1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2018, Google LLC.
4  */
5 
6 #include <asm/msr-index.h>
7 
8 #include "test_util.h"
9 #include "kvm_util.h"
10 #include "processor.h"
11 #include "vmx.h"
12 
13 #define PAGE_SHIFT_4K  12
14 
15 #define KVM_EPT_PAGE_TABLE_MIN_PADDR 0x1c0000
16 
17 bool enable_evmcs;
18 
19 struct hv_enlightened_vmcs *current_evmcs;
20 struct hv_vp_assist_page *current_vp_assist;
21 
22 struct eptPageTableEntry {
23 	uint64_t readable:1;
24 	uint64_t writable:1;
25 	uint64_t executable:1;
26 	uint64_t memory_type:3;
27 	uint64_t ignore_pat:1;
28 	uint64_t page_size:1;
29 	uint64_t accessed:1;
30 	uint64_t dirty:1;
31 	uint64_t ignored_11_10:2;
32 	uint64_t address:40;
33 	uint64_t ignored_62_52:11;
34 	uint64_t suppress_ve:1;
35 };
36 
37 struct eptPageTablePointer {
38 	uint64_t memory_type:3;
39 	uint64_t page_walk_length:3;
40 	uint64_t ad_enabled:1;
41 	uint64_t reserved_11_07:5;
42 	uint64_t address:40;
43 	uint64_t reserved_63_52:12;
44 };
vcpu_enable_evmcs(struct kvm_vcpu * vcpu)45 int vcpu_enable_evmcs(struct kvm_vcpu *vcpu)
46 {
47 	uint16_t evmcs_ver;
48 
49 	vcpu_enable_cap(vcpu, KVM_CAP_HYPERV_ENLIGHTENED_VMCS,
50 			(unsigned long)&evmcs_ver);
51 
52 	/* KVM should return supported EVMCS version range */
53 	TEST_ASSERT(((evmcs_ver >> 8) >= (evmcs_ver & 0xff)) &&
54 		    (evmcs_ver & 0xff) > 0,
55 		    "Incorrect EVMCS version range: %x:%x",
56 		    evmcs_ver & 0xff, evmcs_ver >> 8);
57 
58 	return evmcs_ver;
59 }
60 
61 /* Allocate memory regions for nested VMX tests.
62  *
63  * Input Args:
64  *   vm - The VM to allocate guest-virtual addresses in.
65  *
66  * Output Args:
67  *   p_vmx_gva - The guest virtual address for the struct vmx_pages.
68  *
69  * Return:
70  *   Pointer to structure with the addresses of the VMX areas.
71  */
72 struct vmx_pages *
vcpu_alloc_vmx(struct kvm_vm * vm,vm_vaddr_t * p_vmx_gva)73 vcpu_alloc_vmx(struct kvm_vm *vm, vm_vaddr_t *p_vmx_gva)
74 {
75 	vm_vaddr_t vmx_gva = vm_vaddr_alloc_page(vm);
76 	struct vmx_pages *vmx = addr_gva2hva(vm, vmx_gva);
77 
78 	/* Setup of a region of guest memory for the vmxon region. */
79 	vmx->vmxon = (void *)vm_vaddr_alloc_page(vm);
80 	vmx->vmxon_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmxon);
81 	vmx->vmxon_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmxon);
82 
83 	/* Setup of a region of guest memory for a vmcs. */
84 	vmx->vmcs = (void *)vm_vaddr_alloc_page(vm);
85 	vmx->vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmcs);
86 	vmx->vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmcs);
87 
88 	/* Setup of a region of guest memory for the MSR bitmap. */
89 	vmx->msr = (void *)vm_vaddr_alloc_page(vm);
90 	vmx->msr_hva = addr_gva2hva(vm, (uintptr_t)vmx->msr);
91 	vmx->msr_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->msr);
92 	memset(vmx->msr_hva, 0, getpagesize());
93 
94 	/* Setup of a region of guest memory for the shadow VMCS. */
95 	vmx->shadow_vmcs = (void *)vm_vaddr_alloc_page(vm);
96 	vmx->shadow_vmcs_hva = addr_gva2hva(vm, (uintptr_t)vmx->shadow_vmcs);
97 	vmx->shadow_vmcs_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->shadow_vmcs);
98 
99 	/* Setup of a region of guest memory for the VMREAD and VMWRITE bitmaps. */
100 	vmx->vmread = (void *)vm_vaddr_alloc_page(vm);
101 	vmx->vmread_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmread);
102 	vmx->vmread_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmread);
103 	memset(vmx->vmread_hva, 0, getpagesize());
104 
105 	vmx->vmwrite = (void *)vm_vaddr_alloc_page(vm);
106 	vmx->vmwrite_hva = addr_gva2hva(vm, (uintptr_t)vmx->vmwrite);
107 	vmx->vmwrite_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->vmwrite);
108 	memset(vmx->vmwrite_hva, 0, getpagesize());
109 
110 	*p_vmx_gva = vmx_gva;
111 	return vmx;
112 }
113 
prepare_for_vmx_operation(struct vmx_pages * vmx)114 bool prepare_for_vmx_operation(struct vmx_pages *vmx)
115 {
116 	uint64_t feature_control;
117 	uint64_t required;
118 	unsigned long cr0;
119 	unsigned long cr4;
120 
121 	/*
122 	 * Ensure bits in CR0 and CR4 are valid in VMX operation:
123 	 * - Bit X is 1 in _FIXED0: bit X is fixed to 1 in CRx.
124 	 * - Bit X is 0 in _FIXED1: bit X is fixed to 0 in CRx.
125 	 */
126 	__asm__ __volatile__("mov %%cr0, %0" : "=r"(cr0) : : "memory");
127 	cr0 &= rdmsr(MSR_IA32_VMX_CR0_FIXED1);
128 	cr0 |= rdmsr(MSR_IA32_VMX_CR0_FIXED0);
129 	__asm__ __volatile__("mov %0, %%cr0" : : "r"(cr0) : "memory");
130 
131 	__asm__ __volatile__("mov %%cr4, %0" : "=r"(cr4) : : "memory");
132 	cr4 &= rdmsr(MSR_IA32_VMX_CR4_FIXED1);
133 	cr4 |= rdmsr(MSR_IA32_VMX_CR4_FIXED0);
134 	/* Enable VMX operation */
135 	cr4 |= X86_CR4_VMXE;
136 	__asm__ __volatile__("mov %0, %%cr4" : : "r"(cr4) : "memory");
137 
138 	/*
139 	 * Configure IA32_FEATURE_CONTROL MSR to allow VMXON:
140 	 *  Bit 0: Lock bit. If clear, VMXON causes a #GP.
141 	 *  Bit 2: Enables VMXON outside of SMX operation. If clear, VMXON
142 	 *    outside of SMX causes a #GP.
143 	 */
144 	required = FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
145 	required |= FEAT_CTL_LOCKED;
146 	feature_control = rdmsr(MSR_IA32_FEAT_CTL);
147 	if ((feature_control & required) != required)
148 		wrmsr(MSR_IA32_FEAT_CTL, feature_control | required);
149 
150 	/* Enter VMX root operation. */
151 	*(uint32_t *)(vmx->vmxon) = vmcs_revision();
152 	if (vmxon(vmx->vmxon_gpa))
153 		return false;
154 
155 	return true;
156 }
157 
load_vmcs(struct vmx_pages * vmx)158 bool load_vmcs(struct vmx_pages *vmx)
159 {
160 	/* Load a VMCS. */
161 	*(uint32_t *)(vmx->vmcs) = vmcs_revision();
162 	if (vmclear(vmx->vmcs_gpa))
163 		return false;
164 
165 	if (vmptrld(vmx->vmcs_gpa))
166 		return false;
167 
168 	/* Setup shadow VMCS, do not load it yet. */
169 	*(uint32_t *)(vmx->shadow_vmcs) = vmcs_revision() | 0x80000000ul;
170 	if (vmclear(vmx->shadow_vmcs_gpa))
171 		return false;
172 
173 	return true;
174 }
175 
ept_vpid_cap_supported(uint64_t mask)176 static bool ept_vpid_cap_supported(uint64_t mask)
177 {
178 	return rdmsr(MSR_IA32_VMX_EPT_VPID_CAP) & mask;
179 }
180 
ept_1g_pages_supported(void)181 bool ept_1g_pages_supported(void)
182 {
183 	return ept_vpid_cap_supported(VMX_EPT_VPID_CAP_1G_PAGES);
184 }
185 
186 /*
187  * Initialize the control fields to the most basic settings possible.
188  */
init_vmcs_control_fields(struct vmx_pages * vmx)189 static inline void init_vmcs_control_fields(struct vmx_pages *vmx)
190 {
191 	uint32_t sec_exec_ctl = 0;
192 
193 	vmwrite(VIRTUAL_PROCESSOR_ID, 0);
194 	vmwrite(POSTED_INTR_NV, 0);
195 
196 	vmwrite(PIN_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PINBASED_CTLS));
197 
198 	if (vmx->eptp_gpa) {
199 		uint64_t ept_paddr;
200 		struct eptPageTablePointer eptp = {
201 			.memory_type = X86_MEMTYPE_WB,
202 			.page_walk_length = 3, /* + 1 */
203 			.ad_enabled = ept_vpid_cap_supported(VMX_EPT_VPID_CAP_AD_BITS),
204 			.address = vmx->eptp_gpa >> PAGE_SHIFT_4K,
205 		};
206 
207 		memcpy(&ept_paddr, &eptp, sizeof(ept_paddr));
208 		vmwrite(EPT_POINTER, ept_paddr);
209 		sec_exec_ctl |= SECONDARY_EXEC_ENABLE_EPT;
210 	}
211 
212 	if (!vmwrite(SECONDARY_VM_EXEC_CONTROL, sec_exec_ctl))
213 		vmwrite(CPU_BASED_VM_EXEC_CONTROL,
214 			rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
215 	else {
216 		vmwrite(CPU_BASED_VM_EXEC_CONTROL, rdmsr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS));
217 		GUEST_ASSERT(!sec_exec_ctl);
218 	}
219 
220 	vmwrite(EXCEPTION_BITMAP, 0);
221 	vmwrite(PAGE_FAULT_ERROR_CODE_MASK, 0);
222 	vmwrite(PAGE_FAULT_ERROR_CODE_MATCH, -1); /* Never match */
223 	vmwrite(CR3_TARGET_COUNT, 0);
224 	vmwrite(VM_EXIT_CONTROLS, rdmsr(MSR_IA32_VMX_EXIT_CTLS) |
225 		VM_EXIT_HOST_ADDR_SPACE_SIZE);	  /* 64-bit host */
226 	vmwrite(VM_EXIT_MSR_STORE_COUNT, 0);
227 	vmwrite(VM_EXIT_MSR_LOAD_COUNT, 0);
228 	vmwrite(VM_ENTRY_CONTROLS, rdmsr(MSR_IA32_VMX_ENTRY_CTLS) |
229 		VM_ENTRY_IA32E_MODE);		  /* 64-bit guest */
230 	vmwrite(VM_ENTRY_MSR_LOAD_COUNT, 0);
231 	vmwrite(VM_ENTRY_INTR_INFO_FIELD, 0);
232 	vmwrite(TPR_THRESHOLD, 0);
233 
234 	vmwrite(CR0_GUEST_HOST_MASK, 0);
235 	vmwrite(CR4_GUEST_HOST_MASK, 0);
236 	vmwrite(CR0_READ_SHADOW, get_cr0());
237 	vmwrite(CR4_READ_SHADOW, get_cr4());
238 
239 	vmwrite(MSR_BITMAP, vmx->msr_gpa);
240 	vmwrite(VMREAD_BITMAP, vmx->vmread_gpa);
241 	vmwrite(VMWRITE_BITMAP, vmx->vmwrite_gpa);
242 }
243 
244 /*
245  * Initialize the host state fields based on the current host state, with
246  * the exception of HOST_RSP and HOST_RIP, which should be set by vmlaunch
247  * or vmresume.
248  */
init_vmcs_host_state(void)249 static inline void init_vmcs_host_state(void)
250 {
251 	uint32_t exit_controls = vmreadz(VM_EXIT_CONTROLS);
252 
253 	vmwrite(HOST_ES_SELECTOR, get_es());
254 	vmwrite(HOST_CS_SELECTOR, get_cs());
255 	vmwrite(HOST_SS_SELECTOR, get_ss());
256 	vmwrite(HOST_DS_SELECTOR, get_ds());
257 	vmwrite(HOST_FS_SELECTOR, get_fs());
258 	vmwrite(HOST_GS_SELECTOR, get_gs());
259 	vmwrite(HOST_TR_SELECTOR, get_tr());
260 
261 	if (exit_controls & VM_EXIT_LOAD_IA32_PAT)
262 		vmwrite(HOST_IA32_PAT, rdmsr(MSR_IA32_CR_PAT));
263 	if (exit_controls & VM_EXIT_LOAD_IA32_EFER)
264 		vmwrite(HOST_IA32_EFER, rdmsr(MSR_EFER));
265 	if (exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
266 		vmwrite(HOST_IA32_PERF_GLOBAL_CTRL,
267 			rdmsr(MSR_CORE_PERF_GLOBAL_CTRL));
268 
269 	vmwrite(HOST_IA32_SYSENTER_CS, rdmsr(MSR_IA32_SYSENTER_CS));
270 
271 	vmwrite(HOST_CR0, get_cr0());
272 	vmwrite(HOST_CR3, get_cr3());
273 	vmwrite(HOST_CR4, get_cr4());
274 	vmwrite(HOST_FS_BASE, rdmsr(MSR_FS_BASE));
275 	vmwrite(HOST_GS_BASE, rdmsr(MSR_GS_BASE));
276 	vmwrite(HOST_TR_BASE,
277 		get_desc64_base((struct desc64 *)(get_gdt().address + get_tr())));
278 	vmwrite(HOST_GDTR_BASE, get_gdt().address);
279 	vmwrite(HOST_IDTR_BASE, get_idt().address);
280 	vmwrite(HOST_IA32_SYSENTER_ESP, rdmsr(MSR_IA32_SYSENTER_ESP));
281 	vmwrite(HOST_IA32_SYSENTER_EIP, rdmsr(MSR_IA32_SYSENTER_EIP));
282 }
283 
284 /*
285  * Initialize the guest state fields essentially as a clone of
286  * the host state fields. Some host state fields have fixed
287  * values, and we set the corresponding guest state fields accordingly.
288  */
init_vmcs_guest_state(void * rip,void * rsp)289 static inline void init_vmcs_guest_state(void *rip, void *rsp)
290 {
291 	vmwrite(GUEST_ES_SELECTOR, vmreadz(HOST_ES_SELECTOR));
292 	vmwrite(GUEST_CS_SELECTOR, vmreadz(HOST_CS_SELECTOR));
293 	vmwrite(GUEST_SS_SELECTOR, vmreadz(HOST_SS_SELECTOR));
294 	vmwrite(GUEST_DS_SELECTOR, vmreadz(HOST_DS_SELECTOR));
295 	vmwrite(GUEST_FS_SELECTOR, vmreadz(HOST_FS_SELECTOR));
296 	vmwrite(GUEST_GS_SELECTOR, vmreadz(HOST_GS_SELECTOR));
297 	vmwrite(GUEST_LDTR_SELECTOR, 0);
298 	vmwrite(GUEST_TR_SELECTOR, vmreadz(HOST_TR_SELECTOR));
299 	vmwrite(GUEST_INTR_STATUS, 0);
300 	vmwrite(GUEST_PML_INDEX, 0);
301 
302 	vmwrite(VMCS_LINK_POINTER, -1ll);
303 	vmwrite(GUEST_IA32_DEBUGCTL, 0);
304 	vmwrite(GUEST_IA32_PAT, vmreadz(HOST_IA32_PAT));
305 	vmwrite(GUEST_IA32_EFER, vmreadz(HOST_IA32_EFER));
306 	vmwrite(GUEST_IA32_PERF_GLOBAL_CTRL,
307 		vmreadz(HOST_IA32_PERF_GLOBAL_CTRL));
308 
309 	vmwrite(GUEST_ES_LIMIT, -1);
310 	vmwrite(GUEST_CS_LIMIT, -1);
311 	vmwrite(GUEST_SS_LIMIT, -1);
312 	vmwrite(GUEST_DS_LIMIT, -1);
313 	vmwrite(GUEST_FS_LIMIT, -1);
314 	vmwrite(GUEST_GS_LIMIT, -1);
315 	vmwrite(GUEST_LDTR_LIMIT, -1);
316 	vmwrite(GUEST_TR_LIMIT, 0x67);
317 	vmwrite(GUEST_GDTR_LIMIT, 0xffff);
318 	vmwrite(GUEST_IDTR_LIMIT, 0xffff);
319 	vmwrite(GUEST_ES_AR_BYTES,
320 		vmreadz(GUEST_ES_SELECTOR) == 0 ? 0x10000 : 0xc093);
321 	vmwrite(GUEST_CS_AR_BYTES, 0xa09b);
322 	vmwrite(GUEST_SS_AR_BYTES, 0xc093);
323 	vmwrite(GUEST_DS_AR_BYTES,
324 		vmreadz(GUEST_DS_SELECTOR) == 0 ? 0x10000 : 0xc093);
325 	vmwrite(GUEST_FS_AR_BYTES,
326 		vmreadz(GUEST_FS_SELECTOR) == 0 ? 0x10000 : 0xc093);
327 	vmwrite(GUEST_GS_AR_BYTES,
328 		vmreadz(GUEST_GS_SELECTOR) == 0 ? 0x10000 : 0xc093);
329 	vmwrite(GUEST_LDTR_AR_BYTES, 0x10000);
330 	vmwrite(GUEST_TR_AR_BYTES, 0x8b);
331 	vmwrite(GUEST_INTERRUPTIBILITY_INFO, 0);
332 	vmwrite(GUEST_ACTIVITY_STATE, 0);
333 	vmwrite(GUEST_SYSENTER_CS, vmreadz(HOST_IA32_SYSENTER_CS));
334 	vmwrite(VMX_PREEMPTION_TIMER_VALUE, 0);
335 
336 	vmwrite(GUEST_CR0, vmreadz(HOST_CR0));
337 	vmwrite(GUEST_CR3, vmreadz(HOST_CR3));
338 	vmwrite(GUEST_CR4, vmreadz(HOST_CR4));
339 	vmwrite(GUEST_ES_BASE, 0);
340 	vmwrite(GUEST_CS_BASE, 0);
341 	vmwrite(GUEST_SS_BASE, 0);
342 	vmwrite(GUEST_DS_BASE, 0);
343 	vmwrite(GUEST_FS_BASE, vmreadz(HOST_FS_BASE));
344 	vmwrite(GUEST_GS_BASE, vmreadz(HOST_GS_BASE));
345 	vmwrite(GUEST_LDTR_BASE, 0);
346 	vmwrite(GUEST_TR_BASE, vmreadz(HOST_TR_BASE));
347 	vmwrite(GUEST_GDTR_BASE, vmreadz(HOST_GDTR_BASE));
348 	vmwrite(GUEST_IDTR_BASE, vmreadz(HOST_IDTR_BASE));
349 	vmwrite(GUEST_DR7, 0x400);
350 	vmwrite(GUEST_RSP, (uint64_t)rsp);
351 	vmwrite(GUEST_RIP, (uint64_t)rip);
352 	vmwrite(GUEST_RFLAGS, 2);
353 	vmwrite(GUEST_PENDING_DBG_EXCEPTIONS, 0);
354 	vmwrite(GUEST_SYSENTER_ESP, vmreadz(HOST_IA32_SYSENTER_ESP));
355 	vmwrite(GUEST_SYSENTER_EIP, vmreadz(HOST_IA32_SYSENTER_EIP));
356 }
357 
prepare_vmcs(struct vmx_pages * vmx,void * guest_rip,void * guest_rsp)358 void prepare_vmcs(struct vmx_pages *vmx, void *guest_rip, void *guest_rsp)
359 {
360 	init_vmcs_control_fields(vmx);
361 	init_vmcs_host_state();
362 	init_vmcs_guest_state(guest_rip, guest_rsp);
363 }
364 
nested_create_pte(struct kvm_vm * vm,struct eptPageTableEntry * pte,uint64_t nested_paddr,uint64_t paddr,int current_level,int target_level)365 static void nested_create_pte(struct kvm_vm *vm,
366 			      struct eptPageTableEntry *pte,
367 			      uint64_t nested_paddr,
368 			      uint64_t paddr,
369 			      int current_level,
370 			      int target_level)
371 {
372 	if (!pte->readable) {
373 		pte->writable = true;
374 		pte->readable = true;
375 		pte->executable = true;
376 		pte->page_size = (current_level == target_level);
377 		if (pte->page_size)
378 			pte->address = paddr >> vm->page_shift;
379 		else
380 			pte->address = vm_alloc_page_table(vm) >> vm->page_shift;
381 	} else {
382 		/*
383 		 * Entry already present.  Assert that the caller doesn't want
384 		 * a hugepage at this level, and that there isn't a hugepage at
385 		 * this level.
386 		 */
387 		TEST_ASSERT(current_level != target_level,
388 			    "Cannot create hugepage at level: %u, nested_paddr: 0x%lx",
389 			    current_level, nested_paddr);
390 		TEST_ASSERT(!pte->page_size,
391 			    "Cannot create page table at level: %u, nested_paddr: 0x%lx",
392 			    current_level, nested_paddr);
393 	}
394 }
395 
396 
__nested_pg_map(struct vmx_pages * vmx,struct kvm_vm * vm,uint64_t nested_paddr,uint64_t paddr,int target_level)397 void __nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
398 		     uint64_t nested_paddr, uint64_t paddr, int target_level)
399 {
400 	const uint64_t page_size = PG_LEVEL_SIZE(target_level);
401 	struct eptPageTableEntry *pt = vmx->eptp_hva, *pte;
402 	uint16_t index;
403 
404 	TEST_ASSERT(vm->mode == VM_MODE_PXXV48_4K, "Attempt to use "
405 		    "unknown or unsupported guest mode, mode: 0x%x", vm->mode);
406 
407 	TEST_ASSERT((nested_paddr >> 48) == 0,
408 		    "Nested physical address 0x%lx requires 5-level paging",
409 		    nested_paddr);
410 	TEST_ASSERT((nested_paddr % page_size) == 0,
411 		    "Nested physical address not on page boundary,\n"
412 		    "  nested_paddr: 0x%lx page_size: 0x%lx",
413 		    nested_paddr, page_size);
414 	TEST_ASSERT((nested_paddr >> vm->page_shift) <= vm->max_gfn,
415 		    "Physical address beyond beyond maximum supported,\n"
416 		    "  nested_paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
417 		    paddr, vm->max_gfn, vm->page_size);
418 	TEST_ASSERT((paddr % page_size) == 0,
419 		    "Physical address not on page boundary,\n"
420 		    "  paddr: 0x%lx page_size: 0x%lx",
421 		    paddr, page_size);
422 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
423 		    "Physical address beyond beyond maximum supported,\n"
424 		    "  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
425 		    paddr, vm->max_gfn, vm->page_size);
426 
427 	for (int level = PG_LEVEL_512G; level >= PG_LEVEL_4K; level--) {
428 		index = (nested_paddr >> PG_LEVEL_SHIFT(level)) & 0x1ffu;
429 		pte = &pt[index];
430 
431 		nested_create_pte(vm, pte, nested_paddr, paddr, level, target_level);
432 
433 		if (pte->page_size)
434 			break;
435 
436 		pt = addr_gpa2hva(vm, pte->address * vm->page_size);
437 	}
438 
439 	/*
440 	 * For now mark these as accessed and dirty because the only
441 	 * testcase we have needs that.  Can be reconsidered later.
442 	 */
443 	pte->accessed = true;
444 	pte->dirty = true;
445 
446 }
447 
nested_pg_map(struct vmx_pages * vmx,struct kvm_vm * vm,uint64_t nested_paddr,uint64_t paddr)448 void nested_pg_map(struct vmx_pages *vmx, struct kvm_vm *vm,
449 		   uint64_t nested_paddr, uint64_t paddr)
450 {
451 	__nested_pg_map(vmx, vm, nested_paddr, paddr, PG_LEVEL_4K);
452 }
453 
454 /*
455  * Map a range of EPT guest physical addresses to the VM's physical address
456  *
457  * Input Args:
458  *   vm - Virtual Machine
459  *   nested_paddr - Nested guest physical address to map
460  *   paddr - VM Physical Address
461  *   size - The size of the range to map
462  *   level - The level at which to map the range
463  *
464  * Output Args: None
465  *
466  * Return: None
467  *
468  * Within the VM given by vm, creates a nested guest translation for the
469  * page range starting at nested_paddr to the page range starting at paddr.
470  */
__nested_map(struct vmx_pages * vmx,struct kvm_vm * vm,uint64_t nested_paddr,uint64_t paddr,uint64_t size,int level)471 void __nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
472 		  uint64_t nested_paddr, uint64_t paddr, uint64_t size,
473 		  int level)
474 {
475 	size_t page_size = PG_LEVEL_SIZE(level);
476 	size_t npages = size / page_size;
477 
478 	TEST_ASSERT(nested_paddr + size > nested_paddr, "Vaddr overflow");
479 	TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
480 
481 	while (npages--) {
482 		__nested_pg_map(vmx, vm, nested_paddr, paddr, level);
483 		nested_paddr += page_size;
484 		paddr += page_size;
485 	}
486 }
487 
nested_map(struct vmx_pages * vmx,struct kvm_vm * vm,uint64_t nested_paddr,uint64_t paddr,uint64_t size)488 void nested_map(struct vmx_pages *vmx, struct kvm_vm *vm,
489 		uint64_t nested_paddr, uint64_t paddr, uint64_t size)
490 {
491 	__nested_map(vmx, vm, nested_paddr, paddr, size, PG_LEVEL_4K);
492 }
493 
494 /* Prepare an identity extended page table that maps all the
495  * physical pages in VM.
496  */
nested_map_memslot(struct vmx_pages * vmx,struct kvm_vm * vm,uint32_t memslot)497 void nested_map_memslot(struct vmx_pages *vmx, struct kvm_vm *vm,
498 			uint32_t memslot)
499 {
500 	sparsebit_idx_t i, last;
501 	struct userspace_mem_region *region =
502 		memslot2region(vm, memslot);
503 
504 	i = (region->region.guest_phys_addr >> vm->page_shift) - 1;
505 	last = i + (region->region.memory_size >> vm->page_shift);
506 	for (;;) {
507 		i = sparsebit_next_clear(region->unused_phy_pages, i);
508 		if (i > last)
509 			break;
510 
511 		nested_map(vmx, vm,
512 			   (uint64_t)i << vm->page_shift,
513 			   (uint64_t)i << vm->page_shift,
514 			   1 << vm->page_shift);
515 	}
516 }
517 
518 /* Identity map a region with 1GiB Pages. */
nested_identity_map_1g(struct vmx_pages * vmx,struct kvm_vm * vm,uint64_t addr,uint64_t size)519 void nested_identity_map_1g(struct vmx_pages *vmx, struct kvm_vm *vm,
520 			    uint64_t addr, uint64_t size)
521 {
522 	__nested_map(vmx, vm, addr, addr, size, PG_LEVEL_1G);
523 }
524 
kvm_cpu_has_ept(void)525 bool kvm_cpu_has_ept(void)
526 {
527 	uint64_t ctrl;
528 
529 	ctrl = kvm_get_feature_msr(MSR_IA32_VMX_TRUE_PROCBASED_CTLS) >> 32;
530 	if (!(ctrl & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
531 		return false;
532 
533 	ctrl = kvm_get_feature_msr(MSR_IA32_VMX_PROCBASED_CTLS2) >> 32;
534 	return ctrl & SECONDARY_EXEC_ENABLE_EPT;
535 }
536 
prepare_eptp(struct vmx_pages * vmx,struct kvm_vm * vm,uint32_t eptp_memslot)537 void prepare_eptp(struct vmx_pages *vmx, struct kvm_vm *vm,
538 		  uint32_t eptp_memslot)
539 {
540 	TEST_ASSERT(kvm_cpu_has_ept(), "KVM doesn't support nested EPT");
541 
542 	vmx->eptp = (void *)vm_vaddr_alloc_page(vm);
543 	vmx->eptp_hva = addr_gva2hva(vm, (uintptr_t)vmx->eptp);
544 	vmx->eptp_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->eptp);
545 }
546 
prepare_virtualize_apic_accesses(struct vmx_pages * vmx,struct kvm_vm * vm)547 void prepare_virtualize_apic_accesses(struct vmx_pages *vmx, struct kvm_vm *vm)
548 {
549 	vmx->apic_access = (void *)vm_vaddr_alloc_page(vm);
550 	vmx->apic_access_hva = addr_gva2hva(vm, (uintptr_t)vmx->apic_access);
551 	vmx->apic_access_gpa = addr_gva2gpa(vm, (uintptr_t)vmx->apic_access);
552 }
553