1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * auxtrace.c: AUX area trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "config.h"
30 #include "evlist.h"
31 #include "dso.h"
32 #include "map.h"
33 #include "pmu.h"
34 #include "evsel.h"
35 #include "evsel_config.h"
36 #include "symbol.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "thread_map.h"
40 #include "asm/bug.h"
41 #include "auxtrace.h"
42
43 #include <linux/hash.h>
44
45 #include "event.h"
46 #include "record.h"
47 #include "session.h"
48 #include "debug.h"
49 #include <subcmd/parse-options.h>
50
51 #include "cs-etm.h"
52 #include "intel-pt.h"
53 #include "intel-bts.h"
54 #include "arm-spe.h"
55 #include "hisi-ptt.h"
56 #include "s390-cpumsf.h"
57 #include "util/mmap.h"
58
59 #include <linux/ctype.h>
60 #include "symbol/kallsyms.h"
61 #include <internal/lib.h>
62 #include "util/sample.h"
63
64 /*
65 * Make a group from 'leader' to 'last', requiring that the events were not
66 * already grouped to a different leader.
67 */
evlist__regroup(struct evlist * evlist,struct evsel * leader,struct evsel * last)68 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
69 {
70 struct evsel *evsel;
71 bool grp;
72
73 if (!evsel__is_group_leader(leader))
74 return -EINVAL;
75
76 grp = false;
77 evlist__for_each_entry(evlist, evsel) {
78 if (grp) {
79 if (!(evsel__leader(evsel) == leader ||
80 (evsel__leader(evsel) == evsel &&
81 evsel->core.nr_members <= 1)))
82 return -EINVAL;
83 } else if (evsel == leader) {
84 grp = true;
85 }
86 if (evsel == last)
87 break;
88 }
89
90 grp = false;
91 evlist__for_each_entry(evlist, evsel) {
92 if (grp) {
93 if (!evsel__has_leader(evsel, leader)) {
94 evsel__set_leader(evsel, leader);
95 if (leader->core.nr_members < 1)
96 leader->core.nr_members = 1;
97 leader->core.nr_members += 1;
98 }
99 } else if (evsel == leader) {
100 grp = true;
101 }
102 if (evsel == last)
103 break;
104 }
105
106 return 0;
107 }
108
auxtrace__dont_decode(struct perf_session * session)109 static bool auxtrace__dont_decode(struct perf_session *session)
110 {
111 return !session->itrace_synth_opts ||
112 session->itrace_synth_opts->dont_decode;
113 }
114
auxtrace_mmap__mmap(struct auxtrace_mmap * mm,struct auxtrace_mmap_params * mp,void * userpg,int fd)115 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
116 struct auxtrace_mmap_params *mp,
117 void *userpg, int fd)
118 {
119 struct perf_event_mmap_page *pc = userpg;
120
121 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
122
123 mm->userpg = userpg;
124 mm->mask = mp->mask;
125 mm->len = mp->len;
126 mm->prev = 0;
127 mm->idx = mp->idx;
128 mm->tid = mp->tid;
129 mm->cpu = mp->cpu.cpu;
130
131 if (!mp->len || !mp->mmap_needed) {
132 mm->base = NULL;
133 return 0;
134 }
135
136 pc->aux_offset = mp->offset;
137 pc->aux_size = mp->len;
138
139 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
140 if (mm->base == MAP_FAILED) {
141 pr_debug2("failed to mmap AUX area\n");
142 mm->base = NULL;
143 return -1;
144 }
145
146 return 0;
147 }
148
auxtrace_mmap__munmap(struct auxtrace_mmap * mm)149 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
150 {
151 if (mm->base) {
152 munmap(mm->base, mm->len);
153 mm->base = NULL;
154 }
155 }
156
auxtrace_mmap_params__init(struct auxtrace_mmap_params * mp,off_t auxtrace_offset,unsigned int auxtrace_pages,bool auxtrace_overwrite)157 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
158 off_t auxtrace_offset,
159 unsigned int auxtrace_pages,
160 bool auxtrace_overwrite)
161 {
162 if (auxtrace_pages) {
163 mp->offset = auxtrace_offset;
164 mp->len = auxtrace_pages * (size_t)page_size;
165 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
166 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
167 pr_debug2("AUX area mmap length %zu\n", mp->len);
168 } else {
169 mp->len = 0;
170 }
171 }
172
auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params * mp,struct evlist * evlist,struct evsel * evsel,int idx)173 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
174 struct evlist *evlist,
175 struct evsel *evsel, int idx)
176 {
177 bool per_cpu = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
178
179 mp->mmap_needed = evsel->needs_auxtrace_mmap;
180
181 if (!mp->mmap_needed)
182 return;
183
184 mp->idx = idx;
185
186 if (per_cpu) {
187 mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
188 if (evlist->core.threads)
189 mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
190 else
191 mp->tid = -1;
192 } else {
193 mp->cpu.cpu = -1;
194 mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
195 }
196 }
197
198 #define AUXTRACE_INIT_NR_QUEUES 32
199
auxtrace_alloc_queue_array(unsigned int nr_queues)200 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
201 {
202 struct auxtrace_queue *queue_array;
203 unsigned int max_nr_queues, i;
204
205 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
206 if (nr_queues > max_nr_queues)
207 return NULL;
208
209 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
210 if (!queue_array)
211 return NULL;
212
213 for (i = 0; i < nr_queues; i++) {
214 INIT_LIST_HEAD(&queue_array[i].head);
215 queue_array[i].priv = NULL;
216 }
217
218 return queue_array;
219 }
220
auxtrace_queues__init_nr(struct auxtrace_queues * queues,int nr_queues)221 int auxtrace_queues__init_nr(struct auxtrace_queues *queues, int nr_queues)
222 {
223 queues->nr_queues = nr_queues;
224 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
225 if (!queues->queue_array)
226 return -ENOMEM;
227 return 0;
228 }
229
auxtrace_queues__init(struct auxtrace_queues * queues)230 int auxtrace_queues__init(struct auxtrace_queues *queues)
231 {
232 return auxtrace_queues__init_nr(queues, AUXTRACE_INIT_NR_QUEUES);
233 }
234
auxtrace_queues__grow(struct auxtrace_queues * queues,unsigned int new_nr_queues)235 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
236 unsigned int new_nr_queues)
237 {
238 unsigned int nr_queues = queues->nr_queues;
239 struct auxtrace_queue *queue_array;
240 unsigned int i;
241
242 if (!nr_queues)
243 nr_queues = AUXTRACE_INIT_NR_QUEUES;
244
245 while (nr_queues && nr_queues < new_nr_queues)
246 nr_queues <<= 1;
247
248 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
249 return -EINVAL;
250
251 queue_array = auxtrace_alloc_queue_array(nr_queues);
252 if (!queue_array)
253 return -ENOMEM;
254
255 for (i = 0; i < queues->nr_queues; i++) {
256 list_splice_tail(&queues->queue_array[i].head,
257 &queue_array[i].head);
258 queue_array[i].tid = queues->queue_array[i].tid;
259 queue_array[i].cpu = queues->queue_array[i].cpu;
260 queue_array[i].set = queues->queue_array[i].set;
261 queue_array[i].priv = queues->queue_array[i].priv;
262 }
263
264 queues->nr_queues = nr_queues;
265 queues->queue_array = queue_array;
266
267 return 0;
268 }
269
auxtrace_copy_data(u64 size,struct perf_session * session)270 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
271 {
272 int fd = perf_data__fd(session->data);
273 void *p;
274 ssize_t ret;
275
276 if (size > SSIZE_MAX)
277 return NULL;
278
279 p = malloc(size);
280 if (!p)
281 return NULL;
282
283 ret = readn(fd, p, size);
284 if (ret != (ssize_t)size) {
285 free(p);
286 return NULL;
287 }
288
289 return p;
290 }
291
auxtrace_queues__queue_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)292 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
293 unsigned int idx,
294 struct auxtrace_buffer *buffer)
295 {
296 struct auxtrace_queue *queue;
297 int err;
298
299 if (idx >= queues->nr_queues) {
300 err = auxtrace_queues__grow(queues, idx + 1);
301 if (err)
302 return err;
303 }
304
305 queue = &queues->queue_array[idx];
306
307 if (!queue->set) {
308 queue->set = true;
309 queue->tid = buffer->tid;
310 queue->cpu = buffer->cpu.cpu;
311 }
312
313 buffer->buffer_nr = queues->next_buffer_nr++;
314
315 list_add_tail(&buffer->list, &queue->head);
316
317 queues->new_data = true;
318 queues->populated = true;
319
320 return 0;
321 }
322
323 /* Limit buffers to 32MiB on 32-bit */
324 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
325
auxtrace_queues__split_buffer(struct auxtrace_queues * queues,unsigned int idx,struct auxtrace_buffer * buffer)326 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
327 unsigned int idx,
328 struct auxtrace_buffer *buffer)
329 {
330 u64 sz = buffer->size;
331 bool consecutive = false;
332 struct auxtrace_buffer *b;
333 int err;
334
335 while (sz > BUFFER_LIMIT_FOR_32_BIT) {
336 b = memdup(buffer, sizeof(struct auxtrace_buffer));
337 if (!b)
338 return -ENOMEM;
339 b->size = BUFFER_LIMIT_FOR_32_BIT;
340 b->consecutive = consecutive;
341 err = auxtrace_queues__queue_buffer(queues, idx, b);
342 if (err) {
343 auxtrace_buffer__free(b);
344 return err;
345 }
346 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
347 sz -= BUFFER_LIMIT_FOR_32_BIT;
348 consecutive = true;
349 }
350
351 buffer->size = sz;
352 buffer->consecutive = consecutive;
353
354 return 0;
355 }
356
filter_cpu(struct perf_session * session,struct perf_cpu cpu)357 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
358 {
359 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
360
361 return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
362 }
363
auxtrace_queues__add_buffer(struct auxtrace_queues * queues,struct perf_session * session,unsigned int idx,struct auxtrace_buffer * buffer,struct auxtrace_buffer ** buffer_ptr)364 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
365 struct perf_session *session,
366 unsigned int idx,
367 struct auxtrace_buffer *buffer,
368 struct auxtrace_buffer **buffer_ptr)
369 {
370 int err = -ENOMEM;
371
372 if (filter_cpu(session, buffer->cpu))
373 return 0;
374
375 buffer = memdup(buffer, sizeof(*buffer));
376 if (!buffer)
377 return -ENOMEM;
378
379 if (session->one_mmap) {
380 buffer->data = buffer->data_offset - session->one_mmap_offset +
381 session->one_mmap_addr;
382 } else if (perf_data__is_pipe(session->data)) {
383 buffer->data = auxtrace_copy_data(buffer->size, session);
384 if (!buffer->data)
385 goto out_free;
386 buffer->data_needs_freeing = true;
387 } else if (BITS_PER_LONG == 32 &&
388 buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
389 err = auxtrace_queues__split_buffer(queues, idx, buffer);
390 if (err)
391 goto out_free;
392 }
393
394 err = auxtrace_queues__queue_buffer(queues, idx, buffer);
395 if (err)
396 goto out_free;
397
398 /* FIXME: Doesn't work for split buffer */
399 if (buffer_ptr)
400 *buffer_ptr = buffer;
401
402 return 0;
403
404 out_free:
405 auxtrace_buffer__free(buffer);
406 return err;
407 }
408
auxtrace_queues__add_event(struct auxtrace_queues * queues,struct perf_session * session,union perf_event * event,off_t data_offset,struct auxtrace_buffer ** buffer_ptr)409 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
410 struct perf_session *session,
411 union perf_event *event, off_t data_offset,
412 struct auxtrace_buffer **buffer_ptr)
413 {
414 struct auxtrace_buffer buffer = {
415 .pid = -1,
416 .tid = event->auxtrace.tid,
417 .cpu = { event->auxtrace.cpu },
418 .data_offset = data_offset,
419 .offset = event->auxtrace.offset,
420 .reference = event->auxtrace.reference,
421 .size = event->auxtrace.size,
422 };
423 unsigned int idx = event->auxtrace.idx;
424
425 return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
426 buffer_ptr);
427 }
428
auxtrace_queues__add_indexed_event(struct auxtrace_queues * queues,struct perf_session * session,off_t file_offset,size_t sz)429 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
430 struct perf_session *session,
431 off_t file_offset, size_t sz)
432 {
433 union perf_event *event;
434 int err;
435 char buf[PERF_SAMPLE_MAX_SIZE];
436
437 err = perf_session__peek_event(session, file_offset, buf,
438 PERF_SAMPLE_MAX_SIZE, &event, NULL);
439 if (err)
440 return err;
441
442 if (event->header.type == PERF_RECORD_AUXTRACE) {
443 if (event->header.size < sizeof(struct perf_record_auxtrace) ||
444 event->header.size != sz) {
445 err = -EINVAL;
446 goto out;
447 }
448 file_offset += event->header.size;
449 err = auxtrace_queues__add_event(queues, session, event,
450 file_offset, NULL);
451 }
452 out:
453 return err;
454 }
455
auxtrace_queues__free(struct auxtrace_queues * queues)456 void auxtrace_queues__free(struct auxtrace_queues *queues)
457 {
458 unsigned int i;
459
460 for (i = 0; i < queues->nr_queues; i++) {
461 while (!list_empty(&queues->queue_array[i].head)) {
462 struct auxtrace_buffer *buffer;
463
464 buffer = list_entry(queues->queue_array[i].head.next,
465 struct auxtrace_buffer, list);
466 list_del_init(&buffer->list);
467 auxtrace_buffer__free(buffer);
468 }
469 }
470
471 zfree(&queues->queue_array);
472 queues->nr_queues = 0;
473 }
474
auxtrace_heapify(struct auxtrace_heap_item * heap_array,unsigned int pos,unsigned int queue_nr,u64 ordinal)475 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
476 unsigned int pos, unsigned int queue_nr,
477 u64 ordinal)
478 {
479 unsigned int parent;
480
481 while (pos) {
482 parent = (pos - 1) >> 1;
483 if (heap_array[parent].ordinal <= ordinal)
484 break;
485 heap_array[pos] = heap_array[parent];
486 pos = parent;
487 }
488 heap_array[pos].queue_nr = queue_nr;
489 heap_array[pos].ordinal = ordinal;
490 }
491
auxtrace_heap__add(struct auxtrace_heap * heap,unsigned int queue_nr,u64 ordinal)492 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
493 u64 ordinal)
494 {
495 struct auxtrace_heap_item *heap_array;
496
497 if (queue_nr >= heap->heap_sz) {
498 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
499
500 while (heap_sz <= queue_nr)
501 heap_sz <<= 1;
502 heap_array = realloc(heap->heap_array,
503 heap_sz * sizeof(struct auxtrace_heap_item));
504 if (!heap_array)
505 return -ENOMEM;
506 heap->heap_array = heap_array;
507 heap->heap_sz = heap_sz;
508 }
509
510 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
511
512 return 0;
513 }
514
auxtrace_heap__free(struct auxtrace_heap * heap)515 void auxtrace_heap__free(struct auxtrace_heap *heap)
516 {
517 zfree(&heap->heap_array);
518 heap->heap_cnt = 0;
519 heap->heap_sz = 0;
520 }
521
auxtrace_heap__pop(struct auxtrace_heap * heap)522 void auxtrace_heap__pop(struct auxtrace_heap *heap)
523 {
524 unsigned int pos, last, heap_cnt = heap->heap_cnt;
525 struct auxtrace_heap_item *heap_array;
526
527 if (!heap_cnt)
528 return;
529
530 heap->heap_cnt -= 1;
531
532 heap_array = heap->heap_array;
533
534 pos = 0;
535 while (1) {
536 unsigned int left, right;
537
538 left = (pos << 1) + 1;
539 if (left >= heap_cnt)
540 break;
541 right = left + 1;
542 if (right >= heap_cnt) {
543 heap_array[pos] = heap_array[left];
544 return;
545 }
546 if (heap_array[left].ordinal < heap_array[right].ordinal) {
547 heap_array[pos] = heap_array[left];
548 pos = left;
549 } else {
550 heap_array[pos] = heap_array[right];
551 pos = right;
552 }
553 }
554
555 last = heap_cnt - 1;
556 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
557 heap_array[last].ordinal);
558 }
559
auxtrace_record__info_priv_size(struct auxtrace_record * itr,struct evlist * evlist)560 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
561 struct evlist *evlist)
562 {
563 if (itr)
564 return itr->info_priv_size(itr, evlist);
565 return 0;
566 }
567
auxtrace_not_supported(void)568 static int auxtrace_not_supported(void)
569 {
570 pr_err("AUX area tracing is not supported on this architecture\n");
571 return -EINVAL;
572 }
573
auxtrace_record__info_fill(struct auxtrace_record * itr,struct perf_session * session,struct perf_record_auxtrace_info * auxtrace_info,size_t priv_size)574 int auxtrace_record__info_fill(struct auxtrace_record *itr,
575 struct perf_session *session,
576 struct perf_record_auxtrace_info *auxtrace_info,
577 size_t priv_size)
578 {
579 if (itr)
580 return itr->info_fill(itr, session, auxtrace_info, priv_size);
581 return auxtrace_not_supported();
582 }
583
auxtrace_record__free(struct auxtrace_record * itr)584 void auxtrace_record__free(struct auxtrace_record *itr)
585 {
586 if (itr)
587 itr->free(itr);
588 }
589
auxtrace_record__snapshot_start(struct auxtrace_record * itr)590 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
591 {
592 if (itr && itr->snapshot_start)
593 return itr->snapshot_start(itr);
594 return 0;
595 }
596
auxtrace_record__snapshot_finish(struct auxtrace_record * itr,bool on_exit)597 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
598 {
599 if (!on_exit && itr && itr->snapshot_finish)
600 return itr->snapshot_finish(itr);
601 return 0;
602 }
603
auxtrace_record__find_snapshot(struct auxtrace_record * itr,int idx,struct auxtrace_mmap * mm,unsigned char * data,u64 * head,u64 * old)604 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
605 struct auxtrace_mmap *mm,
606 unsigned char *data, u64 *head, u64 *old)
607 {
608 if (itr && itr->find_snapshot)
609 return itr->find_snapshot(itr, idx, mm, data, head, old);
610 return 0;
611 }
612
auxtrace_record__options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts)613 int auxtrace_record__options(struct auxtrace_record *itr,
614 struct evlist *evlist,
615 struct record_opts *opts)
616 {
617 if (itr) {
618 itr->evlist = evlist;
619 return itr->recording_options(itr, evlist, opts);
620 }
621 return 0;
622 }
623
auxtrace_record__reference(struct auxtrace_record * itr)624 u64 auxtrace_record__reference(struct auxtrace_record *itr)
625 {
626 if (itr)
627 return itr->reference(itr);
628 return 0;
629 }
630
auxtrace_parse_snapshot_options(struct auxtrace_record * itr,struct record_opts * opts,const char * str)631 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
632 struct record_opts *opts, const char *str)
633 {
634 if (!str)
635 return 0;
636
637 /* PMU-agnostic options */
638 switch (*str) {
639 case 'e':
640 opts->auxtrace_snapshot_on_exit = true;
641 str++;
642 break;
643 default:
644 break;
645 }
646
647 if (itr && itr->parse_snapshot_options)
648 return itr->parse_snapshot_options(itr, opts, str);
649
650 pr_err("No AUX area tracing to snapshot\n");
651 return -EINVAL;
652 }
653
evlist__enable_event_idx(struct evlist * evlist,struct evsel * evsel,int idx)654 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
655 {
656 bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
657
658 if (per_cpu_mmaps) {
659 struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
660 int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
661
662 if (cpu_map_idx == -1)
663 return -EINVAL;
664 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
665 }
666
667 return perf_evsel__enable_thread(&evsel->core, idx);
668 }
669
auxtrace_record__read_finish(struct auxtrace_record * itr,int idx)670 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
671 {
672 struct evsel *evsel;
673
674 if (!itr->evlist)
675 return -EINVAL;
676
677 evlist__for_each_entry(itr->evlist, evsel) {
678 if (evsel__is_aux_event(evsel)) {
679 if (evsel->disabled)
680 return 0;
681 return evlist__enable_event_idx(itr->evlist, evsel, idx);
682 }
683 }
684 return -EINVAL;
685 }
686
687 /*
688 * Event record size is 16-bit which results in a maximum size of about 64KiB.
689 * Allow about 4KiB for the rest of the sample record, to give a maximum
690 * AUX area sample size of 60KiB.
691 */
692 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
693
694 /* Arbitrary default size if no other default provided */
695 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
696
auxtrace_validate_aux_sample_size(struct evlist * evlist,struct record_opts * opts)697 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
698 struct record_opts *opts)
699 {
700 struct evsel *evsel;
701 bool has_aux_leader = false;
702 u32 sz;
703
704 evlist__for_each_entry(evlist, evsel) {
705 sz = evsel->core.attr.aux_sample_size;
706 if (evsel__is_group_leader(evsel)) {
707 has_aux_leader = evsel__is_aux_event(evsel);
708 if (sz) {
709 if (has_aux_leader)
710 pr_err("Cannot add AUX area sampling to an AUX area event\n");
711 else
712 pr_err("Cannot add AUX area sampling to a group leader\n");
713 return -EINVAL;
714 }
715 }
716 if (sz > MAX_AUX_SAMPLE_SIZE) {
717 pr_err("AUX area sample size %u too big, max. %d\n",
718 sz, MAX_AUX_SAMPLE_SIZE);
719 return -EINVAL;
720 }
721 if (sz) {
722 if (!has_aux_leader) {
723 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
724 return -EINVAL;
725 }
726 evsel__set_sample_bit(evsel, AUX);
727 opts->auxtrace_sample_mode = true;
728 } else {
729 evsel__reset_sample_bit(evsel, AUX);
730 }
731 }
732
733 if (!opts->auxtrace_sample_mode) {
734 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
735 return -EINVAL;
736 }
737
738 if (!perf_can_aux_sample()) {
739 pr_err("AUX area sampling is not supported by kernel\n");
740 return -EINVAL;
741 }
742
743 return 0;
744 }
745
auxtrace_parse_sample_options(struct auxtrace_record * itr,struct evlist * evlist,struct record_opts * opts,const char * str)746 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
747 struct evlist *evlist,
748 struct record_opts *opts, const char *str)
749 {
750 struct evsel_config_term *term;
751 struct evsel *aux_evsel;
752 bool has_aux_sample_size = false;
753 bool has_aux_leader = false;
754 struct evsel *evsel;
755 char *endptr;
756 unsigned long sz;
757
758 if (!str)
759 goto no_opt;
760
761 if (!itr) {
762 pr_err("No AUX area event to sample\n");
763 return -EINVAL;
764 }
765
766 sz = strtoul(str, &endptr, 0);
767 if (*endptr || sz > UINT_MAX) {
768 pr_err("Bad AUX area sampling option: '%s'\n", str);
769 return -EINVAL;
770 }
771
772 if (!sz)
773 sz = itr->default_aux_sample_size;
774
775 if (!sz)
776 sz = DEFAULT_AUX_SAMPLE_SIZE;
777
778 /* Set aux_sample_size based on --aux-sample option */
779 evlist__for_each_entry(evlist, evsel) {
780 if (evsel__is_group_leader(evsel)) {
781 has_aux_leader = evsel__is_aux_event(evsel);
782 } else if (has_aux_leader) {
783 evsel->core.attr.aux_sample_size = sz;
784 }
785 }
786 no_opt:
787 aux_evsel = NULL;
788 /* Override with aux_sample_size from config term */
789 evlist__for_each_entry(evlist, evsel) {
790 if (evsel__is_aux_event(evsel))
791 aux_evsel = evsel;
792 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
793 if (term) {
794 has_aux_sample_size = true;
795 evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
796 /* If possible, group with the AUX event */
797 if (aux_evsel && evsel->core.attr.aux_sample_size)
798 evlist__regroup(evlist, aux_evsel, evsel);
799 }
800 }
801
802 if (!str && !has_aux_sample_size)
803 return 0;
804
805 if (!itr) {
806 pr_err("No AUX area event to sample\n");
807 return -EINVAL;
808 }
809
810 return auxtrace_validate_aux_sample_size(evlist, opts);
811 }
812
813 static struct aux_action_opt {
814 const char *str;
815 u32 aux_action;
816 bool aux_event_opt;
817 } aux_action_opts[] = {
818 {"start-paused", BIT(0), true},
819 {"pause", BIT(1), false},
820 {"resume", BIT(2), false},
821 {.str = NULL},
822 };
823
auxtrace_parse_aux_action_str(const char * str)824 static const struct aux_action_opt *auxtrace_parse_aux_action_str(const char *str)
825 {
826 const struct aux_action_opt *opt;
827
828 if (!str)
829 return NULL;
830
831 for (opt = aux_action_opts; opt->str; opt++)
832 if (!strcmp(str, opt->str))
833 return opt;
834
835 return NULL;
836 }
837
auxtrace_parse_aux_action(struct evlist * evlist)838 int auxtrace_parse_aux_action(struct evlist *evlist)
839 {
840 struct evsel_config_term *term;
841 struct evsel *aux_evsel = NULL;
842 struct evsel *evsel;
843
844 evlist__for_each_entry(evlist, evsel) {
845 bool is_aux_event = evsel__is_aux_event(evsel);
846 const struct aux_action_opt *opt;
847
848 if (is_aux_event)
849 aux_evsel = evsel;
850 term = evsel__get_config_term(evsel, AUX_ACTION);
851 if (!term) {
852 if (evsel__get_config_term(evsel, AUX_OUTPUT))
853 goto regroup;
854 continue;
855 }
856 opt = auxtrace_parse_aux_action_str(term->val.str);
857 if (!opt) {
858 pr_err("Bad aux-action '%s'\n", term->val.str);
859 return -EINVAL;
860 }
861 if (opt->aux_event_opt && !is_aux_event) {
862 pr_err("aux-action '%s' can only be used with AUX area event\n",
863 term->val.str);
864 return -EINVAL;
865 }
866 if (!opt->aux_event_opt && is_aux_event) {
867 pr_err("aux-action '%s' cannot be used for AUX area event itself\n",
868 term->val.str);
869 return -EINVAL;
870 }
871 evsel->core.attr.aux_action = opt->aux_action;
872 regroup:
873 /* If possible, group with the AUX event */
874 if (aux_evsel)
875 evlist__regroup(evlist, aux_evsel, evsel);
876 if (!evsel__is_aux_event(evsel__leader(evsel))) {
877 pr_err("Events with aux-action must have AUX area event group leader\n");
878 return -EINVAL;
879 }
880 }
881
882 return 0;
883 }
884
885 struct auxtrace_record *__weak
auxtrace_record__init(struct evlist * evlist __maybe_unused,int * err)886 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
887 {
888 *err = 0;
889 return NULL;
890 }
891
auxtrace_index__alloc(struct list_head * head)892 static int auxtrace_index__alloc(struct list_head *head)
893 {
894 struct auxtrace_index *auxtrace_index;
895
896 auxtrace_index = malloc(sizeof(struct auxtrace_index));
897 if (!auxtrace_index)
898 return -ENOMEM;
899
900 auxtrace_index->nr = 0;
901 INIT_LIST_HEAD(&auxtrace_index->list);
902
903 list_add_tail(&auxtrace_index->list, head);
904
905 return 0;
906 }
907
auxtrace_index__free(struct list_head * head)908 void auxtrace_index__free(struct list_head *head)
909 {
910 struct auxtrace_index *auxtrace_index, *n;
911
912 list_for_each_entry_safe(auxtrace_index, n, head, list) {
913 list_del_init(&auxtrace_index->list);
914 free(auxtrace_index);
915 }
916 }
917
auxtrace_index__last(struct list_head * head)918 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
919 {
920 struct auxtrace_index *auxtrace_index;
921 int err;
922
923 if (list_empty(head)) {
924 err = auxtrace_index__alloc(head);
925 if (err)
926 return NULL;
927 }
928
929 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
930
931 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
932 err = auxtrace_index__alloc(head);
933 if (err)
934 return NULL;
935 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
936 list);
937 }
938
939 return auxtrace_index;
940 }
941
auxtrace_index__auxtrace_event(struct list_head * head,union perf_event * event,off_t file_offset)942 int auxtrace_index__auxtrace_event(struct list_head *head,
943 union perf_event *event, off_t file_offset)
944 {
945 struct auxtrace_index *auxtrace_index;
946 size_t nr;
947
948 auxtrace_index = auxtrace_index__last(head);
949 if (!auxtrace_index)
950 return -ENOMEM;
951
952 nr = auxtrace_index->nr;
953 auxtrace_index->entries[nr].file_offset = file_offset;
954 auxtrace_index->entries[nr].sz = event->header.size;
955 auxtrace_index->nr += 1;
956
957 return 0;
958 }
959
auxtrace_index__do_write(int fd,struct auxtrace_index * auxtrace_index)960 static int auxtrace_index__do_write(int fd,
961 struct auxtrace_index *auxtrace_index)
962 {
963 struct auxtrace_index_entry ent;
964 size_t i;
965
966 for (i = 0; i < auxtrace_index->nr; i++) {
967 ent.file_offset = auxtrace_index->entries[i].file_offset;
968 ent.sz = auxtrace_index->entries[i].sz;
969 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
970 return -errno;
971 }
972 return 0;
973 }
974
auxtrace_index__write(int fd,struct list_head * head)975 int auxtrace_index__write(int fd, struct list_head *head)
976 {
977 struct auxtrace_index *auxtrace_index;
978 u64 total = 0;
979 int err;
980
981 list_for_each_entry(auxtrace_index, head, list)
982 total += auxtrace_index->nr;
983
984 if (writen(fd, &total, sizeof(total)) != sizeof(total))
985 return -errno;
986
987 list_for_each_entry(auxtrace_index, head, list) {
988 err = auxtrace_index__do_write(fd, auxtrace_index);
989 if (err)
990 return err;
991 }
992
993 return 0;
994 }
995
auxtrace_index__process_entry(int fd,struct list_head * head,bool needs_swap)996 static int auxtrace_index__process_entry(int fd, struct list_head *head,
997 bool needs_swap)
998 {
999 struct auxtrace_index *auxtrace_index;
1000 struct auxtrace_index_entry ent;
1001 size_t nr;
1002
1003 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
1004 return -1;
1005
1006 auxtrace_index = auxtrace_index__last(head);
1007 if (!auxtrace_index)
1008 return -1;
1009
1010 nr = auxtrace_index->nr;
1011 if (needs_swap) {
1012 auxtrace_index->entries[nr].file_offset =
1013 bswap_64(ent.file_offset);
1014 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
1015 } else {
1016 auxtrace_index->entries[nr].file_offset = ent.file_offset;
1017 auxtrace_index->entries[nr].sz = ent.sz;
1018 }
1019
1020 auxtrace_index->nr = nr + 1;
1021
1022 return 0;
1023 }
1024
auxtrace_index__process(int fd,u64 size,struct perf_session * session,bool needs_swap)1025 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
1026 bool needs_swap)
1027 {
1028 struct list_head *head = &session->auxtrace_index;
1029 u64 nr;
1030
1031 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
1032 return -1;
1033
1034 if (needs_swap)
1035 nr = bswap_64(nr);
1036
1037 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
1038 return -1;
1039
1040 while (nr--) {
1041 int err;
1042
1043 err = auxtrace_index__process_entry(fd, head, needs_swap);
1044 if (err)
1045 return -1;
1046 }
1047
1048 return 0;
1049 }
1050
auxtrace_queues__process_index_entry(struct auxtrace_queues * queues,struct perf_session * session,struct auxtrace_index_entry * ent)1051 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
1052 struct perf_session *session,
1053 struct auxtrace_index_entry *ent)
1054 {
1055 return auxtrace_queues__add_indexed_event(queues, session,
1056 ent->file_offset, ent->sz);
1057 }
1058
auxtrace_queues__process_index(struct auxtrace_queues * queues,struct perf_session * session)1059 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
1060 struct perf_session *session)
1061 {
1062 struct auxtrace_index *auxtrace_index;
1063 struct auxtrace_index_entry *ent;
1064 size_t i;
1065 int err;
1066
1067 if (auxtrace__dont_decode(session))
1068 return 0;
1069
1070 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1071 for (i = 0; i < auxtrace_index->nr; i++) {
1072 ent = &auxtrace_index->entries[i];
1073 err = auxtrace_queues__process_index_entry(queues,
1074 session,
1075 ent);
1076 if (err)
1077 return err;
1078 }
1079 }
1080 return 0;
1081 }
1082
auxtrace_buffer__next(struct auxtrace_queue * queue,struct auxtrace_buffer * buffer)1083 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1084 struct auxtrace_buffer *buffer)
1085 {
1086 if (buffer) {
1087 if (list_is_last(&buffer->list, &queue->head))
1088 return NULL;
1089 return list_entry(buffer->list.next, struct auxtrace_buffer,
1090 list);
1091 } else {
1092 if (list_empty(&queue->head))
1093 return NULL;
1094 return list_entry(queue->head.next, struct auxtrace_buffer,
1095 list);
1096 }
1097 }
1098
auxtrace_queues__sample_queue(struct auxtrace_queues * queues,struct perf_sample * sample,struct perf_session * session)1099 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1100 struct perf_sample *sample,
1101 struct perf_session *session)
1102 {
1103 struct perf_sample_id *sid;
1104 unsigned int idx;
1105 u64 id;
1106
1107 id = sample->id;
1108 if (!id)
1109 return NULL;
1110
1111 sid = evlist__id2sid(session->evlist, id);
1112 if (!sid)
1113 return NULL;
1114
1115 idx = sid->idx;
1116
1117 if (idx >= queues->nr_queues)
1118 return NULL;
1119
1120 return &queues->queue_array[idx];
1121 }
1122
auxtrace_queues__add_sample(struct auxtrace_queues * queues,struct perf_session * session,struct perf_sample * sample,u64 data_offset,u64 reference)1123 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1124 struct perf_session *session,
1125 struct perf_sample *sample, u64 data_offset,
1126 u64 reference)
1127 {
1128 struct auxtrace_buffer buffer = {
1129 .pid = -1,
1130 .data_offset = data_offset,
1131 .reference = reference,
1132 .size = sample->aux_sample.size,
1133 };
1134 struct perf_sample_id *sid;
1135 u64 id = sample->id;
1136 unsigned int idx;
1137
1138 if (!id)
1139 return -EINVAL;
1140
1141 sid = evlist__id2sid(session->evlist, id);
1142 if (!sid)
1143 return -ENOENT;
1144
1145 idx = sid->idx;
1146 buffer.tid = sid->tid;
1147 buffer.cpu = sid->cpu;
1148
1149 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1150 }
1151
1152 struct queue_data {
1153 bool samples;
1154 bool events;
1155 };
1156
auxtrace_queue_data_cb(struct perf_session * session,union perf_event * event,u64 offset,void * data)1157 static int auxtrace_queue_data_cb(struct perf_session *session,
1158 union perf_event *event, u64 offset,
1159 void *data)
1160 {
1161 struct queue_data *qd = data;
1162 struct perf_sample sample;
1163 int err;
1164
1165 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1166 if (event->header.size < sizeof(struct perf_record_auxtrace))
1167 return -EINVAL;
1168 offset += event->header.size;
1169 return session->auxtrace->queue_data(session, NULL, event,
1170 offset);
1171 }
1172
1173 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1174 return 0;
1175
1176 err = evlist__parse_sample(session->evlist, event, &sample);
1177 if (err)
1178 return err;
1179
1180 if (!sample.aux_sample.size)
1181 return 0;
1182
1183 offset += sample.aux_sample.data - (void *)event;
1184
1185 return session->auxtrace->queue_data(session, &sample, NULL, offset);
1186 }
1187
auxtrace_queue_data(struct perf_session * session,bool samples,bool events)1188 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1189 {
1190 struct queue_data qd = {
1191 .samples = samples,
1192 .events = events,
1193 };
1194
1195 if (auxtrace__dont_decode(session))
1196 return 0;
1197
1198 if (perf_data__is_pipe(session->data))
1199 return 0;
1200
1201 if (!session->auxtrace || !session->auxtrace->queue_data)
1202 return -EINVAL;
1203
1204 return perf_session__peek_events(session, session->header.data_offset,
1205 session->header.data_size,
1206 auxtrace_queue_data_cb, &qd);
1207 }
1208
auxtrace_buffer__get_data_rw(struct auxtrace_buffer * buffer,int fd,bool rw)1209 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1210 {
1211 int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1212 size_t adj = buffer->data_offset & (page_size - 1);
1213 size_t size = buffer->size + adj;
1214 off_t file_offset = buffer->data_offset - adj;
1215 void *addr;
1216
1217 if (buffer->data)
1218 return buffer->data;
1219
1220 addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1221 if (addr == MAP_FAILED)
1222 return NULL;
1223
1224 buffer->mmap_addr = addr;
1225 buffer->mmap_size = size;
1226
1227 buffer->data = addr + adj;
1228
1229 return buffer->data;
1230 }
1231
auxtrace_buffer__put_data(struct auxtrace_buffer * buffer)1232 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1233 {
1234 if (!buffer->data || !buffer->mmap_addr)
1235 return;
1236 munmap(buffer->mmap_addr, buffer->mmap_size);
1237 buffer->mmap_addr = NULL;
1238 buffer->mmap_size = 0;
1239 buffer->data = NULL;
1240 buffer->use_data = NULL;
1241 }
1242
auxtrace_buffer__drop_data(struct auxtrace_buffer * buffer)1243 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1244 {
1245 auxtrace_buffer__put_data(buffer);
1246 if (buffer->data_needs_freeing) {
1247 buffer->data_needs_freeing = false;
1248 zfree(&buffer->data);
1249 buffer->use_data = NULL;
1250 buffer->size = 0;
1251 }
1252 }
1253
auxtrace_buffer__free(struct auxtrace_buffer * buffer)1254 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1255 {
1256 auxtrace_buffer__drop_data(buffer);
1257 free(buffer);
1258 }
1259
auxtrace_synth_guest_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp,pid_t machine_pid,int vcpu)1260 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1261 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1262 const char *msg, u64 timestamp,
1263 pid_t machine_pid, int vcpu)
1264 {
1265 size_t size;
1266
1267 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1268
1269 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1270 auxtrace_error->type = type;
1271 auxtrace_error->code = code;
1272 auxtrace_error->cpu = cpu;
1273 auxtrace_error->pid = pid;
1274 auxtrace_error->tid = tid;
1275 auxtrace_error->fmt = 1;
1276 auxtrace_error->ip = ip;
1277 auxtrace_error->time = timestamp;
1278 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1279 if (machine_pid) {
1280 auxtrace_error->fmt = 2;
1281 auxtrace_error->machine_pid = machine_pid;
1282 auxtrace_error->vcpu = vcpu;
1283 size = sizeof(*auxtrace_error);
1284 } else {
1285 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1286 strlen(auxtrace_error->msg) + 1;
1287 }
1288 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1289 }
1290
auxtrace_synth_error(struct perf_record_auxtrace_error * auxtrace_error,int type,int code,int cpu,pid_t pid,pid_t tid,u64 ip,const char * msg,u64 timestamp)1291 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1292 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1293 const char *msg, u64 timestamp)
1294 {
1295 auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1296 ip, msg, timestamp, 0, -1);
1297 }
1298
perf_event__synthesize_auxtrace_info(struct auxtrace_record * itr,const struct perf_tool * tool,struct perf_session * session,perf_event__handler_t process)1299 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1300 const struct perf_tool *tool,
1301 struct perf_session *session,
1302 perf_event__handler_t process)
1303 {
1304 union perf_event *ev;
1305 size_t priv_size;
1306 int err;
1307
1308 pr_debug2("Synthesizing auxtrace information\n");
1309 priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1310 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1311 if (!ev)
1312 return -ENOMEM;
1313
1314 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1315 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1316 priv_size;
1317 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1318 priv_size);
1319 if (err)
1320 goto out_free;
1321
1322 err = process(tool, ev, NULL, NULL);
1323 out_free:
1324 free(ev);
1325 return err;
1326 }
1327
unleader_evsel(struct evlist * evlist,struct evsel * leader)1328 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1329 {
1330 struct evsel *new_leader = NULL;
1331 struct evsel *evsel;
1332
1333 /* Find new leader for the group */
1334 evlist__for_each_entry(evlist, evsel) {
1335 if (!evsel__has_leader(evsel, leader) || evsel == leader)
1336 continue;
1337 if (!new_leader)
1338 new_leader = evsel;
1339 evsel__set_leader(evsel, new_leader);
1340 }
1341
1342 /* Update group information */
1343 if (new_leader) {
1344 zfree(&new_leader->group_name);
1345 new_leader->group_name = leader->group_name;
1346 leader->group_name = NULL;
1347
1348 new_leader->core.nr_members = leader->core.nr_members - 1;
1349 leader->core.nr_members = 1;
1350 }
1351 }
1352
unleader_auxtrace(struct perf_session * session)1353 static void unleader_auxtrace(struct perf_session *session)
1354 {
1355 struct evsel *evsel;
1356
1357 evlist__for_each_entry(session->evlist, evsel) {
1358 if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1359 evsel__is_group_leader(evsel)) {
1360 unleader_evsel(session->evlist, evsel);
1361 }
1362 }
1363 }
1364
perf_event__process_auxtrace_info(struct perf_session * session,union perf_event * event)1365 int perf_event__process_auxtrace_info(struct perf_session *session,
1366 union perf_event *event)
1367 {
1368 enum auxtrace_type type = event->auxtrace_info.type;
1369 int err;
1370
1371 if (dump_trace)
1372 fprintf(stdout, " type: %u\n", type);
1373
1374 switch (type) {
1375 case PERF_AUXTRACE_INTEL_PT:
1376 err = intel_pt_process_auxtrace_info(event, session);
1377 break;
1378 case PERF_AUXTRACE_INTEL_BTS:
1379 err = intel_bts_process_auxtrace_info(event, session);
1380 break;
1381 case PERF_AUXTRACE_ARM_SPE:
1382 err = arm_spe_process_auxtrace_info(event, session);
1383 break;
1384 case PERF_AUXTRACE_CS_ETM:
1385 err = cs_etm__process_auxtrace_info(event, session);
1386 break;
1387 case PERF_AUXTRACE_S390_CPUMSF:
1388 err = s390_cpumsf_process_auxtrace_info(event, session);
1389 break;
1390 case PERF_AUXTRACE_HISI_PTT:
1391 err = hisi_ptt_process_auxtrace_info(event, session);
1392 break;
1393 case PERF_AUXTRACE_UNKNOWN:
1394 default:
1395 return -EINVAL;
1396 }
1397
1398 if (err)
1399 return err;
1400
1401 unleader_auxtrace(session);
1402
1403 return 0;
1404 }
1405
perf_event__process_auxtrace(struct perf_session * session,union perf_event * event)1406 s64 perf_event__process_auxtrace(struct perf_session *session,
1407 union perf_event *event)
1408 {
1409 s64 err;
1410
1411 if (dump_trace)
1412 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n",
1413 event->auxtrace.size, event->auxtrace.offset,
1414 event->auxtrace.reference, event->auxtrace.idx,
1415 event->auxtrace.tid, event->auxtrace.cpu);
1416
1417 if (auxtrace__dont_decode(session))
1418 return event->auxtrace.size;
1419
1420 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1421 return -EINVAL;
1422
1423 err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1424 if (err < 0)
1425 return err;
1426
1427 return event->auxtrace.size;
1428 }
1429
1430 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS
1431 #define PERF_ITRACE_DEFAULT_PERIOD 100000
1432 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16
1433 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024
1434 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64
1435 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024
1436
itrace_synth_opts__set_default(struct itrace_synth_opts * synth_opts,bool no_sample)1437 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1438 bool no_sample)
1439 {
1440 synth_opts->branches = true;
1441 synth_opts->transactions = true;
1442 synth_opts->ptwrites = true;
1443 synth_opts->pwr_events = true;
1444 synth_opts->other_events = true;
1445 synth_opts->intr_events = true;
1446 synth_opts->errors = true;
1447 synth_opts->flc = true;
1448 synth_opts->llc = true;
1449 synth_opts->tlb = true;
1450 synth_opts->mem = true;
1451 synth_opts->remote_access = true;
1452
1453 if (no_sample) {
1454 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1455 synth_opts->period = 1;
1456 synth_opts->calls = true;
1457 } else {
1458 synth_opts->instructions = true;
1459 synth_opts->cycles = true;
1460 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1461 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1462 }
1463 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1464 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1465 synth_opts->initial_skip = 0;
1466 }
1467
get_flag(const char ** ptr,unsigned int * flags)1468 static int get_flag(const char **ptr, unsigned int *flags)
1469 {
1470 while (1) {
1471 char c = **ptr;
1472
1473 if (c >= 'a' && c <= 'z') {
1474 *flags |= 1 << (c - 'a');
1475 ++*ptr;
1476 return 0;
1477 } else if (c == ' ') {
1478 ++*ptr;
1479 continue;
1480 } else {
1481 return -1;
1482 }
1483 }
1484 }
1485
get_flags(const char ** ptr,unsigned int * plus_flags,unsigned int * minus_flags)1486 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1487 {
1488 while (1) {
1489 switch (**ptr) {
1490 case '+':
1491 ++*ptr;
1492 if (get_flag(ptr, plus_flags))
1493 return -1;
1494 break;
1495 case '-':
1496 ++*ptr;
1497 if (get_flag(ptr, minus_flags))
1498 return -1;
1499 break;
1500 case ' ':
1501 ++*ptr;
1502 break;
1503 default:
1504 return 0;
1505 }
1506 }
1507 }
1508
1509 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384
1510
itrace_log_on_error_size(void)1511 static unsigned int itrace_log_on_error_size(void)
1512 {
1513 unsigned int sz = 0;
1514
1515 perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz);
1516 return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ;
1517 }
1518
1519 /*
1520 * Please check tools/perf/Documentation/perf-script.txt for information
1521 * about the options parsed here, which is introduced after this cset,
1522 * when support in 'perf script' for these options is introduced.
1523 */
itrace_do_parse_synth_opts(struct itrace_synth_opts * synth_opts,const char * str,int unset)1524 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1525 const char *str, int unset)
1526 {
1527 const char *p;
1528 char *endptr;
1529 bool period_type_set = false;
1530 bool period_set = false;
1531 bool iy = false;
1532
1533 synth_opts->set = true;
1534
1535 if (unset) {
1536 synth_opts->dont_decode = true;
1537 return 0;
1538 }
1539
1540 if (!str) {
1541 itrace_synth_opts__set_default(synth_opts,
1542 synth_opts->default_no_sample);
1543 return 0;
1544 }
1545
1546 for (p = str; *p;) {
1547 switch (*p++) {
1548 case 'i':
1549 case 'y':
1550 iy = true;
1551 if (p[-1] == 'y')
1552 synth_opts->cycles = true;
1553 else
1554 synth_opts->instructions = true;
1555 while (*p == ' ' || *p == ',')
1556 p += 1;
1557 if (isdigit(*p)) {
1558 synth_opts->period = strtoull(p, &endptr, 10);
1559 period_set = true;
1560 p = endptr;
1561 while (*p == ' ' || *p == ',')
1562 p += 1;
1563 switch (*p++) {
1564 case 'i':
1565 synth_opts->period_type =
1566 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1567 period_type_set = true;
1568 break;
1569 case 't':
1570 synth_opts->period_type =
1571 PERF_ITRACE_PERIOD_TICKS;
1572 period_type_set = true;
1573 break;
1574 case 'm':
1575 synth_opts->period *= 1000;
1576 /* Fall through */
1577 case 'u':
1578 synth_opts->period *= 1000;
1579 /* Fall through */
1580 case 'n':
1581 if (*p++ != 's')
1582 goto out_err;
1583 synth_opts->period_type =
1584 PERF_ITRACE_PERIOD_NANOSECS;
1585 period_type_set = true;
1586 break;
1587 case '\0':
1588 goto out;
1589 default:
1590 goto out_err;
1591 }
1592 }
1593 break;
1594 case 'b':
1595 synth_opts->branches = true;
1596 break;
1597 case 'x':
1598 synth_opts->transactions = true;
1599 break;
1600 case 'w':
1601 synth_opts->ptwrites = true;
1602 break;
1603 case 'p':
1604 synth_opts->pwr_events = true;
1605 break;
1606 case 'o':
1607 synth_opts->other_events = true;
1608 break;
1609 case 'I':
1610 synth_opts->intr_events = true;
1611 break;
1612 case 'e':
1613 synth_opts->errors = true;
1614 if (get_flags(&p, &synth_opts->error_plus_flags,
1615 &synth_opts->error_minus_flags))
1616 goto out_err;
1617 break;
1618 case 'd':
1619 synth_opts->log = true;
1620 if (get_flags(&p, &synth_opts->log_plus_flags,
1621 &synth_opts->log_minus_flags))
1622 goto out_err;
1623 if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR)
1624 synth_opts->log_on_error_size = itrace_log_on_error_size();
1625 break;
1626 case 'c':
1627 synth_opts->branches = true;
1628 synth_opts->calls = true;
1629 break;
1630 case 'r':
1631 synth_opts->branches = true;
1632 synth_opts->returns = true;
1633 break;
1634 case 'G':
1635 case 'g':
1636 if (p[-1] == 'G')
1637 synth_opts->add_callchain = true;
1638 else
1639 synth_opts->callchain = true;
1640 synth_opts->callchain_sz =
1641 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1642 while (*p == ' ' || *p == ',')
1643 p += 1;
1644 if (isdigit(*p)) {
1645 unsigned int val;
1646
1647 val = strtoul(p, &endptr, 10);
1648 p = endptr;
1649 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1650 goto out_err;
1651 synth_opts->callchain_sz = val;
1652 }
1653 break;
1654 case 'L':
1655 case 'l':
1656 if (p[-1] == 'L')
1657 synth_opts->add_last_branch = true;
1658 else
1659 synth_opts->last_branch = true;
1660 synth_opts->last_branch_sz =
1661 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1662 while (*p == ' ' || *p == ',')
1663 p += 1;
1664 if (isdigit(*p)) {
1665 unsigned int val;
1666
1667 val = strtoul(p, &endptr, 10);
1668 p = endptr;
1669 if (!val ||
1670 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1671 goto out_err;
1672 synth_opts->last_branch_sz = val;
1673 }
1674 break;
1675 case 's':
1676 synth_opts->initial_skip = strtoul(p, &endptr, 10);
1677 if (p == endptr)
1678 goto out_err;
1679 p = endptr;
1680 break;
1681 case 'f':
1682 synth_opts->flc = true;
1683 break;
1684 case 'm':
1685 synth_opts->llc = true;
1686 break;
1687 case 't':
1688 synth_opts->tlb = true;
1689 break;
1690 case 'a':
1691 synth_opts->remote_access = true;
1692 break;
1693 case 'M':
1694 synth_opts->mem = true;
1695 break;
1696 case 'q':
1697 synth_opts->quick += 1;
1698 break;
1699 case 'A':
1700 synth_opts->approx_ipc = true;
1701 break;
1702 case 'Z':
1703 synth_opts->timeless_decoding = true;
1704 break;
1705 case 'T':
1706 synth_opts->use_timestamp = true;
1707 break;
1708 case ' ':
1709 case ',':
1710 break;
1711 default:
1712 goto out_err;
1713 }
1714 }
1715 out:
1716 if (iy) {
1717 if (!period_type_set)
1718 synth_opts->period_type =
1719 PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1720 if (!period_set)
1721 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1722 }
1723
1724 return 0;
1725
1726 out_err:
1727 pr_err("Bad Instruction Tracing options '%s'\n", str);
1728 return -EINVAL;
1729 }
1730
itrace_parse_synth_opts(const struct option * opt,const char * str,int unset)1731 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1732 {
1733 return itrace_do_parse_synth_opts(opt->value, str, unset);
1734 }
1735
1736 static const char * const auxtrace_error_type_name[] = {
1737 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1738 };
1739
auxtrace_error_name(int type)1740 static const char *auxtrace_error_name(int type)
1741 {
1742 const char *error_type_name = NULL;
1743
1744 if (type < PERF_AUXTRACE_ERROR_MAX)
1745 error_type_name = auxtrace_error_type_name[type];
1746 if (!error_type_name)
1747 error_type_name = "unknown AUX";
1748 return error_type_name;
1749 }
1750
perf_event__fprintf_auxtrace_error(union perf_event * event,FILE * fp)1751 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1752 {
1753 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1754 unsigned long long nsecs = e->time;
1755 const char *msg = e->msg;
1756 int ret;
1757
1758 ret = fprintf(fp, " %s error type %u",
1759 auxtrace_error_name(e->type), e->type);
1760
1761 if (e->fmt && nsecs) {
1762 unsigned long secs = nsecs / NSEC_PER_SEC;
1763
1764 nsecs -= secs * NSEC_PER_SEC;
1765 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1766 } else {
1767 ret += fprintf(fp, " time 0");
1768 }
1769
1770 if (!e->fmt)
1771 msg = (const char *)&e->time;
1772
1773 if (e->fmt >= 2 && e->machine_pid)
1774 ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1775
1776 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1777 e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1778 return ret;
1779 }
1780
perf_session__auxtrace_error_inc(struct perf_session * session,union perf_event * event)1781 void perf_session__auxtrace_error_inc(struct perf_session *session,
1782 union perf_event *event)
1783 {
1784 struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1785
1786 if (e->type < PERF_AUXTRACE_ERROR_MAX)
1787 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1788 }
1789
events_stats__auxtrace_error_warn(const struct events_stats * stats)1790 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1791 {
1792 int i;
1793
1794 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1795 if (!stats->nr_auxtrace_errors[i])
1796 continue;
1797 ui__warning("%u %s errors\n",
1798 stats->nr_auxtrace_errors[i],
1799 auxtrace_error_name(i));
1800 }
1801 }
1802
perf_event__process_auxtrace_error(struct perf_session * session,union perf_event * event)1803 int perf_event__process_auxtrace_error(struct perf_session *session,
1804 union perf_event *event)
1805 {
1806 if (auxtrace__dont_decode(session))
1807 return 0;
1808
1809 perf_event__fprintf_auxtrace_error(event, stdout);
1810 return 0;
1811 }
1812
1813 /*
1814 * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1815 * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1816 * the issues caused by the below sequence on multiple CPUs: when perf tool
1817 * accesses either the load operation or the store operation for 64-bit value,
1818 * on some architectures the operation is divided into two instructions, one
1819 * is for accessing the low 32-bit value and another is for the high 32-bit;
1820 * thus these two user operations can give the kernel chances to access the
1821 * 64-bit value, and thus leads to the unexpected load values.
1822 *
1823 * kernel (64-bit) user (32-bit)
1824 *
1825 * if (LOAD ->aux_tail) { --, LOAD ->aux_head_lo
1826 * STORE $aux_data | ,--->
1827 * FLUSH $aux_data | | LOAD ->aux_head_hi
1828 * STORE ->aux_head --|-------` smp_rmb()
1829 * } | LOAD $data
1830 * | smp_mb()
1831 * | STORE ->aux_tail_lo
1832 * `----------->
1833 * STORE ->aux_tail_hi
1834 *
1835 * For this reason, it's impossible for the perf tool to work correctly when
1836 * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1837 * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1838 * the pointers can be increased monotonically, whatever the buffer size it is,
1839 * at the end the head and tail can be bigger than 4GB and carry out to the
1840 * high 32-bit.
1841 *
1842 * To mitigate the issues and improve the user experience, we can allow the
1843 * perf tool working in certain conditions and bail out with error if detect
1844 * any overflow cannot be handled.
1845 *
1846 * For reading the AUX head, it reads out the values for three times, and
1847 * compares the high 4 bytes of the values between the first time and the last
1848 * time, if there has no change for high 4 bytes injected by the kernel during
1849 * the user reading sequence, it's safe for use the second value.
1850 *
1851 * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1852 * 32 bits, it means there have two store operations in user space and it cannot
1853 * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1854 * the caller an overflow error has happened.
1855 */
compat_auxtrace_mmap__read_head(struct auxtrace_mmap * mm)1856 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1857 {
1858 struct perf_event_mmap_page *pc = mm->userpg;
1859 u64 first, second, last;
1860 u64 mask = (u64)(UINT32_MAX) << 32;
1861
1862 do {
1863 first = READ_ONCE(pc->aux_head);
1864 /* Ensure all reads are done after we read the head */
1865 smp_rmb();
1866 second = READ_ONCE(pc->aux_head);
1867 /* Ensure all reads are done after we read the head */
1868 smp_rmb();
1869 last = READ_ONCE(pc->aux_head);
1870 } while ((first & mask) != (last & mask));
1871
1872 return second;
1873 }
1874
compat_auxtrace_mmap__write_tail(struct auxtrace_mmap * mm,u64 tail)1875 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1876 {
1877 struct perf_event_mmap_page *pc = mm->userpg;
1878 u64 mask = (u64)(UINT32_MAX) << 32;
1879
1880 if (tail & mask)
1881 return -1;
1882
1883 /* Ensure all reads are done before we write the tail out */
1884 smp_mb();
1885 WRITE_ONCE(pc->aux_tail, tail);
1886 return 0;
1887 }
1888
__auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,const struct perf_tool * tool,process_auxtrace_t fn,bool snapshot,size_t snapshot_size)1889 static int __auxtrace_mmap__read(struct mmap *map,
1890 struct auxtrace_record *itr,
1891 const struct perf_tool *tool, process_auxtrace_t fn,
1892 bool snapshot, size_t snapshot_size)
1893 {
1894 struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1895 u64 head, old = mm->prev, offset, ref;
1896 unsigned char *data = mm->base;
1897 size_t size, head_off, old_off, len1, len2, padding;
1898 union perf_event ev;
1899 void *data1, *data2;
1900 int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1901
1902 head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1903
1904 if (snapshot &&
1905 auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1906 return -1;
1907
1908 if (old == head)
1909 return 0;
1910
1911 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1912 mm->idx, old, head, head - old);
1913
1914 if (mm->mask) {
1915 head_off = head & mm->mask;
1916 old_off = old & mm->mask;
1917 } else {
1918 head_off = head % mm->len;
1919 old_off = old % mm->len;
1920 }
1921
1922 if (head_off > old_off)
1923 size = head_off - old_off;
1924 else
1925 size = mm->len - (old_off - head_off);
1926
1927 if (snapshot && size > snapshot_size)
1928 size = snapshot_size;
1929
1930 ref = auxtrace_record__reference(itr);
1931
1932 if (head > old || size <= head || mm->mask) {
1933 offset = head - size;
1934 } else {
1935 /*
1936 * When the buffer size is not a power of 2, 'head' wraps at the
1937 * highest multiple of the buffer size, so we have to subtract
1938 * the remainder here.
1939 */
1940 u64 rem = (0ULL - mm->len) % mm->len;
1941
1942 offset = head - size - rem;
1943 }
1944
1945 if (size > head_off) {
1946 len1 = size - head_off;
1947 data1 = &data[mm->len - len1];
1948 len2 = head_off;
1949 data2 = &data[0];
1950 } else {
1951 len1 = size;
1952 data1 = &data[head_off - len1];
1953 len2 = 0;
1954 data2 = NULL;
1955 }
1956
1957 if (itr->alignment) {
1958 unsigned int unwanted = len1 % itr->alignment;
1959
1960 len1 -= unwanted;
1961 size -= unwanted;
1962 }
1963
1964 /* padding must be written by fn() e.g. record__process_auxtrace() */
1965 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1966 if (padding)
1967 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1968
1969 memset(&ev, 0, sizeof(ev));
1970 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1971 ev.auxtrace.header.size = sizeof(ev.auxtrace);
1972 ev.auxtrace.size = size + padding;
1973 ev.auxtrace.offset = offset;
1974 ev.auxtrace.reference = ref;
1975 ev.auxtrace.idx = mm->idx;
1976 ev.auxtrace.tid = mm->tid;
1977 ev.auxtrace.cpu = mm->cpu;
1978
1979 if (fn(tool, map, &ev, data1, len1, data2, len2))
1980 return -1;
1981
1982 mm->prev = head;
1983
1984 if (!snapshot) {
1985 int err;
1986
1987 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1988 if (err < 0)
1989 return err;
1990
1991 if (itr->read_finish) {
1992 err = itr->read_finish(itr, mm->idx);
1993 if (err < 0)
1994 return err;
1995 }
1996 }
1997
1998 return 1;
1999 }
2000
auxtrace_mmap__read(struct mmap * map,struct auxtrace_record * itr,const struct perf_tool * tool,process_auxtrace_t fn)2001 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
2002 const struct perf_tool *tool, process_auxtrace_t fn)
2003 {
2004 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
2005 }
2006
auxtrace_mmap__read_snapshot(struct mmap * map,struct auxtrace_record * itr,const struct perf_tool * tool,process_auxtrace_t fn,size_t snapshot_size)2007 int auxtrace_mmap__read_snapshot(struct mmap *map,
2008 struct auxtrace_record *itr,
2009 const struct perf_tool *tool, process_auxtrace_t fn,
2010 size_t snapshot_size)
2011 {
2012 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
2013 }
2014
2015 /**
2016 * struct auxtrace_cache - hash table to implement a cache
2017 * @hashtable: the hashtable
2018 * @sz: hashtable size (number of hlists)
2019 * @entry_size: size of an entry
2020 * @limit: limit the number of entries to this maximum, when reached the cache
2021 * is dropped and caching begins again with an empty cache
2022 * @cnt: current number of entries
2023 * @bits: hashtable size (@sz = 2^@bits)
2024 */
2025 struct auxtrace_cache {
2026 struct hlist_head *hashtable;
2027 size_t sz;
2028 size_t entry_size;
2029 size_t limit;
2030 size_t cnt;
2031 unsigned int bits;
2032 };
2033
auxtrace_cache__new(unsigned int bits,size_t entry_size,unsigned int limit_percent)2034 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
2035 unsigned int limit_percent)
2036 {
2037 struct auxtrace_cache *c;
2038 struct hlist_head *ht;
2039 size_t sz, i;
2040
2041 c = zalloc(sizeof(struct auxtrace_cache));
2042 if (!c)
2043 return NULL;
2044
2045 sz = 1UL << bits;
2046
2047 ht = calloc(sz, sizeof(struct hlist_head));
2048 if (!ht)
2049 goto out_free;
2050
2051 for (i = 0; i < sz; i++)
2052 INIT_HLIST_HEAD(&ht[i]);
2053
2054 c->hashtable = ht;
2055 c->sz = sz;
2056 c->entry_size = entry_size;
2057 c->limit = (c->sz * limit_percent) / 100;
2058 c->bits = bits;
2059
2060 return c;
2061
2062 out_free:
2063 free(c);
2064 return NULL;
2065 }
2066
auxtrace_cache__drop(struct auxtrace_cache * c)2067 static void auxtrace_cache__drop(struct auxtrace_cache *c)
2068 {
2069 struct auxtrace_cache_entry *entry;
2070 struct hlist_node *tmp;
2071 size_t i;
2072
2073 if (!c)
2074 return;
2075
2076 for (i = 0; i < c->sz; i++) {
2077 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
2078 hlist_del(&entry->hash);
2079 auxtrace_cache__free_entry(c, entry);
2080 }
2081 }
2082
2083 c->cnt = 0;
2084 }
2085
auxtrace_cache__free(struct auxtrace_cache * c)2086 void auxtrace_cache__free(struct auxtrace_cache *c)
2087 {
2088 if (!c)
2089 return;
2090
2091 auxtrace_cache__drop(c);
2092 zfree(&c->hashtable);
2093 free(c);
2094 }
2095
auxtrace_cache__alloc_entry(struct auxtrace_cache * c)2096 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2097 {
2098 return malloc(c->entry_size);
2099 }
2100
auxtrace_cache__free_entry(struct auxtrace_cache * c __maybe_unused,void * entry)2101 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2102 void *entry)
2103 {
2104 free(entry);
2105 }
2106
auxtrace_cache__add(struct auxtrace_cache * c,u32 key,struct auxtrace_cache_entry * entry)2107 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2108 struct auxtrace_cache_entry *entry)
2109 {
2110 if (c->limit && ++c->cnt > c->limit)
2111 auxtrace_cache__drop(c);
2112
2113 entry->key = key;
2114 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2115
2116 return 0;
2117 }
2118
auxtrace_cache__rm(struct auxtrace_cache * c,u32 key)2119 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2120 u32 key)
2121 {
2122 struct auxtrace_cache_entry *entry;
2123 struct hlist_head *hlist;
2124 struct hlist_node *n;
2125
2126 if (!c)
2127 return NULL;
2128
2129 hlist = &c->hashtable[hash_32(key, c->bits)];
2130 hlist_for_each_entry_safe(entry, n, hlist, hash) {
2131 if (entry->key == key) {
2132 hlist_del(&entry->hash);
2133 return entry;
2134 }
2135 }
2136
2137 return NULL;
2138 }
2139
auxtrace_cache__remove(struct auxtrace_cache * c,u32 key)2140 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2141 {
2142 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2143
2144 auxtrace_cache__free_entry(c, entry);
2145 }
2146
auxtrace_cache__lookup(struct auxtrace_cache * c,u32 key)2147 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2148 {
2149 struct auxtrace_cache_entry *entry;
2150 struct hlist_head *hlist;
2151
2152 if (!c)
2153 return NULL;
2154
2155 hlist = &c->hashtable[hash_32(key, c->bits)];
2156 hlist_for_each_entry(entry, hlist, hash) {
2157 if (entry->key == key)
2158 return entry;
2159 }
2160
2161 return NULL;
2162 }
2163
addr_filter__free_str(struct addr_filter * filt)2164 static void addr_filter__free_str(struct addr_filter *filt)
2165 {
2166 zfree(&filt->str);
2167 filt->action = NULL;
2168 filt->sym_from = NULL;
2169 filt->sym_to = NULL;
2170 filt->filename = NULL;
2171 }
2172
addr_filter__new(void)2173 static struct addr_filter *addr_filter__new(void)
2174 {
2175 struct addr_filter *filt = zalloc(sizeof(*filt));
2176
2177 if (filt)
2178 INIT_LIST_HEAD(&filt->list);
2179
2180 return filt;
2181 }
2182
addr_filter__free(struct addr_filter * filt)2183 static void addr_filter__free(struct addr_filter *filt)
2184 {
2185 if (filt)
2186 addr_filter__free_str(filt);
2187 free(filt);
2188 }
2189
addr_filters__add(struct addr_filters * filts,struct addr_filter * filt)2190 static void addr_filters__add(struct addr_filters *filts,
2191 struct addr_filter *filt)
2192 {
2193 list_add_tail(&filt->list, &filts->head);
2194 filts->cnt += 1;
2195 }
2196
addr_filters__del(struct addr_filters * filts,struct addr_filter * filt)2197 static void addr_filters__del(struct addr_filters *filts,
2198 struct addr_filter *filt)
2199 {
2200 list_del_init(&filt->list);
2201 filts->cnt -= 1;
2202 }
2203
addr_filters__init(struct addr_filters * filts)2204 void addr_filters__init(struct addr_filters *filts)
2205 {
2206 INIT_LIST_HEAD(&filts->head);
2207 filts->cnt = 0;
2208 }
2209
addr_filters__exit(struct addr_filters * filts)2210 void addr_filters__exit(struct addr_filters *filts)
2211 {
2212 struct addr_filter *filt, *n;
2213
2214 list_for_each_entry_safe(filt, n, &filts->head, list) {
2215 addr_filters__del(filts, filt);
2216 addr_filter__free(filt);
2217 }
2218 }
2219
parse_num_or_str(char ** inp,u64 * num,const char ** str,const char * str_delim)2220 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2221 const char *str_delim)
2222 {
2223 *inp += strspn(*inp, " ");
2224
2225 if (isdigit(**inp)) {
2226 char *endptr;
2227
2228 if (!num)
2229 return -EINVAL;
2230 errno = 0;
2231 *num = strtoull(*inp, &endptr, 0);
2232 if (errno)
2233 return -errno;
2234 if (endptr == *inp)
2235 return -EINVAL;
2236 *inp = endptr;
2237 } else {
2238 size_t n;
2239
2240 if (!str)
2241 return -EINVAL;
2242 *inp += strspn(*inp, " ");
2243 *str = *inp;
2244 n = strcspn(*inp, str_delim);
2245 if (!n)
2246 return -EINVAL;
2247 *inp += n;
2248 if (**inp) {
2249 **inp = '\0';
2250 *inp += 1;
2251 }
2252 }
2253 return 0;
2254 }
2255
parse_action(struct addr_filter * filt)2256 static int parse_action(struct addr_filter *filt)
2257 {
2258 if (!strcmp(filt->action, "filter")) {
2259 filt->start = true;
2260 filt->range = true;
2261 } else if (!strcmp(filt->action, "start")) {
2262 filt->start = true;
2263 } else if (!strcmp(filt->action, "stop")) {
2264 filt->start = false;
2265 } else if (!strcmp(filt->action, "tracestop")) {
2266 filt->start = false;
2267 filt->range = true;
2268 filt->action += 5; /* Change 'tracestop' to 'stop' */
2269 } else {
2270 return -EINVAL;
2271 }
2272 return 0;
2273 }
2274
parse_sym_idx(char ** inp,int * idx)2275 static int parse_sym_idx(char **inp, int *idx)
2276 {
2277 *idx = -1;
2278
2279 *inp += strspn(*inp, " ");
2280
2281 if (**inp != '#')
2282 return 0;
2283
2284 *inp += 1;
2285
2286 if (**inp == 'g' || **inp == 'G') {
2287 *inp += 1;
2288 *idx = 0;
2289 } else {
2290 unsigned long num;
2291 char *endptr;
2292
2293 errno = 0;
2294 num = strtoul(*inp, &endptr, 0);
2295 if (errno)
2296 return -errno;
2297 if (endptr == *inp || num > INT_MAX)
2298 return -EINVAL;
2299 *inp = endptr;
2300 *idx = num;
2301 }
2302
2303 return 0;
2304 }
2305
parse_addr_size(char ** inp,u64 * num,const char ** str,int * idx)2306 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2307 {
2308 int err = parse_num_or_str(inp, num, str, " ");
2309
2310 if (!err && *str)
2311 err = parse_sym_idx(inp, idx);
2312
2313 return err;
2314 }
2315
parse_one_filter(struct addr_filter * filt,const char ** filter_inp)2316 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2317 {
2318 char *fstr;
2319 int err;
2320
2321 filt->str = fstr = strdup(*filter_inp);
2322 if (!fstr)
2323 return -ENOMEM;
2324
2325 err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2326 if (err)
2327 goto out_err;
2328
2329 err = parse_action(filt);
2330 if (err)
2331 goto out_err;
2332
2333 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2334 &filt->sym_from_idx);
2335 if (err)
2336 goto out_err;
2337
2338 fstr += strspn(fstr, " ");
2339
2340 if (*fstr == '/') {
2341 fstr += 1;
2342 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2343 &filt->sym_to_idx);
2344 if (err)
2345 goto out_err;
2346 filt->range = true;
2347 }
2348
2349 fstr += strspn(fstr, " ");
2350
2351 if (*fstr == '@') {
2352 fstr += 1;
2353 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2354 if (err)
2355 goto out_err;
2356 }
2357
2358 fstr += strspn(fstr, " ,");
2359
2360 *filter_inp += fstr - filt->str;
2361
2362 return 0;
2363
2364 out_err:
2365 addr_filter__free_str(filt);
2366
2367 return err;
2368 }
2369
addr_filters__parse_bare_filter(struct addr_filters * filts,const char * filter)2370 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2371 const char *filter)
2372 {
2373 struct addr_filter *filt;
2374 const char *fstr = filter;
2375 int err;
2376
2377 while (*fstr) {
2378 filt = addr_filter__new();
2379 err = parse_one_filter(filt, &fstr);
2380 if (err) {
2381 addr_filter__free(filt);
2382 addr_filters__exit(filts);
2383 return err;
2384 }
2385 addr_filters__add(filts, filt);
2386 }
2387
2388 return 0;
2389 }
2390
2391 struct sym_args {
2392 const char *name;
2393 u64 start;
2394 u64 size;
2395 int idx;
2396 int cnt;
2397 bool started;
2398 bool global;
2399 bool selected;
2400 bool duplicate;
2401 bool near;
2402 };
2403
kern_sym_name_match(const char * kname,const char * name)2404 static bool kern_sym_name_match(const char *kname, const char *name)
2405 {
2406 size_t n = strlen(name);
2407
2408 return !strcmp(kname, name) ||
2409 (!strncmp(kname, name, n) && kname[n] == '\t');
2410 }
2411
kern_sym_match(struct sym_args * args,const char * name,char type)2412 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2413 {
2414 /* A function with the same name, and global or the n'th found or any */
2415 return kallsyms__is_function(type) &&
2416 kern_sym_name_match(name, args->name) &&
2417 ((args->global && isupper(type)) ||
2418 (args->selected && ++(args->cnt) == args->idx) ||
2419 (!args->global && !args->selected));
2420 }
2421
find_kern_sym_cb(void * arg,const char * name,char type,u64 start)2422 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2423 {
2424 struct sym_args *args = arg;
2425
2426 if (args->started) {
2427 if (!args->size)
2428 args->size = start - args->start;
2429 if (args->selected) {
2430 if (args->size)
2431 return 1;
2432 } else if (kern_sym_match(args, name, type)) {
2433 args->duplicate = true;
2434 return 1;
2435 }
2436 } else if (kern_sym_match(args, name, type)) {
2437 args->started = true;
2438 args->start = start;
2439 }
2440
2441 return 0;
2442 }
2443
print_kern_sym_cb(void * arg,const char * name,char type,u64 start)2444 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2445 {
2446 struct sym_args *args = arg;
2447
2448 if (kern_sym_match(args, name, type)) {
2449 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2450 ++args->cnt, start, type, name);
2451 args->near = true;
2452 } else if (args->near) {
2453 args->near = false;
2454 pr_err("\t\twhich is near\t\t%s\n", name);
2455 }
2456
2457 return 0;
2458 }
2459
sym_not_found_error(const char * sym_name,int idx)2460 static int sym_not_found_error(const char *sym_name, int idx)
2461 {
2462 if (idx > 0) {
2463 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2464 idx, sym_name);
2465 } else if (!idx) {
2466 pr_err("Global symbol '%s' not found.\n", sym_name);
2467 } else {
2468 pr_err("Symbol '%s' not found.\n", sym_name);
2469 }
2470 pr_err("Note that symbols must be functions.\n");
2471
2472 return -EINVAL;
2473 }
2474
find_kern_sym(const char * sym_name,u64 * start,u64 * size,int idx)2475 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2476 {
2477 struct sym_args args = {
2478 .name = sym_name,
2479 .idx = idx,
2480 .global = !idx,
2481 .selected = idx > 0,
2482 };
2483 int err;
2484
2485 *start = 0;
2486 *size = 0;
2487
2488 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2489 if (err < 0) {
2490 pr_err("Failed to parse /proc/kallsyms\n");
2491 return err;
2492 }
2493
2494 if (args.duplicate) {
2495 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2496 args.cnt = 0;
2497 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2498 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2499 sym_name);
2500 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2501 return -EINVAL;
2502 }
2503
2504 if (!args.started) {
2505 pr_err("Kernel symbol lookup: ");
2506 return sym_not_found_error(sym_name, idx);
2507 }
2508
2509 *start = args.start;
2510 *size = args.size;
2511
2512 return 0;
2513 }
2514
find_entire_kern_cb(void * arg,const char * name __maybe_unused,char type,u64 start)2515 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2516 char type, u64 start)
2517 {
2518 struct sym_args *args = arg;
2519 u64 size;
2520
2521 if (!kallsyms__is_function(type))
2522 return 0;
2523
2524 if (!args->started) {
2525 args->started = true;
2526 args->start = start;
2527 }
2528 /* Don't know exactly where the kernel ends, so we add a page */
2529 size = round_up(start, page_size) + page_size - args->start;
2530 if (size > args->size)
2531 args->size = size;
2532
2533 return 0;
2534 }
2535
addr_filter__entire_kernel(struct addr_filter * filt)2536 static int addr_filter__entire_kernel(struct addr_filter *filt)
2537 {
2538 struct sym_args args = { .started = false };
2539 int err;
2540
2541 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2542 if (err < 0 || !args.started) {
2543 pr_err("Failed to parse /proc/kallsyms\n");
2544 return err;
2545 }
2546
2547 filt->addr = args.start;
2548 filt->size = args.size;
2549
2550 return 0;
2551 }
2552
check_end_after_start(struct addr_filter * filt,u64 start,u64 size)2553 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2554 {
2555 if (start + size >= filt->addr)
2556 return 0;
2557
2558 if (filt->sym_from) {
2559 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2560 filt->sym_to, start, filt->sym_from, filt->addr);
2561 } else {
2562 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2563 filt->sym_to, start, filt->addr);
2564 }
2565
2566 return -EINVAL;
2567 }
2568
addr_filter__resolve_kernel_syms(struct addr_filter * filt)2569 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2570 {
2571 bool no_size = false;
2572 u64 start, size;
2573 int err;
2574
2575 if (symbol_conf.kptr_restrict) {
2576 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2577 return -EINVAL;
2578 }
2579
2580 if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2581 return addr_filter__entire_kernel(filt);
2582
2583 if (filt->sym_from) {
2584 err = find_kern_sym(filt->sym_from, &start, &size,
2585 filt->sym_from_idx);
2586 if (err)
2587 return err;
2588 filt->addr = start;
2589 if (filt->range && !filt->size && !filt->sym_to) {
2590 filt->size = size;
2591 no_size = !size;
2592 }
2593 }
2594
2595 if (filt->sym_to) {
2596 err = find_kern_sym(filt->sym_to, &start, &size,
2597 filt->sym_to_idx);
2598 if (err)
2599 return err;
2600
2601 err = check_end_after_start(filt, start, size);
2602 if (err)
2603 return err;
2604 filt->size = start + size - filt->addr;
2605 no_size = !size;
2606 }
2607
2608 /* The very last symbol in kallsyms does not imply a particular size */
2609 if (no_size) {
2610 pr_err("Cannot determine size of symbol '%s'\n",
2611 filt->sym_to ? filt->sym_to : filt->sym_from);
2612 return -EINVAL;
2613 }
2614
2615 return 0;
2616 }
2617
load_dso(const char * name)2618 static struct dso *load_dso(const char *name)
2619 {
2620 struct map *map;
2621 struct dso *dso;
2622
2623 map = dso__new_map(name);
2624 if (!map)
2625 return NULL;
2626
2627 if (map__load(map) < 0)
2628 pr_err("File '%s' not found or has no symbols.\n", name);
2629
2630 dso = dso__get(map__dso(map));
2631
2632 map__put(map);
2633
2634 return dso;
2635 }
2636
dso_sym_match(struct symbol * sym,const char * name,int * cnt,int idx)2637 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2638 int idx)
2639 {
2640 /* Same name, and global or the n'th found or any */
2641 return !arch__compare_symbol_names(name, sym->name) &&
2642 ((!idx && sym->binding == STB_GLOBAL) ||
2643 (idx > 0 && ++*cnt == idx) ||
2644 idx < 0);
2645 }
2646
print_duplicate_syms(struct dso * dso,const char * sym_name)2647 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2648 {
2649 struct symbol *sym;
2650 bool near = false;
2651 int cnt = 0;
2652
2653 pr_err("Multiple symbols with name '%s'\n", sym_name);
2654
2655 sym = dso__first_symbol(dso);
2656 while (sym) {
2657 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2658 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2659 ++cnt, sym->start,
2660 sym->binding == STB_GLOBAL ? 'g' :
2661 sym->binding == STB_LOCAL ? 'l' : 'w',
2662 sym->name);
2663 near = true;
2664 } else if (near) {
2665 near = false;
2666 pr_err("\t\twhich is near\t\t%s\n", sym->name);
2667 }
2668 sym = dso__next_symbol(sym);
2669 }
2670
2671 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2672 sym_name);
2673 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2674 }
2675
find_dso_sym(struct dso * dso,const char * sym_name,u64 * start,u64 * size,int idx)2676 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2677 u64 *size, int idx)
2678 {
2679 struct symbol *sym;
2680 int cnt = 0;
2681
2682 *start = 0;
2683 *size = 0;
2684
2685 sym = dso__first_symbol(dso);
2686 while (sym) {
2687 if (*start) {
2688 if (!*size)
2689 *size = sym->start - *start;
2690 if (idx > 0) {
2691 if (*size)
2692 return 0;
2693 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2694 print_duplicate_syms(dso, sym_name);
2695 return -EINVAL;
2696 }
2697 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2698 *start = sym->start;
2699 *size = sym->end - sym->start;
2700 }
2701 sym = dso__next_symbol(sym);
2702 }
2703
2704 if (!*start)
2705 return sym_not_found_error(sym_name, idx);
2706
2707 return 0;
2708 }
2709
addr_filter__entire_dso(struct addr_filter * filt,struct dso * dso)2710 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2711 {
2712 if (dso__data_file_size(dso, NULL)) {
2713 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2714 filt->filename);
2715 return -EINVAL;
2716 }
2717
2718 filt->addr = 0;
2719 filt->size = dso__data(dso)->file_size;
2720
2721 return 0;
2722 }
2723
addr_filter__resolve_syms(struct addr_filter * filt)2724 static int addr_filter__resolve_syms(struct addr_filter *filt)
2725 {
2726 u64 start, size;
2727 struct dso *dso;
2728 int err = 0;
2729
2730 if (!filt->sym_from && !filt->sym_to)
2731 return 0;
2732
2733 if (!filt->filename)
2734 return addr_filter__resolve_kernel_syms(filt);
2735
2736 dso = load_dso(filt->filename);
2737 if (!dso) {
2738 pr_err("Failed to load symbols from: %s\n", filt->filename);
2739 return -EINVAL;
2740 }
2741
2742 if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2743 err = addr_filter__entire_dso(filt, dso);
2744 goto put_dso;
2745 }
2746
2747 if (filt->sym_from) {
2748 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2749 filt->sym_from_idx);
2750 if (err)
2751 goto put_dso;
2752 filt->addr = start;
2753 if (filt->range && !filt->size && !filt->sym_to)
2754 filt->size = size;
2755 }
2756
2757 if (filt->sym_to) {
2758 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2759 filt->sym_to_idx);
2760 if (err)
2761 goto put_dso;
2762
2763 err = check_end_after_start(filt, start, size);
2764 if (err)
2765 return err;
2766
2767 filt->size = start + size - filt->addr;
2768 }
2769
2770 put_dso:
2771 dso__put(dso);
2772
2773 return err;
2774 }
2775
addr_filter__to_str(struct addr_filter * filt)2776 static char *addr_filter__to_str(struct addr_filter *filt)
2777 {
2778 char filename_buf[PATH_MAX];
2779 const char *at = "";
2780 const char *fn = "";
2781 char *filter;
2782 int err;
2783
2784 if (filt->filename) {
2785 at = "@";
2786 fn = realpath(filt->filename, filename_buf);
2787 if (!fn)
2788 return NULL;
2789 }
2790
2791 if (filt->range) {
2792 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2793 filt->action, filt->addr, filt->size, at, fn);
2794 } else {
2795 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2796 filt->action, filt->addr, at, fn);
2797 }
2798
2799 return err < 0 ? NULL : filter;
2800 }
2801
parse_addr_filter(struct evsel * evsel,const char * filter,int max_nr)2802 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2803 int max_nr)
2804 {
2805 struct addr_filters filts;
2806 struct addr_filter *filt;
2807 int err;
2808
2809 addr_filters__init(&filts);
2810
2811 err = addr_filters__parse_bare_filter(&filts, filter);
2812 if (err)
2813 goto out_exit;
2814
2815 if (filts.cnt > max_nr) {
2816 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2817 filts.cnt, max_nr);
2818 err = -EINVAL;
2819 goto out_exit;
2820 }
2821
2822 list_for_each_entry(filt, &filts.head, list) {
2823 char *new_filter;
2824
2825 err = addr_filter__resolve_syms(filt);
2826 if (err)
2827 goto out_exit;
2828
2829 new_filter = addr_filter__to_str(filt);
2830 if (!new_filter) {
2831 err = -ENOMEM;
2832 goto out_exit;
2833 }
2834
2835 if (evsel__append_addr_filter(evsel, new_filter)) {
2836 err = -ENOMEM;
2837 goto out_exit;
2838 }
2839 }
2840
2841 out_exit:
2842 addr_filters__exit(&filts);
2843
2844 if (err) {
2845 pr_err("Failed to parse address filter: '%s'\n", filter);
2846 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2847 pr_err("Where multiple filters are separated by space or comma.\n");
2848 }
2849
2850 return err;
2851 }
2852
evsel__nr_addr_filter(struct evsel * evsel)2853 static int evsel__nr_addr_filter(struct evsel *evsel)
2854 {
2855 struct perf_pmu *pmu = evsel__find_pmu(evsel);
2856 int nr_addr_filters = 0;
2857
2858 if (!pmu)
2859 return 0;
2860
2861 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2862
2863 return nr_addr_filters;
2864 }
2865
auxtrace_parse_filters(struct evlist * evlist)2866 int auxtrace_parse_filters(struct evlist *evlist)
2867 {
2868 struct evsel *evsel;
2869 char *filter;
2870 int err, max_nr;
2871
2872 evlist__for_each_entry(evlist, evsel) {
2873 filter = evsel->filter;
2874 max_nr = evsel__nr_addr_filter(evsel);
2875 if (!filter || !max_nr)
2876 continue;
2877 evsel->filter = NULL;
2878 err = parse_addr_filter(evsel, filter, max_nr);
2879 free(filter);
2880 if (err)
2881 return err;
2882 pr_debug("Address filter: %s\n", evsel->filter);
2883 }
2884
2885 return 0;
2886 }
2887
auxtrace__process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,const struct perf_tool * tool)2888 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2889 struct perf_sample *sample, const struct perf_tool *tool)
2890 {
2891 if (!session->auxtrace)
2892 return 0;
2893
2894 return session->auxtrace->process_event(session, event, sample, tool);
2895 }
2896
auxtrace__dump_auxtrace_sample(struct perf_session * session,struct perf_sample * sample)2897 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2898 struct perf_sample *sample)
2899 {
2900 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2901 auxtrace__dont_decode(session))
2902 return;
2903
2904 session->auxtrace->dump_auxtrace_sample(session, sample);
2905 }
2906
auxtrace__flush_events(struct perf_session * session,const struct perf_tool * tool)2907 int auxtrace__flush_events(struct perf_session *session, const struct perf_tool *tool)
2908 {
2909 if (!session->auxtrace)
2910 return 0;
2911
2912 return session->auxtrace->flush_events(session, tool);
2913 }
2914
auxtrace__free_events(struct perf_session * session)2915 void auxtrace__free_events(struct perf_session *session)
2916 {
2917 if (!session->auxtrace)
2918 return;
2919
2920 return session->auxtrace->free_events(session);
2921 }
2922
auxtrace__free(struct perf_session * session)2923 void auxtrace__free(struct perf_session *session)
2924 {
2925 if (!session->auxtrace)
2926 return;
2927
2928 return session->auxtrace->free(session);
2929 }
2930
auxtrace__evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)2931 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2932 struct evsel *evsel)
2933 {
2934 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2935 return false;
2936
2937 return session->auxtrace->evsel_is_auxtrace(session, evsel);
2938 }
2939