1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains helper code to handle channel
4 * settings and keeping track of what is possible at
5 * any point in time.
6 *
7 * Copyright 2009 Johannes Berg <[email protected]>
8 * Copyright 2013-2014 Intel Mobile Communications GmbH
9 * Copyright 2018-2024 Intel Corporation
10 */
11
12 #include <linux/export.h>
13 #include <linux/bitfield.h>
14 #include <net/cfg80211.h>
15 #include "core.h"
16 #include "rdev-ops.h"
17
cfg80211_valid_60g_freq(u32 freq)18 static bool cfg80211_valid_60g_freq(u32 freq)
19 {
20 return freq >= 58320 && freq <= 70200;
21 }
22
cfg80211_chandef_create(struct cfg80211_chan_def * chandef,struct ieee80211_channel * chan,enum nl80211_channel_type chan_type)23 void cfg80211_chandef_create(struct cfg80211_chan_def *chandef,
24 struct ieee80211_channel *chan,
25 enum nl80211_channel_type chan_type)
26 {
27 if (WARN_ON(!chan))
28 return;
29
30 *chandef = (struct cfg80211_chan_def) {
31 .chan = chan,
32 .freq1_offset = chan->freq_offset,
33 };
34
35 switch (chan_type) {
36 case NL80211_CHAN_NO_HT:
37 chandef->width = NL80211_CHAN_WIDTH_20_NOHT;
38 chandef->center_freq1 = chan->center_freq;
39 break;
40 case NL80211_CHAN_HT20:
41 chandef->width = NL80211_CHAN_WIDTH_20;
42 chandef->center_freq1 = chan->center_freq;
43 break;
44 case NL80211_CHAN_HT40PLUS:
45 chandef->width = NL80211_CHAN_WIDTH_40;
46 chandef->center_freq1 = chan->center_freq + 10;
47 break;
48 case NL80211_CHAN_HT40MINUS:
49 chandef->width = NL80211_CHAN_WIDTH_40;
50 chandef->center_freq1 = chan->center_freq - 10;
51 break;
52 default:
53 WARN_ON(1);
54 }
55 }
56 EXPORT_SYMBOL(cfg80211_chandef_create);
57
cfg80211_chandef_get_width(const struct cfg80211_chan_def * c)58 static int cfg80211_chandef_get_width(const struct cfg80211_chan_def *c)
59 {
60 return nl80211_chan_width_to_mhz(c->width);
61 }
62
cfg80211_get_start_freq(const struct cfg80211_chan_def * chandef,u32 cf)63 static u32 cfg80211_get_start_freq(const struct cfg80211_chan_def *chandef,
64 u32 cf)
65 {
66 u32 start_freq, center_freq, bandwidth;
67
68 center_freq = MHZ_TO_KHZ((cf == 1) ?
69 chandef->center_freq1 : chandef->center_freq2);
70 bandwidth = MHZ_TO_KHZ(cfg80211_chandef_get_width(chandef));
71
72 if (bandwidth <= MHZ_TO_KHZ(20))
73 start_freq = center_freq;
74 else
75 start_freq = center_freq - bandwidth / 2 + MHZ_TO_KHZ(10);
76
77 return start_freq;
78 }
79
cfg80211_get_end_freq(const struct cfg80211_chan_def * chandef,u32 cf)80 static u32 cfg80211_get_end_freq(const struct cfg80211_chan_def *chandef,
81 u32 cf)
82 {
83 u32 end_freq, center_freq, bandwidth;
84
85 center_freq = MHZ_TO_KHZ((cf == 1) ?
86 chandef->center_freq1 : chandef->center_freq2);
87 bandwidth = MHZ_TO_KHZ(cfg80211_chandef_get_width(chandef));
88
89 if (bandwidth <= MHZ_TO_KHZ(20))
90 end_freq = center_freq;
91 else
92 end_freq = center_freq + bandwidth / 2 - MHZ_TO_KHZ(10);
93
94 return end_freq;
95 }
96
97 #define for_each_subchan(chandef, freq, cf) \
98 for (u32 punctured = chandef->punctured, \
99 cf = 1, freq = cfg80211_get_start_freq(chandef, cf); \
100 freq <= cfg80211_get_end_freq(chandef, cf); \
101 freq += MHZ_TO_KHZ(20), \
102 ((cf == 1 && chandef->center_freq2 != 0 && \
103 freq > cfg80211_get_end_freq(chandef, cf)) ? \
104 (cf++, freq = cfg80211_get_start_freq(chandef, cf), \
105 punctured = 0) : (punctured >>= 1))) \
106 if (!(punctured & 1))
107
108 struct cfg80211_per_bw_puncturing_values {
109 u8 len;
110 const u16 *valid_values;
111 };
112
113 static const u16 puncturing_values_80mhz[] = {
114 0x8, 0x4, 0x2, 0x1
115 };
116
117 static const u16 puncturing_values_160mhz[] = {
118 0x80, 0x40, 0x20, 0x10, 0x8, 0x4, 0x2, 0x1, 0xc0, 0x30, 0xc, 0x3
119 };
120
121 static const u16 puncturing_values_320mhz[] = {
122 0xc000, 0x3000, 0xc00, 0x300, 0xc0, 0x30, 0xc, 0x3, 0xf000, 0xf00,
123 0xf0, 0xf, 0xfc00, 0xf300, 0xf0c0, 0xf030, 0xf00c, 0xf003, 0xc00f,
124 0x300f, 0xc0f, 0x30f, 0xcf, 0x3f
125 };
126
127 #define CFG80211_PER_BW_VALID_PUNCTURING_VALUES(_bw) \
128 { \
129 .len = ARRAY_SIZE(puncturing_values_ ## _bw ## mhz), \
130 .valid_values = puncturing_values_ ## _bw ## mhz \
131 }
132
133 static const struct cfg80211_per_bw_puncturing_values per_bw_puncturing[] = {
134 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(80),
135 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(160),
136 CFG80211_PER_BW_VALID_PUNCTURING_VALUES(320)
137 };
138
valid_puncturing_bitmap(const struct cfg80211_chan_def * chandef)139 static bool valid_puncturing_bitmap(const struct cfg80211_chan_def *chandef)
140 {
141 u32 idx, i, start_freq, primary_center = chandef->chan->center_freq;
142
143 switch (chandef->width) {
144 case NL80211_CHAN_WIDTH_80:
145 idx = 0;
146 start_freq = chandef->center_freq1 - 40;
147 break;
148 case NL80211_CHAN_WIDTH_160:
149 idx = 1;
150 start_freq = chandef->center_freq1 - 80;
151 break;
152 case NL80211_CHAN_WIDTH_320:
153 idx = 2;
154 start_freq = chandef->center_freq1 - 160;
155 break;
156 default:
157 return chandef->punctured == 0;
158 }
159
160 if (!chandef->punctured)
161 return true;
162
163 /* check if primary channel is punctured */
164 if (chandef->punctured & (u16)BIT((primary_center - start_freq) / 20))
165 return false;
166
167 for (i = 0; i < per_bw_puncturing[idx].len; i++) {
168 if (per_bw_puncturing[idx].valid_values[i] == chandef->punctured)
169 return true;
170 }
171
172 return false;
173 }
174
cfg80211_edmg_chandef_valid(const struct cfg80211_chan_def * chandef)175 static bool cfg80211_edmg_chandef_valid(const struct cfg80211_chan_def *chandef)
176 {
177 int max_contiguous = 0;
178 int num_of_enabled = 0;
179 int contiguous = 0;
180 int i;
181
182 if (!chandef->edmg.channels || !chandef->edmg.bw_config)
183 return false;
184
185 if (!cfg80211_valid_60g_freq(chandef->chan->center_freq))
186 return false;
187
188 for (i = 0; i < 6; i++) {
189 if (chandef->edmg.channels & BIT(i)) {
190 contiguous++;
191 num_of_enabled++;
192 } else {
193 contiguous = 0;
194 }
195
196 max_contiguous = max(contiguous, max_contiguous);
197 }
198 /* basic verification of edmg configuration according to
199 * IEEE P802.11ay/D4.0 section 9.4.2.251
200 */
201 /* check bw_config against contiguous edmg channels */
202 switch (chandef->edmg.bw_config) {
203 case IEEE80211_EDMG_BW_CONFIG_4:
204 case IEEE80211_EDMG_BW_CONFIG_8:
205 case IEEE80211_EDMG_BW_CONFIG_12:
206 if (max_contiguous < 1)
207 return false;
208 break;
209 case IEEE80211_EDMG_BW_CONFIG_5:
210 case IEEE80211_EDMG_BW_CONFIG_9:
211 case IEEE80211_EDMG_BW_CONFIG_13:
212 if (max_contiguous < 2)
213 return false;
214 break;
215 case IEEE80211_EDMG_BW_CONFIG_6:
216 case IEEE80211_EDMG_BW_CONFIG_10:
217 case IEEE80211_EDMG_BW_CONFIG_14:
218 if (max_contiguous < 3)
219 return false;
220 break;
221 case IEEE80211_EDMG_BW_CONFIG_7:
222 case IEEE80211_EDMG_BW_CONFIG_11:
223 case IEEE80211_EDMG_BW_CONFIG_15:
224 if (max_contiguous < 4)
225 return false;
226 break;
227
228 default:
229 return false;
230 }
231
232 /* check bw_config against aggregated (non contiguous) edmg channels */
233 switch (chandef->edmg.bw_config) {
234 case IEEE80211_EDMG_BW_CONFIG_4:
235 case IEEE80211_EDMG_BW_CONFIG_5:
236 case IEEE80211_EDMG_BW_CONFIG_6:
237 case IEEE80211_EDMG_BW_CONFIG_7:
238 break;
239 case IEEE80211_EDMG_BW_CONFIG_8:
240 case IEEE80211_EDMG_BW_CONFIG_9:
241 case IEEE80211_EDMG_BW_CONFIG_10:
242 case IEEE80211_EDMG_BW_CONFIG_11:
243 if (num_of_enabled < 2)
244 return false;
245 break;
246 case IEEE80211_EDMG_BW_CONFIG_12:
247 case IEEE80211_EDMG_BW_CONFIG_13:
248 case IEEE80211_EDMG_BW_CONFIG_14:
249 case IEEE80211_EDMG_BW_CONFIG_15:
250 if (num_of_enabled < 4 || max_contiguous < 2)
251 return false;
252 break;
253 default:
254 return false;
255 }
256
257 return true;
258 }
259
nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width)260 int nl80211_chan_width_to_mhz(enum nl80211_chan_width chan_width)
261 {
262 int mhz;
263
264 switch (chan_width) {
265 case NL80211_CHAN_WIDTH_1:
266 mhz = 1;
267 break;
268 case NL80211_CHAN_WIDTH_2:
269 mhz = 2;
270 break;
271 case NL80211_CHAN_WIDTH_4:
272 mhz = 4;
273 break;
274 case NL80211_CHAN_WIDTH_8:
275 mhz = 8;
276 break;
277 case NL80211_CHAN_WIDTH_16:
278 mhz = 16;
279 break;
280 case NL80211_CHAN_WIDTH_5:
281 mhz = 5;
282 break;
283 case NL80211_CHAN_WIDTH_10:
284 mhz = 10;
285 break;
286 case NL80211_CHAN_WIDTH_20:
287 case NL80211_CHAN_WIDTH_20_NOHT:
288 mhz = 20;
289 break;
290 case NL80211_CHAN_WIDTH_40:
291 mhz = 40;
292 break;
293 case NL80211_CHAN_WIDTH_80P80:
294 case NL80211_CHAN_WIDTH_80:
295 mhz = 80;
296 break;
297 case NL80211_CHAN_WIDTH_160:
298 mhz = 160;
299 break;
300 case NL80211_CHAN_WIDTH_320:
301 mhz = 320;
302 break;
303 default:
304 WARN_ON_ONCE(1);
305 return -1;
306 }
307 return mhz;
308 }
309 EXPORT_SYMBOL(nl80211_chan_width_to_mhz);
310
cfg80211_valid_center_freq(u32 center,enum nl80211_chan_width width)311 static bool cfg80211_valid_center_freq(u32 center,
312 enum nl80211_chan_width width)
313 {
314 int bw;
315 int step;
316
317 /* We only do strict verification on 6 GHz */
318 if (center < 5955 || center > 7115)
319 return true;
320
321 bw = nl80211_chan_width_to_mhz(width);
322 if (bw < 0)
323 return false;
324
325 /* Validate that the channels bw is entirely within the 6 GHz band */
326 if (center - bw / 2 < 5945 || center + bw / 2 > 7125)
327 return false;
328
329 /* With 320 MHz the permitted channels overlap */
330 if (bw == 320)
331 step = 160;
332 else
333 step = bw;
334
335 /*
336 * Valid channels are packed from lowest frequency towards higher ones.
337 * So test that the lower frequency aligns with one of these steps.
338 */
339 return (center - bw / 2 - 5945) % step == 0;
340 }
341
cfg80211_chandef_valid(const struct cfg80211_chan_def * chandef)342 bool cfg80211_chandef_valid(const struct cfg80211_chan_def *chandef)
343 {
344 u32 control_freq, oper_freq;
345 int oper_width, control_width;
346
347 if (!chandef->chan)
348 return false;
349
350 if (chandef->freq1_offset >= 1000)
351 return false;
352
353 control_freq = chandef->chan->center_freq;
354
355 switch (chandef->width) {
356 case NL80211_CHAN_WIDTH_5:
357 case NL80211_CHAN_WIDTH_10:
358 case NL80211_CHAN_WIDTH_20:
359 case NL80211_CHAN_WIDTH_20_NOHT:
360 if (ieee80211_chandef_to_khz(chandef) !=
361 ieee80211_channel_to_khz(chandef->chan))
362 return false;
363 if (chandef->center_freq2)
364 return false;
365 break;
366 case NL80211_CHAN_WIDTH_1:
367 case NL80211_CHAN_WIDTH_2:
368 case NL80211_CHAN_WIDTH_4:
369 case NL80211_CHAN_WIDTH_8:
370 case NL80211_CHAN_WIDTH_16:
371 if (chandef->chan->band != NL80211_BAND_S1GHZ)
372 return false;
373
374 control_freq = ieee80211_channel_to_khz(chandef->chan);
375 oper_freq = ieee80211_chandef_to_khz(chandef);
376 control_width = nl80211_chan_width_to_mhz(
377 ieee80211_s1g_channel_width(
378 chandef->chan));
379 oper_width = cfg80211_chandef_get_width(chandef);
380
381 if (oper_width < 0 || control_width < 0)
382 return false;
383 if (chandef->center_freq2)
384 return false;
385
386 if (control_freq + MHZ_TO_KHZ(control_width) / 2 >
387 oper_freq + MHZ_TO_KHZ(oper_width) / 2)
388 return false;
389
390 if (control_freq - MHZ_TO_KHZ(control_width) / 2 <
391 oper_freq - MHZ_TO_KHZ(oper_width) / 2)
392 return false;
393 break;
394 case NL80211_CHAN_WIDTH_80P80:
395 if (!chandef->center_freq2)
396 return false;
397 /* adjacent is not allowed -- that's a 160 MHz channel */
398 if (chandef->center_freq1 - chandef->center_freq2 == 80 ||
399 chandef->center_freq2 - chandef->center_freq1 == 80)
400 return false;
401 break;
402 default:
403 if (chandef->center_freq2)
404 return false;
405 break;
406 }
407
408 switch (chandef->width) {
409 case NL80211_CHAN_WIDTH_5:
410 case NL80211_CHAN_WIDTH_10:
411 case NL80211_CHAN_WIDTH_20:
412 case NL80211_CHAN_WIDTH_20_NOHT:
413 case NL80211_CHAN_WIDTH_1:
414 case NL80211_CHAN_WIDTH_2:
415 case NL80211_CHAN_WIDTH_4:
416 case NL80211_CHAN_WIDTH_8:
417 case NL80211_CHAN_WIDTH_16:
418 /* all checked above */
419 break;
420 case NL80211_CHAN_WIDTH_320:
421 if (chandef->center_freq1 == control_freq + 150 ||
422 chandef->center_freq1 == control_freq + 130 ||
423 chandef->center_freq1 == control_freq + 110 ||
424 chandef->center_freq1 == control_freq + 90 ||
425 chandef->center_freq1 == control_freq - 90 ||
426 chandef->center_freq1 == control_freq - 110 ||
427 chandef->center_freq1 == control_freq - 130 ||
428 chandef->center_freq1 == control_freq - 150)
429 break;
430 fallthrough;
431 case NL80211_CHAN_WIDTH_160:
432 if (chandef->center_freq1 == control_freq + 70 ||
433 chandef->center_freq1 == control_freq + 50 ||
434 chandef->center_freq1 == control_freq - 50 ||
435 chandef->center_freq1 == control_freq - 70)
436 break;
437 fallthrough;
438 case NL80211_CHAN_WIDTH_80P80:
439 case NL80211_CHAN_WIDTH_80:
440 if (chandef->center_freq1 == control_freq + 30 ||
441 chandef->center_freq1 == control_freq - 30)
442 break;
443 fallthrough;
444 case NL80211_CHAN_WIDTH_40:
445 if (chandef->center_freq1 == control_freq + 10 ||
446 chandef->center_freq1 == control_freq - 10)
447 break;
448 fallthrough;
449 default:
450 return false;
451 }
452
453 if (!cfg80211_valid_center_freq(chandef->center_freq1, chandef->width))
454 return false;
455
456 if (chandef->width == NL80211_CHAN_WIDTH_80P80 &&
457 !cfg80211_valid_center_freq(chandef->center_freq2, chandef->width))
458 return false;
459
460 /* channel 14 is only for IEEE 802.11b */
461 if (chandef->center_freq1 == 2484 &&
462 chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
463 return false;
464
465 if (cfg80211_chandef_is_edmg(chandef) &&
466 !cfg80211_edmg_chandef_valid(chandef))
467 return false;
468
469 return valid_puncturing_bitmap(chandef);
470 }
471 EXPORT_SYMBOL(cfg80211_chandef_valid);
472
cfg80211_chandef_primary(const struct cfg80211_chan_def * c,enum nl80211_chan_width primary_chan_width,u16 * punctured)473 int cfg80211_chandef_primary(const struct cfg80211_chan_def *c,
474 enum nl80211_chan_width primary_chan_width,
475 u16 *punctured)
476 {
477 int pri_width = nl80211_chan_width_to_mhz(primary_chan_width);
478 int width = cfg80211_chandef_get_width(c);
479 u32 control = c->chan->center_freq;
480 u32 center = c->center_freq1;
481 u16 _punct = 0;
482
483 if (WARN_ON_ONCE(pri_width < 0 || width < 0))
484 return -1;
485
486 /* not intended to be called this way, can't determine */
487 if (WARN_ON_ONCE(pri_width > width))
488 return -1;
489
490 if (!punctured)
491 punctured = &_punct;
492
493 *punctured = c->punctured;
494
495 while (width > pri_width) {
496 unsigned int bits_to_drop = width / 20 / 2;
497
498 if (control > center) {
499 center += width / 4;
500 *punctured >>= bits_to_drop;
501 } else {
502 center -= width / 4;
503 *punctured &= (1 << bits_to_drop) - 1;
504 }
505 width /= 2;
506 }
507
508 return center;
509 }
510 EXPORT_SYMBOL(cfg80211_chandef_primary);
511
512 static const struct cfg80211_chan_def *
check_chandef_primary_compat(const struct cfg80211_chan_def * c1,const struct cfg80211_chan_def * c2,enum nl80211_chan_width primary_chan_width)513 check_chandef_primary_compat(const struct cfg80211_chan_def *c1,
514 const struct cfg80211_chan_def *c2,
515 enum nl80211_chan_width primary_chan_width)
516 {
517 u16 punct_c1 = 0, punct_c2 = 0;
518
519 /* check primary is compatible -> error if not */
520 if (cfg80211_chandef_primary(c1, primary_chan_width, &punct_c1) !=
521 cfg80211_chandef_primary(c2, primary_chan_width, &punct_c2))
522 return ERR_PTR(-EINVAL);
523
524 if (punct_c1 != punct_c2)
525 return ERR_PTR(-EINVAL);
526
527 /* assumes c1 is smaller width, if that was just checked -> done */
528 if (c1->width == primary_chan_width)
529 return c2;
530
531 /* otherwise continue checking the next width */
532 return NULL;
533 }
534
535 static const struct cfg80211_chan_def *
_cfg80211_chandef_compatible(const struct cfg80211_chan_def * c1,const struct cfg80211_chan_def * c2)536 _cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1,
537 const struct cfg80211_chan_def *c2)
538 {
539 const struct cfg80211_chan_def *ret;
540
541 /* If they are identical, return */
542 if (cfg80211_chandef_identical(c1, c2))
543 return c2;
544
545 /* otherwise, must have same control channel */
546 if (c1->chan != c2->chan)
547 return NULL;
548
549 /*
550 * If they have the same width, but aren't identical,
551 * then they can't be compatible.
552 */
553 if (c1->width == c2->width)
554 return NULL;
555
556 /*
557 * can't be compatible if one of them is 5/10 MHz or S1G
558 * but they don't have the same width.
559 */
560 #define NARROW_OR_S1G(width) ((width) == NL80211_CHAN_WIDTH_5 || \
561 (width) == NL80211_CHAN_WIDTH_10 || \
562 (width) == NL80211_CHAN_WIDTH_1 || \
563 (width) == NL80211_CHAN_WIDTH_2 || \
564 (width) == NL80211_CHAN_WIDTH_4 || \
565 (width) == NL80211_CHAN_WIDTH_8 || \
566 (width) == NL80211_CHAN_WIDTH_16)
567
568 if (NARROW_OR_S1G(c1->width) || NARROW_OR_S1G(c2->width))
569 return NULL;
570
571 /*
572 * Make sure that c1 is always the narrower one, so that later
573 * we either return NULL or c2 and don't have to check both
574 * directions.
575 */
576 if (c1->width > c2->width)
577 swap(c1, c2);
578
579 /*
580 * No further checks needed if the "narrower" one is only 20 MHz.
581 * Here "narrower" includes being a 20 MHz non-HT channel vs. a
582 * 20 MHz HT (or later) one.
583 */
584 if (c1->width <= NL80211_CHAN_WIDTH_20)
585 return c2;
586
587 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_40);
588 if (ret)
589 return ret;
590
591 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_80);
592 if (ret)
593 return ret;
594
595 /*
596 * If c1 is 80+80, then c2 is 160 or higher, but that cannot
597 * match. If c2 was also 80+80 it was already either accepted
598 * or rejected above (identical or not, respectively.)
599 */
600 if (c1->width == NL80211_CHAN_WIDTH_80P80)
601 return NULL;
602
603 ret = check_chandef_primary_compat(c1, c2, NL80211_CHAN_WIDTH_160);
604 if (ret)
605 return ret;
606
607 /*
608 * Getting here would mean they're both wider than 160, have the
609 * same primary 160, but are not identical - this cannot happen
610 * since they must be 320 (no wider chandefs exist, at least yet.)
611 */
612 WARN_ON_ONCE(1);
613
614 return NULL;
615 }
616
617 const struct cfg80211_chan_def *
cfg80211_chandef_compatible(const struct cfg80211_chan_def * c1,const struct cfg80211_chan_def * c2)618 cfg80211_chandef_compatible(const struct cfg80211_chan_def *c1,
619 const struct cfg80211_chan_def *c2)
620 {
621 const struct cfg80211_chan_def *ret;
622
623 ret = _cfg80211_chandef_compatible(c1, c2);
624 if (IS_ERR(ret))
625 return NULL;
626 return ret;
627 }
628 EXPORT_SYMBOL(cfg80211_chandef_compatible);
629
cfg80211_set_dfs_state(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef,enum nl80211_dfs_state dfs_state)630 void cfg80211_set_dfs_state(struct wiphy *wiphy,
631 const struct cfg80211_chan_def *chandef,
632 enum nl80211_dfs_state dfs_state)
633 {
634 struct ieee80211_channel *c;
635 int width;
636
637 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
638 return;
639
640 width = cfg80211_chandef_get_width(chandef);
641 if (width < 0)
642 return;
643
644 for_each_subchan(chandef, freq, cf) {
645 c = ieee80211_get_channel_khz(wiphy, freq);
646 if (!c || !(c->flags & IEEE80211_CHAN_RADAR))
647 continue;
648
649 c->dfs_state = dfs_state;
650 c->dfs_state_entered = jiffies;
651 }
652 }
653
654 static bool
cfg80211_dfs_permissive_check_wdev(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,struct wireless_dev * wdev,struct ieee80211_channel * chan)655 cfg80211_dfs_permissive_check_wdev(struct cfg80211_registered_device *rdev,
656 enum nl80211_iftype iftype,
657 struct wireless_dev *wdev,
658 struct ieee80211_channel *chan)
659 {
660 unsigned int link_id;
661
662 for_each_valid_link(wdev, link_id) {
663 struct ieee80211_channel *other_chan = NULL;
664 struct cfg80211_chan_def chandef = {};
665 int ret;
666
667 /* In order to avoid daisy chaining only allow BSS STA */
668 if (wdev->iftype != NL80211_IFTYPE_STATION ||
669 !wdev->links[link_id].client.current_bss)
670 continue;
671
672 other_chan =
673 wdev->links[link_id].client.current_bss->pub.channel;
674
675 if (!other_chan)
676 continue;
677
678 if (chan == other_chan)
679 return true;
680
681 /* continue if we can't get the channel */
682 ret = rdev_get_channel(rdev, wdev, link_id, &chandef);
683 if (ret)
684 continue;
685
686 if (cfg80211_is_sub_chan(&chandef, chan, false))
687 return true;
688 }
689
690 return false;
691 }
692
693 /*
694 * Check if P2P GO is allowed to operate on a DFS channel
695 */
cfg80211_dfs_permissive_chan(struct wiphy * wiphy,enum nl80211_iftype iftype,struct ieee80211_channel * chan)696 static bool cfg80211_dfs_permissive_chan(struct wiphy *wiphy,
697 enum nl80211_iftype iftype,
698 struct ieee80211_channel *chan)
699 {
700 struct wireless_dev *wdev;
701 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
702
703 lockdep_assert_held(&rdev->wiphy.mtx);
704
705 if (!wiphy_ext_feature_isset(&rdev->wiphy,
706 NL80211_EXT_FEATURE_DFS_CONCURRENT) ||
707 !(chan->flags & IEEE80211_CHAN_DFS_CONCURRENT))
708 return false;
709
710 /* only valid for P2P GO */
711 if (iftype != NL80211_IFTYPE_P2P_GO)
712 return false;
713
714 /*
715 * Allow only if there's a concurrent BSS
716 */
717 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
718 bool ret = cfg80211_dfs_permissive_check_wdev(rdev, iftype,
719 wdev, chan);
720 if (ret)
721 return ret;
722 }
723
724 return false;
725 }
726
cfg80211_get_chans_dfs_required(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef,enum nl80211_iftype iftype)727 static int cfg80211_get_chans_dfs_required(struct wiphy *wiphy,
728 const struct cfg80211_chan_def *chandef,
729 enum nl80211_iftype iftype)
730 {
731 struct ieee80211_channel *c;
732
733 for_each_subchan(chandef, freq, cf) {
734 c = ieee80211_get_channel_khz(wiphy, freq);
735 if (!c)
736 return -EINVAL;
737
738 if (c->flags & IEEE80211_CHAN_RADAR &&
739 !cfg80211_dfs_permissive_chan(wiphy, iftype, c))
740 return 1;
741 }
742
743 return 0;
744 }
745
746
cfg80211_chandef_dfs_required(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef,enum nl80211_iftype iftype)747 int cfg80211_chandef_dfs_required(struct wiphy *wiphy,
748 const struct cfg80211_chan_def *chandef,
749 enum nl80211_iftype iftype)
750 {
751 int width;
752 int ret;
753
754 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
755 return -EINVAL;
756
757 switch (iftype) {
758 case NL80211_IFTYPE_ADHOC:
759 case NL80211_IFTYPE_AP:
760 case NL80211_IFTYPE_P2P_GO:
761 case NL80211_IFTYPE_MESH_POINT:
762 width = cfg80211_chandef_get_width(chandef);
763 if (width < 0)
764 return -EINVAL;
765
766 ret = cfg80211_get_chans_dfs_required(wiphy, chandef, iftype);
767
768 return (ret > 0) ? BIT(chandef->width) : ret;
769 break;
770 case NL80211_IFTYPE_STATION:
771 case NL80211_IFTYPE_OCB:
772 case NL80211_IFTYPE_P2P_CLIENT:
773 case NL80211_IFTYPE_MONITOR:
774 case NL80211_IFTYPE_AP_VLAN:
775 case NL80211_IFTYPE_P2P_DEVICE:
776 case NL80211_IFTYPE_NAN:
777 break;
778 case NL80211_IFTYPE_WDS:
779 case NL80211_IFTYPE_UNSPECIFIED:
780 case NUM_NL80211_IFTYPES:
781 WARN_ON(1);
782 }
783
784 return 0;
785 }
786 EXPORT_SYMBOL(cfg80211_chandef_dfs_required);
787
cfg80211_chandef_dfs_usable(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef)788 bool cfg80211_chandef_dfs_usable(struct wiphy *wiphy,
789 const struct cfg80211_chan_def *chandef)
790 {
791 struct ieee80211_channel *c;
792 int width, count = 0;
793
794 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
795 return false;
796
797 width = cfg80211_chandef_get_width(chandef);
798 if (width < 0)
799 return false;
800
801 /*
802 * Check entire range of channels for the bandwidth.
803 * Check all channels are DFS channels (DFS_USABLE or
804 * DFS_AVAILABLE). Return number of usable channels
805 * (require CAC). Allow DFS and non-DFS channel mix.
806 */
807 for_each_subchan(chandef, freq, cf) {
808 c = ieee80211_get_channel_khz(wiphy, freq);
809 if (!c)
810 return false;
811
812 if (c->flags & IEEE80211_CHAN_DISABLED)
813 return false;
814
815 if (c->flags & IEEE80211_CHAN_RADAR) {
816 if (c->dfs_state == NL80211_DFS_UNAVAILABLE)
817 return false;
818
819 if (c->dfs_state == NL80211_DFS_USABLE)
820 count++;
821 }
822 }
823
824 return count > 0;
825 }
826 EXPORT_SYMBOL(cfg80211_chandef_dfs_usable);
827
828 /*
829 * Checks if center frequency of chan falls with in the bandwidth
830 * range of chandef.
831 */
cfg80211_is_sub_chan(struct cfg80211_chan_def * chandef,struct ieee80211_channel * chan,bool primary_only)832 bool cfg80211_is_sub_chan(struct cfg80211_chan_def *chandef,
833 struct ieee80211_channel *chan,
834 bool primary_only)
835 {
836 int width;
837 u32 freq;
838
839 if (!chandef->chan)
840 return false;
841
842 if (chandef->chan->center_freq == chan->center_freq)
843 return true;
844
845 if (primary_only)
846 return false;
847
848 width = cfg80211_chandef_get_width(chandef);
849 if (width <= 20)
850 return false;
851
852 for (freq = chandef->center_freq1 - width / 2 + 10;
853 freq <= chandef->center_freq1 + width / 2 - 10; freq += 20) {
854 if (chan->center_freq == freq)
855 return true;
856 }
857
858 if (!chandef->center_freq2)
859 return false;
860
861 for (freq = chandef->center_freq2 - width / 2 + 10;
862 freq <= chandef->center_freq2 + width / 2 - 10; freq += 20) {
863 if (chan->center_freq == freq)
864 return true;
865 }
866
867 return false;
868 }
869
cfg80211_beaconing_iface_active(struct wireless_dev * wdev)870 bool cfg80211_beaconing_iface_active(struct wireless_dev *wdev)
871 {
872 unsigned int link;
873
874 lockdep_assert_wiphy(wdev->wiphy);
875
876 switch (wdev->iftype) {
877 case NL80211_IFTYPE_AP:
878 case NL80211_IFTYPE_P2P_GO:
879 for_each_valid_link(wdev, link) {
880 if (wdev->links[link].ap.beacon_interval)
881 return true;
882 }
883 break;
884 case NL80211_IFTYPE_ADHOC:
885 if (wdev->u.ibss.ssid_len)
886 return true;
887 break;
888 case NL80211_IFTYPE_MESH_POINT:
889 if (wdev->u.mesh.id_len)
890 return true;
891 break;
892 case NL80211_IFTYPE_STATION:
893 case NL80211_IFTYPE_OCB:
894 case NL80211_IFTYPE_P2P_CLIENT:
895 case NL80211_IFTYPE_MONITOR:
896 case NL80211_IFTYPE_AP_VLAN:
897 case NL80211_IFTYPE_P2P_DEVICE:
898 /* Can NAN type be considered as beaconing interface? */
899 case NL80211_IFTYPE_NAN:
900 break;
901 case NL80211_IFTYPE_UNSPECIFIED:
902 case NL80211_IFTYPE_WDS:
903 case NUM_NL80211_IFTYPES:
904 WARN_ON(1);
905 }
906
907 return false;
908 }
909
cfg80211_wdev_on_sub_chan(struct wireless_dev * wdev,struct ieee80211_channel * chan,bool primary_only)910 bool cfg80211_wdev_on_sub_chan(struct wireless_dev *wdev,
911 struct ieee80211_channel *chan,
912 bool primary_only)
913 {
914 unsigned int link;
915
916 switch (wdev->iftype) {
917 case NL80211_IFTYPE_AP:
918 case NL80211_IFTYPE_P2P_GO:
919 for_each_valid_link(wdev, link) {
920 if (cfg80211_is_sub_chan(&wdev->links[link].ap.chandef,
921 chan, primary_only))
922 return true;
923 }
924 break;
925 case NL80211_IFTYPE_ADHOC:
926 return cfg80211_is_sub_chan(&wdev->u.ibss.chandef, chan,
927 primary_only);
928 case NL80211_IFTYPE_MESH_POINT:
929 return cfg80211_is_sub_chan(&wdev->u.mesh.chandef, chan,
930 primary_only);
931 default:
932 break;
933 }
934
935 return false;
936 }
937
cfg80211_is_wiphy_oper_chan(struct wiphy * wiphy,struct ieee80211_channel * chan)938 static bool cfg80211_is_wiphy_oper_chan(struct wiphy *wiphy,
939 struct ieee80211_channel *chan)
940 {
941 struct wireless_dev *wdev;
942
943 lockdep_assert_wiphy(wiphy);
944
945 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
946 if (!cfg80211_beaconing_iface_active(wdev))
947 continue;
948
949 if (cfg80211_wdev_on_sub_chan(wdev, chan, false))
950 return true;
951 }
952
953 return false;
954 }
955
956 static bool
cfg80211_offchan_chain_is_active(struct cfg80211_registered_device * rdev,struct ieee80211_channel * channel)957 cfg80211_offchan_chain_is_active(struct cfg80211_registered_device *rdev,
958 struct ieee80211_channel *channel)
959 {
960 if (!rdev->background_radar_wdev)
961 return false;
962
963 if (!cfg80211_chandef_valid(&rdev->background_radar_chandef))
964 return false;
965
966 return cfg80211_is_sub_chan(&rdev->background_radar_chandef, channel,
967 false);
968 }
969
cfg80211_any_wiphy_oper_chan(struct wiphy * wiphy,struct ieee80211_channel * chan)970 bool cfg80211_any_wiphy_oper_chan(struct wiphy *wiphy,
971 struct ieee80211_channel *chan)
972 {
973 struct cfg80211_registered_device *rdev;
974
975 ASSERT_RTNL();
976
977 if (!(chan->flags & IEEE80211_CHAN_RADAR))
978 return false;
979
980 for_each_rdev(rdev) {
981 bool found;
982
983 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
984 continue;
985
986 guard(wiphy)(&rdev->wiphy);
987
988 found = cfg80211_is_wiphy_oper_chan(&rdev->wiphy, chan) ||
989 cfg80211_offchan_chain_is_active(rdev, chan);
990
991 if (found)
992 return true;
993 }
994
995 return false;
996 }
997
cfg80211_chandef_dfs_available(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef)998 static bool cfg80211_chandef_dfs_available(struct wiphy *wiphy,
999 const struct cfg80211_chan_def *chandef)
1000 {
1001 struct ieee80211_channel *c;
1002 int width;
1003 bool dfs_offload;
1004
1005 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1006 return false;
1007
1008 width = cfg80211_chandef_get_width(chandef);
1009 if (width < 0)
1010 return false;
1011
1012 dfs_offload = wiphy_ext_feature_isset(wiphy,
1013 NL80211_EXT_FEATURE_DFS_OFFLOAD);
1014
1015 /*
1016 * Check entire range of channels for the bandwidth.
1017 * If any channel in between is disabled or has not
1018 * had gone through CAC return false
1019 */
1020 for_each_subchan(chandef, freq, cf) {
1021 c = ieee80211_get_channel_khz(wiphy, freq);
1022 if (!c)
1023 return false;
1024
1025 if (c->flags & IEEE80211_CHAN_DISABLED)
1026 return false;
1027
1028 if ((c->flags & IEEE80211_CHAN_RADAR) &&
1029 (c->dfs_state != NL80211_DFS_AVAILABLE) &&
1030 !(c->dfs_state == NL80211_DFS_USABLE && dfs_offload))
1031 return false;
1032 }
1033
1034 return true;
1035 }
1036
1037 unsigned int
cfg80211_chandef_dfs_cac_time(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef)1038 cfg80211_chandef_dfs_cac_time(struct wiphy *wiphy,
1039 const struct cfg80211_chan_def *chandef)
1040 {
1041 struct ieee80211_channel *c;
1042 int width;
1043 unsigned int t1 = 0, t2 = 0;
1044
1045 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1046 return 0;
1047
1048 width = cfg80211_chandef_get_width(chandef);
1049 if (width < 0)
1050 return 0;
1051
1052 for_each_subchan(chandef, freq, cf) {
1053 c = ieee80211_get_channel_khz(wiphy, freq);
1054 if (!c || (c->flags & IEEE80211_CHAN_DISABLED)) {
1055 if (cf == 1)
1056 t1 = INT_MAX;
1057 else
1058 t2 = INT_MAX;
1059 continue;
1060 }
1061
1062 if (!(c->flags & IEEE80211_CHAN_RADAR))
1063 continue;
1064
1065 if (cf == 1 && c->dfs_cac_ms > t1)
1066 t1 = c->dfs_cac_ms;
1067
1068 if (cf == 2 && c->dfs_cac_ms > t2)
1069 t2 = c->dfs_cac_ms;
1070 }
1071
1072 if (t1 == INT_MAX && t2 == INT_MAX)
1073 return 0;
1074
1075 if (t1 == INT_MAX)
1076 return t2;
1077
1078 if (t2 == INT_MAX)
1079 return t1;
1080
1081 return max(t1, t2);
1082 }
1083 EXPORT_SYMBOL(cfg80211_chandef_dfs_cac_time);
1084
1085 /* check if the operating channels are valid and supported */
cfg80211_edmg_usable(struct wiphy * wiphy,u8 edmg_channels,enum ieee80211_edmg_bw_config edmg_bw_config,int primary_channel,struct ieee80211_edmg * edmg_cap)1086 static bool cfg80211_edmg_usable(struct wiphy *wiphy, u8 edmg_channels,
1087 enum ieee80211_edmg_bw_config edmg_bw_config,
1088 int primary_channel,
1089 struct ieee80211_edmg *edmg_cap)
1090 {
1091 struct ieee80211_channel *chan;
1092 int i, freq;
1093 int channels_counter = 0;
1094
1095 if (!edmg_channels && !edmg_bw_config)
1096 return true;
1097
1098 if ((!edmg_channels && edmg_bw_config) ||
1099 (edmg_channels && !edmg_bw_config))
1100 return false;
1101
1102 if (!(edmg_channels & BIT(primary_channel - 1)))
1103 return false;
1104
1105 /* 60GHz channels 1..6 */
1106 for (i = 0; i < 6; i++) {
1107 if (!(edmg_channels & BIT(i)))
1108 continue;
1109
1110 if (!(edmg_cap->channels & BIT(i)))
1111 return false;
1112
1113 channels_counter++;
1114
1115 freq = ieee80211_channel_to_frequency(i + 1,
1116 NL80211_BAND_60GHZ);
1117 chan = ieee80211_get_channel(wiphy, freq);
1118 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
1119 return false;
1120 }
1121
1122 /* IEEE802.11 allows max 4 channels */
1123 if (channels_counter > 4)
1124 return false;
1125
1126 /* check bw_config is a subset of what driver supports
1127 * (see IEEE P802.11ay/D4.0 section 9.4.2.251, Table 13)
1128 */
1129 if ((edmg_bw_config % 4) > (edmg_cap->bw_config % 4))
1130 return false;
1131
1132 if (edmg_bw_config > edmg_cap->bw_config)
1133 return false;
1134
1135 return true;
1136 }
1137
_cfg80211_chandef_usable(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef,u32 prohibited_flags,u32 permitting_flags)1138 bool _cfg80211_chandef_usable(struct wiphy *wiphy,
1139 const struct cfg80211_chan_def *chandef,
1140 u32 prohibited_flags,
1141 u32 permitting_flags)
1142 {
1143 struct ieee80211_sta_ht_cap *ht_cap;
1144 struct ieee80211_sta_vht_cap *vht_cap;
1145 struct ieee80211_edmg *edmg_cap;
1146 u32 width, control_freq, cap;
1147 bool ext_nss_cap, support_80_80 = false, support_320 = false;
1148 const struct ieee80211_sband_iftype_data *iftd;
1149 struct ieee80211_supported_band *sband;
1150 struct ieee80211_channel *c;
1151 int i;
1152
1153 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
1154 return false;
1155
1156 ht_cap = &wiphy->bands[chandef->chan->band]->ht_cap;
1157 vht_cap = &wiphy->bands[chandef->chan->band]->vht_cap;
1158 edmg_cap = &wiphy->bands[chandef->chan->band]->edmg_cap;
1159 ext_nss_cap = __le16_to_cpu(vht_cap->vht_mcs.tx_highest) &
1160 IEEE80211_VHT_EXT_NSS_BW_CAPABLE;
1161
1162 if (edmg_cap->channels &&
1163 !cfg80211_edmg_usable(wiphy,
1164 chandef->edmg.channels,
1165 chandef->edmg.bw_config,
1166 chandef->chan->hw_value,
1167 edmg_cap))
1168 return false;
1169
1170 control_freq = chandef->chan->center_freq;
1171
1172 switch (chandef->width) {
1173 case NL80211_CHAN_WIDTH_1:
1174 width = 1;
1175 break;
1176 case NL80211_CHAN_WIDTH_2:
1177 width = 2;
1178 break;
1179 case NL80211_CHAN_WIDTH_4:
1180 width = 4;
1181 break;
1182 case NL80211_CHAN_WIDTH_8:
1183 width = 8;
1184 break;
1185 case NL80211_CHAN_WIDTH_16:
1186 width = 16;
1187 break;
1188 case NL80211_CHAN_WIDTH_5:
1189 width = 5;
1190 break;
1191 case NL80211_CHAN_WIDTH_10:
1192 prohibited_flags |= IEEE80211_CHAN_NO_10MHZ;
1193 width = 10;
1194 break;
1195 case NL80211_CHAN_WIDTH_20:
1196 if (!ht_cap->ht_supported &&
1197 chandef->chan->band != NL80211_BAND_6GHZ)
1198 return false;
1199 fallthrough;
1200 case NL80211_CHAN_WIDTH_20_NOHT:
1201 prohibited_flags |= IEEE80211_CHAN_NO_20MHZ;
1202 width = 20;
1203 break;
1204 case NL80211_CHAN_WIDTH_40:
1205 width = 40;
1206 if (chandef->chan->band == NL80211_BAND_6GHZ)
1207 break;
1208 if (!ht_cap->ht_supported)
1209 return false;
1210 if (!(ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ||
1211 ht_cap->cap & IEEE80211_HT_CAP_40MHZ_INTOLERANT)
1212 return false;
1213 if (chandef->center_freq1 < control_freq &&
1214 chandef->chan->flags & IEEE80211_CHAN_NO_HT40MINUS)
1215 return false;
1216 if (chandef->center_freq1 > control_freq &&
1217 chandef->chan->flags & IEEE80211_CHAN_NO_HT40PLUS)
1218 return false;
1219 break;
1220 case NL80211_CHAN_WIDTH_80P80:
1221 cap = vht_cap->cap;
1222 support_80_80 =
1223 (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ) ||
1224 (cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
1225 cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) ||
1226 (ext_nss_cap &&
1227 u32_get_bits(cap, IEEE80211_VHT_CAP_EXT_NSS_BW_MASK) > 1);
1228 if (chandef->chan->band != NL80211_BAND_6GHZ && !support_80_80)
1229 return false;
1230 fallthrough;
1231 case NL80211_CHAN_WIDTH_80:
1232 prohibited_flags |= IEEE80211_CHAN_NO_80MHZ;
1233 width = 80;
1234 if (chandef->chan->band == NL80211_BAND_6GHZ)
1235 break;
1236 if (!vht_cap->vht_supported)
1237 return false;
1238 break;
1239 case NL80211_CHAN_WIDTH_160:
1240 prohibited_flags |= IEEE80211_CHAN_NO_160MHZ;
1241 width = 160;
1242 if (chandef->chan->band == NL80211_BAND_6GHZ)
1243 break;
1244 if (!vht_cap->vht_supported)
1245 return false;
1246 cap = vht_cap->cap & IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK;
1247 if (cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ &&
1248 cap != IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ &&
1249 !(ext_nss_cap &&
1250 (vht_cap->cap & IEEE80211_VHT_CAP_EXT_NSS_BW_MASK)))
1251 return false;
1252 break;
1253 case NL80211_CHAN_WIDTH_320:
1254 prohibited_flags |= IEEE80211_CHAN_NO_320MHZ;
1255 width = 320;
1256
1257 if (chandef->chan->band != NL80211_BAND_6GHZ)
1258 return false;
1259
1260 sband = wiphy->bands[NL80211_BAND_6GHZ];
1261 if (!sband)
1262 return false;
1263
1264 for_each_sband_iftype_data(sband, i, iftd) {
1265 if (!iftd->eht_cap.has_eht)
1266 continue;
1267
1268 if (iftd->eht_cap.eht_cap_elem.phy_cap_info[0] &
1269 IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) {
1270 support_320 = true;
1271 break;
1272 }
1273 }
1274
1275 if (!support_320)
1276 return false;
1277 break;
1278 default:
1279 WARN_ON_ONCE(1);
1280 return false;
1281 }
1282
1283 /*
1284 * TODO: What if there are only certain 80/160/80+80 MHz channels
1285 * allowed by the driver, or only certain combinations?
1286 * For 40 MHz the driver can set the NO_HT40 flags, but for
1287 * 80/160 MHz and in particular 80+80 MHz this isn't really
1288 * feasible and we only have NO_80MHZ/NO_160MHZ so far but
1289 * no way to cover 80+80 MHz or more complex restrictions.
1290 * Note that such restrictions also need to be advertised to
1291 * userspace, for example for P2P channel selection.
1292 */
1293
1294 if (width > 20)
1295 prohibited_flags |= IEEE80211_CHAN_NO_OFDM;
1296
1297 /* 5 and 10 MHz are only defined for the OFDM PHY */
1298 if (width < 20)
1299 prohibited_flags |= IEEE80211_CHAN_NO_OFDM;
1300
1301 for_each_subchan(chandef, freq, cf) {
1302 c = ieee80211_get_channel_khz(wiphy, freq);
1303 if (!c)
1304 return false;
1305 if (c->flags & permitting_flags)
1306 continue;
1307 if (c->flags & prohibited_flags)
1308 return false;
1309 }
1310
1311 return true;
1312 }
1313
cfg80211_chandef_usable(struct wiphy * wiphy,const struct cfg80211_chan_def * chandef,u32 prohibited_flags)1314 bool cfg80211_chandef_usable(struct wiphy *wiphy,
1315 const struct cfg80211_chan_def *chandef,
1316 u32 prohibited_flags)
1317 {
1318 return _cfg80211_chandef_usable(wiphy, chandef, prohibited_flags, 0);
1319 }
1320 EXPORT_SYMBOL(cfg80211_chandef_usable);
1321
cfg80211_ir_permissive_check_wdev(enum nl80211_iftype iftype,struct wireless_dev * wdev,struct ieee80211_channel * chan)1322 static bool cfg80211_ir_permissive_check_wdev(enum nl80211_iftype iftype,
1323 struct wireless_dev *wdev,
1324 struct ieee80211_channel *chan)
1325 {
1326 struct ieee80211_channel *other_chan = NULL;
1327 unsigned int link_id;
1328 int r1, r2;
1329
1330 for_each_valid_link(wdev, link_id) {
1331 if (wdev->iftype == NL80211_IFTYPE_STATION &&
1332 wdev->links[link_id].client.current_bss)
1333 other_chan = wdev->links[link_id].client.current_bss->pub.channel;
1334
1335 /*
1336 * If a GO already operates on the same GO_CONCURRENT channel,
1337 * this one (maybe the same one) can beacon as well. We allow
1338 * the operation even if the station we relied on with
1339 * GO_CONCURRENT is disconnected now. But then we must make sure
1340 * we're not outdoor on an indoor-only channel.
1341 */
1342 if (iftype == NL80211_IFTYPE_P2P_GO &&
1343 wdev->iftype == NL80211_IFTYPE_P2P_GO &&
1344 wdev->links[link_id].ap.beacon_interval &&
1345 !(chan->flags & IEEE80211_CHAN_INDOOR_ONLY))
1346 other_chan = wdev->links[link_id].ap.chandef.chan;
1347
1348 if (!other_chan)
1349 continue;
1350
1351 if (chan == other_chan)
1352 return true;
1353
1354 if (chan->band != NL80211_BAND_5GHZ &&
1355 chan->band != NL80211_BAND_6GHZ)
1356 continue;
1357
1358 r1 = cfg80211_get_unii(chan->center_freq);
1359 r2 = cfg80211_get_unii(other_chan->center_freq);
1360
1361 if (r1 != -EINVAL && r1 == r2) {
1362 /*
1363 * At some locations channels 149-165 are considered a
1364 * bundle, but at other locations, e.g., Indonesia,
1365 * channels 149-161 are considered a bundle while
1366 * channel 165 is left out and considered to be in a
1367 * different bundle. Thus, in case that there is a
1368 * station interface connected to an AP on channel 165,
1369 * it is assumed that channels 149-161 are allowed for
1370 * GO operations. However, having a station interface
1371 * connected to an AP on channels 149-161, does not
1372 * allow GO operation on channel 165.
1373 */
1374 if (chan->center_freq == 5825 &&
1375 other_chan->center_freq != 5825)
1376 continue;
1377 return true;
1378 }
1379 }
1380
1381 return false;
1382 }
1383
1384 /*
1385 * Check if the channel can be used under permissive conditions mandated by
1386 * some regulatory bodies, i.e., the channel is marked with
1387 * IEEE80211_CHAN_IR_CONCURRENT and there is an additional station interface
1388 * associated to an AP on the same channel or on the same UNII band
1389 * (assuming that the AP is an authorized master).
1390 * In addition allow operation on a channel on which indoor operation is
1391 * allowed, iff we are currently operating in an indoor environment.
1392 */
cfg80211_ir_permissive_chan(struct wiphy * wiphy,enum nl80211_iftype iftype,struct ieee80211_channel * chan)1393 static bool cfg80211_ir_permissive_chan(struct wiphy *wiphy,
1394 enum nl80211_iftype iftype,
1395 struct ieee80211_channel *chan)
1396 {
1397 struct wireless_dev *wdev;
1398 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1399
1400 lockdep_assert_held(&rdev->wiphy.mtx);
1401
1402 if (!IS_ENABLED(CONFIG_CFG80211_REG_RELAX_NO_IR) ||
1403 !(wiphy->regulatory_flags & REGULATORY_ENABLE_RELAX_NO_IR))
1404 return false;
1405
1406 /* only valid for GO and TDLS off-channel (station/p2p-CL) */
1407 if (iftype != NL80211_IFTYPE_P2P_GO &&
1408 iftype != NL80211_IFTYPE_STATION &&
1409 iftype != NL80211_IFTYPE_P2P_CLIENT)
1410 return false;
1411
1412 if (regulatory_indoor_allowed() &&
1413 (chan->flags & IEEE80211_CHAN_INDOOR_ONLY))
1414 return true;
1415
1416 if (!(chan->flags & IEEE80211_CHAN_IR_CONCURRENT))
1417 return false;
1418
1419 /*
1420 * Generally, it is possible to rely on another device/driver to allow
1421 * the IR concurrent relaxation, however, since the device can further
1422 * enforce the relaxation (by doing a similar verifications as this),
1423 * and thus fail the GO instantiation, consider only the interfaces of
1424 * the current registered device.
1425 */
1426 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
1427 bool ret;
1428
1429 ret = cfg80211_ir_permissive_check_wdev(iftype, wdev, chan);
1430 if (ret)
1431 return ret;
1432 }
1433
1434 return false;
1435 }
1436
_cfg80211_reg_can_beacon(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,enum nl80211_iftype iftype,u32 prohibited_flags,u32 permitting_flags)1437 static bool _cfg80211_reg_can_beacon(struct wiphy *wiphy,
1438 struct cfg80211_chan_def *chandef,
1439 enum nl80211_iftype iftype,
1440 u32 prohibited_flags,
1441 u32 permitting_flags)
1442 {
1443 bool res, check_radar;
1444 int dfs_required;
1445
1446 trace_cfg80211_reg_can_beacon(wiphy, chandef, iftype,
1447 prohibited_flags,
1448 permitting_flags);
1449
1450 if (!_cfg80211_chandef_usable(wiphy, chandef,
1451 IEEE80211_CHAN_DISABLED, 0))
1452 return false;
1453
1454 dfs_required = cfg80211_chandef_dfs_required(wiphy, chandef, iftype);
1455 check_radar = dfs_required != 0;
1456
1457 if (dfs_required > 0 &&
1458 cfg80211_chandef_dfs_available(wiphy, chandef)) {
1459 /* We can skip IEEE80211_CHAN_NO_IR if chandef dfs available */
1460 prohibited_flags &= ~IEEE80211_CHAN_NO_IR;
1461 check_radar = false;
1462 }
1463
1464 if (check_radar &&
1465 !_cfg80211_chandef_usable(wiphy, chandef,
1466 IEEE80211_CHAN_RADAR, 0))
1467 return false;
1468
1469 res = _cfg80211_chandef_usable(wiphy, chandef,
1470 prohibited_flags,
1471 permitting_flags);
1472
1473 trace_cfg80211_return_bool(res);
1474 return res;
1475 }
1476
cfg80211_reg_check_beaconing(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,struct cfg80211_beaconing_check_config * cfg)1477 bool cfg80211_reg_check_beaconing(struct wiphy *wiphy,
1478 struct cfg80211_chan_def *chandef,
1479 struct cfg80211_beaconing_check_config *cfg)
1480 {
1481 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1482 u32 permitting_flags = 0;
1483 bool check_no_ir = true;
1484
1485 /*
1486 * Under certain conditions suggested by some regulatory bodies a
1487 * GO/STA can IR on channels marked with IEEE80211_NO_IR. Set this flag
1488 * only if such relaxations are not enabled and the conditions are not
1489 * met.
1490 */
1491 if (cfg->relax) {
1492 lockdep_assert_held(&rdev->wiphy.mtx);
1493 check_no_ir = !cfg80211_ir_permissive_chan(wiphy, cfg->iftype,
1494 chandef->chan);
1495 }
1496
1497 if (cfg->reg_power == IEEE80211_REG_VLP_AP)
1498 permitting_flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
1499
1500 return _cfg80211_reg_can_beacon(wiphy, chandef, cfg->iftype,
1501 check_no_ir ? IEEE80211_CHAN_NO_IR : 0,
1502 permitting_flags);
1503 }
1504 EXPORT_SYMBOL(cfg80211_reg_check_beaconing);
1505
cfg80211_set_monitor_channel(struct cfg80211_registered_device * rdev,struct net_device * dev,struct cfg80211_chan_def * chandef)1506 int cfg80211_set_monitor_channel(struct cfg80211_registered_device *rdev,
1507 struct net_device *dev,
1508 struct cfg80211_chan_def *chandef)
1509 {
1510 if (!rdev->ops->set_monitor_channel)
1511 return -EOPNOTSUPP;
1512 if (!cfg80211_has_monitors_only(rdev))
1513 return -EBUSY;
1514
1515 return rdev_set_monitor_channel(rdev, dev, chandef);
1516 }
1517
cfg80211_any_usable_channels(struct wiphy * wiphy,unsigned long sband_mask,u32 prohibited_flags)1518 bool cfg80211_any_usable_channels(struct wiphy *wiphy,
1519 unsigned long sband_mask,
1520 u32 prohibited_flags)
1521 {
1522 int idx;
1523
1524 prohibited_flags |= IEEE80211_CHAN_DISABLED;
1525
1526 for_each_set_bit(idx, &sband_mask, NUM_NL80211_BANDS) {
1527 struct ieee80211_supported_band *sband = wiphy->bands[idx];
1528 int chanidx;
1529
1530 if (!sband)
1531 continue;
1532
1533 for (chanidx = 0; chanidx < sband->n_channels; chanidx++) {
1534 struct ieee80211_channel *chan;
1535
1536 chan = &sband->channels[chanidx];
1537
1538 if (chan->flags & prohibited_flags)
1539 continue;
1540
1541 return true;
1542 }
1543 }
1544
1545 return false;
1546 }
1547 EXPORT_SYMBOL(cfg80211_any_usable_channels);
1548
wdev_chandef(struct wireless_dev * wdev,unsigned int link_id)1549 struct cfg80211_chan_def *wdev_chandef(struct wireless_dev *wdev,
1550 unsigned int link_id)
1551 {
1552 lockdep_assert_wiphy(wdev->wiphy);
1553
1554 WARN_ON(wdev->valid_links && !(wdev->valid_links & BIT(link_id)));
1555 WARN_ON(!wdev->valid_links && link_id > 0);
1556
1557 switch (wdev->iftype) {
1558 case NL80211_IFTYPE_MESH_POINT:
1559 return &wdev->u.mesh.chandef;
1560 case NL80211_IFTYPE_ADHOC:
1561 return &wdev->u.ibss.chandef;
1562 case NL80211_IFTYPE_OCB:
1563 return &wdev->u.ocb.chandef;
1564 case NL80211_IFTYPE_AP:
1565 case NL80211_IFTYPE_P2P_GO:
1566 return &wdev->links[link_id].ap.chandef;
1567 default:
1568 return NULL;
1569 }
1570 }
1571 EXPORT_SYMBOL(wdev_chandef);
1572