1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c -- Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <[email protected]>
11 // with code, comments and ideas from :-
12 // Richard Purdie <[email protected]>
13
14 #include <linux/cleanup.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/init.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29
30 /**
31 * snd_soc_info_enum_double - enumerated double mixer info callback
32 * @kcontrol: mixer control
33 * @uinfo: control element information
34 *
35 * Callback to provide information about a double enumerated
36 * mixer control.
37 *
38 * Returns 0 for success.
39 */
snd_soc_info_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 struct snd_ctl_elem_info *uinfo)
42 {
43 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44
45 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49
50 /**
51 * snd_soc_get_enum_double - enumerated double mixer get callback
52 * @kcontrol: mixer control
53 * @ucontrol: control element information
54 *
55 * Callback to get the value of a double enumerated mixer.
56 *
57 * Returns 0 for success.
58 */
snd_soc_get_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 struct snd_ctl_elem_value *ucontrol)
61 {
62 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 unsigned int val, item;
65 unsigned int reg_val;
66
67 reg_val = snd_soc_component_read(component, e->reg);
68 val = (reg_val >> e->shift_l) & e->mask;
69 item = snd_soc_enum_val_to_item(e, val);
70 ucontrol->value.enumerated.item[0] = item;
71 if (e->shift_l != e->shift_r) {
72 val = (reg_val >> e->shift_r) & e->mask;
73 item = snd_soc_enum_val_to_item(e, val);
74 ucontrol->value.enumerated.item[1] = item;
75 }
76
77 return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80
81 /**
82 * snd_soc_put_enum_double - enumerated double mixer put callback
83 * @kcontrol: mixer control
84 * @ucontrol: control element information
85 *
86 * Callback to set the value of a double enumerated mixer.
87 *
88 * Returns 0 for success.
89 */
snd_soc_put_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 struct snd_ctl_elem_value *ucontrol)
92 {
93 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 unsigned int *item = ucontrol->value.enumerated.item;
96 unsigned int val;
97 unsigned int mask;
98
99 if (item[0] >= e->items)
100 return -EINVAL;
101 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 mask = e->mask << e->shift_l;
103 if (e->shift_l != e->shift_r) {
104 if (item[1] >= e->items)
105 return -EINVAL;
106 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 mask |= e->mask << e->shift_r;
108 }
109
110 return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113
114 /**
115 * snd_soc_read_signed - Read a codec register and interpret as signed value
116 * @component: component
117 * @reg: Register to read
118 * @mask: Mask to use after shifting the register value
119 * @shift: Right shift of register value
120 * @sign_bit: Bit that describes if a number is negative or not.
121 * @signed_val: Pointer to where the read value should be stored
122 *
123 * This functions reads a codec register. The register value is shifted right
124 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125 * the given registervalue into a signed integer if sign_bit is non-zero.
126 *
127 * Returns 0 on sucess, otherwise an error value
128 */
snd_soc_read_signed(struct snd_soc_component * component,unsigned int reg,unsigned int mask,unsigned int shift,unsigned int sign_bit,int * signed_val)129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 unsigned int reg, unsigned int mask, unsigned int shift,
131 unsigned int sign_bit, int *signed_val)
132 {
133 int ret;
134 unsigned int val;
135
136 val = snd_soc_component_read(component, reg);
137 val = (val >> shift) & mask;
138
139 if (!sign_bit) {
140 *signed_val = val;
141 return 0;
142 }
143
144 /* non-negative number */
145 if (!(val & BIT(sign_bit))) {
146 *signed_val = val;
147 return 0;
148 }
149
150 ret = val;
151
152 /*
153 * The register most probably does not contain a full-sized int.
154 * Instead we have an arbitrary number of bits in a signed
155 * representation which has to be translated into a full-sized int.
156 * This is done by filling up all bits above the sign-bit.
157 */
158 ret |= ~((int)(BIT(sign_bit) - 1));
159
160 *signed_val = ret;
161
162 return 0;
163 }
164
165 /**
166 * snd_soc_info_volsw - single mixer info callback
167 * @kcontrol: mixer control
168 * @uinfo: control element information
169 *
170 * Callback to provide information about a single mixer control, or a double
171 * mixer control that spans 2 registers.
172 *
173 * Returns 0 for success.
174 */
snd_soc_info_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 struct snd_ctl_elem_info *uinfo)
177 {
178 struct soc_mixer_control *mc =
179 (struct soc_mixer_control *)kcontrol->private_value;
180 const char *vol_string = NULL;
181 int max;
182
183 max = uinfo->value.integer.max = mc->max - mc->min;
184 if (mc->platform_max && mc->platform_max < max)
185 max = mc->platform_max;
186
187 if (max == 1) {
188 /* Even two value controls ending in Volume should always be integer */
189 vol_string = strstr(kcontrol->id.name, " Volume");
190 if (vol_string && !strcmp(vol_string, " Volume"))
191 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
192 else
193 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
194 } else {
195 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
196 }
197
198 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
199 uinfo->value.integer.min = 0;
200 uinfo->value.integer.max = max;
201
202 return 0;
203 }
204 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
205
206 /**
207 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
208 * @kcontrol: mixer control
209 * @uinfo: control element information
210 *
211 * Callback to provide information about a single mixer control, or a double
212 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
213 * have a range that represents both positive and negative values either side
214 * of zero but without a sign bit. min is the minimum register value, max is
215 * the number of steps.
216 *
217 * Returns 0 for success.
218 */
snd_soc_info_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)219 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
220 struct snd_ctl_elem_info *uinfo)
221 {
222 struct soc_mixer_control *mc =
223 (struct soc_mixer_control *)kcontrol->private_value;
224 int max;
225
226 if (mc->platform_max)
227 max = mc->platform_max;
228 else
229 max = mc->max;
230
231 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
232 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
233 else
234 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
235
236 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
237 uinfo->value.integer.min = 0;
238 uinfo->value.integer.max = max;
239
240 return 0;
241 }
242 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
243
244 /**
245 * snd_soc_get_volsw - single mixer get callback
246 * @kcontrol: mixer control
247 * @ucontrol: control element information
248 *
249 * Callback to get the value of a single mixer control, or a double mixer
250 * control that spans 2 registers.
251 *
252 * Returns 0 for success.
253 */
snd_soc_get_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)254 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
255 struct snd_ctl_elem_value *ucontrol)
256 {
257 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
258 struct soc_mixer_control *mc =
259 (struct soc_mixer_control *)kcontrol->private_value;
260 unsigned int reg = mc->reg;
261 unsigned int reg2 = mc->rreg;
262 unsigned int shift = mc->shift;
263 unsigned int rshift = mc->rshift;
264 int max = mc->max;
265 int min = mc->min;
266 int sign_bit = mc->sign_bit;
267 unsigned int mask = (1ULL << fls(max)) - 1;
268 unsigned int invert = mc->invert;
269 int val;
270 int ret;
271
272 if (sign_bit)
273 mask = BIT(sign_bit + 1) - 1;
274
275 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
276 if (ret)
277 return ret;
278
279 ucontrol->value.integer.value[0] = val - min;
280 if (invert)
281 ucontrol->value.integer.value[0] =
282 max - ucontrol->value.integer.value[0];
283
284 if (snd_soc_volsw_is_stereo(mc)) {
285 if (reg == reg2)
286 ret = snd_soc_read_signed(component, reg, mask, rshift,
287 sign_bit, &val);
288 else
289 ret = snd_soc_read_signed(component, reg2, mask, shift,
290 sign_bit, &val);
291 if (ret)
292 return ret;
293
294 ucontrol->value.integer.value[1] = val - min;
295 if (invert)
296 ucontrol->value.integer.value[1] =
297 max - ucontrol->value.integer.value[1];
298 }
299
300 return 0;
301 }
302 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
303
304 /**
305 * snd_soc_put_volsw - single mixer put callback
306 * @kcontrol: mixer control
307 * @ucontrol: control element information
308 *
309 * Callback to set the value of a single mixer control, or a double mixer
310 * control that spans 2 registers.
311 *
312 * Returns 0 for success.
313 */
snd_soc_put_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)314 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
315 struct snd_ctl_elem_value *ucontrol)
316 {
317 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
318 struct soc_mixer_control *mc =
319 (struct soc_mixer_control *)kcontrol->private_value;
320 unsigned int reg = mc->reg;
321 unsigned int reg2 = mc->rreg;
322 unsigned int shift = mc->shift;
323 unsigned int rshift = mc->rshift;
324 int max = mc->max;
325 int min = mc->min;
326 unsigned int sign_bit = mc->sign_bit;
327 unsigned int mask = (1 << fls(max)) - 1;
328 unsigned int invert = mc->invert;
329 int err, ret;
330 bool type_2r = false;
331 unsigned int val2 = 0;
332 unsigned int val, val_mask;
333
334 if (sign_bit)
335 mask = BIT(sign_bit + 1) - 1;
336
337 if (ucontrol->value.integer.value[0] < 0)
338 return -EINVAL;
339 val = ucontrol->value.integer.value[0];
340 if (mc->platform_max && val > mc->platform_max)
341 return -EINVAL;
342 if (val > max - min)
343 return -EINVAL;
344 val = (val + min) & mask;
345 if (invert)
346 val = max - val;
347 val_mask = mask << shift;
348 val = val << shift;
349 if (snd_soc_volsw_is_stereo(mc)) {
350 if (ucontrol->value.integer.value[1] < 0)
351 return -EINVAL;
352 val2 = ucontrol->value.integer.value[1];
353 if (mc->platform_max && val2 > mc->platform_max)
354 return -EINVAL;
355 if (val2 > max - min)
356 return -EINVAL;
357 val2 = (val2 + min) & mask;
358 if (invert)
359 val2 = max - val2;
360 if (reg == reg2) {
361 val_mask |= mask << rshift;
362 val |= val2 << rshift;
363 } else {
364 val2 = val2 << shift;
365 type_2r = true;
366 }
367 }
368 err = snd_soc_component_update_bits(component, reg, val_mask, val);
369 if (err < 0)
370 return err;
371 ret = err;
372
373 if (type_2r) {
374 err = snd_soc_component_update_bits(component, reg2, val_mask,
375 val2);
376 /* Don't discard any error code or drop change flag */
377 if (ret == 0 || err < 0) {
378 ret = err;
379 }
380 }
381
382 return ret;
383 }
384 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
385
386 /**
387 * snd_soc_get_volsw_sx - single mixer get callback
388 * @kcontrol: mixer control
389 * @ucontrol: control element information
390 *
391 * Callback to get the value of a single mixer control, or a double mixer
392 * control that spans 2 registers.
393 *
394 * Returns 0 for success.
395 */
snd_soc_get_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)396 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
397 struct snd_ctl_elem_value *ucontrol)
398 {
399 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
400 struct soc_mixer_control *mc =
401 (struct soc_mixer_control *)kcontrol->private_value;
402 unsigned int reg = mc->reg;
403 unsigned int reg2 = mc->rreg;
404 unsigned int shift = mc->shift;
405 unsigned int rshift = mc->rshift;
406 int max = mc->max;
407 int min = mc->min;
408 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
409 unsigned int val;
410
411 val = snd_soc_component_read(component, reg);
412 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
413
414 if (snd_soc_volsw_is_stereo(mc)) {
415 val = snd_soc_component_read(component, reg2);
416 val = ((val >> rshift) - min) & mask;
417 ucontrol->value.integer.value[1] = val;
418 }
419
420 return 0;
421 }
422 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
423
424 /**
425 * snd_soc_put_volsw_sx - double mixer set callback
426 * @kcontrol: mixer control
427 * @ucontrol: control element information
428 *
429 * Callback to set the value of a double mixer control that spans 2 registers.
430 *
431 * Returns 0 for success.
432 */
snd_soc_put_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)433 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
434 struct snd_ctl_elem_value *ucontrol)
435 {
436 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
437 struct soc_mixer_control *mc =
438 (struct soc_mixer_control *)kcontrol->private_value;
439
440 unsigned int reg = mc->reg;
441 unsigned int reg2 = mc->rreg;
442 unsigned int shift = mc->shift;
443 unsigned int rshift = mc->rshift;
444 int max = mc->max;
445 int min = mc->min;
446 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
447 int err = 0;
448 int ret;
449 unsigned int val, val_mask;
450
451 if (ucontrol->value.integer.value[0] < 0)
452 return -EINVAL;
453 val = ucontrol->value.integer.value[0];
454 if (mc->platform_max && val > mc->platform_max)
455 return -EINVAL;
456 if (val > max)
457 return -EINVAL;
458 val_mask = mask << shift;
459 val = (val + min) & mask;
460 val = val << shift;
461
462 err = snd_soc_component_update_bits(component, reg, val_mask, val);
463 if (err < 0)
464 return err;
465 ret = err;
466
467 if (snd_soc_volsw_is_stereo(mc)) {
468 unsigned int val2 = ucontrol->value.integer.value[1];
469
470 if (mc->platform_max && val2 > mc->platform_max)
471 return -EINVAL;
472 if (val2 > max)
473 return -EINVAL;
474
475 val_mask = mask << rshift;
476 val2 = (val2 + min) & mask;
477 val2 = val2 << rshift;
478
479 err = snd_soc_component_update_bits(component, reg2, val_mask,
480 val2);
481
482 /* Don't discard any error code or drop change flag */
483 if (ret == 0 || err < 0) {
484 ret = err;
485 }
486 }
487 return ret;
488 }
489 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
490
491 /**
492 * snd_soc_info_volsw_range - single mixer info callback with range.
493 * @kcontrol: mixer control
494 * @uinfo: control element information
495 *
496 * Callback to provide information, within a range, about a single
497 * mixer control.
498 *
499 * returns 0 for success.
500 */
snd_soc_info_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)501 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
502 struct snd_ctl_elem_info *uinfo)
503 {
504 struct soc_mixer_control *mc =
505 (struct soc_mixer_control *)kcontrol->private_value;
506 int max;
507
508 max = mc->max - mc->min;
509 if (mc->platform_max && mc->platform_max < max)
510 max = mc->platform_max;
511
512 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
513 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
514 uinfo->value.integer.min = 0;
515 uinfo->value.integer.max = max;
516
517 return 0;
518 }
519 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
520
521 /**
522 * snd_soc_put_volsw_range - single mixer put value callback with range.
523 * @kcontrol: mixer control
524 * @ucontrol: control element information
525 *
526 * Callback to set the value, within a range, for a single mixer control.
527 *
528 * Returns 0 for success.
529 */
snd_soc_put_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)530 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
531 struct snd_ctl_elem_value *ucontrol)
532 {
533 struct soc_mixer_control *mc =
534 (struct soc_mixer_control *)kcontrol->private_value;
535 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
536 unsigned int reg = mc->reg;
537 unsigned int rreg = mc->rreg;
538 unsigned int shift = mc->shift;
539 int min = mc->min;
540 int max = mc->max;
541 unsigned int mask = (1 << fls(max)) - 1;
542 unsigned int invert = mc->invert;
543 unsigned int val, val_mask;
544 int err, ret, tmp;
545
546 tmp = ucontrol->value.integer.value[0];
547 if (tmp < 0)
548 return -EINVAL;
549 if (mc->platform_max && tmp > mc->platform_max)
550 return -EINVAL;
551 if (tmp > mc->max - mc->min)
552 return -EINVAL;
553
554 if (invert)
555 val = (max - ucontrol->value.integer.value[0]) & mask;
556 else
557 val = ((ucontrol->value.integer.value[0] + min) & mask);
558 val_mask = mask << shift;
559 val = val << shift;
560
561 err = snd_soc_component_update_bits(component, reg, val_mask, val);
562 if (err < 0)
563 return err;
564 ret = err;
565
566 if (snd_soc_volsw_is_stereo(mc)) {
567 tmp = ucontrol->value.integer.value[1];
568 if (tmp < 0)
569 return -EINVAL;
570 if (mc->platform_max && tmp > mc->platform_max)
571 return -EINVAL;
572 if (tmp > mc->max - mc->min)
573 return -EINVAL;
574
575 if (invert)
576 val = (max - ucontrol->value.integer.value[1]) & mask;
577 else
578 val = ((ucontrol->value.integer.value[1] + min) & mask);
579 val_mask = mask << shift;
580 val = val << shift;
581
582 err = snd_soc_component_update_bits(component, rreg, val_mask,
583 val);
584 /* Don't discard any error code or drop change flag */
585 if (ret == 0 || err < 0) {
586 ret = err;
587 }
588 }
589
590 return ret;
591 }
592 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
593
594 /**
595 * snd_soc_get_volsw_range - single mixer get callback with range
596 * @kcontrol: mixer control
597 * @ucontrol: control element information
598 *
599 * Callback to get the value, within a range, of a single mixer control.
600 *
601 * Returns 0 for success.
602 */
snd_soc_get_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)603 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
604 struct snd_ctl_elem_value *ucontrol)
605 {
606 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
607 struct soc_mixer_control *mc =
608 (struct soc_mixer_control *)kcontrol->private_value;
609 unsigned int reg = mc->reg;
610 unsigned int rreg = mc->rreg;
611 unsigned int shift = mc->shift;
612 int min = mc->min;
613 int max = mc->max;
614 unsigned int mask = (1 << fls(max)) - 1;
615 unsigned int invert = mc->invert;
616 unsigned int val;
617
618 val = snd_soc_component_read(component, reg);
619 ucontrol->value.integer.value[0] = (val >> shift) & mask;
620 if (invert)
621 ucontrol->value.integer.value[0] =
622 max - ucontrol->value.integer.value[0];
623 else
624 ucontrol->value.integer.value[0] =
625 ucontrol->value.integer.value[0] - min;
626
627 if (snd_soc_volsw_is_stereo(mc)) {
628 val = snd_soc_component_read(component, rreg);
629 ucontrol->value.integer.value[1] = (val >> shift) & mask;
630 if (invert)
631 ucontrol->value.integer.value[1] =
632 max - ucontrol->value.integer.value[1];
633 else
634 ucontrol->value.integer.value[1] =
635 ucontrol->value.integer.value[1] - min;
636 }
637
638 return 0;
639 }
640 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
641
642 /**
643 * snd_soc_limit_volume - Set new limit to an existing volume control.
644 *
645 * @card: where to look for the control
646 * @name: Name of the control
647 * @max: new maximum limit
648 *
649 * Return 0 for success, else error.
650 */
snd_soc_limit_volume(struct snd_soc_card * card,const char * name,int max)651 int snd_soc_limit_volume(struct snd_soc_card *card,
652 const char *name, int max)
653 {
654 struct snd_kcontrol *kctl;
655 int ret = -EINVAL;
656
657 /* Sanity check for name and max */
658 if (unlikely(!name || max <= 0))
659 return -EINVAL;
660
661 kctl = snd_soc_card_get_kcontrol(card, name);
662 if (kctl) {
663 struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
664 if (max <= mc->max - mc->min) {
665 mc->platform_max = max;
666 ret = 0;
667 }
668 }
669 return ret;
670 }
671 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
672
snd_soc_bytes_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)673 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
674 struct snd_ctl_elem_info *uinfo)
675 {
676 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
677 struct soc_bytes *params = (void *)kcontrol->private_value;
678
679 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
680 uinfo->count = params->num_regs * component->val_bytes;
681
682 return 0;
683 }
684 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
685
snd_soc_bytes_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)686 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
687 struct snd_ctl_elem_value *ucontrol)
688 {
689 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
690 struct soc_bytes *params = (void *)kcontrol->private_value;
691 int ret;
692
693 if (component->regmap)
694 ret = regmap_raw_read(component->regmap, params->base,
695 ucontrol->value.bytes.data,
696 params->num_regs * component->val_bytes);
697 else
698 ret = -EINVAL;
699
700 /* Hide any masked bytes to ensure consistent data reporting */
701 if (ret == 0 && params->mask) {
702 switch (component->val_bytes) {
703 case 1:
704 ucontrol->value.bytes.data[0] &= ~params->mask;
705 break;
706 case 2:
707 ((u16 *)(&ucontrol->value.bytes.data))[0]
708 &= cpu_to_be16(~params->mask);
709 break;
710 case 4:
711 ((u32 *)(&ucontrol->value.bytes.data))[0]
712 &= cpu_to_be32(~params->mask);
713 break;
714 default:
715 return -EINVAL;
716 }
717 }
718
719 return ret;
720 }
721 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
722
snd_soc_bytes_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)723 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
724 struct snd_ctl_elem_value *ucontrol)
725 {
726 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
727 struct soc_bytes *params = (void *)kcontrol->private_value;
728 int ret, len;
729 unsigned int val, mask;
730
731 if (!component->regmap || !params->num_regs)
732 return -EINVAL;
733
734 len = params->num_regs * component->val_bytes;
735
736 void *data __free(kfree) = kmemdup(ucontrol->value.bytes.data, len,
737 GFP_KERNEL | GFP_DMA);
738 if (!data)
739 return -ENOMEM;
740
741 /*
742 * If we've got a mask then we need to preserve the register
743 * bits. We shouldn't modify the incoming data so take a
744 * copy.
745 */
746 if (params->mask) {
747 ret = regmap_read(component->regmap, params->base, &val);
748 if (ret != 0)
749 return ret;
750
751 val &= params->mask;
752
753 switch (component->val_bytes) {
754 case 1:
755 ((u8 *)data)[0] &= ~params->mask;
756 ((u8 *)data)[0] |= val;
757 break;
758 case 2:
759 mask = ~params->mask;
760 ret = regmap_parse_val(component->regmap,
761 &mask, &mask);
762 if (ret != 0)
763 return ret;
764
765 ((u16 *)data)[0] &= mask;
766
767 ret = regmap_parse_val(component->regmap,
768 &val, &val);
769 if (ret != 0)
770 return ret;
771
772 ((u16 *)data)[0] |= val;
773 break;
774 case 4:
775 mask = ~params->mask;
776 ret = regmap_parse_val(component->regmap,
777 &mask, &mask);
778 if (ret != 0)
779 return ret;
780
781 ((u32 *)data)[0] &= mask;
782
783 ret = regmap_parse_val(component->regmap,
784 &val, &val);
785 if (ret != 0)
786 return ret;
787
788 ((u32 *)data)[0] |= val;
789 break;
790 default:
791 return -EINVAL;
792 }
793 }
794
795 return regmap_raw_write(component->regmap, params->base, data, len);
796 }
797 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
798
snd_soc_bytes_info_ext(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * ucontrol)799 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
800 struct snd_ctl_elem_info *ucontrol)
801 {
802 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
803
804 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
805 ucontrol->count = params->max;
806
807 return 0;
808 }
809 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
810
snd_soc_bytes_tlv_callback(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)811 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
812 unsigned int size, unsigned int __user *tlv)
813 {
814 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
815 unsigned int count = size < params->max ? size : params->max;
816 int ret = -ENXIO;
817
818 switch (op_flag) {
819 case SNDRV_CTL_TLV_OP_READ:
820 if (params->get)
821 ret = params->get(kcontrol, tlv, count);
822 break;
823 case SNDRV_CTL_TLV_OP_WRITE:
824 if (params->put)
825 ret = params->put(kcontrol, tlv, count);
826 break;
827 }
828 return ret;
829 }
830 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
831
832 /**
833 * snd_soc_info_xr_sx - signed multi register info callback
834 * @kcontrol: mreg control
835 * @uinfo: control element information
836 *
837 * Callback to provide information of a control that can
838 * span multiple codec registers which together
839 * forms a single signed value in a MSB/LSB manner.
840 *
841 * Returns 0 for success.
842 */
snd_soc_info_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)843 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
844 struct snd_ctl_elem_info *uinfo)
845 {
846 struct soc_mreg_control *mc =
847 (struct soc_mreg_control *)kcontrol->private_value;
848 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
849 uinfo->count = 1;
850 uinfo->value.integer.min = mc->min;
851 uinfo->value.integer.max = mc->max;
852
853 return 0;
854 }
855 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
856
857 /**
858 * snd_soc_get_xr_sx - signed multi register get callback
859 * @kcontrol: mreg control
860 * @ucontrol: control element information
861 *
862 * Callback to get the value of a control that can span
863 * multiple codec registers which together forms a single
864 * signed value in a MSB/LSB manner. The control supports
865 * specifying total no of bits used to allow for bitfields
866 * across the multiple codec registers.
867 *
868 * Returns 0 for success.
869 */
snd_soc_get_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)870 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
871 struct snd_ctl_elem_value *ucontrol)
872 {
873 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
874 struct soc_mreg_control *mc =
875 (struct soc_mreg_control *)kcontrol->private_value;
876 unsigned int regbase = mc->regbase;
877 unsigned int regcount = mc->regcount;
878 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
879 unsigned int regwmask = (1UL<<regwshift)-1;
880 unsigned int invert = mc->invert;
881 unsigned long mask = (1UL<<mc->nbits)-1;
882 long min = mc->min;
883 long max = mc->max;
884 long val = 0;
885 unsigned int i;
886
887 for (i = 0; i < regcount; i++) {
888 unsigned int regval = snd_soc_component_read(component, regbase+i);
889 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
890 }
891 val &= mask;
892 if (min < 0 && val > max)
893 val |= ~mask;
894 if (invert)
895 val = max - val;
896 ucontrol->value.integer.value[0] = val;
897
898 return 0;
899 }
900 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
901
902 /**
903 * snd_soc_put_xr_sx - signed multi register get callback
904 * @kcontrol: mreg control
905 * @ucontrol: control element information
906 *
907 * Callback to set the value of a control that can span
908 * multiple codec registers which together forms a single
909 * signed value in a MSB/LSB manner. The control supports
910 * specifying total no of bits used to allow for bitfields
911 * across the multiple codec registers.
912 *
913 * Returns 0 for success.
914 */
snd_soc_put_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)915 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
916 struct snd_ctl_elem_value *ucontrol)
917 {
918 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
919 struct soc_mreg_control *mc =
920 (struct soc_mreg_control *)kcontrol->private_value;
921 unsigned int regbase = mc->regbase;
922 unsigned int regcount = mc->regcount;
923 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
924 unsigned int regwmask = (1UL<<regwshift)-1;
925 unsigned int invert = mc->invert;
926 unsigned long mask = (1UL<<mc->nbits)-1;
927 long max = mc->max;
928 long val = ucontrol->value.integer.value[0];
929 int ret = 0;
930 unsigned int i;
931
932 if (val < mc->min || val > mc->max)
933 return -EINVAL;
934 if (invert)
935 val = max - val;
936 val &= mask;
937 for (i = 0; i < regcount; i++) {
938 unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
939 unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
940 int err = snd_soc_component_update_bits(component, regbase+i,
941 regmask, regval);
942 if (err < 0)
943 return err;
944 if (err > 0)
945 ret = err;
946 }
947
948 return ret;
949 }
950 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
951
952 /**
953 * snd_soc_get_strobe - strobe get callback
954 * @kcontrol: mixer control
955 * @ucontrol: control element information
956 *
957 * Callback get the value of a strobe mixer control.
958 *
959 * Returns 0 for success.
960 */
snd_soc_get_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)961 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
962 struct snd_ctl_elem_value *ucontrol)
963 {
964 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
965 struct soc_mixer_control *mc =
966 (struct soc_mixer_control *)kcontrol->private_value;
967 unsigned int reg = mc->reg;
968 unsigned int shift = mc->shift;
969 unsigned int mask = 1 << shift;
970 unsigned int invert = mc->invert != 0;
971 unsigned int val;
972
973 val = snd_soc_component_read(component, reg);
974 val &= mask;
975
976 if (shift != 0 && val != 0)
977 val = val >> shift;
978 ucontrol->value.enumerated.item[0] = val ^ invert;
979
980 return 0;
981 }
982 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
983
984 /**
985 * snd_soc_put_strobe - strobe put callback
986 * @kcontrol: mixer control
987 * @ucontrol: control element information
988 *
989 * Callback strobe a register bit to high then low (or the inverse)
990 * in one pass of a single mixer enum control.
991 *
992 * Returns 1 for success.
993 */
snd_soc_put_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)994 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
995 struct snd_ctl_elem_value *ucontrol)
996 {
997 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
998 struct soc_mixer_control *mc =
999 (struct soc_mixer_control *)kcontrol->private_value;
1000 unsigned int reg = mc->reg;
1001 unsigned int shift = mc->shift;
1002 unsigned int mask = 1 << shift;
1003 unsigned int invert = mc->invert != 0;
1004 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
1005 unsigned int val1 = (strobe ^ invert) ? mask : 0;
1006 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
1007 int err;
1008
1009 err = snd_soc_component_update_bits(component, reg, mask, val1);
1010 if (err < 0)
1011 return err;
1012
1013 return snd_soc_component_update_bits(component, reg, mask, val2);
1014 }
1015 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
1016