xref: /nrf52832-nimble/rt-thread/components/net/lwip-2.0.2/src/core/ipv6/nd6.c (revision 104654410c56c573564690304ae786df310c91fc)
1 /**
2  * @file
3  *
4  * Neighbor discovery and stateless address autoconfiguration for IPv6.
5  * Aims to be compliant with RFC 4861 (Neighbor discovery) and RFC 4862
6  * (Address autoconfiguration).
7  */
8 
9 /*
10  * Copyright (c) 2010 Inico Technologies Ltd.
11  * All rights reserved.
12  *
13  * Redistribution and use in source and binary forms, with or without modification,
14  * are permitted provided that the following conditions are met:
15  *
16  * 1. Redistributions of source code must retain the above copyright notice,
17  *    this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright notice,
19  *    this list of conditions and the following disclaimer in the documentation
20  *    and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote products
22  *    derived from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
25  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
26  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
27  * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
29  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
32  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
33  * OF SUCH DAMAGE.
34  *
35  * This file is part of the lwIP TCP/IP stack.
36  *
37  * Author: Ivan Delamer <[email protected]>
38  *
39  *
40  * Please coordinate changes and requests with Ivan Delamer
41  * <[email protected]>
42  */
43 
44 #include "lwip/opt.h"
45 
46 #if LWIP_IPV6  /* don't build if not configured for use in lwipopts.h */
47 
48 #include "lwip/nd6.h"
49 #include "lwip/priv/nd6_priv.h"
50 #include "lwip/prot/nd6.h"
51 #include "lwip/prot/icmp6.h"
52 #include "lwip/pbuf.h"
53 #include "lwip/mem.h"
54 #include "lwip/memp.h"
55 #include "lwip/ip6.h"
56 #include "lwip/ip6_addr.h"
57 #include "lwip/inet_chksum.h"
58 #include "lwip/netif.h"
59 #include "lwip/icmp6.h"
60 #include "lwip/mld6.h"
61 #include "lwip/ip.h"
62 #include "lwip/stats.h"
63 #include "lwip/dns.h"
64 
65 #include <string.h>
66 
67 #ifdef LWIP_HOOK_FILENAME
68 #include LWIP_HOOK_FILENAME
69 #endif
70 
71 #if LWIP_IPV6_DUP_DETECT_ATTEMPTS > IP6_ADDR_TENTATIVE_COUNT_MASK
72 #error LWIP_IPV6_DUP_DETECT_ATTEMPTS > IP6_ADDR_TENTATIVE_COUNT_MASK
73 #endif
74 
75 /* Router tables. */
76 struct nd6_neighbor_cache_entry neighbor_cache[LWIP_ND6_NUM_NEIGHBORS];
77 struct nd6_destination_cache_entry destination_cache[LWIP_ND6_NUM_DESTINATIONS];
78 struct nd6_prefix_list_entry prefix_list[LWIP_ND6_NUM_PREFIXES];
79 struct nd6_router_list_entry default_router_list[LWIP_ND6_NUM_ROUTERS];
80 
81 /* Default values, can be updated by a RA message. */
82 u32_t reachable_time = LWIP_ND6_REACHABLE_TIME;
83 u32_t retrans_timer = LWIP_ND6_RETRANS_TIMER; /* @todo implement this value in timer */
84 
85 /* Index for cache entries. */
86 static u8_t nd6_cached_neighbor_index;
87 static u8_t nd6_cached_destination_index;
88 
89 /* Multicast address holder. */
90 static ip6_addr_t multicast_address;
91 
92 /* Static buffer to parse RA packet options (size of a prefix option, biggest option) */
93 static u8_t nd6_ra_buffer[sizeof(struct prefix_option)];
94 
95 /* Forward declarations. */
96 static s8_t nd6_find_neighbor_cache_entry(const ip6_addr_t *ip6addr);
97 static s8_t nd6_new_neighbor_cache_entry(void);
98 static void nd6_free_neighbor_cache_entry(s8_t i);
99 static s8_t nd6_find_destination_cache_entry(const ip6_addr_t *ip6addr);
100 static s8_t nd6_new_destination_cache_entry(void);
101 static s8_t nd6_is_prefix_in_netif(const ip6_addr_t *ip6addr, struct netif *netif);
102 static s8_t nd6_select_router(const ip6_addr_t *ip6addr, struct netif *netif);
103 static s8_t nd6_get_router(const ip6_addr_t *router_addr, struct netif *netif);
104 static s8_t nd6_new_router(const ip6_addr_t *router_addr, struct netif *netif);
105 static s8_t nd6_get_onlink_prefix(ip6_addr_t *prefix, struct netif *netif);
106 static s8_t nd6_new_onlink_prefix(ip6_addr_t *prefix, struct netif *netif);
107 static s8_t nd6_get_next_hop_entry(const ip6_addr_t *ip6addr, struct netif *netif);
108 static err_t nd6_queue_packet(s8_t neighbor_index, struct pbuf *q);
109 
110 #define ND6_SEND_FLAG_MULTICAST_DEST 0x01
111 #define ND6_SEND_FLAG_ALLNODES_DEST 0x02
112 static void nd6_send_ns(struct netif *netif, const ip6_addr_t *target_addr, u8_t flags);
113 static void nd6_send_na(struct netif *netif, const ip6_addr_t *target_addr, u8_t flags);
114 static void nd6_send_neighbor_cache_probe(struct nd6_neighbor_cache_entry *entry, u8_t flags);
115 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
116 static err_t nd6_send_rs(struct netif *netif);
117 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
118 
119 #if LWIP_ND6_QUEUEING
120 static void nd6_free_q(struct nd6_q_entry *q);
121 #else /* LWIP_ND6_QUEUEING */
122 #define nd6_free_q(q) pbuf_free(q)
123 #endif /* LWIP_ND6_QUEUEING */
124 static void nd6_send_q(s8_t i);
125 
126 
127 /**
128  * Process an incoming neighbor discovery message
129  *
130  * @param p the nd packet, p->payload pointing to the icmpv6 header
131  * @param inp the netif on which this packet was received
132  */
133 void
nd6_input(struct pbuf * p,struct netif * inp)134 nd6_input(struct pbuf *p, struct netif *inp)
135 {
136   u8_t msg_type;
137   s8_t i;
138 
139   ND6_STATS_INC(nd6.recv);
140 
141   msg_type = *((u8_t *)p->payload);
142   switch (msg_type) {
143   case ICMP6_TYPE_NA: /* Neighbor Advertisement. */
144   {
145     struct na_header *na_hdr;
146     struct lladdr_option *lladdr_opt;
147 
148     /* Check that na header fits in packet. */
149     if (p->len < (sizeof(struct na_header))) {
150       /* @todo debug message */
151       pbuf_free(p);
152       ND6_STATS_INC(nd6.lenerr);
153       ND6_STATS_INC(nd6.drop);
154       return;
155     }
156 
157     na_hdr = (struct na_header *)p->payload;
158 
159     /* Unsolicited NA?*/
160     if (ip6_addr_ismulticast(ip6_current_dest_addr())) {
161       ip6_addr_t target_address;
162 
163       /* This is an unsolicited NA.
164        * link-layer changed?
165        * part of DAD mechanism? */
166 
167       /* Create an aligned copy. */
168       ip6_addr_set(&target_address, &(na_hdr->target_address));
169 
170 #if LWIP_IPV6_DUP_DETECT_ATTEMPTS
171       /* If the target address matches this netif, it is a DAD response. */
172       for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
173         if (!ip6_addr_isinvalid(netif_ip6_addr_state(inp, i)) &&
174             ip6_addr_cmp(&target_address, netif_ip6_addr(inp, i))) {
175           /* We are using a duplicate address. */
176           netif_ip6_addr_set_state(inp, i, IP6_ADDR_INVALID);
177 
178 #if LWIP_IPV6_AUTOCONFIG
179           /* Check to see if this address was autoconfigured. */
180           if (!ip6_addr_islinklocal(&target_address)) {
181             i = nd6_get_onlink_prefix(&target_address, inp);
182             if (i >= 0) {
183               /* Mark this prefix as duplicate, so that we don't use it
184                * to generate this address again. */
185               prefix_list[i].flags |= ND6_PREFIX_AUTOCONFIG_ADDRESS_DUPLICATE;
186             }
187           }
188 #endif /* LWIP_IPV6_AUTOCONFIG */
189 
190           pbuf_free(p);
191           return;
192         }
193       }
194 #endif /* LWIP_IPV6_DUP_DETECT_ATTEMPTS */
195 
196       /* Check that link-layer address option also fits in packet. */
197       if (p->len < (sizeof(struct na_header) + 2)) {
198         /* @todo debug message */
199         pbuf_free(p);
200         ND6_STATS_INC(nd6.lenerr);
201         ND6_STATS_INC(nd6.drop);
202         return;
203       }
204 
205       lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct na_header));
206 
207       if (p->len < (sizeof(struct na_header) + (lladdr_opt->length << 3))) {
208         /* @todo debug message */
209         pbuf_free(p);
210         ND6_STATS_INC(nd6.lenerr);
211         ND6_STATS_INC(nd6.drop);
212         return;
213       }
214 
215       /* This is an unsolicited NA, most likely there was a LLADDR change. */
216       i = nd6_find_neighbor_cache_entry(&target_address);
217       if (i >= 0) {
218         if (na_hdr->flags & ND6_FLAG_OVERRIDE) {
219           MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
220         }
221       }
222     } else {
223       ip6_addr_t target_address;
224 
225       /* This is a solicited NA.
226        * neighbor address resolution response?
227        * neighbor unreachability detection response? */
228 
229       /* Create an aligned copy. */
230       ip6_addr_set(&target_address, &(na_hdr->target_address));
231 
232       /* Find the cache entry corresponding to this na. */
233       i = nd6_find_neighbor_cache_entry(&target_address);
234       if (i < 0) {
235         /* We no longer care about this target address. drop it. */
236         pbuf_free(p);
237         return;
238       }
239 
240       /* Update cache entry. */
241       if ((na_hdr->flags & ND6_FLAG_OVERRIDE) ||
242           (neighbor_cache[i].state == ND6_INCOMPLETE)) {
243         /* Check that link-layer address option also fits in packet. */
244         if (p->len < (sizeof(struct na_header) + 2)) {
245           /* @todo debug message */
246           pbuf_free(p);
247           ND6_STATS_INC(nd6.lenerr);
248           ND6_STATS_INC(nd6.drop);
249           return;
250         }
251 
252         lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct na_header));
253 
254         if (p->len < (sizeof(struct na_header) + (lladdr_opt->length << 3))) {
255           /* @todo debug message */
256           pbuf_free(p);
257           ND6_STATS_INC(nd6.lenerr);
258           ND6_STATS_INC(nd6.drop);
259           return;
260         }
261 
262         MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
263       }
264 
265       neighbor_cache[i].netif = inp;
266       neighbor_cache[i].state = ND6_REACHABLE;
267       neighbor_cache[i].counter.reachable_time = reachable_time;
268 
269       /* Send queued packets, if any. */
270       if (neighbor_cache[i].q != NULL) {
271         nd6_send_q(i);
272       }
273     }
274 
275     break; /* ICMP6_TYPE_NA */
276   }
277   case ICMP6_TYPE_NS: /* Neighbor solicitation. */
278   {
279     struct ns_header *ns_hdr;
280     struct lladdr_option *lladdr_opt;
281     u8_t accepted;
282 
283     /* Check that ns header fits in packet. */
284     if (p->len < sizeof(struct ns_header)) {
285       /* @todo debug message */
286       pbuf_free(p);
287       ND6_STATS_INC(nd6.lenerr);
288       ND6_STATS_INC(nd6.drop);
289       return;
290     }
291 
292     ns_hdr = (struct ns_header *)p->payload;
293 
294     /* Check if there is a link-layer address provided. Only point to it if in this buffer. */
295     if (p->len >= (sizeof(struct ns_header) + 2)) {
296       lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct ns_header));
297       if (p->len < (sizeof(struct ns_header) + (lladdr_opt->length << 3))) {
298         lladdr_opt = NULL;
299       }
300     } else {
301       lladdr_opt = NULL;
302     }
303 
304     /* Check if the target address is configured on the receiving netif. */
305     accepted = 0;
306     for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; ++i) {
307       if ((ip6_addr_isvalid(netif_ip6_addr_state(inp, i)) ||
308            (ip6_addr_istentative(netif_ip6_addr_state(inp, i)) &&
309             ip6_addr_isany(ip6_current_src_addr()))) &&
310           ip6_addr_cmp(&(ns_hdr->target_address), netif_ip6_addr(inp, i))) {
311         accepted = 1;
312         break;
313       }
314     }
315 
316     /* NS not for us? */
317     if (!accepted) {
318       pbuf_free(p);
319       return;
320     }
321 
322     /* Check for ANY address in src (DAD algorithm). */
323     if (ip6_addr_isany(ip6_current_src_addr())) {
324       /* Sender is validating this address. */
325       for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; ++i) {
326         if (!ip6_addr_isinvalid(netif_ip6_addr_state(inp, i)) &&
327             ip6_addr_cmp(&(ns_hdr->target_address), netif_ip6_addr(inp, i))) {
328           /* Send a NA back so that the sender does not use this address. */
329           nd6_send_na(inp, netif_ip6_addr(inp, i), ND6_FLAG_OVERRIDE | ND6_SEND_FLAG_ALLNODES_DEST);
330           if (ip6_addr_istentative(netif_ip6_addr_state(inp, i))) {
331             /* We shouldn't use this address either. */
332             netif_ip6_addr_set_state(inp, i, IP6_ADDR_INVALID);
333           }
334         }
335       }
336     } else {
337       ip6_addr_t target_address;
338 
339       /* Sender is trying to resolve our address. */
340       /* Verify that they included their own link-layer address. */
341       if (lladdr_opt == NULL) {
342         /* Not a valid message. */
343         pbuf_free(p);
344         ND6_STATS_INC(nd6.proterr);
345         ND6_STATS_INC(nd6.drop);
346         return;
347       }
348 
349       i = nd6_find_neighbor_cache_entry(ip6_current_src_addr());
350       if (i>= 0) {
351         /* We already have a record for the solicitor. */
352         if (neighbor_cache[i].state == ND6_INCOMPLETE) {
353           neighbor_cache[i].netif = inp;
354           MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
355 
356           /* Delay probe in case we get confirmation of reachability from upper layer (TCP). */
357           neighbor_cache[i].state = ND6_DELAY;
358           neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
359         }
360       } else {
361         /* Add their IPv6 address and link-layer address to neighbor cache.
362          * We will need it at least to send a unicast NA message, but most
363          * likely we will also be communicating with this node soon. */
364         i = nd6_new_neighbor_cache_entry();
365         if (i < 0) {
366           /* We couldn't assign a cache entry for this neighbor.
367            * we won't be able to reply. drop it. */
368           pbuf_free(p);
369           ND6_STATS_INC(nd6.memerr);
370           return;
371         }
372         neighbor_cache[i].netif = inp;
373         MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
374         ip6_addr_set(&(neighbor_cache[i].next_hop_address), ip6_current_src_addr());
375 
376         /* Receiving a message does not prove reachability: only in one direction.
377          * Delay probe in case we get confirmation of reachability from upper layer (TCP). */
378         neighbor_cache[i].state = ND6_DELAY;
379         neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
380       }
381 
382       /* Create an aligned copy. */
383       ip6_addr_set(&target_address, &(ns_hdr->target_address));
384 
385       /* Send back a NA for us. Allocate the reply pbuf. */
386       nd6_send_na(inp, &target_address, ND6_FLAG_SOLICITED | ND6_FLAG_OVERRIDE);
387     }
388 
389     break; /* ICMP6_TYPE_NS */
390   }
391   case ICMP6_TYPE_RA: /* Router Advertisement. */
392   {
393     struct ra_header *ra_hdr;
394     u8_t *buffer; /* Used to copy options. */
395     u16_t offset;
396 #if LWIP_ND6_RDNSS_MAX_DNS_SERVERS
397     /* There can by multiple RDNSS options per RA */
398     u8_t rdnss_server_idx = 0;
399 #endif /* LWIP_ND6_RDNSS_MAX_DNS_SERVERS */
400 
401     /* Check that RA header fits in packet. */
402     if (p->len < sizeof(struct ra_header)) {
403       /* @todo debug message */
404       pbuf_free(p);
405       ND6_STATS_INC(nd6.lenerr);
406       ND6_STATS_INC(nd6.drop);
407       return;
408     }
409 
410     ra_hdr = (struct ra_header *)p->payload;
411 
412     /* If we are sending RS messages, stop. */
413 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
414     /* ensure at least one solicitation is sent */
415     if ((inp->rs_count < LWIP_ND6_MAX_MULTICAST_SOLICIT) ||
416         (nd6_send_rs(inp) == ERR_OK)) {
417       inp->rs_count = 0;
418     }
419 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
420 
421     /* Get the matching default router entry. */
422     i = nd6_get_router(ip6_current_src_addr(), inp);
423     if (i < 0) {
424       /* Create a new router entry. */
425       i = nd6_new_router(ip6_current_src_addr(), inp);
426     }
427 
428     if (i < 0) {
429       /* Could not create a new router entry. */
430       pbuf_free(p);
431       ND6_STATS_INC(nd6.memerr);
432       return;
433     }
434 
435     /* Re-set invalidation timer. */
436     default_router_list[i].invalidation_timer = lwip_htons(ra_hdr->router_lifetime);
437 
438     /* Re-set default timer values. */
439 #if LWIP_ND6_ALLOW_RA_UPDATES
440     if (ra_hdr->retrans_timer > 0) {
441       retrans_timer = lwip_htonl(ra_hdr->retrans_timer);
442     }
443     if (ra_hdr->reachable_time > 0) {
444       reachable_time = lwip_htonl(ra_hdr->reachable_time);
445     }
446 #endif /* LWIP_ND6_ALLOW_RA_UPDATES */
447 
448     /* @todo set default hop limit... */
449     /* ra_hdr->current_hop_limit;*/
450 
451     /* Update flags in local entry (incl. preference). */
452     default_router_list[i].flags = ra_hdr->flags;
453 
454     /* Offset to options. */
455     offset = sizeof(struct ra_header);
456 
457     /* Process each option. */
458     while ((p->tot_len - offset) > 0) {
459       if (p->len == p->tot_len) {
460         /* no need to copy from contiguous pbuf */
461         buffer = &((u8_t*)p->payload)[offset];
462       } else {
463         buffer = nd6_ra_buffer;
464         if (pbuf_copy_partial(p, buffer, sizeof(struct prefix_option), offset) != sizeof(struct prefix_option)) {
465           pbuf_free(p);
466           ND6_STATS_INC(nd6.lenerr);
467           ND6_STATS_INC(nd6.drop);
468           return;
469         }
470       }
471       if (buffer[1] == 0) {
472         /* zero-length extension. drop packet */
473         pbuf_free(p);
474         ND6_STATS_INC(nd6.lenerr);
475         ND6_STATS_INC(nd6.drop);
476         return;
477       }
478       switch (buffer[0]) {
479       case ND6_OPTION_TYPE_SOURCE_LLADDR:
480       {
481         struct lladdr_option *lladdr_opt;
482         lladdr_opt = (struct lladdr_option *)buffer;
483         if ((default_router_list[i].neighbor_entry != NULL) &&
484             (default_router_list[i].neighbor_entry->state == ND6_INCOMPLETE)) {
485           SMEMCPY(default_router_list[i].neighbor_entry->lladdr, lladdr_opt->addr, inp->hwaddr_len);
486           default_router_list[i].neighbor_entry->state = ND6_REACHABLE;
487           default_router_list[i].neighbor_entry->counter.reachable_time = reachable_time;
488         }
489         break;
490       }
491       case ND6_OPTION_TYPE_MTU:
492       {
493         struct mtu_option *mtu_opt;
494         mtu_opt = (struct mtu_option *)buffer;
495         if (lwip_htonl(mtu_opt->mtu) >= 1280) {
496 #if LWIP_ND6_ALLOW_RA_UPDATES
497           inp->mtu = (u16_t)lwip_htonl(mtu_opt->mtu);
498 #endif /* LWIP_ND6_ALLOW_RA_UPDATES */
499         }
500         break;
501       }
502       case ND6_OPTION_TYPE_PREFIX_INFO:
503       {
504         struct prefix_option *prefix_opt;
505         prefix_opt = (struct prefix_option *)buffer;
506 
507         if ((prefix_opt->flags & ND6_PREFIX_FLAG_ON_LINK) &&
508             (prefix_opt->prefix_length == 64)  &&
509             !ip6_addr_islinklocal(&(prefix_opt->prefix))) {
510           /* Add to on-link prefix list. */
511           s8_t prefix;
512           ip6_addr_t prefix_addr;
513 
514           /* Get a memory-aligned copy of the prefix. */
515           ip6_addr_set(&prefix_addr, &(prefix_opt->prefix));
516 
517           /* find cache entry for this prefix. */
518           prefix = nd6_get_onlink_prefix(&prefix_addr, inp);
519           if (prefix < 0) {
520             /* Create a new cache entry. */
521             prefix = nd6_new_onlink_prefix(&prefix_addr, inp);
522           }
523           if (prefix >= 0) {
524             prefix_list[prefix].invalidation_timer = lwip_htonl(prefix_opt->valid_lifetime);
525 
526 #if LWIP_IPV6_AUTOCONFIG
527             if (prefix_opt->flags & ND6_PREFIX_FLAG_AUTONOMOUS) {
528               /* Mark prefix as autonomous, so that address autoconfiguration can take place.
529                * Only OR flag, so that we don't over-write other flags (such as ADDRESS_DUPLICATE)*/
530               prefix_list[prefix].flags |= ND6_PREFIX_AUTOCONFIG_AUTONOMOUS;
531             }
532 #endif /* LWIP_IPV6_AUTOCONFIG */
533           }
534         }
535 
536         break;
537       }
538       case ND6_OPTION_TYPE_ROUTE_INFO:
539         /* @todo implement preferred routes.
540         struct route_option * route_opt;
541         route_opt = (struct route_option *)buffer;*/
542 
543         break;
544 #if LWIP_ND6_RDNSS_MAX_DNS_SERVERS
545       case ND6_OPTION_TYPE_RDNSS:
546       {
547         u8_t num, n;
548         struct rdnss_option * rdnss_opt;
549 
550         rdnss_opt = (struct rdnss_option *)buffer;
551         num = (rdnss_opt->length - 1) / 2;
552         for (n = 0; (rdnss_server_idx < DNS_MAX_SERVERS) && (n < num); n++) {
553           ip_addr_t rdnss_address;
554 
555           /* Get a memory-aligned copy of the prefix. */
556           ip_addr_copy_from_ip6(rdnss_address, rdnss_opt->rdnss_address[n]);
557 
558           if (htonl(rdnss_opt->lifetime) > 0) {
559             /* TODO implement Lifetime > 0 */
560             dns_setserver(rdnss_server_idx++, &rdnss_address);
561           } else {
562             /* TODO implement DNS removal in dns.c */
563             u8_t s;
564             for (s = 0; s < DNS_MAX_SERVERS; s++) {
565               const ip_addr_t *addr = dns_getserver(s);
566               if(ip_addr_cmp(addr, &rdnss_address)) {
567                 dns_setserver(s, NULL);
568               }
569             }
570           }
571         }
572         break;
573       }
574 #endif /* LWIP_ND6_RDNSS_MAX_DNS_SERVERS */
575       default:
576         /* Unrecognized option, abort. */
577         ND6_STATS_INC(nd6.proterr);
578         break;
579       }
580       /* option length is checked earlier to be non-zero to make sure loop ends */
581       offset += 8 * ((u16_t)buffer[1]);
582     }
583 
584     break; /* ICMP6_TYPE_RA */
585   }
586   case ICMP6_TYPE_RD: /* Redirect */
587   {
588     struct redirect_header *redir_hdr;
589     struct lladdr_option *lladdr_opt;
590     ip6_addr_t tmp;
591 
592     /* Check that Redir header fits in packet. */
593     if (p->len < sizeof(struct redirect_header)) {
594       /* @todo debug message */
595       pbuf_free(p);
596       ND6_STATS_INC(nd6.lenerr);
597       ND6_STATS_INC(nd6.drop);
598       return;
599     }
600 
601     redir_hdr = (struct redirect_header *)p->payload;
602 
603     if (p->len >= (sizeof(struct redirect_header) + 2)) {
604       lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct redirect_header));
605       if (p->len < (sizeof(struct redirect_header) + (lladdr_opt->length << 3))) {
606         lladdr_opt = NULL;
607       }
608     } else {
609       lladdr_opt = NULL;
610     }
611 
612     /* Copy original destination address to current source address, to have an aligned copy. */
613     ip6_addr_set(&tmp, &(redir_hdr->destination_address));
614 
615     /* Find dest address in cache */
616     i = nd6_find_destination_cache_entry(&tmp);
617     if (i < 0) {
618       /* Destination not in cache, drop packet. */
619       pbuf_free(p);
620       return;
621     }
622 
623     /* Set the new target address. */
624     ip6_addr_set(&(destination_cache[i].next_hop_addr), &(redir_hdr->target_address));
625 
626     /* If Link-layer address of other router is given, try to add to neighbor cache. */
627     if (lladdr_opt != NULL) {
628       if (lladdr_opt->type == ND6_OPTION_TYPE_TARGET_LLADDR) {
629         /* Copy target address to current source address, to have an aligned copy. */
630         ip6_addr_set(&tmp, &(redir_hdr->target_address));
631 
632         i = nd6_find_neighbor_cache_entry(&tmp);
633         if (i < 0) {
634           i = nd6_new_neighbor_cache_entry();
635           if (i >= 0) {
636             neighbor_cache[i].netif = inp;
637             MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
638             ip6_addr_set(&(neighbor_cache[i].next_hop_address), &tmp);
639 
640             /* Receiving a message does not prove reachability: only in one direction.
641              * Delay probe in case we get confirmation of reachability from upper layer (TCP). */
642             neighbor_cache[i].state = ND6_DELAY;
643             neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
644           }
645         }
646         if (i >= 0) {
647           if (neighbor_cache[i].state == ND6_INCOMPLETE) {
648             MEMCPY(neighbor_cache[i].lladdr, lladdr_opt->addr, inp->hwaddr_len);
649             /* Receiving a message does not prove reachability: only in one direction.
650              * Delay probe in case we get confirmation of reachability from upper layer (TCP). */
651             neighbor_cache[i].state = ND6_DELAY;
652             neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
653           }
654         }
655       }
656     }
657     break; /* ICMP6_TYPE_RD */
658   }
659   case ICMP6_TYPE_PTB: /* Packet too big */
660   {
661     struct icmp6_hdr *icmp6hdr; /* Packet too big message */
662     struct ip6_hdr *ip6hdr; /* IPv6 header of the packet which caused the error */
663     u32_t pmtu;
664     ip6_addr_t tmp;
665 
666     /* Check that ICMPv6 header + IPv6 header fit in payload */
667     if (p->len < (sizeof(struct icmp6_hdr) + IP6_HLEN)) {
668       /* drop short packets */
669       pbuf_free(p);
670       ND6_STATS_INC(nd6.lenerr);
671       ND6_STATS_INC(nd6.drop);
672       return;
673     }
674 
675     icmp6hdr = (struct icmp6_hdr *)p->payload;
676     ip6hdr = (struct ip6_hdr *)((u8_t*)p->payload + sizeof(struct icmp6_hdr));
677 
678     /* Copy original destination address to current source address, to have an aligned copy. */
679     ip6_addr_set(&tmp, &(ip6hdr->dest));
680 
681     /* Look for entry in destination cache. */
682     i = nd6_find_destination_cache_entry(&tmp);
683     if (i < 0) {
684       /* Destination not in cache, drop packet. */
685       pbuf_free(p);
686       return;
687     }
688 
689     /* Change the Path MTU. */
690     pmtu = lwip_htonl(icmp6hdr->data);
691     destination_cache[i].pmtu = (u16_t)LWIP_MIN(pmtu, 0xFFFF);
692 
693     break; /* ICMP6_TYPE_PTB */
694   }
695 
696   default:
697     ND6_STATS_INC(nd6.proterr);
698     ND6_STATS_INC(nd6.drop);
699     break; /* default */
700   }
701 
702   pbuf_free(p);
703 }
704 
705 
706 /**
707  * Periodic timer for Neighbor discovery functions:
708  *
709  * - Update neighbor reachability states
710  * - Update destination cache entries age
711  * - Update invalidation timers of default routers and on-link prefixes
712  * - Perform duplicate address detection (DAD) for our addresses
713  * - Send router solicitations
714  */
715 void
nd6_tmr(void)716 nd6_tmr(void)
717 {
718   s8_t i;
719   struct netif *netif;
720 
721   /* Process neighbor entries. */
722   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
723     switch (neighbor_cache[i].state) {
724     case ND6_INCOMPLETE:
725       if ((neighbor_cache[i].counter.probes_sent >= LWIP_ND6_MAX_MULTICAST_SOLICIT) &&
726           (!neighbor_cache[i].isrouter)) {
727         /* Retries exceeded. */
728         nd6_free_neighbor_cache_entry(i);
729       } else {
730         /* Send a NS for this entry. */
731         neighbor_cache[i].counter.probes_sent++;
732         nd6_send_neighbor_cache_probe(&neighbor_cache[i], ND6_SEND_FLAG_MULTICAST_DEST);
733       }
734       break;
735     case ND6_REACHABLE:
736       /* Send queued packets, if any are left. Should have been sent already. */
737       if (neighbor_cache[i].q != NULL) {
738         nd6_send_q(i);
739       }
740       if (neighbor_cache[i].counter.reachable_time <= ND6_TMR_INTERVAL) {
741         /* Change to stale state. */
742         neighbor_cache[i].state = ND6_STALE;
743         neighbor_cache[i].counter.stale_time = 0;
744       } else {
745         neighbor_cache[i].counter.reachable_time -= ND6_TMR_INTERVAL;
746       }
747       break;
748     case ND6_STALE:
749       neighbor_cache[i].counter.stale_time++;
750       break;
751     case ND6_DELAY:
752       if (neighbor_cache[i].counter.delay_time <= 1) {
753         /* Change to PROBE state. */
754         neighbor_cache[i].state = ND6_PROBE;
755         neighbor_cache[i].counter.probes_sent = 0;
756       } else {
757         neighbor_cache[i].counter.delay_time--;
758       }
759       break;
760     case ND6_PROBE:
761       if ((neighbor_cache[i].counter.probes_sent >= LWIP_ND6_MAX_MULTICAST_SOLICIT) &&
762           (!neighbor_cache[i].isrouter)) {
763         /* Retries exceeded. */
764         nd6_free_neighbor_cache_entry(i);
765       } else {
766         /* Send a NS for this entry. */
767         neighbor_cache[i].counter.probes_sent++;
768         nd6_send_neighbor_cache_probe(&neighbor_cache[i], 0);
769       }
770       break;
771     case ND6_NO_ENTRY:
772     default:
773       /* Do nothing. */
774       break;
775     }
776   }
777 
778   /* Process destination entries. */
779   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
780     destination_cache[i].age++;
781   }
782 
783   /* Process router entries. */
784   for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
785     if (default_router_list[i].neighbor_entry != NULL) {
786       /* Active entry. */
787       if (default_router_list[i].invalidation_timer > 0) {
788         default_router_list[i].invalidation_timer -= ND6_TMR_INTERVAL / 1000;
789       }
790       if (default_router_list[i].invalidation_timer < ND6_TMR_INTERVAL / 1000) {
791         /* Less than 1 second remaining. Clear this entry. */
792         default_router_list[i].neighbor_entry->isrouter = 0;
793         default_router_list[i].neighbor_entry = NULL;
794         default_router_list[i].invalidation_timer = 0;
795         default_router_list[i].flags = 0;
796       }
797     }
798   }
799 
800   /* Process prefix entries. */
801   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; i++) {
802     if (prefix_list[i].netif != NULL) {
803       if (prefix_list[i].invalidation_timer < ND6_TMR_INTERVAL / 1000) {
804         /* Entry timed out, remove it */
805         prefix_list[i].invalidation_timer = 0;
806 
807 #if LWIP_IPV6_AUTOCONFIG
808         /* If any addresses were configured with this prefix, remove them */
809         if (prefix_list[i].flags & ND6_PREFIX_AUTOCONFIG_ADDRESS_GENERATED) {
810           s8_t j;
811 
812           for (j = 1; j < LWIP_IPV6_NUM_ADDRESSES; j++) {
813             if ((netif_ip6_addr_state(prefix_list[i].netif, j) != IP6_ADDR_INVALID) &&
814                 ip6_addr_netcmp(&prefix_list[i].prefix, netif_ip6_addr(prefix_list[i].netif, j))) {
815               netif_ip6_addr_set_state(prefix_list[i].netif, j, IP6_ADDR_INVALID);
816               prefix_list[i].flags = 0;
817 
818               /* Exit loop. */
819               break;
820             }
821           }
822         }
823 #endif /* LWIP_IPV6_AUTOCONFIG */
824 
825         prefix_list[i].netif = NULL;
826         prefix_list[i].flags = 0;
827       } else {
828         prefix_list[i].invalidation_timer -= ND6_TMR_INTERVAL / 1000;
829 
830 #if LWIP_IPV6_AUTOCONFIG
831         /* Initiate address autoconfiguration for this prefix, if conditions are met. */
832         if (prefix_list[i].netif->ip6_autoconfig_enabled &&
833             (prefix_list[i].flags & ND6_PREFIX_AUTOCONFIG_AUTONOMOUS) &&
834             !(prefix_list[i].flags & ND6_PREFIX_AUTOCONFIG_ADDRESS_GENERATED)) {
835           s8_t j;
836           /* Try to get an address on this netif that is invalid.
837            * Skip 0 index (link-local address) */
838           for (j = 1; j < LWIP_IPV6_NUM_ADDRESSES; j++) {
839             if (netif_ip6_addr_state(prefix_list[i].netif, j) == IP6_ADDR_INVALID) {
840               /* Generate an address using this prefix and interface ID from link-local address. */
841               netif_ip6_addr_set_parts(prefix_list[i].netif, j,
842                 prefix_list[i].prefix.addr[0], prefix_list[i].prefix.addr[1],
843                 netif_ip6_addr(prefix_list[i].netif, 0)->addr[2], netif_ip6_addr(prefix_list[i].netif, 0)->addr[3]);
844 
845               /* Mark it as tentative (DAD will be performed if configured). */
846               netif_ip6_addr_set_state(prefix_list[i].netif, j, IP6_ADDR_TENTATIVE);
847 
848               /* Mark this prefix with ADDRESS_GENERATED, so that we don't try again. */
849               prefix_list[i].flags |= ND6_PREFIX_AUTOCONFIG_ADDRESS_GENERATED;
850 
851               /* Exit loop. */
852               break;
853             }
854           }
855         }
856 #endif /* LWIP_IPV6_AUTOCONFIG */
857       }
858     }
859   }
860 
861 
862   /* Process our own addresses, if DAD configured. */
863   for (netif = netif_list; netif != NULL; netif = netif->next) {
864     for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; ++i) {
865       u8_t addr_state = netif_ip6_addr_state(netif, i);
866       if (ip6_addr_istentative(addr_state)) {
867         if ((addr_state & IP6_ADDR_TENTATIVE_COUNT_MASK) >= LWIP_IPV6_DUP_DETECT_ATTEMPTS) {
868           /* No NA received in response. Mark address as valid. */
869           netif_ip6_addr_set_state(netif, i, IP6_ADDR_PREFERRED);
870           /* @todo implement preferred and valid lifetimes. */
871         } else if (netif->flags & NETIF_FLAG_UP) {
872           /* Send a NS for this address. */
873           nd6_send_ns(netif, netif_ip6_addr(netif, i), ND6_SEND_FLAG_MULTICAST_DEST);
874           /* tentative: set next state by increasing by one */
875           netif_ip6_addr_set_state(netif, i, addr_state + 1);
876           /* @todo send max 1 NS per tmr call? enable return*/
877           /*return;*/
878         }
879       }
880     }
881   }
882 
883 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
884   /* Send router solicitation messages, if necessary. */
885   for (netif = netif_list; netif != NULL; netif = netif->next) {
886     if ((netif->rs_count > 0) && (netif->flags & NETIF_FLAG_UP) &&
887         (!ip6_addr_isinvalid(netif_ip6_addr_state(netif, 0)))) {
888       if (nd6_send_rs(netif) == ERR_OK) {
889         netif->rs_count--;
890       }
891     }
892   }
893 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
894 
895 }
896 
897 /** Send a neighbor solicitation message for a specific neighbor cache entry
898  *
899  * @param entry the neightbor cache entry for wich to send the message
900  * @param flags one of ND6_SEND_FLAG_*
901  */
902 static void
nd6_send_neighbor_cache_probe(struct nd6_neighbor_cache_entry * entry,u8_t flags)903 nd6_send_neighbor_cache_probe(struct nd6_neighbor_cache_entry *entry, u8_t flags)
904 {
905   nd6_send_ns(entry->netif, &entry->next_hop_address, flags);
906 }
907 
908 /**
909  * Send a neighbor solicitation message
910  *
911  * @param netif the netif on which to send the message
912  * @param target_addr the IPv6 target address for the ND message
913  * @param flags one of ND6_SEND_FLAG_*
914  */
915 static void
nd6_send_ns(struct netif * netif,const ip6_addr_t * target_addr,u8_t flags)916 nd6_send_ns(struct netif *netif, const ip6_addr_t *target_addr, u8_t flags)
917 {
918   struct ns_header *ns_hdr;
919   struct pbuf *p;
920   const ip6_addr_t *src_addr;
921   u16_t lladdr_opt_len;
922 
923   if (ip6_addr_isvalid(netif_ip6_addr_state(netif,0))) {
924     /* Use link-local address as source address. */
925     src_addr = netif_ip6_addr(netif, 0);
926     /* calculate option length (in 8-byte-blocks) */
927     lladdr_opt_len = ((netif->hwaddr_len + 2) + 7) >> 3;
928   } else {
929     src_addr = IP6_ADDR_ANY6;
930     /* Option "MUST NOT be included when the source IP address is the unspecified address." */
931     lladdr_opt_len = 0;
932   }
933 
934   /* Allocate a packet. */
935   p = pbuf_alloc(PBUF_IP, sizeof(struct ns_header) + (lladdr_opt_len << 3), PBUF_RAM);
936   if (p == NULL) {
937     ND6_STATS_INC(nd6.memerr);
938     return;
939   }
940 
941   /* Set fields. */
942   ns_hdr = (struct ns_header *)p->payload;
943 
944   ns_hdr->type = ICMP6_TYPE_NS;
945   ns_hdr->code = 0;
946   ns_hdr->chksum = 0;
947   ns_hdr->reserved = 0;
948   ip6_addr_set(&(ns_hdr->target_address), target_addr);
949 
950   if (lladdr_opt_len != 0) {
951     struct lladdr_option *lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct ns_header));
952     lladdr_opt->type = ND6_OPTION_TYPE_SOURCE_LLADDR;
953     lladdr_opt->length = (u8_t)lladdr_opt_len;
954     SMEMCPY(lladdr_opt->addr, netif->hwaddr, netif->hwaddr_len);
955   }
956 
957   /* Generate the solicited node address for the target address. */
958   if (flags & ND6_SEND_FLAG_MULTICAST_DEST) {
959     ip6_addr_set_solicitednode(&multicast_address, target_addr->addr[3]);
960     target_addr = &multicast_address;
961   }
962 
963 #if CHECKSUM_GEN_ICMP6
964   IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_ICMP6) {
965     ns_hdr->chksum = ip6_chksum_pseudo(p, IP6_NEXTH_ICMP6, p->len, src_addr,
966       target_addr);
967   }
968 #endif /* CHECKSUM_GEN_ICMP6 */
969 
970   /* Send the packet out. */
971   ND6_STATS_INC(nd6.xmit);
972   ip6_output_if(p, (src_addr == IP6_ADDR_ANY6) ? NULL : src_addr, target_addr,
973       LWIP_ICMP6_HL, 0, IP6_NEXTH_ICMP6, netif);
974   pbuf_free(p);
975 }
976 
977 /**
978  * Send a neighbor advertisement message
979  *
980  * @param netif the netif on which to send the message
981  * @param target_addr the IPv6 target address for the ND message
982  * @param flags one of ND6_SEND_FLAG_*
983  */
984 static void
nd6_send_na(struct netif * netif,const ip6_addr_t * target_addr,u8_t flags)985 nd6_send_na(struct netif *netif, const ip6_addr_t *target_addr, u8_t flags)
986 {
987   struct na_header *na_hdr;
988   struct lladdr_option *lladdr_opt;
989   struct pbuf *p;
990   const ip6_addr_t *src_addr;
991   const ip6_addr_t *dest_addr;
992   u16_t lladdr_opt_len;
993 
994   /* Use link-local address as source address. */
995   /* src_addr = netif_ip6_addr(netif, 0); */
996   /* Use target address as source address. */
997   src_addr = target_addr;
998 
999   /* Allocate a packet. */
1000   lladdr_opt_len = ((netif->hwaddr_len + 2) >> 3) + (((netif->hwaddr_len + 2) & 0x07) ? 1 : 0);
1001   p = pbuf_alloc(PBUF_IP, sizeof(struct na_header) + (lladdr_opt_len << 3), PBUF_RAM);
1002   if (p == NULL) {
1003     ND6_STATS_INC(nd6.memerr);
1004     return;
1005   }
1006 
1007   /* Set fields. */
1008   na_hdr = (struct na_header *)p->payload;
1009   lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct na_header));
1010 
1011   na_hdr->type = ICMP6_TYPE_NA;
1012   na_hdr->code = 0;
1013   na_hdr->chksum = 0;
1014   na_hdr->flags = flags & 0xf0;
1015   na_hdr->reserved[0] = 0;
1016   na_hdr->reserved[1] = 0;
1017   na_hdr->reserved[2] = 0;
1018   ip6_addr_set(&(na_hdr->target_address), target_addr);
1019 
1020   lladdr_opt->type = ND6_OPTION_TYPE_TARGET_LLADDR;
1021   lladdr_opt->length = (u8_t)lladdr_opt_len;
1022   SMEMCPY(lladdr_opt->addr, netif->hwaddr, netif->hwaddr_len);
1023 
1024   /* Generate the solicited node address for the target address. */
1025   if (flags & ND6_SEND_FLAG_MULTICAST_DEST) {
1026     ip6_addr_set_solicitednode(&multicast_address, target_addr->addr[3]);
1027     dest_addr = &multicast_address;
1028   } else if (flags & ND6_SEND_FLAG_ALLNODES_DEST) {
1029     ip6_addr_set_allnodes_linklocal(&multicast_address);
1030     dest_addr = &multicast_address;
1031   } else {
1032     dest_addr = ip6_current_src_addr();
1033   }
1034 
1035 #if CHECKSUM_GEN_ICMP6
1036   IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_ICMP6) {
1037     na_hdr->chksum = ip6_chksum_pseudo(p, IP6_NEXTH_ICMP6, p->len, src_addr,
1038       dest_addr);
1039   }
1040 #endif /* CHECKSUM_GEN_ICMP6 */
1041 
1042   /* Send the packet out. */
1043   ND6_STATS_INC(nd6.xmit);
1044   ip6_output_if(p, src_addr, dest_addr,
1045       LWIP_ICMP6_HL, 0, IP6_NEXTH_ICMP6, netif);
1046   pbuf_free(p);
1047 }
1048 
1049 #if LWIP_IPV6_SEND_ROUTER_SOLICIT
1050 /**
1051  * Send a router solicitation message
1052  *
1053  * @param netif the netif on which to send the message
1054  */
1055 static err_t
nd6_send_rs(struct netif * netif)1056 nd6_send_rs(struct netif *netif)
1057 {
1058   struct rs_header *rs_hdr;
1059   struct lladdr_option *lladdr_opt;
1060   struct pbuf *p;
1061   const ip6_addr_t *src_addr;
1062   err_t err;
1063   u16_t lladdr_opt_len = 0;
1064 
1065   /* Link-local source address, or unspecified address? */
1066   if (ip6_addr_isvalid(netif_ip6_addr_state(netif, 0))) {
1067     src_addr = netif_ip6_addr(netif, 0);
1068   } else {
1069     src_addr = IP6_ADDR_ANY6;
1070   }
1071 
1072   /* Generate the all routers target address. */
1073   ip6_addr_set_allrouters_linklocal(&multicast_address);
1074 
1075   /* Allocate a packet. */
1076   if (src_addr != IP6_ADDR_ANY6) {
1077     lladdr_opt_len = ((netif->hwaddr_len + 2) >> 3) + (((netif->hwaddr_len + 2) & 0x07) ? 1 : 0);
1078   }
1079   p = pbuf_alloc(PBUF_IP, sizeof(struct rs_header) + (lladdr_opt_len << 3), PBUF_RAM);
1080   if (p == NULL) {
1081     ND6_STATS_INC(nd6.memerr);
1082     return ERR_BUF;
1083   }
1084 
1085   /* Set fields. */
1086   rs_hdr = (struct rs_header *)p->payload;
1087 
1088   rs_hdr->type = ICMP6_TYPE_RS;
1089   rs_hdr->code = 0;
1090   rs_hdr->chksum = 0;
1091   rs_hdr->reserved = 0;
1092 
1093   if (src_addr != IP6_ADDR_ANY6) {
1094     /* Include our hw address. */
1095     lladdr_opt = (struct lladdr_option *)((u8_t*)p->payload + sizeof(struct rs_header));
1096     lladdr_opt->type = ND6_OPTION_TYPE_SOURCE_LLADDR;
1097     lladdr_opt->length = (u8_t)lladdr_opt_len;
1098     SMEMCPY(lladdr_opt->addr, netif->hwaddr, netif->hwaddr_len);
1099   }
1100 
1101 #if CHECKSUM_GEN_ICMP6
1102   IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_ICMP6) {
1103     rs_hdr->chksum = ip6_chksum_pseudo(p, IP6_NEXTH_ICMP6, p->len, src_addr,
1104       &multicast_address);
1105   }
1106 #endif /* CHECKSUM_GEN_ICMP6 */
1107 
1108   /* Send the packet out. */
1109   ND6_STATS_INC(nd6.xmit);
1110 
1111   err = ip6_output_if(p, (src_addr == IP6_ADDR_ANY6) ? NULL : src_addr, &multicast_address,
1112       LWIP_ICMP6_HL, 0, IP6_NEXTH_ICMP6, netif);
1113   pbuf_free(p);
1114 
1115   return err;
1116 }
1117 #endif /* LWIP_IPV6_SEND_ROUTER_SOLICIT */
1118 
1119 /**
1120  * Search for a neighbor cache entry
1121  *
1122  * @param ip6addr the IPv6 address of the neighbor
1123  * @return The neighbor cache entry index that matched, -1 if no
1124  * entry is found
1125  */
1126 static s8_t
nd6_find_neighbor_cache_entry(const ip6_addr_t * ip6addr)1127 nd6_find_neighbor_cache_entry(const ip6_addr_t *ip6addr)
1128 {
1129   s8_t i;
1130   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1131     if (ip6_addr_cmp(ip6addr, &(neighbor_cache[i].next_hop_address))) {
1132       return i;
1133     }
1134   }
1135   return -1;
1136 }
1137 
1138 /**
1139  * Create a new neighbor cache entry.
1140  *
1141  * If no unused entry is found, will try to recycle an old entry
1142  * according to ad-hoc "age" heuristic.
1143  *
1144  * @return The neighbor cache entry index that was created, -1 if no
1145  * entry could be created
1146  */
1147 static s8_t
nd6_new_neighbor_cache_entry(void)1148 nd6_new_neighbor_cache_entry(void)
1149 {
1150   s8_t i;
1151   s8_t j;
1152   u32_t time;
1153 
1154 
1155   /* First, try to find an empty entry. */
1156   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1157     if (neighbor_cache[i].state == ND6_NO_ENTRY) {
1158       return i;
1159     }
1160   }
1161 
1162   /* We need to recycle an entry. in general, do not recycle if it is a router. */
1163 
1164   /* Next, try to find a Stale entry. */
1165   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1166     if ((neighbor_cache[i].state == ND6_STALE) &&
1167         (!neighbor_cache[i].isrouter)) {
1168       nd6_free_neighbor_cache_entry(i);
1169       return i;
1170     }
1171   }
1172 
1173   /* Next, try to find a Probe entry. */
1174   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1175     if ((neighbor_cache[i].state == ND6_PROBE) &&
1176         (!neighbor_cache[i].isrouter)) {
1177       nd6_free_neighbor_cache_entry(i);
1178       return i;
1179     }
1180   }
1181 
1182   /* Next, try to find a Delayed entry. */
1183   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1184     if ((neighbor_cache[i].state == ND6_DELAY) &&
1185         (!neighbor_cache[i].isrouter)) {
1186       nd6_free_neighbor_cache_entry(i);
1187       return i;
1188     }
1189   }
1190 
1191   /* Next, try to find the oldest reachable entry. */
1192   time = 0xfffffffful;
1193   j = -1;
1194   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1195     if ((neighbor_cache[i].state == ND6_REACHABLE) &&
1196         (!neighbor_cache[i].isrouter)) {
1197       if (neighbor_cache[i].counter.reachable_time < time) {
1198         j = i;
1199         time = neighbor_cache[i].counter.reachable_time;
1200       }
1201     }
1202   }
1203   if (j >= 0) {
1204     nd6_free_neighbor_cache_entry(j);
1205     return j;
1206   }
1207 
1208   /* Next, find oldest incomplete entry without queued packets. */
1209   time = 0;
1210   j = -1;
1211   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1212     if (
1213         (neighbor_cache[i].q == NULL) &&
1214         (neighbor_cache[i].state == ND6_INCOMPLETE) &&
1215         (!neighbor_cache[i].isrouter)) {
1216       if (neighbor_cache[i].counter.probes_sent >= time) {
1217         j = i;
1218         time = neighbor_cache[i].counter.probes_sent;
1219       }
1220     }
1221   }
1222   if (j >= 0) {
1223     nd6_free_neighbor_cache_entry(j);
1224     return j;
1225   }
1226 
1227   /* Next, find oldest incomplete entry with queued packets. */
1228   time = 0;
1229   j = -1;
1230   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
1231     if ((neighbor_cache[i].state == ND6_INCOMPLETE) &&
1232         (!neighbor_cache[i].isrouter)) {
1233       if (neighbor_cache[i].counter.probes_sent >= time) {
1234         j = i;
1235         time = neighbor_cache[i].counter.probes_sent;
1236       }
1237     }
1238   }
1239   if (j >= 0) {
1240     nd6_free_neighbor_cache_entry(j);
1241     return j;
1242   }
1243 
1244   /* No more entries to try. */
1245   return -1;
1246 }
1247 
1248 /**
1249  * Will free any resources associated with a neighbor cache
1250  * entry, and will mark it as unused.
1251  *
1252  * @param i the neighbor cache entry index to free
1253  */
1254 static void
nd6_free_neighbor_cache_entry(s8_t i)1255 nd6_free_neighbor_cache_entry(s8_t i)
1256 {
1257   if ((i < 0) || (i >= LWIP_ND6_NUM_NEIGHBORS)) {
1258     return;
1259   }
1260   if (neighbor_cache[i].isrouter) {
1261     /* isrouter needs to be cleared before deleting a neighbor cache entry */
1262     return;
1263   }
1264 
1265   /* Free any queued packets. */
1266   if (neighbor_cache[i].q != NULL) {
1267     nd6_free_q(neighbor_cache[i].q);
1268     neighbor_cache[i].q = NULL;
1269   }
1270 
1271   neighbor_cache[i].state = ND6_NO_ENTRY;
1272   neighbor_cache[i].isrouter = 0;
1273   neighbor_cache[i].netif = NULL;
1274   neighbor_cache[i].counter.reachable_time = 0;
1275   ip6_addr_set_zero(&(neighbor_cache[i].next_hop_address));
1276 }
1277 
1278 /**
1279  * Search for a destination cache entry
1280  *
1281  * @param ip6addr the IPv6 address of the destination
1282  * @return The destination cache entry index that matched, -1 if no
1283  * entry is found
1284  */
1285 static s8_t
nd6_find_destination_cache_entry(const ip6_addr_t * ip6addr)1286 nd6_find_destination_cache_entry(const ip6_addr_t *ip6addr)
1287 {
1288   s8_t i;
1289   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
1290     if (ip6_addr_cmp(ip6addr, &(destination_cache[i].destination_addr))) {
1291       return i;
1292     }
1293   }
1294   return -1;
1295 }
1296 
1297 /**
1298  * Create a new destination cache entry. If no unused entry is found,
1299  * will recycle oldest entry.
1300  *
1301  * @return The destination cache entry index that was created, -1 if no
1302  * entry was created
1303  */
1304 static s8_t
nd6_new_destination_cache_entry(void)1305 nd6_new_destination_cache_entry(void)
1306 {
1307   s8_t i, j;
1308   u32_t age;
1309 
1310   /* Find an empty entry. */
1311   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
1312     if (ip6_addr_isany(&(destination_cache[i].destination_addr))) {
1313       return i;
1314     }
1315   }
1316 
1317   /* Find oldest entry. */
1318   age = 0;
1319   j = LWIP_ND6_NUM_DESTINATIONS - 1;
1320   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
1321     if (destination_cache[i].age > age) {
1322       j = i;
1323     }
1324   }
1325 
1326   return j;
1327 }
1328 
1329 /**
1330  * Clear the destination cache.
1331  *
1332  * This operation may be necessary for consistency in the light of changing
1333  * local addresses and/or use of the gateway hook.
1334  */
1335 void
nd6_clear_destination_cache(void)1336 nd6_clear_destination_cache(void)
1337 {
1338   int i;
1339 
1340   for (i = 0; i < LWIP_ND6_NUM_DESTINATIONS; i++) {
1341     ip6_addr_set_any(&destination_cache[i].destination_addr);
1342   }
1343 }
1344 
1345 /**
1346  * Determine whether an address matches an on-link prefix.
1347  *
1348  * @param ip6addr the IPv6 address to match
1349  * @return 1 if the address is on-link, 0 otherwise
1350  */
1351 static s8_t
nd6_is_prefix_in_netif(const ip6_addr_t * ip6addr,struct netif * netif)1352 nd6_is_prefix_in_netif(const ip6_addr_t *ip6addr, struct netif *netif)
1353 {
1354   s8_t i;
1355   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; i++) {
1356     if ((prefix_list[i].netif == netif) &&
1357         (prefix_list[i].invalidation_timer > 0) &&
1358         ip6_addr_netcmp(ip6addr, &(prefix_list[i].prefix))) {
1359       return 1;
1360     }
1361   }
1362   /* Check to see if address prefix matches a (manually?) configured address. */
1363   for (i = 0; i < LWIP_IPV6_NUM_ADDRESSES; i++) {
1364     if (ip6_addr_isvalid(netif_ip6_addr_state(netif, i)) &&
1365         ip6_addr_netcmp(ip6addr, netif_ip6_addr(netif, i))) {
1366       return 1;
1367     }
1368   }
1369   return 0;
1370 }
1371 
1372 /**
1373  * Select a default router for a destination.
1374  *
1375  * @param ip6addr the destination address
1376  * @param netif the netif for the outgoing packet, if known
1377  * @return the default router entry index, or -1 if no suitable
1378  *         router is found
1379  */
1380 static s8_t
nd6_select_router(const ip6_addr_t * ip6addr,struct netif * netif)1381 nd6_select_router(const ip6_addr_t *ip6addr, struct netif *netif)
1382 {
1383   s8_t i;
1384   /* last_router is used for round-robin router selection (as recommended
1385    * in RFC). This is more robust in case one router is not reachable,
1386    * we are not stuck trying to resolve it. */
1387   static s8_t last_router;
1388   (void)ip6addr; /* @todo match preferred routes!! (must implement ND6_OPTION_TYPE_ROUTE_INFO) */
1389 
1390   /* @todo: implement default router preference */
1391 
1392   /* Look for reachable routers. */
1393   for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
1394     if (++last_router >= LWIP_ND6_NUM_ROUTERS) {
1395       last_router = 0;
1396     }
1397     if ((default_router_list[i].neighbor_entry != NULL) &&
1398         (netif != NULL ? netif == default_router_list[i].neighbor_entry->netif : 1) &&
1399         (default_router_list[i].invalidation_timer > 0) &&
1400         (default_router_list[i].neighbor_entry->state == ND6_REACHABLE)) {
1401       return i;
1402     }
1403   }
1404 
1405   /* Look for router in other reachability states, but still valid according to timer. */
1406   for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
1407     if (++last_router >= LWIP_ND6_NUM_ROUTERS) {
1408       last_router = 0;
1409     }
1410     if ((default_router_list[i].neighbor_entry != NULL) &&
1411         (netif != NULL ? netif == default_router_list[i].neighbor_entry->netif : 1) &&
1412         (default_router_list[i].invalidation_timer > 0)) {
1413       return i;
1414     }
1415   }
1416 
1417   /* Look for any router for which we have any information at all. */
1418   for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
1419     if (++last_router >= LWIP_ND6_NUM_ROUTERS) {
1420       last_router = 0;
1421     }
1422     if (default_router_list[i].neighbor_entry != NULL &&
1423         (netif != NULL ? netif == default_router_list[i].neighbor_entry->netif : 1)) {
1424       return i;
1425     }
1426   }
1427 
1428   /* no suitable router found. */
1429   return -1;
1430 }
1431 
1432 /**
1433  * Find a router-announced route to the given destination.
1434  *
1435  * The caller is responsible for checking whether the returned netif, if any,
1436  * is in a suitable state (up, link up) to be used for packet transmission.
1437  *
1438  * @param ip6addr the destination IPv6 address
1439  * @return the netif to use for the destination, or NULL if none found
1440  */
1441 struct netif *
nd6_find_route(const ip6_addr_t * ip6addr)1442 nd6_find_route(const ip6_addr_t *ip6addr)
1443 {
1444   s8_t i;
1445 
1446   i = nd6_select_router(ip6addr, NULL);
1447   if (i >= 0) {
1448     if (default_router_list[i].neighbor_entry != NULL) {
1449       return default_router_list[i].neighbor_entry->netif; /* may be NULL */
1450     }
1451   }
1452 
1453   return NULL;
1454 }
1455 
1456 /**
1457  * Find an entry for a default router.
1458  *
1459  * @param router_addr the IPv6 address of the router
1460  * @param netif the netif on which the router is found, if known
1461  * @return the index of the router entry, or -1 if not found
1462  */
1463 static s8_t
nd6_get_router(const ip6_addr_t * router_addr,struct netif * netif)1464 nd6_get_router(const ip6_addr_t *router_addr, struct netif *netif)
1465 {
1466   s8_t i;
1467 
1468   /* Look for router. */
1469   for (i = 0; i < LWIP_ND6_NUM_ROUTERS; i++) {
1470     if ((default_router_list[i].neighbor_entry != NULL) &&
1471         ((netif != NULL) ? netif == default_router_list[i].neighbor_entry->netif : 1) &&
1472         ip6_addr_cmp(router_addr, &(default_router_list[i].neighbor_entry->next_hop_address))) {
1473       return i;
1474     }
1475   }
1476 
1477   /* router not found. */
1478   return -1;
1479 }
1480 
1481 /**
1482  * Create a new entry for a default router.
1483  *
1484  * @param router_addr the IPv6 address of the router
1485  * @param netif the netif on which the router is connected, if known
1486  * @return the index on the router table, or -1 if could not be created
1487  */
1488 static s8_t
nd6_new_router(const ip6_addr_t * router_addr,struct netif * netif)1489 nd6_new_router(const ip6_addr_t *router_addr, struct netif *netif)
1490 {
1491   s8_t router_index;
1492   s8_t free_router_index;
1493   s8_t neighbor_index;
1494 
1495   /* Do we have a neighbor entry for this router? */
1496   neighbor_index = nd6_find_neighbor_cache_entry(router_addr);
1497   if (neighbor_index < 0) {
1498     /* Create a neighbor entry for this router. */
1499     neighbor_index = nd6_new_neighbor_cache_entry();
1500     if (neighbor_index < 0) {
1501       /* Could not create neighbor entry for this router. */
1502       return -1;
1503     }
1504     ip6_addr_set(&(neighbor_cache[neighbor_index].next_hop_address), router_addr);
1505     neighbor_cache[neighbor_index].netif = netif;
1506     neighbor_cache[neighbor_index].q = NULL;
1507     neighbor_cache[neighbor_index].state = ND6_INCOMPLETE;
1508     neighbor_cache[neighbor_index].counter.probes_sent = 1;
1509     nd6_send_neighbor_cache_probe(&neighbor_cache[neighbor_index], ND6_SEND_FLAG_MULTICAST_DEST);
1510   }
1511 
1512   /* Mark neighbor as router. */
1513   neighbor_cache[neighbor_index].isrouter = 1;
1514 
1515   /* Look for empty entry. */
1516   free_router_index = LWIP_ND6_NUM_ROUTERS;
1517   for (router_index = LWIP_ND6_NUM_ROUTERS - 1; router_index >= 0; router_index--) {
1518     /* check if router already exists (this is a special case for 2 netifs on the same subnet
1519        - e.g. wifi and cable) */
1520     if(default_router_list[router_index].neighbor_entry == &(neighbor_cache[neighbor_index])){
1521       return router_index;
1522     }
1523     if (default_router_list[router_index].neighbor_entry == NULL) {
1524       /* remember lowest free index to create a new entry */
1525       free_router_index = router_index;
1526     }
1527   }
1528   if (free_router_index < LWIP_ND6_NUM_ROUTERS) {
1529     default_router_list[free_router_index].neighbor_entry = &(neighbor_cache[neighbor_index]);
1530     return free_router_index;
1531   }
1532 
1533   /* Could not create a router entry. */
1534 
1535   /* Mark neighbor entry as not-router. Entry might be useful as neighbor still. */
1536   neighbor_cache[neighbor_index].isrouter = 0;
1537 
1538   /* router not found. */
1539   return -1;
1540 }
1541 
1542 /**
1543  * Find the cached entry for an on-link prefix.
1544  *
1545  * @param prefix the IPv6 prefix that is on-link
1546  * @param netif the netif on which the prefix is on-link
1547  * @return the index on the prefix table, or -1 if not found
1548  */
1549 static s8_t
nd6_get_onlink_prefix(ip6_addr_t * prefix,struct netif * netif)1550 nd6_get_onlink_prefix(ip6_addr_t *prefix, struct netif *netif)
1551 {
1552   s8_t i;
1553 
1554   /* Look for prefix in list. */
1555   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; ++i) {
1556     if ((ip6_addr_netcmp(&(prefix_list[i].prefix), prefix)) &&
1557         (prefix_list[i].netif == netif)) {
1558       return i;
1559     }
1560   }
1561 
1562   /* Entry not available. */
1563   return -1;
1564 }
1565 
1566 /**
1567  * Creates a new entry for an on-link prefix.
1568  *
1569  * @param prefix the IPv6 prefix that is on-link
1570  * @param netif the netif on which the prefix is on-link
1571  * @return the index on the prefix table, or -1 if not created
1572  */
1573 static s8_t
nd6_new_onlink_prefix(ip6_addr_t * prefix,struct netif * netif)1574 nd6_new_onlink_prefix(ip6_addr_t *prefix, struct netif *netif)
1575 {
1576   s8_t i;
1577 
1578   /* Create new entry. */
1579   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; ++i) {
1580     if ((prefix_list[i].netif == NULL) ||
1581         (prefix_list[i].invalidation_timer == 0)) {
1582       /* Found empty prefix entry. */
1583       prefix_list[i].netif = netif;
1584       ip6_addr_set(&(prefix_list[i].prefix), prefix);
1585 #if LWIP_IPV6_AUTOCONFIG
1586       prefix_list[i].flags = 0;
1587 #endif /* LWIP_IPV6_AUTOCONFIG */
1588       return i;
1589     }
1590   }
1591 
1592   /* Entry not available. */
1593   return -1;
1594 }
1595 
1596 /**
1597  * Determine the next hop for a destination. Will determine if the
1598  * destination is on-link, else a suitable on-link router is selected.
1599  *
1600  * The last entry index is cached for fast entry search.
1601  *
1602  * @param ip6addr the destination address
1603  * @param netif the netif on which the packet will be sent
1604  * @return the neighbor cache entry for the next hop, ERR_RTE if no
1605  *         suitable next hop was found, ERR_MEM if no cache entry
1606  *         could be created
1607  */
1608 static s8_t
nd6_get_next_hop_entry(const ip6_addr_t * ip6addr,struct netif * netif)1609 nd6_get_next_hop_entry(const ip6_addr_t *ip6addr, struct netif *netif)
1610 {
1611 #ifdef LWIP_HOOK_ND6_GET_GW
1612   const ip6_addr_t *next_hop_addr;
1613 #endif /* LWIP_HOOK_ND6_GET_GW */
1614   s8_t i;
1615 
1616 #if LWIP_NETIF_HWADDRHINT
1617   if (netif->addr_hint != NULL) {
1618     /* per-pcb cached entry was given */
1619     u8_t addr_hint = *(netif->addr_hint);
1620     if (addr_hint < LWIP_ND6_NUM_DESTINATIONS) {
1621       nd6_cached_destination_index = addr_hint;
1622     }
1623   }
1624 #endif /* LWIP_NETIF_HWADDRHINT */
1625 
1626   /* Look for ip6addr in destination cache. */
1627   if (ip6_addr_cmp(ip6addr, &(destination_cache[nd6_cached_destination_index].destination_addr))) {
1628     /* the cached entry index is the right one! */
1629     /* do nothing. */
1630     ND6_STATS_INC(nd6.cachehit);
1631   } else {
1632     /* Search destination cache. */
1633     i = nd6_find_destination_cache_entry(ip6addr);
1634     if (i >= 0) {
1635       /* found destination entry. make it our new cached index. */
1636       nd6_cached_destination_index = i;
1637     } else {
1638       /* Not found. Create a new destination entry. */
1639       i = nd6_new_destination_cache_entry();
1640       if (i >= 0) {
1641         /* got new destination entry. make it our new cached index. */
1642         nd6_cached_destination_index = i;
1643       } else {
1644         /* Could not create a destination cache entry. */
1645         return ERR_MEM;
1646       }
1647 
1648       /* Copy dest address to destination cache. */
1649       ip6_addr_set(&(destination_cache[nd6_cached_destination_index].destination_addr), ip6addr);
1650 
1651       /* Now find the next hop. is it a neighbor? */
1652       if (ip6_addr_islinklocal(ip6addr) ||
1653           nd6_is_prefix_in_netif(ip6addr, netif)) {
1654         /* Destination in local link. */
1655         destination_cache[nd6_cached_destination_index].pmtu = netif->mtu;
1656         ip6_addr_copy(destination_cache[nd6_cached_destination_index].next_hop_addr, destination_cache[nd6_cached_destination_index].destination_addr);
1657 #ifdef LWIP_HOOK_ND6_GET_GW
1658       } else if ((next_hop_addr = LWIP_HOOK_ND6_GET_GW(netif, ip6addr)) != NULL) {
1659         /* Next hop for destination provided by hook function. */
1660         destination_cache[nd6_cached_destination_index].pmtu = netif->mtu;
1661         ip6_addr_set(&destination_cache[nd6_cached_destination_index].next_hop_addr, next_hop_addr);
1662 #endif /* LWIP_HOOK_ND6_GET_GW */
1663       } else {
1664         /* We need to select a router. */
1665         i = nd6_select_router(ip6addr, netif);
1666         if (i < 0) {
1667           /* No router found. */
1668           ip6_addr_set_any(&(destination_cache[nd6_cached_destination_index].destination_addr));
1669           return ERR_RTE;
1670         }
1671         destination_cache[nd6_cached_destination_index].pmtu = netif->mtu; /* Start with netif mtu, correct through ICMPv6 if necessary */
1672         ip6_addr_copy(destination_cache[nd6_cached_destination_index].next_hop_addr, default_router_list[i].neighbor_entry->next_hop_address);
1673       }
1674     }
1675   }
1676 
1677 #if LWIP_NETIF_HWADDRHINT
1678   if (netif->addr_hint != NULL) {
1679     /* per-pcb cached entry was given */
1680     *(netif->addr_hint) = nd6_cached_destination_index;
1681   }
1682 #endif /* LWIP_NETIF_HWADDRHINT */
1683 
1684   /* Look in neighbor cache for the next-hop address. */
1685   if (ip6_addr_cmp(&(destination_cache[nd6_cached_destination_index].next_hop_addr),
1686                    &(neighbor_cache[nd6_cached_neighbor_index].next_hop_address))) {
1687     /* Cache hit. */
1688     /* Do nothing. */
1689     ND6_STATS_INC(nd6.cachehit);
1690   } else {
1691     i = nd6_find_neighbor_cache_entry(&(destination_cache[nd6_cached_destination_index].next_hop_addr));
1692     if (i >= 0) {
1693       /* Found a matching record, make it new cached entry. */
1694       nd6_cached_neighbor_index = i;
1695     } else {
1696       /* Neighbor not in cache. Make a new entry. */
1697       i = nd6_new_neighbor_cache_entry();
1698       if (i >= 0) {
1699         /* got new neighbor entry. make it our new cached index. */
1700         nd6_cached_neighbor_index = i;
1701       } else {
1702         /* Could not create a neighbor cache entry. */
1703         return ERR_MEM;
1704       }
1705 
1706       /* Initialize fields. */
1707       ip6_addr_copy(neighbor_cache[i].next_hop_address,
1708                    destination_cache[nd6_cached_destination_index].next_hop_addr);
1709       neighbor_cache[i].isrouter = 0;
1710       neighbor_cache[i].netif = netif;
1711       neighbor_cache[i].state = ND6_INCOMPLETE;
1712       neighbor_cache[i].counter.probes_sent = 1;
1713       nd6_send_neighbor_cache_probe(&neighbor_cache[i], ND6_SEND_FLAG_MULTICAST_DEST);
1714     }
1715   }
1716 
1717   /* Reset this destination's age. */
1718   destination_cache[nd6_cached_destination_index].age = 0;
1719 
1720   return nd6_cached_neighbor_index;
1721 }
1722 
1723 /**
1724  * Queue a packet for a neighbor.
1725  *
1726  * @param neighbor_index the index in the neighbor cache table
1727  * @param q packet to be queued
1728  * @return ERR_OK if succeeded, ERR_MEM if out of memory
1729  */
1730 static err_t
nd6_queue_packet(s8_t neighbor_index,struct pbuf * q)1731 nd6_queue_packet(s8_t neighbor_index, struct pbuf *q)
1732 {
1733   err_t result = ERR_MEM;
1734   struct pbuf *p;
1735   int copy_needed = 0;
1736 #if LWIP_ND6_QUEUEING
1737   struct nd6_q_entry *new_entry, *r;
1738 #endif /* LWIP_ND6_QUEUEING */
1739 
1740   if ((neighbor_index < 0) || (neighbor_index >= LWIP_ND6_NUM_NEIGHBORS)) {
1741     return ERR_ARG;
1742   }
1743 
1744   /* IF q includes a PBUF_REF, PBUF_POOL or PBUF_RAM, we have no choice but
1745    * to copy the whole queue into a new PBUF_RAM (see bug #11400)
1746    * PBUF_ROMs can be left as they are, since ROM must not get changed. */
1747   p = q;
1748   while (p) {
1749     if (p->type != PBUF_ROM) {
1750       copy_needed = 1;
1751       break;
1752     }
1753     p = p->next;
1754   }
1755   if (copy_needed) {
1756     /* copy the whole packet into new pbufs */
1757     p = pbuf_alloc(PBUF_LINK, q->tot_len, PBUF_RAM);
1758     while ((p == NULL) && (neighbor_cache[neighbor_index].q != NULL)) {
1759       /* Free oldest packet (as per RFC recommendation) */
1760 #if LWIP_ND6_QUEUEING
1761       r = neighbor_cache[neighbor_index].q;
1762       neighbor_cache[neighbor_index].q = r->next;
1763       r->next = NULL;
1764       nd6_free_q(r);
1765 #else /* LWIP_ND6_QUEUEING */
1766       pbuf_free(neighbor_cache[neighbor_index].q);
1767       neighbor_cache[neighbor_index].q = NULL;
1768 #endif /* LWIP_ND6_QUEUEING */
1769       p = pbuf_alloc(PBUF_LINK, q->tot_len, PBUF_RAM);
1770     }
1771     if (p != NULL) {
1772       if (pbuf_copy(p, q) != ERR_OK) {
1773         pbuf_free(p);
1774         p = NULL;
1775       }
1776     }
1777   } else {
1778     /* referencing the old pbuf is enough */
1779     p = q;
1780     pbuf_ref(p);
1781   }
1782   /* packet was copied/ref'd? */
1783   if (p != NULL) {
1784     /* queue packet ... */
1785 #if LWIP_ND6_QUEUEING
1786     /* allocate a new nd6 queue entry */
1787     new_entry = (struct nd6_q_entry *)memp_malloc(MEMP_ND6_QUEUE);
1788     if ((new_entry == NULL) && (neighbor_cache[neighbor_index].q != NULL)) {
1789       /* Free oldest packet (as per RFC recommendation) */
1790       r = neighbor_cache[neighbor_index].q;
1791       neighbor_cache[neighbor_index].q = r->next;
1792       r->next = NULL;
1793       nd6_free_q(r);
1794       new_entry = (struct nd6_q_entry *)memp_malloc(MEMP_ND6_QUEUE);
1795     }
1796     if (new_entry != NULL) {
1797       new_entry->next = NULL;
1798       new_entry->p = p;
1799       if (neighbor_cache[neighbor_index].q != NULL) {
1800         /* queue was already existent, append the new entry to the end */
1801         r = neighbor_cache[neighbor_index].q;
1802         while (r->next != NULL) {
1803           r = r->next;
1804         }
1805         r->next = new_entry;
1806       } else {
1807         /* queue did not exist, first item in queue */
1808         neighbor_cache[neighbor_index].q = new_entry;
1809       }
1810       LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: queued packet %p on neighbor entry %"S16_F"\n", (void *)p, (s16_t)neighbor_index));
1811       result = ERR_OK;
1812     } else {
1813       /* the pool MEMP_ND6_QUEUE is empty */
1814       pbuf_free(p);
1815       LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: could not queue a copy of packet %p (out of memory)\n", (void *)p));
1816       /* { result == ERR_MEM } through initialization */
1817     }
1818 #else /* LWIP_ND6_QUEUEING */
1819     /* Queue a single packet. If an older packet is already queued, free it as per RFC. */
1820     if (neighbor_cache[neighbor_index].q != NULL) {
1821       pbuf_free(neighbor_cache[neighbor_index].q);
1822     }
1823     neighbor_cache[neighbor_index].q = p;
1824     LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: queued packet %p on neighbor entry %"S16_F"\n", (void *)p, (s16_t)neighbor_index));
1825     result = ERR_OK;
1826 #endif /* LWIP_ND6_QUEUEING */
1827   } else {
1828     LWIP_DEBUGF(LWIP_DBG_TRACE, ("ipv6: could not queue a copy of packet %p (out of memory)\n", (void *)q));
1829     /* { result == ERR_MEM } through initialization */
1830   }
1831 
1832   return result;
1833 }
1834 
1835 #if LWIP_ND6_QUEUEING
1836 /**
1837  * Free a complete queue of nd6 q entries
1838  *
1839  * @param q a queue of nd6_q_entry to free
1840  */
1841 static void
nd6_free_q(struct nd6_q_entry * q)1842 nd6_free_q(struct nd6_q_entry *q)
1843 {
1844   struct nd6_q_entry *r;
1845   LWIP_ASSERT("q != NULL", q != NULL);
1846   LWIP_ASSERT("q->p != NULL", q->p != NULL);
1847   while (q) {
1848     r = q;
1849     q = q->next;
1850     LWIP_ASSERT("r->p != NULL", (r->p != NULL));
1851     pbuf_free(r->p);
1852     memp_free(MEMP_ND6_QUEUE, r);
1853   }
1854 }
1855 #endif /* LWIP_ND6_QUEUEING */
1856 
1857 /**
1858  * Send queued packets for a neighbor
1859  *
1860  * @param i the neighbor to send packets to
1861  */
1862 static void
nd6_send_q(s8_t i)1863 nd6_send_q(s8_t i)
1864 {
1865   struct ip6_hdr *ip6hdr;
1866   ip6_addr_t dest;
1867 #if LWIP_ND6_QUEUEING
1868   struct nd6_q_entry *q;
1869 #endif /* LWIP_ND6_QUEUEING */
1870 
1871   if ((i < 0) || (i >= LWIP_ND6_NUM_NEIGHBORS)) {
1872     return;
1873   }
1874 
1875 #if LWIP_ND6_QUEUEING
1876   while (neighbor_cache[i].q != NULL) {
1877     /* remember first in queue */
1878     q = neighbor_cache[i].q;
1879     /* pop first item off the queue */
1880     neighbor_cache[i].q = q->next;
1881     /* Get ipv6 header. */
1882     ip6hdr = (struct ip6_hdr *)(q->p->payload);
1883     /* Create an aligned copy. */
1884     ip6_addr_set(&dest, &(ip6hdr->dest));
1885     /* send the queued IPv6 packet */
1886     (neighbor_cache[i].netif)->output_ip6(neighbor_cache[i].netif, q->p, &dest);
1887     /* free the queued IP packet */
1888     pbuf_free(q->p);
1889     /* now queue entry can be freed */
1890     memp_free(MEMP_ND6_QUEUE, q);
1891   }
1892 #else /* LWIP_ND6_QUEUEING */
1893   if (neighbor_cache[i].q != NULL) {
1894     /* Get ipv6 header. */
1895     ip6hdr = (struct ip6_hdr *)(neighbor_cache[i].q->payload);
1896     /* Create an aligned copy. */
1897     ip6_addr_set(&dest, &(ip6hdr->dest));
1898     /* send the queued IPv6 packet */
1899     (neighbor_cache[i].netif)->output_ip6(neighbor_cache[i].netif, neighbor_cache[i].q, &dest);
1900     /* free the queued IP packet */
1901     pbuf_free(neighbor_cache[i].q);
1902     neighbor_cache[i].q = NULL;
1903   }
1904 #endif /* LWIP_ND6_QUEUEING */
1905 }
1906 
1907 /**
1908  * A packet is to be transmitted to a specific IPv6 destination on a specific
1909  * interface. Check if we can find the hardware address of the next hop to use
1910  * for the packet. If so, give the hardware address to the caller, which should
1911  * use it to send the packet right away. Otherwise, enqueue the packet for
1912  * later transmission while looking up the hardware address, if possible.
1913  *
1914  * As such, this function returns one of three different possible results:
1915  *
1916  * - ERR_OK with a non-NULL 'hwaddrp': the caller should send the packet now.
1917  * - ERR_OK with a NULL 'hwaddrp': the packet has been enqueued for later.
1918  * - not ERR_OK: something went wrong; forward the error upward in the stack.
1919  *
1920  * @param netif The lwIP network interface on which the IP packet will be sent.
1921  * @param q The pbuf(s) containing the IP packet to be sent.
1922  * @param ip6addr The destination IPv6 address of the packet.
1923  * @param hwaddrp On success, filled with a pointer to a HW address or NULL (meaning
1924  *        the packet has been queued).
1925  * @return
1926  * - ERR_OK on success, ERR_RTE if no route was found for the packet,
1927  * or ERR_MEM if low memory conditions prohibit sending the packet at all.
1928  */
1929 err_t
nd6_get_next_hop_addr_or_queue(struct netif * netif,struct pbuf * q,const ip6_addr_t * ip6addr,const u8_t ** hwaddrp)1930 nd6_get_next_hop_addr_or_queue(struct netif *netif, struct pbuf *q, const ip6_addr_t *ip6addr, const u8_t **hwaddrp)
1931 {
1932   s8_t i;
1933 
1934   /* Get next hop record. */
1935   i = nd6_get_next_hop_entry(ip6addr, netif);
1936   if (i < 0) {
1937     /* failed to get a next hop neighbor record. */
1938     return i;
1939   }
1940 
1941   /* Now that we have a destination record, send or queue the packet. */
1942   if (neighbor_cache[i].state == ND6_STALE) {
1943     /* Switch to delay state. */
1944     neighbor_cache[i].state = ND6_DELAY;
1945     neighbor_cache[i].counter.delay_time = LWIP_ND6_DELAY_FIRST_PROBE_TIME / ND6_TMR_INTERVAL;
1946   }
1947   /* @todo should we send or queue if PROBE? send for now, to let unicast NS pass. */
1948   if ((neighbor_cache[i].state == ND6_REACHABLE) ||
1949       (neighbor_cache[i].state == ND6_DELAY) ||
1950       (neighbor_cache[i].state == ND6_PROBE)) {
1951 
1952     /* Tell the caller to send out the packet now. */
1953     *hwaddrp = neighbor_cache[i].lladdr;
1954     return ERR_OK;
1955   }
1956 
1957   /* We should queue packet on this interface. */
1958   *hwaddrp = NULL;
1959   return nd6_queue_packet(i, q);
1960 }
1961 
1962 
1963 /**
1964  * Get the Path MTU for a destination.
1965  *
1966  * @param ip6addr the destination address
1967  * @param netif the netif on which the packet will be sent
1968  * @return the Path MTU, if known, or the netif default MTU
1969  */
1970 u16_t
nd6_get_destination_mtu(const ip6_addr_t * ip6addr,struct netif * netif)1971 nd6_get_destination_mtu(const ip6_addr_t *ip6addr, struct netif *netif)
1972 {
1973   s8_t i;
1974 
1975   i = nd6_find_destination_cache_entry(ip6addr);
1976   if (i >= 0) {
1977     if (destination_cache[i].pmtu > 0) {
1978       return destination_cache[i].pmtu;
1979     }
1980   }
1981 
1982   if (netif != NULL) {
1983     return netif->mtu;
1984   }
1985 
1986   return 1280; /* Minimum MTU */
1987 }
1988 
1989 
1990 #if LWIP_ND6_TCP_REACHABILITY_HINTS
1991 /**
1992  * Provide the Neighbor discovery process with a hint that a
1993  * destination is reachable. Called by tcp_receive when ACKs are
1994  * received or sent (as per RFC). This is useful to avoid sending
1995  * NS messages every 30 seconds.
1996  *
1997  * @param ip6addr the destination address which is know to be reachable
1998  *                by an upper layer protocol (TCP)
1999  */
2000 void
nd6_reachability_hint(const ip6_addr_t * ip6addr)2001 nd6_reachability_hint(const ip6_addr_t *ip6addr)
2002 {
2003   s8_t i;
2004 
2005   /* Find destination in cache. */
2006   if (ip6_addr_cmp(ip6addr, &(destination_cache[nd6_cached_destination_index].destination_addr))) {
2007     i = nd6_cached_destination_index;
2008     ND6_STATS_INC(nd6.cachehit);
2009   } else {
2010     i = nd6_find_destination_cache_entry(ip6addr);
2011   }
2012   if (i < 0) {
2013     return;
2014   }
2015 
2016   /* Find next hop neighbor in cache. */
2017   if (ip6_addr_cmp(&(destination_cache[i].next_hop_addr), &(neighbor_cache[nd6_cached_neighbor_index].next_hop_address))) {
2018     i = nd6_cached_neighbor_index;
2019     ND6_STATS_INC(nd6.cachehit);
2020   } else {
2021     i = nd6_find_neighbor_cache_entry(&(destination_cache[i].next_hop_addr));
2022   }
2023   if (i < 0) {
2024     return;
2025   }
2026 
2027   /* For safety: don't set as reachable if we don't have a LL address yet. Misuse protection. */
2028   if (neighbor_cache[i].state == ND6_INCOMPLETE || neighbor_cache[i].state == ND6_NO_ENTRY) {
2029     return;
2030   }
2031 
2032   /* Set reachability state. */
2033   neighbor_cache[i].state = ND6_REACHABLE;
2034   neighbor_cache[i].counter.reachable_time = reachable_time;
2035 }
2036 #endif /* LWIP_ND6_TCP_REACHABILITY_HINTS */
2037 
2038 /**
2039  * Remove all prefix, neighbor_cache and router entries of the specified netif.
2040  *
2041  * @param netif points to a network interface
2042  */
2043 void
nd6_cleanup_netif(struct netif * netif)2044 nd6_cleanup_netif(struct netif *netif)
2045 {
2046   u8_t i;
2047   s8_t router_index;
2048   for (i = 0; i < LWIP_ND6_NUM_PREFIXES; i++) {
2049     if (prefix_list[i].netif == netif) {
2050       prefix_list[i].netif = NULL;
2051       prefix_list[i].flags = 0;
2052     }
2053   }
2054   for (i = 0; i < LWIP_ND6_NUM_NEIGHBORS; i++) {
2055     if (neighbor_cache[i].netif == netif) {
2056       for (router_index = 0; router_index < LWIP_ND6_NUM_ROUTERS; router_index++) {
2057         if (default_router_list[router_index].neighbor_entry == &neighbor_cache[i]) {
2058           default_router_list[router_index].neighbor_entry = NULL;
2059           default_router_list[router_index].flags = 0;
2060         }
2061       }
2062       neighbor_cache[i].isrouter = 0;
2063       nd6_free_neighbor_cache_entry(i);
2064     }
2065   }
2066 }
2067 
2068 #if LWIP_IPV6_MLD
2069 /**
2070  * The state of a local IPv6 address entry is about to change. If needed, join
2071  * or leave the solicited-node multicast group for the address.
2072  *
2073  * @param netif The netif that owns the address.
2074  * @param addr_idx The index of the address.
2075  * @param new_state The new (IP6_ADDR_) state for the address.
2076  */
2077 void
nd6_adjust_mld_membership(struct netif * netif,s8_t addr_idx,u8_t new_state)2078 nd6_adjust_mld_membership(struct netif *netif, s8_t addr_idx, u8_t new_state)
2079 {
2080   u8_t old_state, old_member, new_member;
2081 
2082   old_state = netif_ip6_addr_state(netif, addr_idx);
2083 
2084   /* Determine whether we were, and should be, a member of the solicited-node
2085    * multicast group for this address. For tentative addresses, the group is
2086    * not joined until the address enters the TENTATIVE_1 (or VALID) state. */
2087   old_member = (old_state != IP6_ADDR_INVALID && old_state != IP6_ADDR_TENTATIVE);
2088   new_member = (new_state != IP6_ADDR_INVALID && new_state != IP6_ADDR_TENTATIVE);
2089 
2090   if (old_member != new_member) {
2091     ip6_addr_set_solicitednode(&multicast_address, netif_ip6_addr(netif, addr_idx)->addr[3]);
2092 
2093     if (new_member) {
2094       mld6_joingroup_netif(netif, &multicast_address);
2095     } else {
2096       mld6_leavegroup_netif(netif, &multicast_address);
2097     }
2098   }
2099 }
2100 #endif /* LWIP_IPV6_MLD */
2101 
2102 #endif /* LWIP_IPV6 */
2103