1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * vpmu_counter_access - Test vPMU event counter access
4 *
5 * Copyright (c) 2023 Google LLC.
6 *
7 * This test checks if the guest can see the same number of the PMU event
8 * counters (PMCR_EL0.N) that userspace sets, if the guest can access
9 * those counters, and if the guest is prevented from accessing any
10 * other counters.
11 * It also checks if the userspace accesses to the PMU regsisters honor the
12 * PMCR.N value that's set for the guest.
13 * This test runs only when KVM_CAP_ARM_PMU_V3 is supported on the host.
14 */
15 #include <kvm_util.h>
16 #include <processor.h>
17 #include <test_util.h>
18 #include <vgic.h>
19 #include <perf/arm_pmuv3.h>
20 #include <linux/bitfield.h>
21
22 /* The max number of the PMU event counters (excluding the cycle counter) */
23 #define ARMV8_PMU_MAX_GENERAL_COUNTERS (ARMV8_PMU_MAX_COUNTERS - 1)
24
25 /* The cycle counter bit position that's common among the PMU registers */
26 #define ARMV8_PMU_CYCLE_IDX 31
27
28 struct vpmu_vm {
29 struct kvm_vm *vm;
30 struct kvm_vcpu *vcpu;
31 int gic_fd;
32 };
33
34 static struct vpmu_vm vpmu_vm;
35
36 struct pmreg_sets {
37 uint64_t set_reg_id;
38 uint64_t clr_reg_id;
39 };
40
41 #define PMREG_SET(set, clr) {.set_reg_id = set, .clr_reg_id = clr}
42
get_pmcr_n(uint64_t pmcr)43 static uint64_t get_pmcr_n(uint64_t pmcr)
44 {
45 return FIELD_GET(ARMV8_PMU_PMCR_N, pmcr);
46 }
47
set_pmcr_n(uint64_t * pmcr,uint64_t pmcr_n)48 static void set_pmcr_n(uint64_t *pmcr, uint64_t pmcr_n)
49 {
50 u64p_replace_bits((__u64 *) pmcr, pmcr_n, ARMV8_PMU_PMCR_N);
51 }
52
get_counters_mask(uint64_t n)53 static uint64_t get_counters_mask(uint64_t n)
54 {
55 uint64_t mask = BIT(ARMV8_PMU_CYCLE_IDX);
56
57 if (n)
58 mask |= GENMASK(n - 1, 0);
59 return mask;
60 }
61
62 /* Read PMEVTCNTR<n>_EL0 through PMXEVCNTR_EL0 */
read_sel_evcntr(int sel)63 static inline unsigned long read_sel_evcntr(int sel)
64 {
65 write_sysreg(sel, pmselr_el0);
66 isb();
67 return read_sysreg(pmxevcntr_el0);
68 }
69
70 /* Write PMEVTCNTR<n>_EL0 through PMXEVCNTR_EL0 */
write_sel_evcntr(int sel,unsigned long val)71 static inline void write_sel_evcntr(int sel, unsigned long val)
72 {
73 write_sysreg(sel, pmselr_el0);
74 isb();
75 write_sysreg(val, pmxevcntr_el0);
76 isb();
77 }
78
79 /* Read PMEVTYPER<n>_EL0 through PMXEVTYPER_EL0 */
read_sel_evtyper(int sel)80 static inline unsigned long read_sel_evtyper(int sel)
81 {
82 write_sysreg(sel, pmselr_el0);
83 isb();
84 return read_sysreg(pmxevtyper_el0);
85 }
86
87 /* Write PMEVTYPER<n>_EL0 through PMXEVTYPER_EL0 */
write_sel_evtyper(int sel,unsigned long val)88 static inline void write_sel_evtyper(int sel, unsigned long val)
89 {
90 write_sysreg(sel, pmselr_el0);
91 isb();
92 write_sysreg(val, pmxevtyper_el0);
93 isb();
94 }
95
pmu_disable_reset(void)96 static void pmu_disable_reset(void)
97 {
98 uint64_t pmcr = read_sysreg(pmcr_el0);
99
100 /* Reset all counters, disabling them */
101 pmcr &= ~ARMV8_PMU_PMCR_E;
102 write_sysreg(pmcr | ARMV8_PMU_PMCR_P, pmcr_el0);
103 isb();
104 }
105
106 #define RETURN_READ_PMEVCNTRN(n) \
107 return read_sysreg(pmevcntr##n##_el0)
read_pmevcntrn(int n)108 static unsigned long read_pmevcntrn(int n)
109 {
110 PMEVN_SWITCH(n, RETURN_READ_PMEVCNTRN);
111 return 0;
112 }
113
114 #define WRITE_PMEVCNTRN(n) \
115 write_sysreg(val, pmevcntr##n##_el0)
write_pmevcntrn(int n,unsigned long val)116 static void write_pmevcntrn(int n, unsigned long val)
117 {
118 PMEVN_SWITCH(n, WRITE_PMEVCNTRN);
119 isb();
120 }
121
122 #define READ_PMEVTYPERN(n) \
123 return read_sysreg(pmevtyper##n##_el0)
read_pmevtypern(int n)124 static unsigned long read_pmevtypern(int n)
125 {
126 PMEVN_SWITCH(n, READ_PMEVTYPERN);
127 return 0;
128 }
129
130 #define WRITE_PMEVTYPERN(n) \
131 write_sysreg(val, pmevtyper##n##_el0)
write_pmevtypern(int n,unsigned long val)132 static void write_pmevtypern(int n, unsigned long val)
133 {
134 PMEVN_SWITCH(n, WRITE_PMEVTYPERN);
135 isb();
136 }
137
138 /*
139 * The pmc_accessor structure has pointers to PMEV{CNTR,TYPER}<n>_EL0
140 * accessors that test cases will use. Each of the accessors will
141 * either directly reads/writes PMEV{CNTR,TYPER}<n>_EL0
142 * (i.e. {read,write}_pmev{cnt,type}rn()), or reads/writes them through
143 * PMXEV{CNTR,TYPER}_EL0 (i.e. {read,write}_sel_ev{cnt,type}r()).
144 *
145 * This is used to test that combinations of those accessors provide
146 * the consistent behavior.
147 */
148 struct pmc_accessor {
149 /* A function to be used to read PMEVTCNTR<n>_EL0 */
150 unsigned long (*read_cntr)(int idx);
151 /* A function to be used to write PMEVTCNTR<n>_EL0 */
152 void (*write_cntr)(int idx, unsigned long val);
153 /* A function to be used to read PMEVTYPER<n>_EL0 */
154 unsigned long (*read_typer)(int idx);
155 /* A function to be used to write PMEVTYPER<n>_EL0 */
156 void (*write_typer)(int idx, unsigned long val);
157 };
158
159 struct pmc_accessor pmc_accessors[] = {
160 /* test with all direct accesses */
161 { read_pmevcntrn, write_pmevcntrn, read_pmevtypern, write_pmevtypern },
162 /* test with all indirect accesses */
163 { read_sel_evcntr, write_sel_evcntr, read_sel_evtyper, write_sel_evtyper },
164 /* read with direct accesses, and write with indirect accesses */
165 { read_pmevcntrn, write_sel_evcntr, read_pmevtypern, write_sel_evtyper },
166 /* read with indirect accesses, and write with direct accesses */
167 { read_sel_evcntr, write_pmevcntrn, read_sel_evtyper, write_pmevtypern },
168 };
169
170 /*
171 * Convert a pointer of pmc_accessor to an index in pmc_accessors[],
172 * assuming that the pointer is one of the entries in pmc_accessors[].
173 */
174 #define PMC_ACC_TO_IDX(acc) (acc - &pmc_accessors[0])
175
176 #define GUEST_ASSERT_BITMAP_REG(regname, mask, set_expected) \
177 { \
178 uint64_t _tval = read_sysreg(regname); \
179 \
180 if (set_expected) \
181 __GUEST_ASSERT((_tval & mask), \
182 "tval: 0x%lx; mask: 0x%lx; set_expected: %u", \
183 _tval, mask, set_expected); \
184 else \
185 __GUEST_ASSERT(!(_tval & mask), \
186 "tval: 0x%lx; mask: 0x%lx; set_expected: %u", \
187 _tval, mask, set_expected); \
188 }
189
190 /*
191 * Check if @mask bits in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers
192 * are set or cleared as specified in @set_expected.
193 */
check_bitmap_pmu_regs(uint64_t mask,bool set_expected)194 static void check_bitmap_pmu_regs(uint64_t mask, bool set_expected)
195 {
196 GUEST_ASSERT_BITMAP_REG(pmcntenset_el0, mask, set_expected);
197 GUEST_ASSERT_BITMAP_REG(pmcntenclr_el0, mask, set_expected);
198 GUEST_ASSERT_BITMAP_REG(pmintenset_el1, mask, set_expected);
199 GUEST_ASSERT_BITMAP_REG(pmintenclr_el1, mask, set_expected);
200 GUEST_ASSERT_BITMAP_REG(pmovsset_el0, mask, set_expected);
201 GUEST_ASSERT_BITMAP_REG(pmovsclr_el0, mask, set_expected);
202 }
203
204 /*
205 * Check if the bit in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers corresponding
206 * to the specified counter (@pmc_idx) can be read/written as expected.
207 * When @set_op is true, it tries to set the bit for the counter in
208 * those registers by writing the SET registers (the bit won't be set
209 * if the counter is not implemented though).
210 * Otherwise, it tries to clear the bits in the registers by writing
211 * the CLR registers.
212 * Then, it checks if the values indicated in the registers are as expected.
213 */
test_bitmap_pmu_regs(int pmc_idx,bool set_op)214 static void test_bitmap_pmu_regs(int pmc_idx, bool set_op)
215 {
216 uint64_t pmcr_n, test_bit = BIT(pmc_idx);
217 bool set_expected = false;
218
219 if (set_op) {
220 write_sysreg(test_bit, pmcntenset_el0);
221 write_sysreg(test_bit, pmintenset_el1);
222 write_sysreg(test_bit, pmovsset_el0);
223
224 /* The bit will be set only if the counter is implemented */
225 pmcr_n = get_pmcr_n(read_sysreg(pmcr_el0));
226 set_expected = (pmc_idx < pmcr_n) ? true : false;
227 } else {
228 write_sysreg(test_bit, pmcntenclr_el0);
229 write_sysreg(test_bit, pmintenclr_el1);
230 write_sysreg(test_bit, pmovsclr_el0);
231 }
232 check_bitmap_pmu_regs(test_bit, set_expected);
233 }
234
235 /*
236 * Tests for reading/writing registers for the (implemented) event counter
237 * specified by @pmc_idx.
238 */
test_access_pmc_regs(struct pmc_accessor * acc,int pmc_idx)239 static void test_access_pmc_regs(struct pmc_accessor *acc, int pmc_idx)
240 {
241 uint64_t write_data, read_data;
242
243 /* Disable all PMCs and reset all PMCs to zero. */
244 pmu_disable_reset();
245
246 /*
247 * Tests for reading/writing {PMCNTEN,PMINTEN,PMOVS}{SET,CLR}_EL1.
248 */
249
250 /* Make sure that the bit in those registers are set to 0 */
251 test_bitmap_pmu_regs(pmc_idx, false);
252 /* Test if setting the bit in those registers works */
253 test_bitmap_pmu_regs(pmc_idx, true);
254 /* Test if clearing the bit in those registers works */
255 test_bitmap_pmu_regs(pmc_idx, false);
256
257 /*
258 * Tests for reading/writing the event type register.
259 */
260
261 /*
262 * Set the event type register to an arbitrary value just for testing
263 * of reading/writing the register.
264 * Arm ARM says that for the event from 0x0000 to 0x003F,
265 * the value indicated in the PMEVTYPER<n>_EL0.evtCount field is
266 * the value written to the field even when the specified event
267 * is not supported.
268 */
269 write_data = (ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMUV3_PERFCTR_INST_RETIRED);
270 acc->write_typer(pmc_idx, write_data);
271 read_data = acc->read_typer(pmc_idx);
272 __GUEST_ASSERT(read_data == write_data,
273 "pmc_idx: 0x%x; acc_idx: 0x%lx; read_data: 0x%lx; write_data: 0x%lx",
274 pmc_idx, PMC_ACC_TO_IDX(acc), read_data, write_data);
275
276 /*
277 * Tests for reading/writing the event count register.
278 */
279
280 read_data = acc->read_cntr(pmc_idx);
281
282 /* The count value must be 0, as it is disabled and reset */
283 __GUEST_ASSERT(read_data == 0,
284 "pmc_idx: 0x%x; acc_idx: 0x%lx; read_data: 0x%lx",
285 pmc_idx, PMC_ACC_TO_IDX(acc), read_data);
286
287 write_data = read_data + pmc_idx + 0x12345;
288 acc->write_cntr(pmc_idx, write_data);
289 read_data = acc->read_cntr(pmc_idx);
290 __GUEST_ASSERT(read_data == write_data,
291 "pmc_idx: 0x%x; acc_idx: 0x%lx; read_data: 0x%lx; write_data: 0x%lx",
292 pmc_idx, PMC_ACC_TO_IDX(acc), read_data, write_data);
293 }
294
295 #define INVALID_EC (-1ul)
296 uint64_t expected_ec = INVALID_EC;
297
guest_sync_handler(struct ex_regs * regs)298 static void guest_sync_handler(struct ex_regs *regs)
299 {
300 uint64_t esr, ec;
301
302 esr = read_sysreg(esr_el1);
303 ec = ESR_ELx_EC(esr);
304
305 __GUEST_ASSERT(expected_ec == ec,
306 "PC: 0x%lx; ESR: 0x%lx; EC: 0x%lx; EC expected: 0x%lx",
307 regs->pc, esr, ec, expected_ec);
308
309 /* skip the trapping instruction */
310 regs->pc += 4;
311
312 /* Use INVALID_EC to indicate an exception occurred */
313 expected_ec = INVALID_EC;
314 }
315
316 /*
317 * Run the given operation that should trigger an exception with the
318 * given exception class. The exception handler (guest_sync_handler)
319 * will reset op_end_addr to 0, expected_ec to INVALID_EC, and skip
320 * the instruction that trapped.
321 */
322 #define TEST_EXCEPTION(ec, ops) \
323 ({ \
324 GUEST_ASSERT(ec != INVALID_EC); \
325 WRITE_ONCE(expected_ec, ec); \
326 dsb(ish); \
327 ops; \
328 GUEST_ASSERT(expected_ec == INVALID_EC); \
329 })
330
331 /*
332 * Tests for reading/writing registers for the unimplemented event counter
333 * specified by @pmc_idx (>= PMCR_EL0.N).
334 */
test_access_invalid_pmc_regs(struct pmc_accessor * acc,int pmc_idx)335 static void test_access_invalid_pmc_regs(struct pmc_accessor *acc, int pmc_idx)
336 {
337 /*
338 * Reading/writing the event count/type registers should cause
339 * an UNDEFINED exception.
340 */
341 TEST_EXCEPTION(ESR_ELx_EC_UNKNOWN, acc->read_cntr(pmc_idx));
342 TEST_EXCEPTION(ESR_ELx_EC_UNKNOWN, acc->write_cntr(pmc_idx, 0));
343 TEST_EXCEPTION(ESR_ELx_EC_UNKNOWN, acc->read_typer(pmc_idx));
344 TEST_EXCEPTION(ESR_ELx_EC_UNKNOWN, acc->write_typer(pmc_idx, 0));
345 /*
346 * The bit corresponding to the (unimplemented) counter in
347 * {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers should be RAZ.
348 */
349 test_bitmap_pmu_regs(pmc_idx, 1);
350 test_bitmap_pmu_regs(pmc_idx, 0);
351 }
352
353 /*
354 * The guest is configured with PMUv3 with @expected_pmcr_n number of
355 * event counters.
356 * Check if @expected_pmcr_n is consistent with PMCR_EL0.N, and
357 * if reading/writing PMU registers for implemented or unimplemented
358 * counters works as expected.
359 */
guest_code(uint64_t expected_pmcr_n)360 static void guest_code(uint64_t expected_pmcr_n)
361 {
362 uint64_t pmcr, pmcr_n, unimp_mask;
363 int i, pmc;
364
365 __GUEST_ASSERT(expected_pmcr_n <= ARMV8_PMU_MAX_GENERAL_COUNTERS,
366 "Expected PMCR.N: 0x%lx; ARMv8 general counters: 0x%x",
367 expected_pmcr_n, ARMV8_PMU_MAX_GENERAL_COUNTERS);
368
369 pmcr = read_sysreg(pmcr_el0);
370 pmcr_n = get_pmcr_n(pmcr);
371
372 /* Make sure that PMCR_EL0.N indicates the value userspace set */
373 __GUEST_ASSERT(pmcr_n == expected_pmcr_n,
374 "Expected PMCR.N: 0x%lx, PMCR.N: 0x%lx",
375 expected_pmcr_n, pmcr_n);
376
377 /*
378 * Make sure that (RAZ) bits corresponding to unimplemented event
379 * counters in {PMCNTEN,PMINTEN,PMOVS}{SET,CLR} registers are reset
380 * to zero.
381 * (NOTE: bits for implemented event counters are reset to UNKNOWN)
382 */
383 unimp_mask = GENMASK_ULL(ARMV8_PMU_MAX_GENERAL_COUNTERS - 1, pmcr_n);
384 check_bitmap_pmu_regs(unimp_mask, false);
385
386 /*
387 * Tests for reading/writing PMU registers for implemented counters.
388 * Use each combination of PMEV{CNTR,TYPER}<n>_EL0 accessor functions.
389 */
390 for (i = 0; i < ARRAY_SIZE(pmc_accessors); i++) {
391 for (pmc = 0; pmc < pmcr_n; pmc++)
392 test_access_pmc_regs(&pmc_accessors[i], pmc);
393 }
394
395 /*
396 * Tests for reading/writing PMU registers for unimplemented counters.
397 * Use each combination of PMEV{CNTR,TYPER}<n>_EL0 accessor functions.
398 */
399 for (i = 0; i < ARRAY_SIZE(pmc_accessors); i++) {
400 for (pmc = pmcr_n; pmc < ARMV8_PMU_MAX_GENERAL_COUNTERS; pmc++)
401 test_access_invalid_pmc_regs(&pmc_accessors[i], pmc);
402 }
403
404 GUEST_DONE();
405 }
406
407 /* Create a VM that has one vCPU with PMUv3 configured. */
create_vpmu_vm(void * guest_code)408 static void create_vpmu_vm(void *guest_code)
409 {
410 struct kvm_vcpu_init init;
411 uint8_t pmuver, ec;
412 uint64_t dfr0, irq = 23;
413 struct kvm_device_attr irq_attr = {
414 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
415 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
416 .addr = (uint64_t)&irq,
417 };
418 struct kvm_device_attr init_attr = {
419 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
420 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
421 };
422
423 /* The test creates the vpmu_vm multiple times. Ensure a clean state */
424 memset(&vpmu_vm, 0, sizeof(vpmu_vm));
425
426 vpmu_vm.vm = vm_create(1);
427 vm_init_descriptor_tables(vpmu_vm.vm);
428 for (ec = 0; ec < ESR_ELx_EC_MAX + 1; ec++) {
429 vm_install_sync_handler(vpmu_vm.vm, VECTOR_SYNC_CURRENT, ec,
430 guest_sync_handler);
431 }
432
433 /* Create vCPU with PMUv3 */
434 vm_ioctl(vpmu_vm.vm, KVM_ARM_PREFERRED_TARGET, &init);
435 init.features[0] |= (1 << KVM_ARM_VCPU_PMU_V3);
436 vpmu_vm.vcpu = aarch64_vcpu_add(vpmu_vm.vm, 0, &init, guest_code);
437 vcpu_init_descriptor_tables(vpmu_vm.vcpu);
438 vpmu_vm.gic_fd = vgic_v3_setup(vpmu_vm.vm, 1, 64);
439 __TEST_REQUIRE(vpmu_vm.gic_fd >= 0,
440 "Failed to create vgic-v3, skipping");
441
442 /* Make sure that PMUv3 support is indicated in the ID register */
443 dfr0 = vcpu_get_reg(vpmu_vm.vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64DFR0_EL1));
444 pmuver = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), dfr0);
445 TEST_ASSERT(pmuver != ID_AA64DFR0_EL1_PMUVer_IMP_DEF &&
446 pmuver >= ID_AA64DFR0_EL1_PMUVer_IMP,
447 "Unexpected PMUVER (0x%x) on the vCPU with PMUv3", pmuver);
448
449 /* Initialize vPMU */
450 vcpu_ioctl(vpmu_vm.vcpu, KVM_SET_DEVICE_ATTR, &irq_attr);
451 vcpu_ioctl(vpmu_vm.vcpu, KVM_SET_DEVICE_ATTR, &init_attr);
452 }
453
destroy_vpmu_vm(void)454 static void destroy_vpmu_vm(void)
455 {
456 close(vpmu_vm.gic_fd);
457 kvm_vm_free(vpmu_vm.vm);
458 }
459
run_vcpu(struct kvm_vcpu * vcpu,uint64_t pmcr_n)460 static void run_vcpu(struct kvm_vcpu *vcpu, uint64_t pmcr_n)
461 {
462 struct ucall uc;
463
464 vcpu_args_set(vcpu, 1, pmcr_n);
465 vcpu_run(vcpu);
466 switch (get_ucall(vcpu, &uc)) {
467 case UCALL_ABORT:
468 REPORT_GUEST_ASSERT(uc);
469 break;
470 case UCALL_DONE:
471 break;
472 default:
473 TEST_FAIL("Unknown ucall %lu", uc.cmd);
474 break;
475 }
476 }
477
test_create_vpmu_vm_with_pmcr_n(uint64_t pmcr_n,bool expect_fail)478 static void test_create_vpmu_vm_with_pmcr_n(uint64_t pmcr_n, bool expect_fail)
479 {
480 struct kvm_vcpu *vcpu;
481 uint64_t pmcr, pmcr_orig;
482
483 create_vpmu_vm(guest_code);
484 vcpu = vpmu_vm.vcpu;
485
486 pmcr_orig = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0));
487 pmcr = pmcr_orig;
488
489 /*
490 * Setting a larger value of PMCR.N should not modify the field, and
491 * return a success.
492 */
493 set_pmcr_n(&pmcr, pmcr_n);
494 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0), pmcr);
495 pmcr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0));
496
497 if (expect_fail)
498 TEST_ASSERT(pmcr_orig == pmcr,
499 "PMCR.N modified by KVM to a larger value (PMCR: 0x%lx) for pmcr_n: 0x%lx",
500 pmcr, pmcr_n);
501 else
502 TEST_ASSERT(pmcr_n == get_pmcr_n(pmcr),
503 "Failed to update PMCR.N to %lu (received: %lu)",
504 pmcr_n, get_pmcr_n(pmcr));
505 }
506
507 /*
508 * Create a guest with one vCPU, set the PMCR_EL0.N for the vCPU to @pmcr_n,
509 * and run the test.
510 */
run_access_test(uint64_t pmcr_n)511 static void run_access_test(uint64_t pmcr_n)
512 {
513 uint64_t sp;
514 struct kvm_vcpu *vcpu;
515 struct kvm_vcpu_init init;
516
517 pr_debug("Test with pmcr_n %lu\n", pmcr_n);
518
519 test_create_vpmu_vm_with_pmcr_n(pmcr_n, false);
520 vcpu = vpmu_vm.vcpu;
521
522 /* Save the initial sp to restore them later to run the guest again */
523 sp = vcpu_get_reg(vcpu, ARM64_CORE_REG(sp_el1));
524
525 run_vcpu(vcpu, pmcr_n);
526
527 /*
528 * Reset and re-initialize the vCPU, and run the guest code again to
529 * check if PMCR_EL0.N is preserved.
530 */
531 vm_ioctl(vpmu_vm.vm, KVM_ARM_PREFERRED_TARGET, &init);
532 init.features[0] |= (1 << KVM_ARM_VCPU_PMU_V3);
533 aarch64_vcpu_setup(vcpu, &init);
534 vcpu_init_descriptor_tables(vcpu);
535 vcpu_set_reg(vcpu, ARM64_CORE_REG(sp_el1), sp);
536 vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code);
537
538 run_vcpu(vcpu, pmcr_n);
539
540 destroy_vpmu_vm();
541 }
542
543 static struct pmreg_sets validity_check_reg_sets[] = {
544 PMREG_SET(SYS_PMCNTENSET_EL0, SYS_PMCNTENCLR_EL0),
545 PMREG_SET(SYS_PMINTENSET_EL1, SYS_PMINTENCLR_EL1),
546 PMREG_SET(SYS_PMOVSSET_EL0, SYS_PMOVSCLR_EL0),
547 };
548
549 /*
550 * Create a VM, and check if KVM handles the userspace accesses of
551 * the PMU register sets in @validity_check_reg_sets[] correctly.
552 */
run_pmregs_validity_test(uint64_t pmcr_n)553 static void run_pmregs_validity_test(uint64_t pmcr_n)
554 {
555 int i;
556 struct kvm_vcpu *vcpu;
557 uint64_t set_reg_id, clr_reg_id, reg_val;
558 uint64_t valid_counters_mask, max_counters_mask;
559
560 test_create_vpmu_vm_with_pmcr_n(pmcr_n, false);
561 vcpu = vpmu_vm.vcpu;
562
563 valid_counters_mask = get_counters_mask(pmcr_n);
564 max_counters_mask = get_counters_mask(ARMV8_PMU_MAX_COUNTERS);
565
566 for (i = 0; i < ARRAY_SIZE(validity_check_reg_sets); i++) {
567 set_reg_id = validity_check_reg_sets[i].set_reg_id;
568 clr_reg_id = validity_check_reg_sets[i].clr_reg_id;
569
570 /*
571 * Test if the 'set' and 'clr' variants of the registers
572 * are initialized based on the number of valid counters.
573 */
574 reg_val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id));
575 TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
576 "Initial read of set_reg: 0x%llx has unimplemented counters enabled: 0x%lx",
577 KVM_ARM64_SYS_REG(set_reg_id), reg_val);
578
579 reg_val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(clr_reg_id));
580 TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
581 "Initial read of clr_reg: 0x%llx has unimplemented counters enabled: 0x%lx",
582 KVM_ARM64_SYS_REG(clr_reg_id), reg_val);
583
584 /*
585 * Using the 'set' variant, force-set the register to the
586 * max number of possible counters and test if KVM discards
587 * the bits for unimplemented counters as it should.
588 */
589 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id), max_counters_mask);
590
591 reg_val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(set_reg_id));
592 TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
593 "Read of set_reg: 0x%llx has unimplemented counters enabled: 0x%lx",
594 KVM_ARM64_SYS_REG(set_reg_id), reg_val);
595
596 reg_val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(clr_reg_id));
597 TEST_ASSERT((reg_val & (~valid_counters_mask)) == 0,
598 "Read of clr_reg: 0x%llx has unimplemented counters enabled: 0x%lx",
599 KVM_ARM64_SYS_REG(clr_reg_id), reg_val);
600 }
601
602 destroy_vpmu_vm();
603 }
604
605 /*
606 * Create a guest with one vCPU, and attempt to set the PMCR_EL0.N for
607 * the vCPU to @pmcr_n, which is larger than the host value.
608 * The attempt should fail as @pmcr_n is too big to set for the vCPU.
609 */
run_error_test(uint64_t pmcr_n)610 static void run_error_test(uint64_t pmcr_n)
611 {
612 pr_debug("Error test with pmcr_n %lu (larger than the host)\n", pmcr_n);
613
614 test_create_vpmu_vm_with_pmcr_n(pmcr_n, true);
615 destroy_vpmu_vm();
616 }
617
618 /*
619 * Return the default number of implemented PMU event counters excluding
620 * the cycle counter (i.e. PMCR_EL0.N value) for the guest.
621 */
get_pmcr_n_limit(void)622 static uint64_t get_pmcr_n_limit(void)
623 {
624 uint64_t pmcr;
625
626 create_vpmu_vm(guest_code);
627 pmcr = vcpu_get_reg(vpmu_vm.vcpu, KVM_ARM64_SYS_REG(SYS_PMCR_EL0));
628 destroy_vpmu_vm();
629 return get_pmcr_n(pmcr);
630 }
631
main(void)632 int main(void)
633 {
634 uint64_t i, pmcr_n;
635
636 TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_PMU_V3));
637
638 pmcr_n = get_pmcr_n_limit();
639 for (i = 0; i <= pmcr_n; i++) {
640 run_access_test(i);
641 run_pmregs_validity_test(i);
642 }
643
644 for (i = pmcr_n + 1; i < ARMV8_PMU_MAX_COUNTERS; i++)
645 run_error_test(i);
646
647 return 0;
648 }
649