
622 #endif /* LWIP_ND6_ALLOW_RA_UPDATES */
623 
624     /* @todo set default hop limit... */
625     /* ra_hdr->current_hop_limit;*/
626 
627     /* Update flags in local entry (incl. preference). */
628     default_router_list[i].flags = ra_hdr->flags;
629 
630 #if LWIP_IPV6_DHCP6
631     /* Trigger DHCPv6 if enabled */
632     dhcp6_nd6_ra_trigger(inp, ra_hdr->flags & ND6_RA_FLAG_MANAGED_ADDR_CONFIG,
633       ra_hdr->flags & ND6_RA_FLAG_OTHER_CONFIG);
634 #endif
635 
636     /* Offset to options. */
637     offset = sizeof(struct ra_header);
638 
639     /* Process each option. */
640     while ((p->tot_len - offset) >= 2) {
641       u8_t option_type;
642       u16_t option_len;
643       int option_len8 = pbuf_try_get_at(p, offset + 1);
644       if (option_len8 <= 0) {
645         /* read beyond end or zero length */
646         goto lenerr_drop_free_return;
647       }
648       option_len = ((u8_t)option_len8) << 3;
649       if (option_len > p->tot_len - offset) {
650         /* short packet (option does not fit in) */
651         goto lenerr_drop_free_return;
652       }
653       if (p->len == p->tot_len) {
654         /* no need to copy from contiguous pbuf */
655         buffer = &((u8_t*)p->payload)[offset];
656       } else {
657         /* check if this option fits into our buffer */
658         if (option_len > sizeof(nd6_ra_buffer)) {
659           option_type = pbuf_get_at(p, offset);
660           /* invalid option length */
661           if (option_type != ND6_OPTION_TYPE_RDNSS) {
662             goto lenerr_drop_free_return;
663           }
664           /* we allow RDNSS option to be longer - we'll just drop some servers */
665           option_len = sizeof(nd6_ra_buffer);
666         }
667         buffer = (u8_t*)&nd6_ra_buffer;
668         option_len = pbuf_copy_partial(p, &nd6_ra_buffer, option_len, offset);
669       }
670       option_type = buffer[0];
671       switch (option_type) {
672       case ND6_OPTION_TYPE_SOURCE_LLADDR:
673       {
674         struct lladdr_option *lladdr_opt;
675         if (option_len < sizeof(struct lladdr_option)) {
676           goto lenerr_drop_free_return;
677         }
678         lladdr_opt = (struct lladdr_option *)buffer;
679         if ((default_router_list[i].neighbor_entry != NULL) &&
680             (default_router_list[i].neighbor_entry->state == ND6_INCOMPLETE)) {
681           SMEMCPY(default_router_list[i].neighbor_entry->lladdr, lladdr_opt->addr, inp->hwaddr_len);
682           default_router_list[i].neighbor_entry->state = ND6_REACHABLE;
683           default_router_list[i].neighbor_entry->counter.reachable_time = reachable_time;
684         }
685         break;
686       }
687       case ND6_OPTION_TYPE_MTU:
688       {
689         struct mtu_option *mtu_opt;
690         u32_t mtu32;
691         if (option_len < sizeof(struct mtu_option)) {
692           goto lenerr_drop_free_return;
693         }
694         mtu_opt = (struct mtu_option *)buffer;
695         mtu32 = lwip_htonl(mtu_opt->mtu);
696         if ((mtu32 >= 1280) && (mtu32 <= 0xffff)) {
697 #if LWIP_ND6_ALLOW_RA_UPDATES
698           if (inp->mtu) {
699             /* don't set the mtu for IPv6 higher than the netif driver supports */
700             inp->mtu6 = LWIP_MIN(inp->mtu, (u16_t)mtu32);
701           } else {
702             inp->mtu6 = (u16_t)mtu32;
703           }
704 #endif /* LWIP_ND6_ALLOW_RA_UPDATES */
705         }
706         break;
707       }
708       case ND6_OPTION_TYPE_PREFIX_INFO:
709       {
710         struct prefix_option *prefix_opt;
711         ip6_addr_t prefix_addr;
712         if (option_len < sizeof(struct prefix_option)) {
713           goto lenerr_drop_free_return;
714         }
715 
716         prefix_opt = (struct prefix_option *)buffer;
717 
718         /* Get a memory-aligned copy of the prefix. */
719         ip6_addr_copy_from_packed(prefix_addr, prefix_opt->prefix);
720         ip6_addr_assign_zone(&prefix_addr, IP6_UNICAST, inp);
721 
722         if (!ip6_addr_islinklocal(&prefix_addr)) {
723           if ((prefix_opt->flags & ND6_PREFIX_FLAG_ON_LINK) &&
724               (prefix_opt->prefix_length == 64)) {
725             /* Add to on-link prefix list. */
726             u32_t valid_life;
727             s8_t prefix;
728 
729             valid_life = lwip_htonl(prefix_opt->valid_lifetime);
730 
731             /* find cache entry for this prefix. */
732             prefix = nd6_get_onlink_prefix(&prefix_addr, inp);
733             if (prefix < 0 && valid_life > 0) {
734               /* Create a new cache entry. */
735               prefix = nd6_new_onlink_prefix(&prefix_addr, inp);
736             }
737             if (prefix >= 0) {
738               prefix_list[prefix].invalidation_timer = valid_life;
739             }
740           }
741 #if LWIP_IPV6_AUTOCONFIG
742           if (prefix_opt->flags & ND6_PREFIX_FLAG_AUTONOMOUS) {
743             /* Perform processing for autoconfiguration. */
744             nd6_process_autoconfig_prefix(inp, prefix_opt, &prefix_addr);
745           }
746 #endif /* LWIP_IPV6_AUTOCONFIG */
747         }
748 
749         break;
750       }
751       case ND6_OPTION_TYPE_ROUTE_INFO:
752         /* @todo implement preferred routes.
753         struct route_option * route_opt;
754         route_opt = (struct route_option *)buffer;*/
755 
756         break;
757 #if LWIP_ND6_RDNSS_MAX_DNS_SERVERS
758       case ND6_OPTION_TYPE_RDNSS:
759       {
760         u8_t num, n;
761         u16_t copy_offset = offset + SIZEOF_RDNSS_OPTION_BASE;
762         struct rdnss_option * rdnss_opt;
763         if (option_len < SIZEOF_RDNSS_OPTION_BASE) {
764           goto lenerr_drop_free_return;
765         }
766 
767         rdnss_opt = (struct rdnss_option *)buffer;
768         num = (rdnss_opt->length - 1) / 2;
769         for (n = 0; (rdnss_server_idx < DNS_MAX_SERVERS) && (n < num); n++) {
770           ip_addr_t rdnss_address;
771 
772           /* Copy directly from pbuf to get an aligned, zoned copy of the prefix. */
773           if (pbuf_copy_partial(p, &rdnss_address, sizeof(ip6_addr_p_t), copy_offset) == sizeof(ip6_addr_p_t)) {
774             IP_SET_TYPE_VAL(rdnss_address, IPADDR_TYPE_V6);
775             ip6_addr_assign_zone(ip_2_ip6(&rdnss_address), IP6_UNKNOWN, inp);
776 
777             if (htonl(rdnss_opt->lifetime) > 0) {
778               /* TODO implement Lifetime > 0 */
779               dns_setserver(rdnss_server_idx++, &rdnss_address);
780             } else {
781               /* TODO implement DNS removal in dns.c */
782               u8_t s;
783               for (s = 0; s < DNS_MAX_SERVERS; s++) {
784                 const ip_addr_t *addr = dns_getserver(s);
785                 if(ip_addr_cmp(addr, &rdnss_address)) {
786                   dns_setserver(s, NULL);
787                 }
788               }
789             }
790           }
791         }
792         break;
793       }
794 #endif /* LWIP_ND6_RDNSS_MAX_DNS_SERVERS */
795       default:
796         /* Unrecognized option, abort. */
797         ND6_STATS_INC(nd6.proterr);
798         break;
799       }
800       /* option length is checked earlier to be non-zero to make sure loop ends */
801       offset += 8 * (u8_t)option_len8;
802     }
803 
804     break; /* ICMP6_TYPE_RA */
805   }
806   case ICMP6_TYPE_RD: /* Redirect */
807   {
808     struct redirect_header *redir_hdr;
809     struct lladdr_option *lladdr_opt;
810     ip6_addr_t destination_address, target_address;
811 
812     /* Check that Redir header fits in packet. */
813     if (p->len < sizeof(struct redirect_header)) {
814       /* @todo debug message */
815       pbuf_free(p);
816       ND6_STATS_INC(nd6.lenerr);
817       ND6_STATS_INC(nd6.drop);
818       return;
819     }
820 
821     redir_hdr = (struct redirect_header *)p->payload;
822 
823     /* Create an aligned, zoned copy of the destination address. */
824     ip6_addr_copy_from_packed(destination_address, redir_hdr->destination_address);
825     ip6_addr_assign_zone(&destination_address, IP6_UNICAST, inp);
826 
827     /* Check a subset of the other RFC 4861 Sec. 8.1 requirements. */
828     if (!ip6_addr_islinklocal(ip6_current_src_addr()) ||
829         IP6H_HOPLIM(ip6_current_header()) != ND6_HOPLIM ||
830         redir_hdr->code != 0 || ip6_addr_ismulticast(&destination_address)) {
831       pbuf_free(p);
832       ND6_STATS_INC(nd6.proterr);
833       ND6_STATS_INC(nd6.drop);
834       return;
835     }
836 
837     /* @todo RFC MUST: IP source address equals first-hop router for destination_address */
838     /* @todo RFC MUST: ICMP target address is either link-local address or same as destination_address */
839     /* @todo RFC MUST: all included options have a length greater than zero */
840 
841     if (p->len >= (sizeof(struct redirect_header) + 2)) {
842       lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct redirect_header));
843       if (p->len < (sizeof(struct redirect_header) + (lladdr_opt->length << 3))) {
844         lladdr_opt = NULL;
845       }
846     } else {
847       lladdr_opt = NULL;
848     }
849 
850     /* Find dest address in cache */
851     dest_idx = nd6_find_destination_cache_entry(&destination_address);
852     if (dest_idx < 0) {
853       /* Destination not in cache, drop packet. */
854       pbuf_free(p);
855       return;
856     }
857 
858     /* Create an aligned, zoned copy of the target address. */
859     ip6_addr_copy_from_packed(target_address, redir_hdr->target_address);
860     ip6_addr_assign_zone(&target_address, IP6_UNICAST, inp);
861 
862     /* Set the new target address. */
863     ip6_addr_copy(destination_cache[dest_idx].next_hop_addr, target_address);
864 
865     /* If Link-layer address of other router is given, try to add to neighbor cache. */
866     if (lladdr_opt != NULL) {
867       if (lladdr_opt->type == ND6_OPTION_TYPE_TARGET_LLADDR) {
868         i = nd6_find_neighbor_cache_entry(&target_address);
869         if (i < 0) {
870           i = nd6_new_neighbor_cache_entry();
871           if (i >= 0) {
872             neighbor_cache[i].netif = inp;
873             MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
874             ip6_addr_copy(neighbor_cache[i].next_hop_address, target_address);
875 
876             /* Receiving a message does not prove reachability: only in one direction.
877              * Delay probe in case we get confirmation of reachability from upper layer (TCP). */
878             neighbor_cache[i].state = ND6_DELAY;
879             neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
880           }
881         }
882         if (i >= 0) {
883           if (neighbor_cache[i].state == ND6_INCOMPLETE) {
884             MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
885             /* Receiving a message does not prove reachability: only in one direction.
886              * Delay probe in case we get confirmation of reachability from upper layer (TCP). */
887             neighbor_cache[i].state = ND6_DELAY;
888             neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
889           }
890         }
891       }
892     }
893     break; /* ICMP6_TYPE_RD */
894   }
895   case ICMP6_TYPE_PTB: /* Packet too big */
896   {
897     struct icmp6_hdr *icmp6hdr; /* Packet too big message */
898     struct ip6_hdr *ip6hdr; /* IPv6 header of the packet which caused the error */
899     u32_t pmtu;
900     ip6_addr_t destination_address;
901 
902     /* Check that ICMPv6 header + IPv6 header fit in payload */
903     if (p->len < (sizeof(struct icmp6_hdr) + IP6_HLEN)) {
904       /* drop short packets */
905       pbuf_free(p);
906       ND6_STATS_INC(nd6.lenerr);
907       ND6_STATS_INC(nd6.drop);
908       return;
909     }
910 
911     icmp6hdr = (struct icmp6_hdr *)p->payload;
912     ip6hdr = (struct ip6_hdr *)((u8_t*)p->payload + sizeof(struct icmp6_hdr));
913 
914     /* Create an aligned, zoned copy of the destination address. */
915     ip6_addr_copy_from_packed(destination_address, ip6hdr->dest);
916     ip6_addr_assign_zone(&destination_address, IP6_UNKNOWN, inp);
917 
918     /* Look for entry in destination cache. */
919     dest_idx = nd6_find_destination_cache_entry(&destination_address);
920     if (dest_idx < 0) {
921       /* Destination not in cache, drop packet. */
922       pbuf_free(p);
923       return;
924     }
925 
926     /* Change the Path MTU. */
927     pmtu = lwip_htonl(icmp6hdr->data);
928     destination_cache[dest_idx].pmtu = (u16_t)LWIP_MIN(pmtu, 0xFFFF);
929 
930     break; /* ICMP6_TYPE_PTB */
931   }
932 
933   default:
934     ND6_STATS_INC(nd6.proterr);
935     ND6_STATS_INC(nd6.drop);
936     break; /* default */
937   }
938 
939   pbuf_free(p);
940   return;
941 lenerr_drop_free_return:
942   ND6_STATS_INC(nd6.lenerr);
943   ND6_STATS_INC(nd6.drop);
944   pbuf_free(p);
945 }
946 
947 
948 /**
949  * Periodic timer for Neighbor discovery functions:
950  *
951  * - Update neighbor reachability states
952  * - Update destination cache entries age
953  * - Update invalidation timers of default routers and on-link prefixes
954  * - Update lifetimes of our addresses
955  * - Perform duplicate address detection (DAD) for our addresses
956  * - Send router solicitations
957  */
958 void
nd6_tmr(void)959 nd6_tmr(void)
960 {
961   s8_t i;
962   struct netif *netif;
963 
964   /* Process neighbor entries. */
965   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
966     switch (neighbor_cache[i].state) {
967     case ND6_INCOMPLETE:
968       if ((neighbor_cache[i].counter.probes_sent >= LWIP_ND6_MAX_MULTICAST_SOLICIT) &&
969           (!neighbor_cache[i].isrouter)) {
970         /* Retries exceeded. */
971         nd6_free_neighbor_cache_entry(i);
972       } else {
973         /* Send a NS for this entry. */
974         neighbor_cache[i].counter.probes_sent++;
975         nd6_send_neighbor_cache_probe(&neighbor_cache[i], ND6_SEND_FLAG_MULTICAST_DEST);
976       }
977       break;
978     case ND6_REACHABLE:
979       /* Send queued packets, if any are left. Should have been sent already. */
980       if (neighbor_cache[i].q != NULL) {
981         nd6_send_q(i);
982       }
983       if (neighbor_cache[i].counter.reachable_time <= ND6_TMR_INTERVAL) {
984         /* Change to stale state. */
985         neighbor_cache[i].state = ND6_STALE;
986         neighbor_cache[i].counter.stale_time = 0;
987       } else {
988         neighbor_cache[i].counter.reachable_time -= ND6_TMR_INTERVAL;
989       }
990       break;
991     case ND6_STALE:
992       neighbor_cache[i].counter.stale_time++;
993       break;
994     case ND6_DELAY:
995       if (neighbor_cache[i].counter.delay_time <= 1) {
996         /* Change to PROBE state. */
997         neighbor_cache[i].state = ND6_PROBE;
998         neighbor_cache[i].counter.probes_sent = 0;
999       } else {
1000         neighbor_cache[i].counter.delay_time--;
1001       }
1002       break;
1003     case ND6_PROBE:
1004       if ((neighbor_cache[i].counter.probes_sent >= LWIP_ND6_MAX_MULTICAST_SOLICIT) &&
1005           (!neighbor_cache[i].isrouter)) {
1006         /* Retries exceeded. */
1007         nd6_free_neighbor_cache_entry(i);
1008       } else {
1009         /* Send a NS for this entry. */
1010         neighbor_cache[i].counter.probes_sent++;
1011         nd6_send_neighbor_cache_probe(&neighbor_cache[i], 0);
1012       }
1013       break;
1014     case ND6_NO_ENTRY:
1015     default:
1016       /* Do nothing. */
1017       break;
1018     }
1019   }
1020 
1021   /* Process destination entries. */
1022   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
1023     destination_cache[i].age++;
1024   }
1025 
1026   /* Process router entries. */
1027   for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
1028     if (default_router_list[i].neighbor_entry != NULL) {
1029       /* Active entry. */
1030       if (default_router_list[i].invalidation_timer <= ND6_TMR_INTERVAL / 1000) {
1031         /* No more than 1 second remaining. Clear this entry. Also clear any of
1032          * its destination cache entries, as per RFC 4861 Sec. 5.3 and 6.3.5. */
1033         s8_t j;
1034         for (j = 0; j < LWIP_ND6_NUM_DESTINATIONS; j++) {
1035           if (ip6_addr_cmp(&destination_cache[j].next_hop_addr,
1036                &default_router_list[i].neighbor_entry->next_hop_address)) {
1037              ip6_addr_set_any(&destination_cache[j].destination_addr);
1038           }
1039         }
1040         default_router_list[i].neighbor_entry->isrouter = 0;
1041         default_router_list[i].neighbor_entry = NULL;
1042         default_router_list[i].invalidation_timer = 0;
1043         default_router_list[i].flags = 0;
1044       } else {
1045         default_router_list[i].invalidation_timer -= ND6_TMR_INTERVAL / 1000;
1046       }
1047     }
1048   }
1049 
1050   /* Process prefix entries. */
1051   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; i++) {
1052     if (prefix_list[i].netif != NULL) {
1053       if (prefix_list[i].invalidation_timer <= ND6_TMR_INTERVAL / 1000) {
1054         /* Entry timed out, remove it */
1055         prefix_list[i].invalidation_timer = 0;
1056         prefix_list[i].netif = NULL;
1057       } else {
1058         prefix_list[i].invalidation_timer -= ND6_TMR_INTERVAL / 1000;
1059       }
1060     }
1061   }
1062 
1063   /* Process our own addresses, updating address lifetimes and/or DAD state. */
1064   NETIF_FOREACH(netif) {
1065     for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; ++i) {
1066       u8_t addr_state;
1067 #if LWIP_IPV6_ADDRESS_LIFETIMES
1068       /* Step 1: update address lifetimes (valid and preferred). */
1069       addr_state = netif_ip6_addr_state(netif, i);
1070       /* RFC 4862 is not entirely clear as to whether address lifetimes affect
1071        * tentative addresses, and is even less clear as to what should happen
1072        * with duplicate addresses. We choose to track and update lifetimes for
1073        * both those types, although for different reasons:
1074        * - for tentative addresses, the line of thought of Sec. 5.7 combined
1075        *   with the potentially long period that an address may be in tentative
1076        *   state (due to the interface being down) suggests that lifetimes
1077        *   should be independent of external factors which would include DAD;
1078        * - for duplicate addresses, retiring them early could result in a new
1079        *   but unwanted attempt at marking them as valid, while retiring them
1080        *   late/never could clog up address slots on the netif.
1081        * As a result, we may end up expiring addresses of either type here.
1082        */
1083       if (!ip6_addr_isinvalid(addr_state) &&
1084           !netif_ip6_addr_isstatic(netif, i)) {
1085         u32_t life = netif_ip6_addr_valid_life(netif, i);
1086         if (life <= ND6_TMR_INTERVAL / 1000) {
1087           /* The address has expired. */
1088           netif_ip6_addr_set_valid_life(netif, i, 0);
1089           netif_ip6_addr_set_pref_life(netif, i, 0);
1090           netif_ip6_addr_set_state(netif, i, IP6_ADDR_INVALID);
1091         } else {
1092           if (!ip6_addr_life_isinfinite(life)) {
1093             life -= ND6_TMR_INTERVAL / 1000;
1094             LWIP_ASSERT("bad valid lifetime", life != IP6_ADDR_LIFE_STATIC);
1095             netif_ip6_addr_set_valid_life(netif, i, life);
1096           }
1097           /* The address is still here. Update the preferred lifetime too. */
1098           life = netif_ip6_addr_pref_life(netif, i);
1099           if (life <= ND6_TMR_INTERVAL / 1000) {
1100             /* This case must also trigger if 'life' was already zero, so as to
1101              * deal correctly with advertised preferred-lifetime reductions. */
1102             netif_ip6_addr_set_pref_life(netif, i, 0);
1103             if (addr_state == IP6_ADDR_PREFERRED)
1104               netif_ip6_addr_set_state(netif, i, IP6_ADDR_DEPRECATED);
1105           } else if (!ip6_addr_life_isinfinite(life)) {
1106             life -= ND6_TMR_INTERVAL / 1000;
1107             netif_ip6_addr_set_pref_life(netif, i, life);
1108           }
1109         }
1110       }
1111       /* The address state may now have changed, so reobtain it next. */
1112 #endif /* LWIP_IPV6_ADDRESS_LIFETIMES */
1113       /* Step 2: update DAD state. */
1114       addr_state = netif_ip6_addr_state(netif, i);
1115       if (ip6_addr_istentative(addr_state)) {
1116         if ((addr_state & IP6_ADDR_TENTATIVE_COUNT_MASK) >= LWIP_IPV6_DUP_DETECT_ATTEMPTS) {
1117           /* No NA received in response. Mark address as valid. For dynamic
1118            * addresses with an expired preferred lifetime, the state is set to
1119            * deprecated right away. That should almost never happen, though. */
1120           addr_state = IP6_ADDR_PREFERRED;
1121 #if LWIP_IPV6_ADDRESS_LIFETIMES
1122           if (!netif_ip6_addr_isstatic(netif, i) &&
1123               netif_ip6_addr_pref_life(netif, i) == 0) {
1124             addr_state = IP6_ADDR_DEPRECATED;
1125           }
1126 #endif /* LWIP_IPV6_ADDRESS_LIFETIMES */
1127           netif_ip6_addr_set_state(netif, i, addr_state);
1128         } else if (netif_is_up(netif) && netif_is_link_up(netif)) {
1129           /* tentative: set next state by increasing by one */
1130           netif_ip6_addr_set_state(netif, i, addr_state + 1);
1131           /* Send a NS for this address. Use the unspecified address as source
1132            * address in all cases (RFC 4862 Sec. 5.4.2), not in the least
1133            * because as it is, we only consider multicast replies for DAD. */
1134           nd6_send_ns(netif, netif_ip6_addr(netif, i),
1135             ND6_SEND_FLAG_MULTICAST_DEST | ND6_SEND_FLAG_ANY_SRC);
1136         }
1137       }
1138     }
1139   }
1140 
1141 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
1142   /* Send router solicitation messages, if necessary. */
1143   if (!nd6_tmr_rs_reduction) {
1144     nd6_tmr_rs_reduction = (ND6_RTR_SOLICITATION_INTERVAL / ND6_TMR_INTERVAL) - 1;
1145     NETIF_FOREACH(netif) {
1146       if ((netif->rs_count > 0) && netif_is_up(netif) &&
1147           netif_is_link_up(netif) &&
1148           !ip6_addr_isinvalid(netif_ip6_addr_state(netif, 0)) &&
1149           !ip6_addr_isduplicated(netif_ip6_addr_state(netif, 0))) {
1150         if (nd6_send_rs(netif) == ERR_OK) {
1151           netif->rs_count--;
1152         }
1153       }
1154     }
1155   } else {
1156     nd6_tmr_rs_reduction--;
1157   }
1158 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
1159 
1160 }
1161 
1162 /** Send a neighbor solicitation message for a specific neighbor cache entry
1163  *
1164  * @param entry the neightbor cache entry for wich to send the message
1165  * @param flags one of ND6_SEND_FLAG_*
1166  */
1167 static void
nd6_send_neighbor_cache_probe(struct nd6_neighbor_cache_entry * entry,u8_t flags)1168 nd6_send_neighbor_cache_probe(struct nd6_neighbor_cache_entry *entry, u8_t flags)
1169 {
1170   nd6_send_ns(entry->netif, &entry->next_hop_address, flags);
1171 }
1172 
1173 /**
1174  * Send a neighbor solicitation message
1175  *
1176  * @param netif the netif on which to send the message
1177  * @param target_addr the IPv6 target address for the ND message
1178  * @param flags one of ND6_SEND_FLAG_*
1179  */
1180 static void
nd6_send_ns(struct netif * netif,const ip6_addr_t * target_addr,u8_t flags)1181 nd6_send_ns(struct netif *netif, const ip6_addr_t *target_addr, u8_t flags)
1182 {
1183   struct ns_header *ns_hdr;
1184   struct pbuf *p;
1185   const ip6_addr_t *src_addr;
1186   u16_t lladdr_opt_len;
1187 
1188   LWIP_ASSERT("target address is required", target_addr != NULL);
1189 
1190   if (!(flags & ND6_SEND_FLAG_ANY_SRC) &&
1191       ip6_addr_isvalid(netif_ip6_addr_state(netif,0))) {
1192     /* Use link-local address as source address. */
1193     src_addr = netif_ip6_addr(netif, 0);
1194     /* calculate option length (in 8-byte-blocks) */
1195     lladdr_opt_len = ((netif->hwaddr_len + 2) + 7) >> 3;
1196   } else {
1197     src_addr = IP6_ADDR_ANY6;
1198     /* Option "MUST NOT be included when the source IP address is the unspecified address." */
1199     lladdr_opt_len = 0;
1200   }
1201 
1202   /* Allocate a packet. */
1203   p = pbuf_alloc(PBUF_IP, sizeof(struct ns_header) + (lladdr_opt_len << 3), PBUF_RAM);
1204   if (p == NULL) {
1205     ND6_STATS_INC(nd6.memerr);
1206     return;
1207   }
1208 
1209   /* Set fields. */
1210   ns_hdr = (struct ns_header *)p->payload;
1211 
1212   ns_hdr->type = ICMP6_TYPE_NS;
1213   ns_hdr->code = 0;
1214   ns_hdr->chksum = 0;
1215   ns_hdr->reserved = 0;
1216   ip6_addr_copy_to_packed(ns_hdr->target_address, *target_addr);
1217 
1218   if (lladdr_opt_len != 0) {
1219     struct lladdr_option *lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct ns_header));
1220     lladdr_opt->type = ND6_OPTION_TYPE_SOURCE_LLADDR;
1221     lladdr_opt->length = (u8_t)lladdr_opt_len;
1222     SMEMCPY(lladdr_opt->addr, netif->hwaddr, netif->hwaddr_len);
1223   }
1224 
1225   /* Generate the solicited node address for the target address. */
1226   if (flags & ND6_SEND_FLAG_MULTICAST_DEST) {
1227     ip6_addr_set_solicitednode(&multicast_address, target_addr->addr[3]);
1228     ip6_addr_assign_zone(&multicast_address, IP6_MULTICAST, netif);
1229     target_addr = &multicast_address;
1230   }
1231 
1232 #if CHECKSUM_GEN_ICMP6
1233   IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_ICMP6) {
1234     ns_hdr->chksum = ip6_chksum_pseudo(p, IP6_NEXTH_ICMP6, p->len, src_addr,
1235       target_addr);
1236   }
1237 #endif /* CHECKSUM_GEN_ICMP6 */
1238 
1239   /* Send the packet out. */
1240   ND6_STATS_INC(nd6.xmit);
1241   ip6_output_if(p, (src_addr == IP6_ADDR_ANY6) ? NULL : src_addr, target_addr,
1242       ND6_HOPLIM, 0, IP6_NEXTH_ICMP6, netif);
1243   pbuf_free(p);
1244 }
1245 
1246 /**
1247  * Send a neighbor advertisement message
1248  *
1249  * @param netif the netif on which to send the message
1250  * @param target_addr the IPv6 target address for the ND message
1251  * @param flags one of ND6_SEND_FLAG_*
1252  */
1253 static void
nd6_send_na(struct netif * netif,const ip6_addr_t * target_addr,u8_t flags)1254 nd6_send_na(struct netif *netif, const ip6_addr_t *target_addr, u8_t flags)
1255 {
1256   struct na_header *na_hdr;
1257   struct lladdr_option *lladdr_opt;
1258   struct pbuf *p;
1259   const ip6_addr_t *src_addr;
1260   const ip6_addr_t *dest_addr;
1261   u16_t lladdr_opt_len;
1262 
1263   LWIP_ASSERT("target address is required", target_addr != NULL);
1264 
1265   /* Use link-local address as source address. */
1266   /* src_addr = netif_ip6_addr(netif, 0); */
1267   /* Use target address as source address. */
1268   src_addr = target_addr;
1269 
1270   /* Allocate a packet. */
1271   lladdr_opt_len = ((netif->hwaddr_len + 2) >> 3) + (((netif->hwaddr_len + 2) & 0x07) ? 1 : 0);
1272   p = pbuf_alloc(PBUF_IP, sizeof(struct na_header) + (lladdr_opt_len << 3), PBUF_RAM);
1273   if (p == NULL) {
1274     ND6_STATS_INC(nd6.memerr);
1275     return;
1276   }
1277 
1278   /* Set fields. */
1279   na_hdr = (struct na_header *)p->payload;
1280   lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct na_header));
1281 
1282   na_hdr->type = ICMP6_TYPE_NA;
1283   na_hdr->code = 0;
1284   na_hdr->chksum = 0;
1285   na_hdr->flags = flags & 0xf0;
1286   na_hdr->reserved[0] = 0;
1287   na_hdr->reserved[1] = 0;
1288   na_hdr->reserved[2] = 0;
1289   ip6_addr_copy_to_packed(na_hdr->target_address, *target_addr);
1290 
1291   lladdr_opt->type = ND6_OPTION_TYPE_TARGET_LLADDR;
1292   lladdr_opt->length = (u8_t)lladdr_opt_len;
1293   SMEMCPY(lladdr_opt->addr, netif->hwaddr, netif->hwaddr_len);
1294 
1295   /* Generate the solicited node address for the target address. */
1296   if (flags & ND6_SEND_FLAG_MULTICAST_DEST) {
1297     ip6_addr_set_solicitednode(&multicast_address, target_addr->addr[3]);
1298     ip6_addr_assign_zone(&multicast_address, IP6_MULTICAST, netif);
1299     dest_addr = &multicast_address;
1300   } else if (flags & ND6_SEND_FLAG_ALLNODES_DEST) {
1301     ip6_addr_set_allnodes_linklocal(&multicast_address);
1302     ip6_addr_assign_zone(&multicast_address, IP6_MULTICAST, netif);
1303     dest_addr = &multicast_address;
1304   } else {
1305     dest_addr = ip6_current_src_addr();
1306   }
1307 
1308 #if CHECKSUM_GEN_ICMP6
1309   IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_ICMP6) {
1310     na_hdr->chksum = ip6_chksum_pseudo(p, IP6_NEXTH_ICMP6, p->len, src_addr,
1311       dest_addr);
1312   }
1313 #endif /* CHECKSUM_GEN_ICMP6 */
1314 
1315   /* Send the packet out. */
1316   ND6_STATS_INC(nd6.xmit);
1317   ip6_output_if(p, src_addr, dest_addr,
1318       ND6_HOPLIM, 0, IP6_NEXTH_ICMP6, netif);
1319   pbuf_free(p);
1320 }
1321 
1322 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
1323 /**
1324  * Send a router solicitation message
1325  *
1326  * @param netif the netif on which to send the message
1327  */
1328 static err_t
nd6_send_rs(struct netif * netif)1329 nd6_send_rs(struct netif *netif)
1330 {
1331   struct rs_header *rs_hdr;
1332   struct lladdr_option *lladdr_opt;
1333   struct pbuf *p;
1334   const ip6_addr_t *src_addr;
1335   err_t err;
1336   u16_t lladdr_opt_len = 0;
1337 
1338   /* Link-local source address, or unspecified address? */
1339   if (ip6_addr_isvalid(netif_ip6_addr_state(netif, 0))) {
1340     src_addr = netif_ip6_addr(netif, 0);
1341   } else {
1342     src_addr = IP6_ADDR_ANY6;
1343   }
1344 
1345   /* Generate the all routers target address. */
1346   ip6_addr_set_allrouters_linklocal(&multicast_address);
1347   ip6_addr_assign_zone(&multicast_address, IP6_MULTICAST, netif);
1348 
1349   /* Allocate a packet. */
1350   if (src_addr != IP6_ADDR_ANY6) {
1351     lladdr_opt_len = ((netif->hwaddr_len + 2) >> 3) + (((netif->hwaddr_len + 2) & 0x07) ? 1 : 0);
1352   }
1353   p = pbuf_alloc(PBUF_IP, sizeof(struct rs_header) + (lladdr_opt_len << 3), PBUF_RAM);
1354   if (p == NULL) {
1355     ND6_STATS_INC(nd6.memerr);
1356     return ERR_BUF;
1357   }
1358 
1359   /* Set fields. */
1360   rs_hdr = (struct rs_header *)p->payload;
1361 
1362   rs_hdr->type = ICMP6_TYPE_RS;
1363   rs_hdr->code = 0;
1364   rs_hdr->chksum = 0;
1365   rs_hdr->reserved = 0;
1366 
1367   if (src_addr != IP6_ADDR_ANY6) {
1368     /* Include our hw address. */
1369     lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct rs_header));
1370     lladdr_opt->type = ND6_OPTION_TYPE_SOURCE_LLADDR;
1371     lladdr_opt->length = (u8_t)lladdr_opt_len;
1372     SMEMCPY(lladdr_opt->addr, netif->hwaddr, netif->hwaddr_len);
1373   }
1374 
1375 #if CHECKSUM_GEN_ICMP6
1376   IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_ICMP6) {
1377     rs_hdr->chksum = ip6_chksum_pseudo(p, IP6_NEXTH_ICMP6, p->len, src_addr,
1378       &multicast_address);
1379   }
1380 #endif /* CHECKSUM_GEN_ICMP6 */
1381 
1382   /* Send the packet out. */
1383   ND6_STATS_INC(nd6.xmit);
1384 
1385   err = ip6_output_if(p, (src_addr == IP6_ADDR_ANY6) ? NULL : src_addr, &multicast_address,
1386       ND6_HOPLIM, 0, IP6_NEXTH_ICMP6, netif);
1387   pbuf_free(p);
1388 
1389   return err;
1390 }
1391 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
1392 
1393 /**
1394  * Search for a neighbor cache entry
1395  *
1396  * @param ip6addr the IPv6 address of the neighbor
1397  * @return The neighbor cache entry index that matched, -1 if no
1398  * entry is found
1399  */
1400 static s8_t
nd6_find_neighbor_cache_entry(const ip6_addr_t * ip6addr)1401 nd6_find_neighbor_cache_entry(const ip6_addr_t *ip6addr)
1402 {
1403   s8_t i;
1404   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1405     if (ip6_addr_cmp(ip6addr, &(neighbor_cache[i].next_hop_address))) {
1406       return i;
1407     }
1408   }
1409   return -1;
1410 }
1411 
1412 /**
1413  * Create a new neighbor cache entry.
1414  *
1415  * If no unused entry is found, will try to recycle an old entry
1416  * according to ad-hoc "age" heuristic.
1417  *
1418  * @return The neighbor cache entry index that was created, -1 if no
1419  * entry could be created
1420  */
1421 static s8_t
nd6_new_neighbor_cache_entry(void)1422 nd6_new_neighbor_cache_entry(void)
1423 {
1424   s8_t i;
1425   s8_t j;
1426   u32_t time;
1427 
1428 
1429   /* First, try to find an empty entry. */
1430   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1431     if (neighbor_cache[i].state == ND6_NO_ENTRY) {
1432       return i;
1433     }
1434   }
1435 
1436   /* We need to recycle an entry. in general, do not recycle if it is a router. */
1437 
1438   /* Next, try to find a Stale entry. */
1439   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1440     if ((neighbor_cache[i].state == ND6_STALE) &&
1441         (!neighbor_cache[i].isrouter)) {
1442       nd6_free_neighbor_cache_entry(i);
1443       return i;
1444     }
1445   }
1446 
1447   /* Next, try to find a Probe entry. */
1448   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1449     if ((neighbor_cache[i].state == ND6_PROBE) &&
1450         (!neighbor_cache[i].isrouter)) {
1451       nd6_free_neighbor_cache_entry(i);
1452       return i;
1453     }
1454   }
1455 
1456   /* Next, try to find a Delayed entry. */
1457   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1458     if ((neighbor_cache[i].state == ND6_DELAY) &&
1459         (!neighbor_cache[i].isrouter)) {
1460       nd6_free_neighbor_cache_entry(i);
1461       return i;
1462     }
1463   }
1464 
1465   /* Next, try to find the oldest reachable entry. */
1466   time = 0xfffffffful;
1467   j = -1;
1468   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1469     if ((neighbor_cache[i].state == ND6_REACHABLE) &&
1470         (!neighbor_cache[i].isrouter)) {
1471       if (neighbor_cache[i].counter.reachable_time < time) {
1472         j = i;
1473         time = neighbor_cache[i].counter.reachable_time;
1474       }
1475     }
1476   }
1477   if (j >= 0) {
1478     nd6_free_neighbor_cache_entry(j);
1479     return j;
1480   }
1481 
1482   /* Next, find oldest incomplete entry without queued packets. */
1483   time = 0;
1484   j = -1;
1485   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1486     if (
1487         (neighbor_cache[i].q == NULL) &&
1488         (neighbor_cache[i].state == ND6_INCOMPLETE) &&
1489         (!neighbor_cache[i].isrouter)) {
1490       if (neighbor_cache[i].counter.probes_sent >= time) {
1491         j = i;
1492         time = neighbor_cache[i].counter.probes_sent;
1493       }
1494     }
1495   }
1496   if (j >= 0) {
1497     nd6_free_neighbor_cache_entry(j);
1498     return j;
1499   }
1500 
1501   /* Next, find oldest incomplete entry with queued packets. */
1502   time = 0;
1503   j = -1;
1504   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1505     if ((neighbor_cache[i].state == ND6_INCOMPLETE) &&
1506         (!neighbor_cache[i].isrouter)) {
1507       if (neighbor_cache[i].counter.probes_sent >= time) {
1508         j = i;
1509         time = neighbor_cache[i].counter.probes_sent;
1510       }
1511     }
1512   }
1513   if (j >= 0) {
1514     nd6_free_neighbor_cache_entry(j);
1515     return j;
1516   }
1517 
1518   /* No more entries to try. */
1519   return -1;
1520 }
1521 
1522 /**
1523  * Will free any resources associated with a neighbor cache
1524  * entry, and will mark it as unused.
1525  *
1526  * @param i the neighbor cache entry index to free
1527  */
1528 static void
nd6_free_neighbor_cache_entry(s8_t i)1529 nd6_free_neighbor_cache_entry(s8_t i)
1530 {
1531   if ((i < 0) || (i >= LWIP_ND6_NUM_NEIGHBORS)) {
1532     return;
1533   }
1534   if (neighbor_cache[i].isrouter) {
1535     /* isrouter needs to be cleared before deleting a neighbor cache entry */
1536     return;
1537   }
1538 
1539   /* Free any queued packets. */
1540   if (neighbor_cache[i].q != NULL) {
1541     nd6_free_q(neighbor_cache[i].q);
1542     neighbor_cache[i].q = NULL;
1543   }
1544 
1545   neighbor_cache[i].state = ND6_NO_ENTRY;
1546   neighbor_cache[i].isrouter = 0;
1547   neighbor_cache[i].netif = NULL;
1548   neighbor_cache[i].counter.reachable_time = 0;
1549   ip6_addr_set_zero(&(neighbor_cache[i].next_hop_address));
1550 }
1551 
1552 /**
1553  * Search for a destination cache entry
1554  *
1555  * @param ip6addr the IPv6 address of the destination
1556  * @return The destination cache entry index that matched, -1 if no
1557  * entry is found
1558  */
1559 static s16_t
nd6_find_destination_cache_entry(const ip6_addr_t * ip6addr)1560 nd6_find_destination_cache_entry(const ip6_addr_t *ip6addr)
1561 {
1562   s16_t i;
1563 
1564   IP6_ADDR_ZONECHECK(ip6addr);
1565 
1566   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
1567     if (ip6_addr_cmp(ip6addr, &(destination_cache[i].destination_addr))) {
1568       return i;
1569     }
1570   }
1571   return -1;
1572 }
1573 
1574 /**
1575  * Create a new destination cache entry. If no unused entry is found,
1576  * will recycle oldest entry.
1577  *
1578  * @return The destination cache entry index that was created, -1 if no
1579  * entry was created
1580  */
1581 static s16_t
nd6_new_destination_cache_entry(void)1582 nd6_new_destination_cache_entry(void)
1583 {
1584   s16_t i, j;
1585   u32_t age;
1586 
1587   /* Find an empty entry. */
1588   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
1589     if (ip6_addr_isany(&(destination_cache[i].destination_addr))) {
1590       return i;
1591     }
1592   }
1593 
1594   /* Find oldest entry. */
1595   age = 0;
1596   j = LWIP_ND6_NUM_DESTINATIONS - 1;
1597   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
1598     if (destination_cache[i].age > age) {
1599       j = i;
1600     }
1601   }
1602 
1603   return j;
1604 }
1605 
1606 /**
1607  * Clear the destination cache.
1608  *
1609  * This operation may be necessary for consistency in the light of changing
1610  * local addresses and/or use of the gateway hook.
1611  */
1612 void
nd6_clear_destination_cache(void)1613 nd6_clear_destination_cache(void)
1614 {
1615   int i;
1616 
1617   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
1618     ip6_addr_set_any(&destination_cache[i].destination_addr);
1619   }
1620 }
1621 
1622 /**
1623  * Determine whether an address matches an on-link prefix or the subnet of a
1624  * statically assigned address.
1625  *
1626  * @param ip6addr the IPv6 address to match
1627  * @return 1 if the address is on-link, 0 otherwise
1628  */
1629 static int
nd6_is_prefix_in_netif(const ip6_addr_t * ip6addr,struct netif * netif)1630 nd6_is_prefix_in_netif(const ip6_addr_t *ip6addr, struct netif *netif)
1631 {
1632   s8_t i;
1633 
1634   /* Check to see if the address matches an on-link prefix. */
1635   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; i++) {
1636     if ((prefix_list[i].netif == netif) &&
1637         (prefix_list[i].invalidation_timer > 0) &&
1638         ip6_addr_netcmp(ip6addr, &(prefix_list[i].prefix))) {
1639       return 1;
1640     }
1641   }
1642   /* Check to see if address prefix matches a manually configured (= static)
1643    * address. Static addresses have an implied /64 subnet assignment. Dynamic
1644    * addresses (from autoconfiguration) have no implied subnet assignment, and
1645    * are thus effectively /128 assignments. See RFC 5942 for more on this. */
1646   for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
1647     if (ip6_addr_isvalid(netif_ip6_addr_state(netif, i)) &&
1648         netif_ip6_addr_isstatic(netif, i) &&
1649         ip6_addr_netcmp(ip6addr, netif_ip6_addr(netif, i))) {
1650       return 1;
1651     }
1652   }
1653   return 0;
1654 }
1655 
1656 /**
1657  * Select a default router for a destination.
1658  *
1659  * This function is used both for routing and for finding a next-hop target for
1660  * a packet. In the former case, the given netif is NULL, and the returned
1661  * router entry must be for a netif suitable for sending packets (up, link up).
1662  * In the latter case, the given netif is not NULL and restricts router choice.
1663  *
1664  * @param ip6addr the destination address
1665  * @param netif the netif for the outgoing packet, if known
1666  * @return the default router entry index, or -1 if no suitable
1667  *         router is found
1668  */
1669 static s8_t
nd6_select_router(const ip6_addr_t * ip6addr,struct netif * netif)1670 nd6_select_router(const ip6_addr_t *ip6addr, struct netif *netif)
1671 {
1672   struct netif *router_netif;
1673   s8_t i, j, valid_router;
1674   static s8_t last_router;
1675 
1676   LWIP_UNUSED_ARG(ip6addr); /* @todo match preferred routes!! (must implement ND6_OPTION_TYPE_ROUTE_INFO) */
1677 
1678   /* @todo: implement default router preference */
1679 
1680   /* Look for valid routers. A reachable router is preferred. */
1681   valid_router = -1;
1682   for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
1683     /* Is the router netif both set and apppropriate? */
1684     if (default_router_list[i].neighbor_entry != NULL) {
1685       router_netif = default_router_list[i].neighbor_entry->netif;
1686       if ((router_netif != NULL) && (netif != NULL ? netif == router_netif :
1687           (netif_is_up(router_netif) && netif_is_link_up(router_netif)))) {
1688         /* Is the router valid, i.e., reachable or probably reachable as per
1689          * RFC 4861 Sec. 6.3.6? Note that we will never return a router that
1690          * has no neighbor cache entry, due to the netif association tests. */
1691         if (default_router_list[i].neighbor_entry->state != ND6_INCOMPLETE) {
1692           /* Is the router known to be reachable? */
1693           if (default_router_list[i].neighbor_entry->state == ND6_REACHABLE) {
1694             return i; /* valid and reachable - done! */
1695           } else if (valid_router < 0) {
1696             valid_router = i; /* valid but not known to be reachable */
1697           }
1698         }
1699       }
1700     }
1701   }
1702   if (valid_router >= 0) {
1703     return valid_router;
1704   }
1705 
1706   /* Look for any router for which we have any information at all. */
1707   /* last_router is used for round-robin selection of incomplete routers, as
1708    * recommended in RFC 4861 Sec. 6.3.6 point (2). Advance only when picking a
1709    * route, to select the same router as next-hop target in the common case. */
1710   if ((netif == NULL) && (++last_router >= LWIP_ND6_NUM_ROUTERS)) {
1711     last_router = 0;
1712   }
1713   i = last_router;
1714   for (j = 0; j < LWIP_ND6_NUM_ROUTERS; j++) {
1715     if (default_router_list[i].neighbor_entry != NULL) {
1716       router_netif = default_router_list[i].neighbor_entry->netif;
1717       if ((router_netif != NULL) && (netif != NULL ? netif == router_netif :
1718           (netif_is_up(router_netif) && netif_is_link_up(router_netif)))) {
1719         return i;
1720       }
1721     }
1722     if (++i >= LWIP_ND6_NUM_ROUTERS) {
1723       i = 0;
1724     }
1725   }
1726 
1727   /* no suitable router found. */
1728   return -1;
1729 }
1730 
1731 /**
1732  * Find a router-announced route to the given destination. This route may be
1733  * based on an on-link prefix or a default router.
1734  *
1735  * If a suitable route is found, the returned netif is guaranteed to be in a
1736  * suitable state (up, link up) to be used for packet transmission.
1737  *
1738  * @param ip6addr the destination IPv6 address
1739  * @return the netif to use for the destination, or NULL if none found
1740  */
1741 struct netif *
nd6_find_route(const ip6_addr_t * ip6addr)1742 nd6_find_route(const ip6_addr_t *ip6addr)
1743 {
1744   struct netif *netif;
1745   s8_t i;
1746 
1747   /* @todo decide if it makes sense to check the destination cache first */
1748 
1749   /* Check if there is a matching on-link prefix. There may be multiple
1750    * matches. Pick the first one that is associated with a suitable netif. */
1751   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; ++i) {
1752     netif = prefix_list[i].netif;
1753     if ((netif != NULL) && ip6_addr_netcmp(&prefix_list[i].prefix, ip6addr) &&
1754         netif_is_up(netif) && netif_is_link_up(netif)) {
1755       return netif;
1756     }
1757   }
1758 
1759   /* No on-link prefix match. Find a router that can forward the packet. */
1760   i = nd6_select_router(ip6addr, NULL);
1761   if (i >= 0) {
1762     LWIP_ASSERT("selected router must have a neighbor entry",
1763       default_router_list[i].neighbor_entry != NULL);
1764     return default_router_list[i].neighbor_entry->netif;
1765   }
1766 
1767   return NULL;
1768 }
1769 
1770 /**
1771  * Find an entry for a default router.
1772  *
1773  * @param router_addr the IPv6 address of the router
1774  * @param netif the netif on which the router is found, if known
1775  * @return the index of the router entry, or -1 if not found
1776  */
1777 static s8_t
nd6_get_router(const ip6_addr_t * router_addr,struct netif * netif)1778 nd6_get_router(const ip6_addr_t *router_addr, struct netif *netif)
1779 {
1780   s8_t i;
1781 
1782   IP6_ADDR_ZONECHECK_NETIF(router_addr, netif);
1783 
1784   /* Look for router. */
1785   for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
1786     if ((default_router_list[i].neighbor_entry != NULL) &&
1787         ((netif != NULL) ? netif == default_router_list[i].neighbor_entry->netif : 1) &&
1788         ip6_addr_cmp(router_addr, &(default_router_list[i].neighbor_entry->next_hop_address))) {
1789       return i;
1790     }
1791   }
1792 
1793   /* router not found. */
1794   return -1;
1795 }
1796 
1797 /**
1798  * Create a new entry for a default router.
1799  *
1800  * @param router_addr the IPv6 address of the router
1801  * @param netif the netif on which the router is connected, if known
1802  * @return the index on the router table, or -1 if could not be created
1803  */
1804 static s8_t
nd6_new_router(const ip6_addr_t * router_addr,struct netif * netif)1805 nd6_new_router(const ip6_addr_t *router_addr, struct netif *netif)
1806 {
1807   s8_t router_index;
1808   s8_t free_router_index;
1809   s8_t neighbor_index;
1810 
1811   IP6_ADDR_ZONECHECK_NETIF(router_addr, netif);
1812 
1813   /* Do we have a neighbor entry for this router? */
1814   neighbor_index = nd6_find_neighbor_cache_entry(router_addr);
1815   if (neighbor_index < 0) {
1816     /* Create a neighbor entry for this router. */
1817     neighbor_index = nd6_new_neighbor_cache_entry();
1818     if (neighbor_index < 0) {
1819       /* Could not create neighbor entry for this router. */
1820       return -1;
1821     }
1822     ip6_addr_set(&(neighbor_cache[neighbor_index].next_hop_address), router_addr);
1823     neighbor_cache[neighbor_index].netif = netif;
1824     neighbor_cache[neighbor_index].q = NULL;
1825     neighbor_cache[neighbor_index].state = ND6_INCOMPLETE;
1826     neighbor_cache[neighbor_index].counter.probes_sent = 1;
1827     nd6_send_neighbor_cache_probe(&neighbor_cache[neighbor_index], ND6_SEND_FLAG_MULTICAST_DEST);
1828   }
1829 
1830   /* Mark neighbor as router. */
1831   neighbor_cache[neighbor_index].isrouter = 1;
1832 
1833   /* Look for empty entry. */
1834   free_router_index = LWIP_ND6_NUM_ROUTERS;
1835   for (router_index = LWIP_ND6_NUM_ROUTERS - 1; router_index >= 0; router_index--) {
1836     /* check if router already exists (this is a special case for 2 netifs on the same subnet
1837        - e.g. wifi and cable) */
1838     if(default_router_list[router_index].neighbor_entry == &(neighbor_cache[neighbor_index])){
1839       return router_index;
1840     }
1841     if (default_router_list[router_index].neighbor_entry == NULL) {
1842       /* remember lowest free index to create a new entry */
1843       free_router_index = router_index;
1844     }
1845   }
1846   if (free_router_index < LWIP_ND6_NUM_ROUTERS) {
1847     default_router_list[free_router_index].neighbor_entry = &(neighbor_cache[neighbor_index]);
1848     return free_router_index;
1849   }
1850 
1851   /* Could not create a router entry. */
1852 
1853   /* Mark neighbor entry as not-router. Entry might be useful as neighbor still. */
1854   neighbor_cache[neighbor_index].isrouter = 0;
1855 
1856   /* router not found. */
1857   return -1;
1858 }
1859 
1860 /**
1861  * Find the cached entry for an on-link prefix.
1862  *
1863  * @param prefix the IPv6 prefix that is on-link
1864  * @param netif the netif on which the prefix is on-link
1865  * @return the index on the prefix table, or -1 if not found
1866  */
1867 static s8_t
nd6_get_onlink_prefix(const ip6_addr_t * prefix,struct netif * netif)1868 nd6_get_onlink_prefix(const ip6_addr_t *prefix, struct netif *netif)
1869 {
1870   s8_t i;
1871 
1872   /* Look for prefix in list. */
1873   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; ++i) {
1874     if ((ip6_addr_netcmp(&(prefix_list[i].prefix), prefix)) &&
1875         (prefix_list[i].netif == netif)) {
1876       return i;
1877     }
1878   }
1879 
1880   /* Entry not available. */
1881   return -1;
1882 }
1883 
1884 /**
1885  * Creates a new entry for an on-link prefix.
1886  *
1887  * @param prefix the IPv6 prefix that is on-link
1888  * @param netif the netif on which the prefix is on-link
1889  * @return the index on the prefix table, or -1 if not created
1890  */
1891 static s8_t
nd6_new_onlink_prefix(const ip6_addr_t * prefix,struct netif * netif)1892 nd6_new_onlink_prefix(const ip6_addr_t *prefix, struct netif *netif)
1893 {
1894   s8_t i;
1895 
1896   /* Create new entry. */
1897   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; ++i) {
1898     if ((prefix_list[i].netif == NULL) ||
1899         (prefix_list[i].invalidation_timer == 0)) {
1900       /* Found empty prefix entry. */
1901       prefix_list[i].netif = netif;
1902       ip6_addr_set(&(prefix_list[i].prefix), prefix);
1903       return i;
1904     }
1905   }
1906 
1907   /* Entry not available. */
1908   return -1;
1909 }
1910 
1911 /**
1912  * Determine the next hop for a destination. Will determine if the
1913  * destination is on-link, else a suitable on-link router is selected.
1914  *
1915  * The last entry index is cached for fast entry search.
1916  *
1917  * @param ip6addr the destination address
1918  * @param netif the netif on which the packet will be sent
1919  * @return the neighbor cache entry for the next hop, ERR_RTE if no
1920  *         suitable next hop was found, ERR_MEM if no cache entry
1921  *         could be created
1922  */
1923 static s8_t
nd6_get_next_hop_entry(const ip6_addr_t * ip6addr,struct netif * netif)1924 nd6_get_next_hop_entry(const ip6_addr_t *ip6addr, struct netif *netif)
1925 {
1926 #ifdef LWIP_HOOK_ND6_GET_GW
1927   const ip6_addr_t *next_hop_addr;
1928 #endif /* LWIP_HOOK_ND6_GET_GW */
1929   s8_t i;
1930   s16_t dst_idx;
1931 
1932   IP6_ADDR_ZONECHECK_NETIF(ip6addr, netif);
1933 
1934 #if LWIP_NETIF_HWADDRHINT
1935   if (netif->hints != NULL) {
1936     /* per-pcb cached entry was given */
1937     netif_addr_idx_t addr_hint = netif->hints->addr_hint;
1938     if (addr_hint < LWIP_ND6_NUM_DESTINATIONS) {
1939       nd6_cached_destination_index = addr_hint;
1940     }
1941   }
1942 #endif /* LWIP_NETIF_HWADDRHINT */
1943 
1944   /* Look for ip6addr in destination cache. */
1945   if (ip6_addr_cmp(ip6addr, &(destination_cache[nd6_cached_destination_index].destination_addr))) {
1946     /* the cached entry index is the right one! */
1947     /* do nothing. */
1948     ND6_STATS_INC(nd6.cachehit);
1949   } else {
1950     /* Search destination cache. */
1951     dst_idx = nd6_find_destination_cache_entry(ip6addr);
1952     if (dst_idx >= 0) {
1953       /* found destination entry. make it our new cached index. */
1954       LWIP_ASSERT("type overflow", (size_t)dst_idx < NETIF_ADDR_IDX_MAX);
1955       nd6_cached_destination_index = (netif_addr_idx_t)dst_idx;
1956     } else {
1957       /* Not found. Create a new destination entry. */
1958       dst_idx = nd6_new_destination_cache_entry();
1959       if (dst_idx >= 0) {
1960         /* got new destination entry. make it our new cached index. */
1961         LWIP_ASSERT("type overflow", (size_t)dst_idx < NETIF_ADDR_IDX_MAX);
1962         nd6_cached_destination_index = (netif_addr_idx_t)dst_idx;
1963       } else {
1964         /* Could not create a destination cache entry. */
1965         return ERR_MEM;
1966       }
1967 
1968       /* Copy dest address to destination cache. */
1969       ip6_addr_set(&(destination_cache[nd6_cached_destination_index].destination_addr), ip6addr);
1970 
1971       /* Now find the next hop. is it a neighbor? */
1972       if (ip6_addr_islinklocal(ip6addr) ||
1973           nd6_is_prefix_in_netif(ip6addr, netif)) {
1974         /* Destination in local link. */
1975         destination_cache[nd6_cached_destination_index].pmtu = netif_mtu6(netif);
1976         ip6_addr_copy(destination_cache[nd6_cached_destination_index].next_hop_addr, destination_cache[nd6_cached_destination_index].destination_addr);
1977 #ifdef LWIP_HOOK_ND6_GET_GW
1978       } else if ((next_hop_addr = LWIP_HOOK_ND6_GET_GW(netif, ip6addr)) != NULL) {
1979         /* Next hop for destination provided by hook function. */
1980         destination_cache[nd6_cached_destination_index].pmtu = netif->mtu;
1981         ip6_addr_set(&destination_cache[nd6_cached_destination_index].next_hop_addr, next_hop_addr);
1982 #endif /* LWIP_HOOK_ND6_GET_GW */
1983       } else {
1984         /* We need to select a router. */
1985         i = nd6_select_router(ip6addr, netif);
1986         if (i < 0) {
1987           /* No router found. */
1988           ip6_addr_set_any(&(destination_cache[nd6_cached_destination_index].destination_addr));
1989           return ERR_RTE;
1990         }
1991         destination_cache[nd6_cached_destination_index].pmtu = netif_mtu6(netif); /* Start with netif mtu, correct through ICMPv6 if necessary */
1992         ip6_addr_copy(destination_cache[nd6_cached_destination_index].next_hop_addr, default_router_list[i].neighbor_entry->next_hop_address);
1993       }
1994     }
1995   }
1996 
1997 #if LWIP_NETIF_HWADDRHINT
1998   if (netif->hints != NULL) {
1999     /* per-pcb cached entry was given */
2000     netif->hints->addr_hint = nd6_cached_destination_index;
2001   }
2002 #endif /* LWIP_NETIF_HWADDRHINT */
2003 
2004   /* Look in neighbor cache for the next-hop address. */
2005   if (ip6_addr_cmp(&(destination_cache[nd6_cached_destination_index].next_hop_addr),
2006                    &(neighbor_cache[nd6_cached_neighbor_index].next_hop_address))) {
2007     /* Cache hit. */
2008     /* Do nothing. */
2009     ND6_STATS_INC(nd6.cachehit);
2010   } else {
2011     i = nd6_find_neighbor_cache_entry(&(destination_cache[nd6_cached_destination_index].next_hop_addr));
2012     if (i >= 0) {
2013       /* Found a matching record, make it new cached entry. */
2014       nd6_cached_neighbor_index = i;
2015     } else {
2016       /* Neighbor not in cache. Make a new entry. */
2017       i = nd6_new_neighbor_cache_entry();
2018       if (i >= 0) {
2019         /* got new neighbor entry. make it our new cached index. */
2020         nd6_cached_neighbor_index = i;
2021       } else {
2022         /* Could not create a neighbor cache entry. */
2023         return ERR_MEM;
2024       }
2025 
2026       /* Initialize fields. */
2027       ip6_addr_copy(neighbor_cache[i].next_hop_address,
2028                    destination_cache[nd6_cached_destination_index].next_hop_addr);
2029       neighbor_cache[i].isrouter = 0;
2030       neighbor_cache[i].netif = netif;
2031       neighbor_cache[i].state = ND6_INCOMPLETE;
2032       neighbor_cache[i].counter.probes_sent = 1;
2033       nd6_send_neighbor_cache_probe(&neighbor_cache[i], ND6_SEND_FLAG_MULTICAST_DEST);
2034     }
2035   }
2036 
2037   /* Reset this destination's age. */
2038   destination_cache[nd6_cached_destination_index].age = 0;
2039 
2040   return nd6_cached_neighbor_index;
2041 }
2042 
2043 /**
2044  * Queue a packet for a neighbor.
2045  *
2046  * @param neighbor_index the index in the neighbor cache table
2047  * @param q packet to be queued
2048  * @return ERR_OK if succeeded, ERR_MEM if out of memory
2049  */
2050 static err_t
nd6_queue_packet(s8_t neighbor_index,struct pbuf * q)2051 nd6_queue_packet(s8_t neighbor_index, struct pbuf *q)
2052 {
2053   err_t result = ERR_MEM;
2054   struct pbuf *p;
2055   int copy_needed = 0;
2056 #if LWIP_ND6_QUEUEING
2057   struct nd6_q_entry *new_entry, *r;
2058 #endif /* LWIP_ND6_QUEUEING */
2059 
2060   if ((neighbor_index < 0) || (neighbor_index >= LWIP_ND6_NUM_NEIGHBORS)) {
2061     return ERR_ARG;
2062   }
2063 
2064   /* IF q includes a pbuf that must be copied, we have to copy the whole chain
2065    * into a new PBUF_RAM. See the definition of PBUF_NEEDS_COPY for details. */
2066   p = q;
2067   while (p) {
2068     if (PBUF_NEEDS_COPY(p)) {
2069       copy_needed = 1;
2070       break;
2071     }
2072     p = p->next;
2073   }
2074   if (copy_needed) {
2075     /* copy the whole packet into new pbufs */
2076     p = pbuf_clone(PBUF_LINK, PBUF_RAM, q);
2077     while ((p == NULL) && (neighbor_cache[neighbor_index].q != NULL)) {
2078       /* Free oldest packet (as per RFC recommendation) */
2079 #if LWIP_ND6_QUEUEING
2080       r = neighbor_cache[neighbor_index].q;
2081       neighbor_cache[neighbor_index].q = r->next;
2082       r->next = NULL;
2083       nd6_free_q(r);
2084 #else /* LWIP_ND6_QUEUEING */
2085       pbuf_free(neighbor_cache[neighbor_index].q);
2086       neighbor_cache[neighbor_index].q = NULL;
2087 #endif /* LWIP_ND6_QUEUEING */
2088       p = pbuf_clone(PBUF_LINK, PBUF_RAM, q);
2089     }
2090   } else {
2091     /* referencing the old pbuf is enough */
2092     p = q;
2093     pbuf_ref(p);
2094   }
2095   /* packet was copied/ref'd? */
2096   if (p != NULL) {
2097     /* queue packet ... */
2098 #if LWIP_ND6_QUEUEING
2099     /* allocate a new nd6 queue entry */
2100     new_entry = (struct nd6_q_entry *)memp_malloc(MEMP_ND6_QUEUE);
2101     if ((new_entry == NULL) && (neighbor_cache[neighbor_index].q != NULL)) {
2102       /* Free oldest packet (as per RFC recommendation) */
2103       r = neighbor_cache[neighbor_index].q;
2104       neighbor_cache[neighbor_index].q = r->next;
2105       r->next = NULL;
2106       nd6_free_q(r);
2107       new_entry = (struct nd6_q_entry *)memp_malloc(MEMP_ND6_QUEUE);
2108     }
2109     if (new_entry != NULL) {
2110       new_entry->next = NULL;
2111       new_entry->p = p;
2112       if (neighbor_cache[neighbor_index].q != NULL) {
2113         /* queue was already existent, append the new entry to the end */
2114         r = neighbor_cache[neighbor_index].q;
2115         while (r->next != NULL) {
2116           r = r->next;
2117         }
2118         r->next = new_entry;
2119       } else {
2120         /* queue did not exist, first item in queue */
2121         neighbor_cache[neighbor_index].q = new_entry;
2122       }
2123       LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: queued packet %p on neighbor entry %"S16_F"\n", (void *)p, (s16_t)neighbor_index));
2124       result = ERR_OK;
2125     } else {
2126       /* the pool MEMP_ND6_QUEUE is empty */
2127       pbuf_free(p);
2128       LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: could not queue a copy of packet %p (out of memory)\n", (void *)p));
2129       /* { result == ERR_MEM } through initialization */
2130     }
2131 #else /* LWIP_ND6_QUEUEING */
2132     /* Queue a single packet. If an older packet is already queued, free it as per RFC. */
2133     if (neighbor_cache[neighbor_index].q != NULL) {
2134       pbuf_free(neighbor_cache[neighbor_index].q);
2135     }
2136     neighbor_cache[neighbor_index].q = p;
2137     LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: queued packet %p on neighbor entry %"S16_F"\n", (void *)p, (s16_t)neighbor_index));
2138     result = ERR_OK;
2139 #endif /* LWIP_ND6_QUEUEING */
2140   } else {
2141     LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: could not queue a copy of packet %p (out of memory)\n", (void *)q));
2142     /* { result == ERR_MEM } through initialization */
2143   }
2144 
2145   return result;
2146 }
2147 
2148 #if LWIP_ND6_QUEUEING
2149 /**
2150  * Free a complete queue of nd6 q entries
2151  *
2152  * @param q a queue of nd6_q_entry to free
2153  */
2154 static void
nd6_free_q(struct nd6_q_entry * q)2155 nd6_free_q(struct nd6_q_entry *q)
2156 {
2157   struct nd6_q_entry *r;
2158   LWIP_ASSERT("q != NULL", q != NULL);
2159   LWIP_ASSERT("q->p != NULL", q->p != NULL);
2160   while (q) {
2161     r = q;
2162     q = q->next;
2163     LWIP_ASSERT("r->p != NULL", (r->p != NULL));
2164     pbuf_free(r->p);
2165     memp_free(MEMP_ND6_QUEUE, r);
2166   }
2167 }
2168 #endif /* LWIP_ND6_QUEUEING */
2169 
2170 /**
2171  * Send queued packets for a neighbor
2172  *
2173  * @param i the neighbor to send packets to
2174  */
2175 static void
nd6_send_q(s8_t i)2176 nd6_send_q(s8_t i)
2177 {
2178   struct ip6_hdr *ip6hdr;
2179   ip6_addr_t dest;
2180 #if LWIP_ND6_QUEUEING
2181   struct nd6_q_entry *q;
2182 #endif /* LWIP_ND6_QUEUEING */
2183 
2184   if ((i < 0) || (i >= LWIP_ND6_NUM_NEIGHBORS)) {
2185     return;
2186   }
2187 
2188 #if LWIP_ND6_QUEUEING
2189   while (neighbor_cache[i].q != NULL) {
2190     /* remember first in queue */
2191     q = neighbor_cache[i].q;
2192     /* pop first item off the queue */
2193     neighbor_cache[i].q = q->next;
2194     /* Get ipv6 header. */
2195     ip6hdr = (struct ip6_hdr *)(q->p->payload);
2196     /* Create an aligned copy. */
2197     ip6_addr_copy_from_packed(dest, ip6hdr->dest);
2198     /* Restore the zone, if applicable. */
2199     ip6_addr_assign_zone(&dest, IP6_UNKNOWN, neighbor_cache[i].netif);
2200     /* send the queued IPv6 packet */
2201     (neighbor_cache[i].netif)->output_ip6(neighbor_cache[i].netif, q->p, &dest);
2202     /* free the queued IP packet */
2203     pbuf_free(q->p);
2204     /* now queue entry can be freed */
2205     memp_free(MEMP_ND6_QUEUE, q);
2206   }
2207 #else /* LWIP_ND6_QUEUEING */
2208   if (neighbor_cache[i].q != NULL) {
2209     /* Get ipv6 header. */
2210     ip6hdr = (struct ip6_hdr *)(neighbor_cache[i].q->payload);
2211     /* Create an aligned copy. */
2212     ip6_addr_copy_from_packed(dest, ip6hdr->dest);
2213     /* Restore the zone, if applicable. */
2214     ip6_addr_assign_zone(&dest, IP6_UNKNOWN, neighbor_cache[i].netif);
2215     /* send the queued IPv6 packet */
2216     (neighbor_cache[i].netif)->output_ip6(neighbor_cache[i].netif, neighbor_cache[i].q, &dest);
2217     /* free the queued IP packet */
2218     pbuf_free(neighbor_cache[i].q);
2219     neighbor_cache[i].q = NULL;
2220   }
2221 #endif /* LWIP_ND6_QUEUEING */
2222 }
2223 
2224 /**
2225  * A packet is to be transmitted to a specific IPv6 destination on a specific
2226  * interface. Check if we can find the hardware address of the next hop to use
2227  * for the packet. If so, give the hardware address to the caller, which should
2228  * use it to send the packet right away. Otherwise, enqueue the packet for
2229  * later transmission while looking up the hardware address, if possible.
2230  *
2231  * As such, this function returns one of three different possible results:
2232  *
2233  * - ERR_OK with a non-NULL 'hwaddrp': the caller should send the packet now.
2234  * - ERR_OK with a NULL 'hwaddrp': the packet has been enqueued for later.
2235  * - not ERR_OK: something went wrong; forward the error upward in the stack.
2236  *
2237  * @param netif The lwIP network interface on which the IP packet will be sent.
2238  * @param q The pbuf(s) containing the IP packet to be sent.
2239  * @param ip6addr The destination IPv6 address of the packet.
2240  * @param hwaddrp On success, filled with a pointer to a HW address or NULL (meaning
2241  *        the packet has been queued).
2242  * @return
2243  * - ERR_OK on success, ERR_RTE if no route was found for the packet,
2244  * or ERR_MEM if low memory conditions prohibit sending the packet at all.
2245  */
2246 err_t
nd6_get_next_hop_addr_or_queue(struct netif * netif,struct pbuf * q,const ip6_addr_t * ip6addr,const u8_t ** hwaddrp)2247 nd6_get_next_hop_addr_or_queue(struct netif *netif, struct pbuf *q, const ip6_addr_t *ip6addr, const u8_t **hwaddrp)
2248 {
2249   s8_t i;
2250 
2251   /* Get next hop record. */
2252   i = nd6_get_next_hop_entry(ip6addr, netif);
2253   if (i < 0) {
2254     /* failed to get a next hop neighbor record. */
2255     return i;
2256   }
2257 
2258   /* Now that we have a destination record, send or queue the packet. */
2259   if (neighbor_cache[i].state == ND6_STALE) {
2260     /* Switch to delay state. */
2261     neighbor_cache[i].state = ND6_DELAY;
2262     neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
2263   }
2264   /* @todo should we send or queue if PROBE? send for now, to let unicast NS pass. */
2265   if ((neighbor_cache[i].state == ND6_REACHABLE) ||
2266       (neighbor_cache[i].state == ND6_DELAY) ||
2267       (neighbor_cache[i].state == ND6_PROBE)) {
2268 
2269     /* Tell the caller to send out the packet now. */
2270     *hwaddrp = neighbor_cache[i].lladdr;
2271     return ERR_OK;
2272   }
2273 
2274   /* We should queue packet on this interface. */
2275   *hwaddrp = NULL;
2276   return nd6_queue_packet(i, q);
2277 }
2278 
2279 
2280 /**
2281  * Get the Path MTU for a destination.
2282  *
2283  * @param ip6addr the destination address
2284  * @param netif the netif on which the packet will be sent
2285  * @return the Path MTU, if known, or the netif default MTU
2286  */
2287 u16_t
nd6_get_destination_mtu(const ip6_addr_t * ip6addr,struct netif * netif)2288 nd6_get_destination_mtu(const ip6_addr_t *ip6addr, struct netif *netif)
2289 {
2290   s16_t i;
2291 
2292   i = nd6_find_destination_cache_entry(ip6addr);
2293   if (i >= 0) {
2294     if (destination_cache[i].pmtu > 0) {
2295       return destination_cache[i].pmtu;
2296     }
2297   }
2298 
2299   if (netif != NULL) {
2300     return netif_mtu6(netif);
2301   }
2302 
2303   return 1280; /* Minimum MTU */
2304 }
2305 
2306 
2307 #if LWIP_ND6_TCP_REACHABILITY_HINTS
2308 /**
2309  * Provide the Neighbor discovery process with a hint that a
2310  * destination is reachable. Called by tcp_receive when ACKs are
2311  * received or sent (as per RFC). This is useful to avoid sending
2312  * NS messages every 30 seconds.
2313  *
2314  * @param ip6addr the destination address which is know to be reachable
2315  *                by an upper layer protocol (TCP)
2316  */
2317 void
nd6_reachability_hint(const ip6_addr_t * ip6addr)2318 nd6_reachability_hint(const ip6_addr_t *ip6addr)
2319 {
2320   s8_t i;
2321   s16_t dst_idx;
2322 
2323   /* Find destination in cache. */
2324   if (ip6_addr_cmp(ip6addr, &(destination_cache[nd6_cached_destination_index].destination_addr))) {
2325     dst_idx = nd6_cached_destination_index;
2326     ND6_STATS_INC(nd6.cachehit);
2327   } else {
2328     dst_idx = nd6_find_destination_cache_entry(ip6addr);
2329   }
2330   if (dst_idx < 0) {
2331     return;
2332   }
2333 
2334   /* Find next hop neighbor in cache. */
2335   if (ip6_addr_cmp(&(destination_cache[dst_idx].next_hop_addr), &(neighbor_cache[nd6_cached_neighbor_index].next_hop_address))) {
2336     i = nd6_cached_neighbor_index;
2337     ND6_STATS_INC(nd6.cachehit);
2338   } else {
2339     i = nd6_find_neighbor_cache_entry(&(destination_cache[dst_idx].next_hop_addr));
2340   }
2341   if (i < 0) {
2342     return;
2343   }
2344 
2345   /* For safety: don't set as reachable if we don't have a LL address yet. Misuse protection. */
2346   if (neighbor_cache[i].state == ND6_INCOMPLETE || neighbor_cache[i].state == ND6_NO_ENTRY) {
2347     return;
2348   }
2349 
2350   /* Set reachability state. */
2351   neighbor_cache[i].state = ND6_REACHABLE;
2352   neighbor_cache[i].counter.reachable_time = reachable_time;
2353 }
2354 #endif /* LWIP_ND6_TCP_REACHABILITY_HINTS */
2355 
2356 /**
2357  * Remove all prefix, neighbor_cache and router entries of the specified netif.
2358  *
2359  * @param netif points to a network interface
2360  */
2361 void
nd6_cleanup_netif(struct netif * netif)2362 nd6_cleanup_netif(struct netif *netif)
2363 {
2364   u8_t i;
2365   s8_t router_index;
2366   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; i++) {
2367     if (prefix_list[i].netif == netif) {
2368       prefix_list[i].netif = NULL;
2369     }
2370   }
2371   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
2372     if (neighbor_cache[i].netif == netif) {
2373       for (router_index = 0; router_index < LWIP_ND6_NUM_ROUTERS; router_index++) {
2374         if (default_router_list[router_index].neighbor_entry == &neighbor_cache[i]) {
2375           default_router_list[router_index].neighbor_entry = NULL;
2376           default_router_list[router_index].flags = 0;
2377         }
2378       }
2379       neighbor_cache[i].isrouter = 0;
2380       nd6_free_neighbor_cache_entry(i);
2381     }
2382   }
2383   /* Clear the destination cache, since many entries may now have become
2384    * invalid for one of several reasons. As destination cache entries have no
2385    * netif association, use a sledgehammer approach (this can be improved). */
2386   nd6_clear_destination_cache();
2387 }
2388 
2389 #if LWIP_IPV6_MLD
2390 /**
2391  * The state of a local IPv6 address entry is about to change. If needed, join
2392  * or leave the solicited-node multicast group for the address.
2393  *
2394  * @param netif The netif that owns the address.
2395  * @param addr_idx The index of the address.
2396  * @param new_state The new (IP6_ADDR_) state for the address.
2397  */
2398 void
nd6_adjust_mld_membership(struct netif * netif,s8_t addr_idx,u8_t new_state)2399 nd6_adjust_mld_membership(struct netif *netif, s8_t addr_idx, u8_t new_state)
2400 {
2401   u8_t old_state, old_member, new_member;
2402 
2403   old_state = netif_ip6_addr_state(netif, addr_idx);
2404 
2405   /* Determine whether we were, and should be, a member of the solicited-node
2406    * multicast group for this address. For tentative addresses, the group is
2407    * not joined until the address enters the TENTATIVE_1 (or VALID) state. */
2408   old_member = (old_state != IP6_ADDR_INVALID && old_state != IP6_ADDR_DUPLICATED && old_state != IP6_ADDR_TENTATIVE);
2409   new_member = (new_state != IP6_ADDR_INVALID && new_state != IP6_ADDR_DUPLICATED && new_state != IP6_ADDR_TENTATIVE);
2410 
2411   if (old_member != new_member) {
2412     ip6_addr_set_solicitednode(&multicast_address, netif_ip6_addr(netif, addr_idx)->addr[3]);
2413     ip6_addr_assign_zone(&multicast_address, IP6_MULTICAST, netif);
2414 
2415     if (new_member) {
2416       mld6_joingroup_netif(netif, &multicast_address);
2417     } else {
2418       mld6_leavegroup_netif(netif, &multicast_address);
2419     }
2420   }
2421 }
2422 #endif /* LWIP_IPV6_MLD */
2423 
2424 /** Netif was added, set up, or reconnected (link up) */
2425 void
nd6_restart_netif(struct netif * netif)2426 nd6_restart_netif(struct netif *netif)
2427 {
2428 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
2429   /* Send Router Solicitation messages (see RFC 4861, ch. 6.3.7). */
2430   netif->rs_count = LWIP_ND6_MAX_MULTICAST_SOLICIT;
2431 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
2432 }
2433 
2434 #endif /* LWIP_IPV6 */
2435