1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/svc_xprt.c
4 *
5 * Author: Tom Tucker <[email protected]>
6 */
7
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/errno.h>
11 #include <linux/freezer.h>
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <linux/sunrpc/addr.h>
15 #include <linux/sunrpc/stats.h>
16 #include <linux/sunrpc/svc_xprt.h>
17 #include <linux/sunrpc/svcsock.h>
18 #include <linux/sunrpc/xprt.h>
19 #include <linux/sunrpc/bc_xprt.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <trace/events/sunrpc.h>
23
24 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
25
26 static unsigned int svc_rpc_per_connection_limit __read_mostly;
27 module_param(svc_rpc_per_connection_limit, uint, 0644);
28
29
30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31 static int svc_deferred_recv(struct svc_rqst *rqstp);
32 static struct cache_deferred_req *svc_defer(struct cache_req *req);
33 static void svc_age_temp_xprts(struct timer_list *t);
34 static void svc_delete_xprt(struct svc_xprt *xprt);
35
36 /* apparently the "standard" is that clients close
37 * idle connections after 5 minutes, servers after
38 * 6 minutes
39 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40 */
41 static int svc_conn_age_period = 6*60;
42
43 /* List of registered transport classes */
44 static DEFINE_SPINLOCK(svc_xprt_class_lock);
45 static LIST_HEAD(svc_xprt_class_list);
46
47 /* SMP locking strategy:
48 *
49 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
50 * when both need to be taken (rare), svc_serv->sv_lock is first.
51 * The "service mutex" protects svc_serv->sv_nrthread.
52 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
53 * and the ->sk_info_authunix cache.
54 *
55 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
56 * enqueued multiply. During normal transport processing this bit
57 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
58 * Providers should not manipulate this bit directly.
59 *
60 * Some flags can be set to certain values at any time
61 * providing that certain rules are followed:
62 *
63 * XPT_CONN, XPT_DATA:
64 * - Can be set or cleared at any time.
65 * - After a set, svc_xprt_enqueue must be called to enqueue
66 * the transport for processing.
67 * - After a clear, the transport must be read/accepted.
68 * If this succeeds, it must be set again.
69 * XPT_CLOSE:
70 * - Can set at any time. It is never cleared.
71 * XPT_DEAD:
72 * - Can only be set while XPT_BUSY is held which ensures
73 * that no other thread will be using the transport or will
74 * try to set XPT_DEAD.
75 */
76
77 /**
78 * svc_reg_xprt_class - Register a server-side RPC transport class
79 * @xcl: New transport class to be registered
80 *
81 * Returns zero on success; otherwise a negative errno is returned.
82 */
svc_reg_xprt_class(struct svc_xprt_class * xcl)83 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
84 {
85 struct svc_xprt_class *cl;
86 int res = -EEXIST;
87
88 INIT_LIST_HEAD(&xcl->xcl_list);
89 spin_lock(&svc_xprt_class_lock);
90 /* Make sure there isn't already a class with the same name */
91 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
92 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
93 goto out;
94 }
95 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
96 res = 0;
97 out:
98 spin_unlock(&svc_xprt_class_lock);
99 return res;
100 }
101 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
102
103 /**
104 * svc_unreg_xprt_class - Unregister a server-side RPC transport class
105 * @xcl: Transport class to be unregistered
106 *
107 */
svc_unreg_xprt_class(struct svc_xprt_class * xcl)108 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
109 {
110 spin_lock(&svc_xprt_class_lock);
111 list_del_init(&xcl->xcl_list);
112 spin_unlock(&svc_xprt_class_lock);
113 }
114 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
115
116 /**
117 * svc_print_xprts - Format the transport list for printing
118 * @buf: target buffer for formatted address
119 * @maxlen: length of target buffer
120 *
121 * Fills in @buf with a string containing a list of transport names, each name
122 * terminated with '\n'. If the buffer is too small, some entries may be
123 * missing, but it is guaranteed that all lines in the output buffer are
124 * complete.
125 *
126 * Returns positive length of the filled-in string.
127 */
svc_print_xprts(char * buf,int maxlen)128 int svc_print_xprts(char *buf, int maxlen)
129 {
130 struct svc_xprt_class *xcl;
131 char tmpstr[80];
132 int len = 0;
133 buf[0] = '\0';
134
135 spin_lock(&svc_xprt_class_lock);
136 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
137 int slen;
138
139 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
140 xcl->xcl_name, xcl->xcl_max_payload);
141 if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
142 break;
143 len += slen;
144 strcat(buf, tmpstr);
145 }
146 spin_unlock(&svc_xprt_class_lock);
147
148 return len;
149 }
150
151 /**
152 * svc_xprt_deferred_close - Close a transport
153 * @xprt: transport instance
154 *
155 * Used in contexts that need to defer the work of shutting down
156 * the transport to an nfsd thread.
157 */
svc_xprt_deferred_close(struct svc_xprt * xprt)158 void svc_xprt_deferred_close(struct svc_xprt *xprt)
159 {
160 trace_svc_xprt_close(xprt);
161 if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
162 svc_xprt_enqueue(xprt);
163 }
164 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
165
svc_xprt_free(struct kref * kref)166 static void svc_xprt_free(struct kref *kref)
167 {
168 struct svc_xprt *xprt =
169 container_of(kref, struct svc_xprt, xpt_ref);
170 struct module *owner = xprt->xpt_class->xcl_owner;
171 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
172 svcauth_unix_info_release(xprt);
173 put_cred(xprt->xpt_cred);
174 put_net_track(xprt->xpt_net, &xprt->ns_tracker);
175 /* See comment on corresponding get in xs_setup_bc_tcp(): */
176 if (xprt->xpt_bc_xprt)
177 xprt_put(xprt->xpt_bc_xprt);
178 if (xprt->xpt_bc_xps)
179 xprt_switch_put(xprt->xpt_bc_xps);
180 trace_svc_xprt_free(xprt);
181 xprt->xpt_ops->xpo_free(xprt);
182 module_put(owner);
183 }
184
svc_xprt_put(struct svc_xprt * xprt)185 void svc_xprt_put(struct svc_xprt *xprt)
186 {
187 kref_put(&xprt->xpt_ref, svc_xprt_free);
188 }
189 EXPORT_SYMBOL_GPL(svc_xprt_put);
190
191 /*
192 * Called by transport drivers to initialize the transport independent
193 * portion of the transport instance.
194 */
svc_xprt_init(struct net * net,struct svc_xprt_class * xcl,struct svc_xprt * xprt,struct svc_serv * serv)195 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
196 struct svc_xprt *xprt, struct svc_serv *serv)
197 {
198 memset(xprt, 0, sizeof(*xprt));
199 xprt->xpt_class = xcl;
200 xprt->xpt_ops = xcl->xcl_ops;
201 kref_init(&xprt->xpt_ref);
202 xprt->xpt_server = serv;
203 INIT_LIST_HEAD(&xprt->xpt_list);
204 INIT_LIST_HEAD(&xprt->xpt_deferred);
205 INIT_LIST_HEAD(&xprt->xpt_users);
206 mutex_init(&xprt->xpt_mutex);
207 spin_lock_init(&xprt->xpt_lock);
208 set_bit(XPT_BUSY, &xprt->xpt_flags);
209 xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
210 strcpy(xprt->xpt_remotebuf, "uninitialized");
211 }
212 EXPORT_SYMBOL_GPL(svc_xprt_init);
213
214 /**
215 * svc_xprt_received - start next receiver thread
216 * @xprt: controlling transport
217 *
218 * The caller must hold the XPT_BUSY bit and must
219 * not thereafter touch transport data.
220 *
221 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
222 * insufficient) data.
223 */
svc_xprt_received(struct svc_xprt * xprt)224 void svc_xprt_received(struct svc_xprt *xprt)
225 {
226 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
227 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
228 return;
229 }
230
231 /* As soon as we clear busy, the xprt could be closed and
232 * 'put', so we need a reference to call svc_xprt_enqueue with:
233 */
234 svc_xprt_get(xprt);
235 smp_mb__before_atomic();
236 clear_bit(XPT_BUSY, &xprt->xpt_flags);
237 svc_xprt_enqueue(xprt);
238 svc_xprt_put(xprt);
239 }
240 EXPORT_SYMBOL_GPL(svc_xprt_received);
241
svc_add_new_perm_xprt(struct svc_serv * serv,struct svc_xprt * new)242 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
243 {
244 clear_bit(XPT_TEMP, &new->xpt_flags);
245 spin_lock_bh(&serv->sv_lock);
246 list_add(&new->xpt_list, &serv->sv_permsocks);
247 spin_unlock_bh(&serv->sv_lock);
248 svc_xprt_received(new);
249 }
250
_svc_xprt_create(struct svc_serv * serv,const char * xprt_name,struct net * net,struct sockaddr * sap,size_t len,int flags,const struct cred * cred)251 static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
252 struct net *net, struct sockaddr *sap,
253 size_t len, int flags, const struct cred *cred)
254 {
255 struct svc_xprt_class *xcl;
256
257 spin_lock(&svc_xprt_class_lock);
258 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
259 struct svc_xprt *newxprt;
260 unsigned short newport;
261
262 if (strcmp(xprt_name, xcl->xcl_name))
263 continue;
264
265 if (!try_module_get(xcl->xcl_owner))
266 goto err;
267
268 spin_unlock(&svc_xprt_class_lock);
269 newxprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
270 if (IS_ERR(newxprt)) {
271 trace_svc_xprt_create_err(serv->sv_programs->pg_name,
272 xcl->xcl_name, sap, len,
273 newxprt);
274 module_put(xcl->xcl_owner);
275 return PTR_ERR(newxprt);
276 }
277 newxprt->xpt_cred = get_cred(cred);
278 svc_add_new_perm_xprt(serv, newxprt);
279 newport = svc_xprt_local_port(newxprt);
280 return newport;
281 }
282 err:
283 spin_unlock(&svc_xprt_class_lock);
284 /* This errno is exposed to user space. Provide a reasonable
285 * perror msg for a bad transport. */
286 return -EPROTONOSUPPORT;
287 }
288
289 /**
290 * svc_xprt_create_from_sa - Add a new listener to @serv from socket address
291 * @serv: target RPC service
292 * @xprt_name: transport class name
293 * @net: network namespace
294 * @sap: socket address pointer
295 * @flags: SVC_SOCK flags
296 * @cred: credential to bind to this transport
297 *
298 * Return local xprt port on success or %-EPROTONOSUPPORT on failure
299 */
svc_xprt_create_from_sa(struct svc_serv * serv,const char * xprt_name,struct net * net,struct sockaddr * sap,int flags,const struct cred * cred)300 int svc_xprt_create_from_sa(struct svc_serv *serv, const char *xprt_name,
301 struct net *net, struct sockaddr *sap,
302 int flags, const struct cred *cred)
303 {
304 size_t len;
305 int err;
306
307 switch (sap->sa_family) {
308 case AF_INET:
309 len = sizeof(struct sockaddr_in);
310 break;
311 #if IS_ENABLED(CONFIG_IPV6)
312 case AF_INET6:
313 len = sizeof(struct sockaddr_in6);
314 break;
315 #endif
316 default:
317 return -EAFNOSUPPORT;
318 }
319
320 err = _svc_xprt_create(serv, xprt_name, net, sap, len, flags, cred);
321 if (err == -EPROTONOSUPPORT) {
322 request_module("svc%s", xprt_name);
323 err = _svc_xprt_create(serv, xprt_name, net, sap, len, flags,
324 cred);
325 }
326
327 return err;
328 }
329 EXPORT_SYMBOL_GPL(svc_xprt_create_from_sa);
330
331 /**
332 * svc_xprt_create - Add a new listener to @serv
333 * @serv: target RPC service
334 * @xprt_name: transport class name
335 * @net: network namespace
336 * @family: network address family
337 * @port: listener port
338 * @flags: SVC_SOCK flags
339 * @cred: credential to bind to this transport
340 *
341 * Return local xprt port on success or %-EPROTONOSUPPORT on failure
342 */
svc_xprt_create(struct svc_serv * serv,const char * xprt_name,struct net * net,const int family,const unsigned short port,int flags,const struct cred * cred)343 int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
344 struct net *net, const int family,
345 const unsigned short port, int flags,
346 const struct cred *cred)
347 {
348 struct sockaddr_in sin = {
349 .sin_family = AF_INET,
350 .sin_addr.s_addr = htonl(INADDR_ANY),
351 .sin_port = htons(port),
352 };
353 #if IS_ENABLED(CONFIG_IPV6)
354 struct sockaddr_in6 sin6 = {
355 .sin6_family = AF_INET6,
356 .sin6_addr = IN6ADDR_ANY_INIT,
357 .sin6_port = htons(port),
358 };
359 #endif
360 struct sockaddr *sap;
361
362 switch (family) {
363 case PF_INET:
364 sap = (struct sockaddr *)&sin;
365 break;
366 #if IS_ENABLED(CONFIG_IPV6)
367 case PF_INET6:
368 sap = (struct sockaddr *)&sin6;
369 break;
370 #endif
371 default:
372 return -EAFNOSUPPORT;
373 }
374
375 return svc_xprt_create_from_sa(serv, xprt_name, net, sap, flags, cred);
376 }
377 EXPORT_SYMBOL_GPL(svc_xprt_create);
378
379 /*
380 * Copy the local and remote xprt addresses to the rqstp structure
381 */
svc_xprt_copy_addrs(struct svc_rqst * rqstp,struct svc_xprt * xprt)382 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
383 {
384 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
385 rqstp->rq_addrlen = xprt->xpt_remotelen;
386
387 /*
388 * Destination address in request is needed for binding the
389 * source address in RPC replies/callbacks later.
390 */
391 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
392 rqstp->rq_daddrlen = xprt->xpt_locallen;
393 }
394 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
395
396 /**
397 * svc_print_addr - Format rq_addr field for printing
398 * @rqstp: svc_rqst struct containing address to print
399 * @buf: target buffer for formatted address
400 * @len: length of target buffer
401 *
402 */
svc_print_addr(struct svc_rqst * rqstp,char * buf,size_t len)403 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
404 {
405 return __svc_print_addr(svc_addr(rqstp), buf, len);
406 }
407 EXPORT_SYMBOL_GPL(svc_print_addr);
408
svc_xprt_slots_in_range(struct svc_xprt * xprt)409 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
410 {
411 unsigned int limit = svc_rpc_per_connection_limit;
412 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
413
414 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
415 }
416
svc_xprt_reserve_slot(struct svc_rqst * rqstp,struct svc_xprt * xprt)417 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
418 {
419 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
420 if (!svc_xprt_slots_in_range(xprt))
421 return false;
422 atomic_inc(&xprt->xpt_nr_rqsts);
423 set_bit(RQ_DATA, &rqstp->rq_flags);
424 }
425 return true;
426 }
427
svc_xprt_release_slot(struct svc_rqst * rqstp)428 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
429 {
430 struct svc_xprt *xprt = rqstp->rq_xprt;
431 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
432 atomic_dec(&xprt->xpt_nr_rqsts);
433 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
434 svc_xprt_enqueue(xprt);
435 }
436 }
437
svc_xprt_ready(struct svc_xprt * xprt)438 static bool svc_xprt_ready(struct svc_xprt *xprt)
439 {
440 unsigned long xpt_flags;
441
442 /*
443 * If another cpu has recently updated xpt_flags,
444 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
445 * know about it; otherwise it's possible that both that cpu and
446 * this one could call svc_xprt_enqueue() without either
447 * svc_xprt_enqueue() recognizing that the conditions below
448 * are satisfied, and we could stall indefinitely:
449 */
450 smp_rmb();
451 xpt_flags = READ_ONCE(xprt->xpt_flags);
452
453 trace_svc_xprt_enqueue(xprt, xpt_flags);
454 if (xpt_flags & BIT(XPT_BUSY))
455 return false;
456 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE) | BIT(XPT_HANDSHAKE)))
457 return true;
458 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
459 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
460 svc_xprt_slots_in_range(xprt))
461 return true;
462 trace_svc_xprt_no_write_space(xprt);
463 return false;
464 }
465 return false;
466 }
467
468 /**
469 * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
470 * @xprt: transport with data pending
471 *
472 */
svc_xprt_enqueue(struct svc_xprt * xprt)473 void svc_xprt_enqueue(struct svc_xprt *xprt)
474 {
475 struct svc_pool *pool;
476
477 if (!svc_xprt_ready(xprt))
478 return;
479
480 /* Mark transport as busy. It will remain in this state until
481 * the provider calls svc_xprt_received. We update XPT_BUSY
482 * atomically because it also guards against trying to enqueue
483 * the transport twice.
484 */
485 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
486 return;
487
488 pool = svc_pool_for_cpu(xprt->xpt_server);
489
490 percpu_counter_inc(&pool->sp_sockets_queued);
491 lwq_enqueue(&xprt->xpt_ready, &pool->sp_xprts);
492
493 svc_pool_wake_idle_thread(pool);
494 }
495 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
496
497 /*
498 * Dequeue the first transport, if there is one.
499 */
svc_xprt_dequeue(struct svc_pool * pool)500 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
501 {
502 struct svc_xprt *xprt = NULL;
503
504 xprt = lwq_dequeue(&pool->sp_xprts, struct svc_xprt, xpt_ready);
505 if (xprt)
506 svc_xprt_get(xprt);
507 return xprt;
508 }
509
510 /**
511 * svc_reserve - change the space reserved for the reply to a request.
512 * @rqstp: The request in question
513 * @space: new max space to reserve
514 *
515 * Each request reserves some space on the output queue of the transport
516 * to make sure the reply fits. This function reduces that reserved
517 * space to be the amount of space used already, plus @space.
518 *
519 */
svc_reserve(struct svc_rqst * rqstp,int space)520 void svc_reserve(struct svc_rqst *rqstp, int space)
521 {
522 struct svc_xprt *xprt = rqstp->rq_xprt;
523
524 space += rqstp->rq_res.head[0].iov_len;
525
526 if (xprt && space < rqstp->rq_reserved) {
527 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
528 rqstp->rq_reserved = space;
529 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
530 svc_xprt_enqueue(xprt);
531 }
532 }
533 EXPORT_SYMBOL_GPL(svc_reserve);
534
free_deferred(struct svc_xprt * xprt,struct svc_deferred_req * dr)535 static void free_deferred(struct svc_xprt *xprt, struct svc_deferred_req *dr)
536 {
537 if (!dr)
538 return;
539
540 xprt->xpt_ops->xpo_release_ctxt(xprt, dr->xprt_ctxt);
541 kfree(dr);
542 }
543
svc_xprt_release(struct svc_rqst * rqstp)544 static void svc_xprt_release(struct svc_rqst *rqstp)
545 {
546 struct svc_xprt *xprt = rqstp->rq_xprt;
547
548 xprt->xpt_ops->xpo_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
549 rqstp->rq_xprt_ctxt = NULL;
550
551 free_deferred(xprt, rqstp->rq_deferred);
552 rqstp->rq_deferred = NULL;
553
554 svc_rqst_release_pages(rqstp);
555 rqstp->rq_res.page_len = 0;
556 rqstp->rq_res.page_base = 0;
557
558 /* Reset response buffer and release
559 * the reservation.
560 * But first, check that enough space was reserved
561 * for the reply, otherwise we have a bug!
562 */
563 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
564 printk(KERN_ERR "RPC request reserved %d but used %d\n",
565 rqstp->rq_reserved,
566 rqstp->rq_res.len);
567
568 rqstp->rq_res.head[0].iov_len = 0;
569 svc_reserve(rqstp, 0);
570 svc_xprt_release_slot(rqstp);
571 rqstp->rq_xprt = NULL;
572 svc_xprt_put(xprt);
573 }
574
575 /**
576 * svc_wake_up - Wake up a service thread for non-transport work
577 * @serv: RPC service
578 *
579 * Some svc_serv's will have occasional work to do, even when a xprt is not
580 * waiting to be serviced. This function is there to "kick" a task in one of
581 * those services so that it can wake up and do that work. Note that we only
582 * bother with pool 0 as we don't need to wake up more than one thread for
583 * this purpose.
584 */
svc_wake_up(struct svc_serv * serv)585 void svc_wake_up(struct svc_serv *serv)
586 {
587 struct svc_pool *pool = &serv->sv_pools[0];
588
589 set_bit(SP_TASK_PENDING, &pool->sp_flags);
590 svc_pool_wake_idle_thread(pool);
591 }
592 EXPORT_SYMBOL_GPL(svc_wake_up);
593
svc_port_is_privileged(struct sockaddr * sin)594 int svc_port_is_privileged(struct sockaddr *sin)
595 {
596 switch (sin->sa_family) {
597 case AF_INET:
598 return ntohs(((struct sockaddr_in *)sin)->sin_port)
599 < PROT_SOCK;
600 case AF_INET6:
601 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
602 < PROT_SOCK;
603 default:
604 return 0;
605 }
606 }
607
608 /*
609 * Make sure that we don't have too many connections that have not yet
610 * demonstrated that they have access to the NFS server. If we have,
611 * something must be dropped. It's not clear what will happen if we allow
612 * "too many" connections, but when dealing with network-facing software,
613 * we have to code defensively. Here we do that by imposing hard limits.
614 *
615 * There's no point in trying to do random drop here for DoS
616 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
617 * attacker can easily beat that.
618 *
619 * The only somewhat efficient mechanism would be if drop old
620 * connections from the same IP first. But right now we don't even
621 * record the client IP in svc_sock.
622 */
svc_check_conn_limits(struct svc_serv * serv)623 static void svc_check_conn_limits(struct svc_serv *serv)
624 {
625 if (serv->sv_tmpcnt > XPT_MAX_TMP_CONN) {
626 struct svc_xprt *xprt = NULL, *xprti;
627 spin_lock_bh(&serv->sv_lock);
628 if (!list_empty(&serv->sv_tempsocks)) {
629 /*
630 * Always select the oldest connection. It's not fair,
631 * but nor is life.
632 */
633 list_for_each_entry_reverse(xprti, &serv->sv_tempsocks,
634 xpt_list) {
635 if (!test_bit(XPT_PEER_VALID, &xprti->xpt_flags)) {
636 xprt = xprti;
637 set_bit(XPT_CLOSE, &xprt->xpt_flags);
638 svc_xprt_get(xprt);
639 break;
640 }
641 }
642 }
643 spin_unlock_bh(&serv->sv_lock);
644
645 if (xprt) {
646 svc_xprt_enqueue(xprt);
647 svc_xprt_put(xprt);
648 }
649 }
650 }
651
svc_alloc_arg(struct svc_rqst * rqstp)652 static bool svc_alloc_arg(struct svc_rqst *rqstp)
653 {
654 struct svc_serv *serv = rqstp->rq_server;
655 struct xdr_buf *arg = &rqstp->rq_arg;
656 unsigned long pages, filled, ret;
657
658 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
659 if (pages > RPCSVC_MAXPAGES) {
660 pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
661 pages, RPCSVC_MAXPAGES);
662 /* use as many pages as possible */
663 pages = RPCSVC_MAXPAGES;
664 }
665
666 for (filled = 0; filled < pages; filled = ret) {
667 ret = alloc_pages_bulk(GFP_KERNEL, pages, rqstp->rq_pages);
668 if (ret > filled)
669 /* Made progress, don't sleep yet */
670 continue;
671
672 set_current_state(TASK_IDLE);
673 if (svc_thread_should_stop(rqstp)) {
674 set_current_state(TASK_RUNNING);
675 return false;
676 }
677 trace_svc_alloc_arg_err(pages, ret);
678 memalloc_retry_wait(GFP_KERNEL);
679 }
680 rqstp->rq_page_end = &rqstp->rq_pages[pages];
681 rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
682
683 /* Make arg->head point to first page and arg->pages point to rest */
684 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
685 arg->head[0].iov_len = PAGE_SIZE;
686 arg->pages = rqstp->rq_pages + 1;
687 arg->page_base = 0;
688 /* save at least one page for response */
689 arg->page_len = (pages-2)*PAGE_SIZE;
690 arg->len = (pages-1)*PAGE_SIZE;
691 arg->tail[0].iov_len = 0;
692
693 rqstp->rq_xid = xdr_zero;
694 return true;
695 }
696
697 static bool
svc_thread_should_sleep(struct svc_rqst * rqstp)698 svc_thread_should_sleep(struct svc_rqst *rqstp)
699 {
700 struct svc_pool *pool = rqstp->rq_pool;
701
702 /* did someone call svc_wake_up? */
703 if (test_bit(SP_TASK_PENDING, &pool->sp_flags))
704 return false;
705
706 /* was a socket queued? */
707 if (!lwq_empty(&pool->sp_xprts))
708 return false;
709
710 /* are we shutting down? */
711 if (svc_thread_should_stop(rqstp))
712 return false;
713
714 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
715 if (svc_is_backchannel(rqstp)) {
716 if (!lwq_empty(&rqstp->rq_server->sv_cb_list))
717 return false;
718 }
719 #endif
720
721 return true;
722 }
723
svc_thread_wait_for_work(struct svc_rqst * rqstp)724 static void svc_thread_wait_for_work(struct svc_rqst *rqstp)
725 {
726 struct svc_pool *pool = rqstp->rq_pool;
727
728 if (svc_thread_should_sleep(rqstp)) {
729 set_current_state(TASK_IDLE | TASK_FREEZABLE);
730 llist_add(&rqstp->rq_idle, &pool->sp_idle_threads);
731 if (likely(svc_thread_should_sleep(rqstp)))
732 schedule();
733
734 while (!llist_del_first_this(&pool->sp_idle_threads,
735 &rqstp->rq_idle)) {
736 /* Work just became available. This thread can only
737 * handle it after removing rqstp from the idle
738 * list. If that attempt failed, some other thread
739 * must have queued itself after finding no
740 * work to do, so that thread has taken responsibly
741 * for this new work. This thread can safely sleep
742 * until woken again.
743 */
744 schedule();
745 set_current_state(TASK_IDLE | TASK_FREEZABLE);
746 }
747 __set_current_state(TASK_RUNNING);
748 } else {
749 cond_resched();
750 }
751 try_to_freeze();
752 }
753
svc_add_new_temp_xprt(struct svc_serv * serv,struct svc_xprt * newxpt)754 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
755 {
756 spin_lock_bh(&serv->sv_lock);
757 set_bit(XPT_TEMP, &newxpt->xpt_flags);
758 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
759 serv->sv_tmpcnt++;
760 if (serv->sv_temptimer.function == NULL) {
761 /* setup timer to age temp transports */
762 serv->sv_temptimer.function = svc_age_temp_xprts;
763 mod_timer(&serv->sv_temptimer,
764 jiffies + svc_conn_age_period * HZ);
765 }
766 spin_unlock_bh(&serv->sv_lock);
767 svc_xprt_received(newxpt);
768 }
769
svc_handle_xprt(struct svc_rqst * rqstp,struct svc_xprt * xprt)770 static void svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
771 {
772 struct svc_serv *serv = rqstp->rq_server;
773 int len = 0;
774
775 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
776 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
777 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
778 svc_delete_xprt(xprt);
779 /* Leave XPT_BUSY set on the dead xprt: */
780 goto out;
781 }
782 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
783 struct svc_xprt *newxpt;
784 /*
785 * We know this module_get will succeed because the
786 * listener holds a reference too
787 */
788 __module_get(xprt->xpt_class->xcl_owner);
789 svc_check_conn_limits(xprt->xpt_server);
790 newxpt = xprt->xpt_ops->xpo_accept(xprt);
791 if (newxpt) {
792 newxpt->xpt_cred = get_cred(xprt->xpt_cred);
793 svc_add_new_temp_xprt(serv, newxpt);
794 trace_svc_xprt_accept(newxpt, serv->sv_name);
795 } else {
796 module_put(xprt->xpt_class->xcl_owner);
797 }
798 svc_xprt_received(xprt);
799 } else if (test_bit(XPT_HANDSHAKE, &xprt->xpt_flags)) {
800 xprt->xpt_ops->xpo_handshake(xprt);
801 svc_xprt_received(xprt);
802 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
803 /* XPT_DATA|XPT_DEFERRED case: */
804 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
805 if (rqstp->rq_deferred)
806 len = svc_deferred_recv(rqstp);
807 else
808 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
809 rqstp->rq_reserved = serv->sv_max_mesg;
810 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
811 if (len <= 0)
812 goto out;
813
814 trace_svc_xdr_recvfrom(&rqstp->rq_arg);
815
816 clear_bit(XPT_OLD, &xprt->xpt_flags);
817
818 rqstp->rq_chandle.defer = svc_defer;
819
820 if (serv->sv_stats)
821 serv->sv_stats->netcnt++;
822 percpu_counter_inc(&rqstp->rq_pool->sp_messages_arrived);
823 rqstp->rq_stime = ktime_get();
824 svc_process(rqstp);
825 } else
826 svc_xprt_received(xprt);
827
828 out:
829 rqstp->rq_res.len = 0;
830 svc_xprt_release(rqstp);
831 }
832
svc_thread_wake_next(struct svc_rqst * rqstp)833 static void svc_thread_wake_next(struct svc_rqst *rqstp)
834 {
835 if (!svc_thread_should_sleep(rqstp))
836 /* More work pending after I dequeued some,
837 * wake another worker
838 */
839 svc_pool_wake_idle_thread(rqstp->rq_pool);
840 }
841
842 /**
843 * svc_recv - Receive and process the next request on any transport
844 * @rqstp: an idle RPC service thread
845 *
846 * This code is carefully organised not to touch any cachelines in
847 * the shared svc_serv structure, only cachelines in the local
848 * svc_pool.
849 */
svc_recv(struct svc_rqst * rqstp)850 void svc_recv(struct svc_rqst *rqstp)
851 {
852 struct svc_pool *pool = rqstp->rq_pool;
853
854 if (!svc_alloc_arg(rqstp))
855 return;
856
857 svc_thread_wait_for_work(rqstp);
858
859 clear_bit(SP_TASK_PENDING, &pool->sp_flags);
860
861 if (svc_thread_should_stop(rqstp)) {
862 svc_thread_wake_next(rqstp);
863 return;
864 }
865
866 rqstp->rq_xprt = svc_xprt_dequeue(pool);
867 if (rqstp->rq_xprt) {
868 struct svc_xprt *xprt = rqstp->rq_xprt;
869
870 svc_thread_wake_next(rqstp);
871 /* Normally we will wait up to 5 seconds for any required
872 * cache information to be provided. When there are no
873 * idle threads, we reduce the wait time.
874 */
875 if (pool->sp_idle_threads.first)
876 rqstp->rq_chandle.thread_wait = 5 * HZ;
877 else
878 rqstp->rq_chandle.thread_wait = 1 * HZ;
879
880 trace_svc_xprt_dequeue(rqstp);
881 svc_handle_xprt(rqstp, xprt);
882 }
883
884 #if defined(CONFIG_SUNRPC_BACKCHANNEL)
885 if (svc_is_backchannel(rqstp)) {
886 struct svc_serv *serv = rqstp->rq_server;
887 struct rpc_rqst *req;
888
889 req = lwq_dequeue(&serv->sv_cb_list,
890 struct rpc_rqst, rq_bc_list);
891 if (req) {
892 svc_thread_wake_next(rqstp);
893 svc_process_bc(req, rqstp);
894 }
895 }
896 #endif
897 }
898 EXPORT_SYMBOL_GPL(svc_recv);
899
900 /**
901 * svc_send - Return reply to client
902 * @rqstp: RPC transaction context
903 *
904 */
svc_send(struct svc_rqst * rqstp)905 void svc_send(struct svc_rqst *rqstp)
906 {
907 struct svc_xprt *xprt;
908 struct xdr_buf *xb;
909 int status;
910
911 xprt = rqstp->rq_xprt;
912
913 /* calculate over-all length */
914 xb = &rqstp->rq_res;
915 xb->len = xb->head[0].iov_len +
916 xb->page_len +
917 xb->tail[0].iov_len;
918 trace_svc_xdr_sendto(rqstp->rq_xid, xb);
919 trace_svc_stats_latency(rqstp);
920
921 status = xprt->xpt_ops->xpo_sendto(rqstp);
922
923 trace_svc_send(rqstp, status);
924 }
925
926 /*
927 * Timer function to close old temporary transports, using
928 * a mark-and-sweep algorithm.
929 */
svc_age_temp_xprts(struct timer_list * t)930 static void svc_age_temp_xprts(struct timer_list *t)
931 {
932 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
933 struct svc_xprt *xprt;
934 struct list_head *le, *next;
935
936 dprintk("svc_age_temp_xprts\n");
937
938 if (!spin_trylock_bh(&serv->sv_lock)) {
939 /* busy, try again 1 sec later */
940 dprintk("svc_age_temp_xprts: busy\n");
941 mod_timer(&serv->sv_temptimer, jiffies + HZ);
942 return;
943 }
944
945 list_for_each_safe(le, next, &serv->sv_tempsocks) {
946 xprt = list_entry(le, struct svc_xprt, xpt_list);
947
948 /* First time through, just mark it OLD. Second time
949 * through, close it. */
950 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
951 continue;
952 if (kref_read(&xprt->xpt_ref) > 1 ||
953 test_bit(XPT_BUSY, &xprt->xpt_flags))
954 continue;
955 list_del_init(le);
956 set_bit(XPT_CLOSE, &xprt->xpt_flags);
957 dprintk("queuing xprt %p for closing\n", xprt);
958
959 /* a thread will dequeue and close it soon */
960 svc_xprt_enqueue(xprt);
961 }
962 spin_unlock_bh(&serv->sv_lock);
963
964 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
965 }
966
967 /* Close temporary transports whose xpt_local matches server_addr immediately
968 * instead of waiting for them to be picked up by the timer.
969 *
970 * This is meant to be called from a notifier_block that runs when an ip
971 * address is deleted.
972 */
svc_age_temp_xprts_now(struct svc_serv * serv,struct sockaddr * server_addr)973 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
974 {
975 struct svc_xprt *xprt;
976 struct list_head *le, *next;
977 LIST_HEAD(to_be_closed);
978
979 spin_lock_bh(&serv->sv_lock);
980 list_for_each_safe(le, next, &serv->sv_tempsocks) {
981 xprt = list_entry(le, struct svc_xprt, xpt_list);
982 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
983 &xprt->xpt_local)) {
984 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
985 list_move(le, &to_be_closed);
986 }
987 }
988 spin_unlock_bh(&serv->sv_lock);
989
990 while (!list_empty(&to_be_closed)) {
991 le = to_be_closed.next;
992 list_del_init(le);
993 xprt = list_entry(le, struct svc_xprt, xpt_list);
994 set_bit(XPT_CLOSE, &xprt->xpt_flags);
995 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
996 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
997 xprt);
998 svc_xprt_enqueue(xprt);
999 }
1000 }
1001 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1002
call_xpt_users(struct svc_xprt * xprt)1003 static void call_xpt_users(struct svc_xprt *xprt)
1004 {
1005 struct svc_xpt_user *u;
1006
1007 spin_lock(&xprt->xpt_lock);
1008 while (!list_empty(&xprt->xpt_users)) {
1009 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1010 list_del_init(&u->list);
1011 u->callback(u);
1012 }
1013 spin_unlock(&xprt->xpt_lock);
1014 }
1015
1016 /*
1017 * Remove a dead transport
1018 */
svc_delete_xprt(struct svc_xprt * xprt)1019 static void svc_delete_xprt(struct svc_xprt *xprt)
1020 {
1021 struct svc_serv *serv = xprt->xpt_server;
1022 struct svc_deferred_req *dr;
1023
1024 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1025 return;
1026
1027 trace_svc_xprt_detach(xprt);
1028 xprt->xpt_ops->xpo_detach(xprt);
1029 if (xprt->xpt_bc_xprt)
1030 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1031
1032 spin_lock_bh(&serv->sv_lock);
1033 list_del_init(&xprt->xpt_list);
1034 if (test_bit(XPT_TEMP, &xprt->xpt_flags) &&
1035 !test_bit(XPT_PEER_VALID, &xprt->xpt_flags))
1036 serv->sv_tmpcnt--;
1037 spin_unlock_bh(&serv->sv_lock);
1038
1039 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1040 free_deferred(xprt, dr);
1041
1042 call_xpt_users(xprt);
1043 svc_xprt_put(xprt);
1044 }
1045
1046 /**
1047 * svc_xprt_close - Close a client connection
1048 * @xprt: transport to disconnect
1049 *
1050 */
svc_xprt_close(struct svc_xprt * xprt)1051 void svc_xprt_close(struct svc_xprt *xprt)
1052 {
1053 trace_svc_xprt_close(xprt);
1054 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1055 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1056 /* someone else will have to effect the close */
1057 return;
1058 /*
1059 * We expect svc_close_xprt() to work even when no threads are
1060 * running (e.g., while configuring the server before starting
1061 * any threads), so if the transport isn't busy, we delete
1062 * it ourself:
1063 */
1064 svc_delete_xprt(xprt);
1065 }
1066 EXPORT_SYMBOL_GPL(svc_xprt_close);
1067
svc_close_list(struct svc_serv * serv,struct list_head * xprt_list,struct net * net)1068 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1069 {
1070 struct svc_xprt *xprt;
1071 int ret = 0;
1072
1073 spin_lock_bh(&serv->sv_lock);
1074 list_for_each_entry(xprt, xprt_list, xpt_list) {
1075 if (xprt->xpt_net != net)
1076 continue;
1077 ret++;
1078 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1079 svc_xprt_enqueue(xprt);
1080 }
1081 spin_unlock_bh(&serv->sv_lock);
1082 return ret;
1083 }
1084
svc_clean_up_xprts(struct svc_serv * serv,struct net * net)1085 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1086 {
1087 struct svc_xprt *xprt;
1088 int i;
1089
1090 for (i = 0; i < serv->sv_nrpools; i++) {
1091 struct svc_pool *pool = &serv->sv_pools[i];
1092 struct llist_node *q, **t1, *t2;
1093
1094 q = lwq_dequeue_all(&pool->sp_xprts);
1095 lwq_for_each_safe(xprt, t1, t2, &q, xpt_ready) {
1096 if (xprt->xpt_net == net) {
1097 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1098 svc_delete_xprt(xprt);
1099 xprt = NULL;
1100 }
1101 }
1102
1103 if (q)
1104 lwq_enqueue_batch(q, &pool->sp_xprts);
1105 }
1106 }
1107
1108 /**
1109 * svc_xprt_destroy_all - Destroy transports associated with @serv
1110 * @serv: RPC service to be shut down
1111 * @net: target network namespace
1112 *
1113 * Server threads may still be running (especially in the case where the
1114 * service is still running in other network namespaces).
1115 *
1116 * So we shut down sockets the same way we would on a running server, by
1117 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1118 * the close. In the case there are no such other threads,
1119 * threads running, svc_clean_up_xprts() does a simple version of a
1120 * server's main event loop, and in the case where there are other
1121 * threads, we may need to wait a little while and then check again to
1122 * see if they're done.
1123 */
svc_xprt_destroy_all(struct svc_serv * serv,struct net * net)1124 void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1125 {
1126 int delay = 0;
1127
1128 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1129 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1130
1131 svc_clean_up_xprts(serv, net);
1132 msleep(delay++);
1133 }
1134 }
1135 EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1136
1137 /*
1138 * Handle defer and revisit of requests
1139 */
1140
svc_revisit(struct cache_deferred_req * dreq,int too_many)1141 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1142 {
1143 struct svc_deferred_req *dr =
1144 container_of(dreq, struct svc_deferred_req, handle);
1145 struct svc_xprt *xprt = dr->xprt;
1146
1147 spin_lock(&xprt->xpt_lock);
1148 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1149 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1150 spin_unlock(&xprt->xpt_lock);
1151 trace_svc_defer_drop(dr);
1152 free_deferred(xprt, dr);
1153 svc_xprt_put(xprt);
1154 return;
1155 }
1156 dr->xprt = NULL;
1157 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1158 spin_unlock(&xprt->xpt_lock);
1159 trace_svc_defer_queue(dr);
1160 svc_xprt_enqueue(xprt);
1161 svc_xprt_put(xprt);
1162 }
1163
1164 /*
1165 * Save the request off for later processing. The request buffer looks
1166 * like this:
1167 *
1168 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1169 *
1170 * This code can only handle requests that consist of an xprt-header
1171 * and rpc-header.
1172 */
svc_defer(struct cache_req * req)1173 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1174 {
1175 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1176 struct svc_deferred_req *dr;
1177
1178 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1179 return NULL; /* if more than a page, give up FIXME */
1180 if (rqstp->rq_deferred) {
1181 dr = rqstp->rq_deferred;
1182 rqstp->rq_deferred = NULL;
1183 } else {
1184 size_t skip;
1185 size_t size;
1186 /* FIXME maybe discard if size too large */
1187 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1188 dr = kmalloc(size, GFP_KERNEL);
1189 if (dr == NULL)
1190 return NULL;
1191
1192 dr->handle.owner = rqstp->rq_server;
1193 dr->prot = rqstp->rq_prot;
1194 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1195 dr->addrlen = rqstp->rq_addrlen;
1196 dr->daddr = rqstp->rq_daddr;
1197 dr->argslen = rqstp->rq_arg.len >> 2;
1198
1199 /* back up head to the start of the buffer and copy */
1200 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1201 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1202 dr->argslen << 2);
1203 }
1204 dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1205 rqstp->rq_xprt_ctxt = NULL;
1206 trace_svc_defer(rqstp);
1207 svc_xprt_get(rqstp->rq_xprt);
1208 dr->xprt = rqstp->rq_xprt;
1209 set_bit(RQ_DROPME, &rqstp->rq_flags);
1210
1211 dr->handle.revisit = svc_revisit;
1212 return &dr->handle;
1213 }
1214
1215 /*
1216 * recv data from a deferred request into an active one
1217 */
svc_deferred_recv(struct svc_rqst * rqstp)1218 static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1219 {
1220 struct svc_deferred_req *dr = rqstp->rq_deferred;
1221
1222 trace_svc_defer_recv(dr);
1223
1224 /* setup iov_base past transport header */
1225 rqstp->rq_arg.head[0].iov_base = dr->args;
1226 /* The iov_len does not include the transport header bytes */
1227 rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1228 rqstp->rq_arg.page_len = 0;
1229 /* The rq_arg.len includes the transport header bytes */
1230 rqstp->rq_arg.len = dr->argslen << 2;
1231 rqstp->rq_prot = dr->prot;
1232 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1233 rqstp->rq_addrlen = dr->addrlen;
1234 /* Save off transport header len in case we get deferred again */
1235 rqstp->rq_daddr = dr->daddr;
1236 rqstp->rq_respages = rqstp->rq_pages;
1237 rqstp->rq_xprt_ctxt = dr->xprt_ctxt;
1238
1239 dr->xprt_ctxt = NULL;
1240 svc_xprt_received(rqstp->rq_xprt);
1241 return dr->argslen << 2;
1242 }
1243
1244
svc_deferred_dequeue(struct svc_xprt * xprt)1245 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1246 {
1247 struct svc_deferred_req *dr = NULL;
1248
1249 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1250 return NULL;
1251 spin_lock(&xprt->xpt_lock);
1252 if (!list_empty(&xprt->xpt_deferred)) {
1253 dr = list_entry(xprt->xpt_deferred.next,
1254 struct svc_deferred_req,
1255 handle.recent);
1256 list_del_init(&dr->handle.recent);
1257 } else
1258 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1259 spin_unlock(&xprt->xpt_lock);
1260 return dr;
1261 }
1262
1263 /**
1264 * svc_find_listener - find an RPC transport instance
1265 * @serv: pointer to svc_serv to search
1266 * @xcl_name: C string containing transport's class name
1267 * @net: owner net pointer
1268 * @sa: sockaddr containing address
1269 *
1270 * Return the transport instance pointer for the endpoint accepting
1271 * connections/peer traffic from the specified transport class,
1272 * and matching sockaddr.
1273 */
svc_find_listener(struct svc_serv * serv,const char * xcl_name,struct net * net,const struct sockaddr * sa)1274 struct svc_xprt *svc_find_listener(struct svc_serv *serv, const char *xcl_name,
1275 struct net *net, const struct sockaddr *sa)
1276 {
1277 struct svc_xprt *xprt;
1278 struct svc_xprt *found = NULL;
1279
1280 spin_lock_bh(&serv->sv_lock);
1281 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1282 if (xprt->xpt_net != net)
1283 continue;
1284 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1285 continue;
1286 if (!rpc_cmp_addr_port(sa, (struct sockaddr *)&xprt->xpt_local))
1287 continue;
1288 found = xprt;
1289 svc_xprt_get(xprt);
1290 break;
1291 }
1292 spin_unlock_bh(&serv->sv_lock);
1293 return found;
1294 }
1295 EXPORT_SYMBOL_GPL(svc_find_listener);
1296
1297 /**
1298 * svc_find_xprt - find an RPC transport instance
1299 * @serv: pointer to svc_serv to search
1300 * @xcl_name: C string containing transport's class name
1301 * @net: owner net pointer
1302 * @af: Address family of transport's local address
1303 * @port: transport's IP port number
1304 *
1305 * Return the transport instance pointer for the endpoint accepting
1306 * connections/peer traffic from the specified transport class,
1307 * address family and port.
1308 *
1309 * Specifying 0 for the address family or port is effectively a
1310 * wild-card, and will result in matching the first transport in the
1311 * service's list that has a matching class name.
1312 */
svc_find_xprt(struct svc_serv * serv,const char * xcl_name,struct net * net,const sa_family_t af,const unsigned short port)1313 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1314 struct net *net, const sa_family_t af,
1315 const unsigned short port)
1316 {
1317 struct svc_xprt *xprt;
1318 struct svc_xprt *found = NULL;
1319
1320 /* Sanity check the args */
1321 if (serv == NULL || xcl_name == NULL)
1322 return found;
1323
1324 spin_lock_bh(&serv->sv_lock);
1325 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1326 if (xprt->xpt_net != net)
1327 continue;
1328 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1329 continue;
1330 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1331 continue;
1332 if (port != 0 && port != svc_xprt_local_port(xprt))
1333 continue;
1334 found = xprt;
1335 svc_xprt_get(xprt);
1336 break;
1337 }
1338 spin_unlock_bh(&serv->sv_lock);
1339 return found;
1340 }
1341 EXPORT_SYMBOL_GPL(svc_find_xprt);
1342
svc_one_xprt_name(const struct svc_xprt * xprt,char * pos,int remaining)1343 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1344 char *pos, int remaining)
1345 {
1346 int len;
1347
1348 len = snprintf(pos, remaining, "%s %u\n",
1349 xprt->xpt_class->xcl_name,
1350 svc_xprt_local_port(xprt));
1351 if (len >= remaining)
1352 return -ENAMETOOLONG;
1353 return len;
1354 }
1355
1356 /**
1357 * svc_xprt_names - format a buffer with a list of transport names
1358 * @serv: pointer to an RPC service
1359 * @buf: pointer to a buffer to be filled in
1360 * @buflen: length of buffer to be filled in
1361 *
1362 * Fills in @buf with a string containing a list of transport names,
1363 * each name terminated with '\n'.
1364 *
1365 * Returns positive length of the filled-in string on success; otherwise
1366 * a negative errno value is returned if an error occurs.
1367 */
svc_xprt_names(struct svc_serv * serv,char * buf,const int buflen)1368 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1369 {
1370 struct svc_xprt *xprt;
1371 int len, totlen;
1372 char *pos;
1373
1374 /* Sanity check args */
1375 if (!serv)
1376 return 0;
1377
1378 spin_lock_bh(&serv->sv_lock);
1379
1380 pos = buf;
1381 totlen = 0;
1382 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1383 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1384 if (len < 0) {
1385 *buf = '\0';
1386 totlen = len;
1387 }
1388 if (len <= 0)
1389 break;
1390
1391 pos += len;
1392 totlen += len;
1393 }
1394
1395 spin_unlock_bh(&serv->sv_lock);
1396 return totlen;
1397 }
1398 EXPORT_SYMBOL_GPL(svc_xprt_names);
1399
1400 /*----------------------------------------------------------------------------*/
1401
svc_pool_stats_start(struct seq_file * m,loff_t * pos)1402 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1403 {
1404 unsigned int pidx = (unsigned int)*pos;
1405 struct svc_info *si = m->private;
1406
1407 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1408
1409 mutex_lock(si->mutex);
1410
1411 if (!pidx)
1412 return SEQ_START_TOKEN;
1413 if (!si->serv)
1414 return NULL;
1415 return pidx > si->serv->sv_nrpools ? NULL
1416 : &si->serv->sv_pools[pidx - 1];
1417 }
1418
svc_pool_stats_next(struct seq_file * m,void * p,loff_t * pos)1419 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1420 {
1421 struct svc_pool *pool = p;
1422 struct svc_info *si = m->private;
1423 struct svc_serv *serv = si->serv;
1424
1425 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1426
1427 if (!serv) {
1428 pool = NULL;
1429 } else if (p == SEQ_START_TOKEN) {
1430 pool = &serv->sv_pools[0];
1431 } else {
1432 unsigned int pidx = (pool - &serv->sv_pools[0]);
1433 if (pidx < serv->sv_nrpools-1)
1434 pool = &serv->sv_pools[pidx+1];
1435 else
1436 pool = NULL;
1437 }
1438 ++*pos;
1439 return pool;
1440 }
1441
svc_pool_stats_stop(struct seq_file * m,void * p)1442 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1443 {
1444 struct svc_info *si = m->private;
1445
1446 mutex_unlock(si->mutex);
1447 }
1448
svc_pool_stats_show(struct seq_file * m,void * p)1449 static int svc_pool_stats_show(struct seq_file *m, void *p)
1450 {
1451 struct svc_pool *pool = p;
1452
1453 if (p == SEQ_START_TOKEN) {
1454 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1455 return 0;
1456 }
1457
1458 seq_printf(m, "%u %llu %llu %llu 0\n",
1459 pool->sp_id,
1460 percpu_counter_sum_positive(&pool->sp_messages_arrived),
1461 percpu_counter_sum_positive(&pool->sp_sockets_queued),
1462 percpu_counter_sum_positive(&pool->sp_threads_woken));
1463
1464 return 0;
1465 }
1466
1467 static const struct seq_operations svc_pool_stats_seq_ops = {
1468 .start = svc_pool_stats_start,
1469 .next = svc_pool_stats_next,
1470 .stop = svc_pool_stats_stop,
1471 .show = svc_pool_stats_show,
1472 };
1473
svc_pool_stats_open(struct svc_info * info,struct file * file)1474 int svc_pool_stats_open(struct svc_info *info, struct file *file)
1475 {
1476 struct seq_file *seq;
1477 int err;
1478
1479 err = seq_open(file, &svc_pool_stats_seq_ops);
1480 if (err)
1481 return err;
1482 seq = file->private_data;
1483 seq->private = info;
1484
1485 return 0;
1486 }
1487 EXPORT_SYMBOL(svc_pool_stats_open);
1488
1489 /*----------------------------------------------------------------------------*/
1490