1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <[email protected]>
8 * Ross Biro
9 * Fred N. van Kempen, <[email protected]>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112
113 #include "core/dev.h"
114
115 #ifdef CONFIG_NET_RX_BUSY_POLL
116 unsigned int sysctl_net_busy_read __read_mostly;
117 unsigned int sysctl_net_busy_poll __read_mostly;
118 #endif
119
120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
122 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123
124 static int sock_close(struct inode *inode, struct file *file);
125 static __poll_t sock_poll(struct file *file,
126 struct poll_table_struct *wait);
127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
128 #ifdef CONFIG_COMPAT
129 static long compat_sock_ioctl(struct file *file,
130 unsigned int cmd, unsigned long arg);
131 #endif
132 static int sock_fasync(int fd, struct file *filp, int on);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 struct pipe_inode_info *pipe, size_t len,
135 unsigned int flags);
136 static void sock_splice_eof(struct file *file);
137
138 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)139 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
140 {
141 struct socket *sock = f->private_data;
142 const struct proto_ops *ops = READ_ONCE(sock->ops);
143
144 if (ops->show_fdinfo)
145 ops->show_fdinfo(m, sock);
146 }
147 #else
148 #define sock_show_fdinfo NULL
149 #endif
150
151 /*
152 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
153 * in the operation structures but are done directly via the socketcall() multiplexor.
154 */
155
156 static const struct file_operations socket_file_ops = {
157 .owner = THIS_MODULE,
158 .read_iter = sock_read_iter,
159 .write_iter = sock_write_iter,
160 .poll = sock_poll,
161 .unlocked_ioctl = sock_ioctl,
162 #ifdef CONFIG_COMPAT
163 .compat_ioctl = compat_sock_ioctl,
164 #endif
165 .uring_cmd = io_uring_cmd_sock,
166 .mmap = sock_mmap,
167 .release = sock_close,
168 .fasync = sock_fasync,
169 .splice_write = splice_to_socket,
170 .splice_read = sock_splice_read,
171 .splice_eof = sock_splice_eof,
172 .show_fdinfo = sock_show_fdinfo,
173 };
174
175 static const char * const pf_family_names[] = {
176 [PF_UNSPEC] = "PF_UNSPEC",
177 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
178 [PF_INET] = "PF_INET",
179 [PF_AX25] = "PF_AX25",
180 [PF_IPX] = "PF_IPX",
181 [PF_APPLETALK] = "PF_APPLETALK",
182 [PF_NETROM] = "PF_NETROM",
183 [PF_BRIDGE] = "PF_BRIDGE",
184 [PF_ATMPVC] = "PF_ATMPVC",
185 [PF_X25] = "PF_X25",
186 [PF_INET6] = "PF_INET6",
187 [PF_ROSE] = "PF_ROSE",
188 [PF_DECnet] = "PF_DECnet",
189 [PF_NETBEUI] = "PF_NETBEUI",
190 [PF_SECURITY] = "PF_SECURITY",
191 [PF_KEY] = "PF_KEY",
192 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
193 [PF_PACKET] = "PF_PACKET",
194 [PF_ASH] = "PF_ASH",
195 [PF_ECONET] = "PF_ECONET",
196 [PF_ATMSVC] = "PF_ATMSVC",
197 [PF_RDS] = "PF_RDS",
198 [PF_SNA] = "PF_SNA",
199 [PF_IRDA] = "PF_IRDA",
200 [PF_PPPOX] = "PF_PPPOX",
201 [PF_WANPIPE] = "PF_WANPIPE",
202 [PF_LLC] = "PF_LLC",
203 [PF_IB] = "PF_IB",
204 [PF_MPLS] = "PF_MPLS",
205 [PF_CAN] = "PF_CAN",
206 [PF_TIPC] = "PF_TIPC",
207 [PF_BLUETOOTH] = "PF_BLUETOOTH",
208 [PF_IUCV] = "PF_IUCV",
209 [PF_RXRPC] = "PF_RXRPC",
210 [PF_ISDN] = "PF_ISDN",
211 [PF_PHONET] = "PF_PHONET",
212 [PF_IEEE802154] = "PF_IEEE802154",
213 [PF_CAIF] = "PF_CAIF",
214 [PF_ALG] = "PF_ALG",
215 [PF_NFC] = "PF_NFC",
216 [PF_VSOCK] = "PF_VSOCK",
217 [PF_KCM] = "PF_KCM",
218 [PF_QIPCRTR] = "PF_QIPCRTR",
219 [PF_SMC] = "PF_SMC",
220 [PF_XDP] = "PF_XDP",
221 [PF_MCTP] = "PF_MCTP",
222 };
223
224 /*
225 * The protocol list. Each protocol is registered in here.
226 */
227
228 static DEFINE_SPINLOCK(net_family_lock);
229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230
231 /*
232 * Support routines.
233 * Move socket addresses back and forth across the kernel/user
234 * divide and look after the messy bits.
235 */
236
237 /**
238 * move_addr_to_kernel - copy a socket address into kernel space
239 * @uaddr: Address in user space
240 * @kaddr: Address in kernel space
241 * @ulen: Length in user space
242 *
243 * The address is copied into kernel space. If the provided address is
244 * too long an error code of -EINVAL is returned. If the copy gives
245 * invalid addresses -EFAULT is returned. On a success 0 is returned.
246 */
247
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
249 {
250 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251 return -EINVAL;
252 if (ulen == 0)
253 return 0;
254 if (copy_from_user(kaddr, uaddr, ulen))
255 return -EFAULT;
256 return audit_sockaddr(ulen, kaddr);
257 }
258
259 /**
260 * move_addr_to_user - copy an address to user space
261 * @kaddr: kernel space address
262 * @klen: length of address in kernel
263 * @uaddr: user space address
264 * @ulen: pointer to user length field
265 *
266 * The value pointed to by ulen on entry is the buffer length available.
267 * This is overwritten with the buffer space used. -EINVAL is returned
268 * if an overlong buffer is specified or a negative buffer size. -EFAULT
269 * is returned if either the buffer or the length field are not
270 * accessible.
271 * After copying the data up to the limit the user specifies, the true
272 * length of the data is written over the length limit the user
273 * specified. Zero is returned for a success.
274 */
275
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
277 void __user *uaddr, int __user *ulen)
278 {
279 int err;
280 int len;
281
282 BUG_ON(klen > sizeof(struct sockaddr_storage));
283 err = get_user(len, ulen);
284 if (err)
285 return err;
286 if (len > klen)
287 len = klen;
288 if (len < 0)
289 return -EINVAL;
290 if (len) {
291 if (audit_sockaddr(klen, kaddr))
292 return -ENOMEM;
293 if (copy_to_user(uaddr, kaddr, len))
294 return -EFAULT;
295 }
296 /*
297 * "fromlen shall refer to the value before truncation.."
298 * 1003.1g
299 */
300 return __put_user(klen, ulen);
301 }
302
303 static struct kmem_cache *sock_inode_cachep __ro_after_init;
304
sock_alloc_inode(struct super_block * sb)305 static struct inode *sock_alloc_inode(struct super_block *sb)
306 {
307 struct socket_alloc *ei;
308
309 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
310 if (!ei)
311 return NULL;
312 init_waitqueue_head(&ei->socket.wq.wait);
313 ei->socket.wq.fasync_list = NULL;
314 ei->socket.wq.flags = 0;
315
316 ei->socket.state = SS_UNCONNECTED;
317 ei->socket.flags = 0;
318 ei->socket.ops = NULL;
319 ei->socket.sk = NULL;
320 ei->socket.file = NULL;
321
322 return &ei->vfs_inode;
323 }
324
sock_free_inode(struct inode * inode)325 static void sock_free_inode(struct inode *inode)
326 {
327 struct socket_alloc *ei;
328
329 ei = container_of(inode, struct socket_alloc, vfs_inode);
330 kmem_cache_free(sock_inode_cachep, ei);
331 }
332
init_once(void * foo)333 static void init_once(void *foo)
334 {
335 struct socket_alloc *ei = (struct socket_alloc *)foo;
336
337 inode_init_once(&ei->vfs_inode);
338 }
339
init_inodecache(void)340 static void init_inodecache(void)
341 {
342 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
343 sizeof(struct socket_alloc),
344 0,
345 (SLAB_HWCACHE_ALIGN |
346 SLAB_RECLAIM_ACCOUNT |
347 SLAB_ACCOUNT),
348 init_once);
349 BUG_ON(sock_inode_cachep == NULL);
350 }
351
352 static const struct super_operations sockfs_ops = {
353 .alloc_inode = sock_alloc_inode,
354 .free_inode = sock_free_inode,
355 .statfs = simple_statfs,
356 };
357
358 /*
359 * sockfs_dname() is called from d_path().
360 */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)361 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
362 {
363 return dynamic_dname(buffer, buflen, "socket:[%lu]",
364 d_inode(dentry)->i_ino);
365 }
366
367 static const struct dentry_operations sockfs_dentry_operations = {
368 .d_dname = sockfs_dname,
369 };
370
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)371 static int sockfs_xattr_get(const struct xattr_handler *handler,
372 struct dentry *dentry, struct inode *inode,
373 const char *suffix, void *value, size_t size)
374 {
375 if (value) {
376 if (dentry->d_name.len + 1 > size)
377 return -ERANGE;
378 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
379 }
380 return dentry->d_name.len + 1;
381 }
382
383 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
384 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
385 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
386
387 static const struct xattr_handler sockfs_xattr_handler = {
388 .name = XATTR_NAME_SOCKPROTONAME,
389 .get = sockfs_xattr_get,
390 };
391
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)392 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
393 struct mnt_idmap *idmap,
394 struct dentry *dentry, struct inode *inode,
395 const char *suffix, const void *value,
396 size_t size, int flags)
397 {
398 /* Handled by LSM. */
399 return -EAGAIN;
400 }
401
402 static const struct xattr_handler sockfs_security_xattr_handler = {
403 .prefix = XATTR_SECURITY_PREFIX,
404 .set = sockfs_security_xattr_set,
405 };
406
407 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
408 &sockfs_xattr_handler,
409 &sockfs_security_xattr_handler,
410 NULL
411 };
412
sockfs_init_fs_context(struct fs_context * fc)413 static int sockfs_init_fs_context(struct fs_context *fc)
414 {
415 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
416 if (!ctx)
417 return -ENOMEM;
418 ctx->ops = &sockfs_ops;
419 ctx->dops = &sockfs_dentry_operations;
420 ctx->xattr = sockfs_xattr_handlers;
421 return 0;
422 }
423
424 static struct vfsmount *sock_mnt __read_mostly;
425
426 static struct file_system_type sock_fs_type = {
427 .name = "sockfs",
428 .init_fs_context = sockfs_init_fs_context,
429 .kill_sb = kill_anon_super,
430 };
431
432 /*
433 * Obtains the first available file descriptor and sets it up for use.
434 *
435 * These functions create file structures and maps them to fd space
436 * of the current process. On success it returns file descriptor
437 * and file struct implicitly stored in sock->file.
438 * Note that another thread may close file descriptor before we return
439 * from this function. We use the fact that now we do not refer
440 * to socket after mapping. If one day we will need it, this
441 * function will increment ref. count on file by 1.
442 *
443 * In any case returned fd MAY BE not valid!
444 * This race condition is unavoidable
445 * with shared fd spaces, we cannot solve it inside kernel,
446 * but we take care of internal coherence yet.
447 */
448
449 /**
450 * sock_alloc_file - Bind a &socket to a &file
451 * @sock: socket
452 * @flags: file status flags
453 * @dname: protocol name
454 *
455 * Returns the &file bound with @sock, implicitly storing it
456 * in sock->file. If dname is %NULL, sets to "".
457 *
458 * On failure @sock is released, and an ERR pointer is returned.
459 *
460 * This function uses GFP_KERNEL internally.
461 */
462
sock_alloc_file(struct socket * sock,int flags,const char * dname)463 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
464 {
465 struct file *file;
466
467 if (!dname)
468 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
469
470 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
471 O_RDWR | (flags & O_NONBLOCK),
472 &socket_file_ops);
473 if (IS_ERR(file)) {
474 sock_release(sock);
475 return file;
476 }
477
478 file->f_mode |= FMODE_NOWAIT;
479 sock->file = file;
480 file->private_data = sock;
481 stream_open(SOCK_INODE(sock), file);
482 /*
483 * Disable permission and pre-content events, but enable legacy
484 * inotify events for legacy users.
485 */
486 file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM);
487 return file;
488 }
489 EXPORT_SYMBOL(sock_alloc_file);
490
sock_map_fd(struct socket * sock,int flags)491 static int sock_map_fd(struct socket *sock, int flags)
492 {
493 struct file *newfile;
494 int fd = get_unused_fd_flags(flags);
495 if (unlikely(fd < 0)) {
496 sock_release(sock);
497 return fd;
498 }
499
500 newfile = sock_alloc_file(sock, flags, NULL);
501 if (!IS_ERR(newfile)) {
502 fd_install(fd, newfile);
503 return fd;
504 }
505
506 put_unused_fd(fd);
507 return PTR_ERR(newfile);
508 }
509
510 /**
511 * sock_from_file - Return the &socket bounded to @file.
512 * @file: file
513 *
514 * On failure returns %NULL.
515 */
516
sock_from_file(struct file * file)517 struct socket *sock_from_file(struct file *file)
518 {
519 if (likely(file->f_op == &socket_file_ops))
520 return file->private_data; /* set in sock_alloc_file */
521
522 return NULL;
523 }
524 EXPORT_SYMBOL(sock_from_file);
525
526 /**
527 * sockfd_lookup - Go from a file number to its socket slot
528 * @fd: file handle
529 * @err: pointer to an error code return
530 *
531 * The file handle passed in is locked and the socket it is bound
532 * to is returned. If an error occurs the err pointer is overwritten
533 * with a negative errno code and NULL is returned. The function checks
534 * for both invalid handles and passing a handle which is not a socket.
535 *
536 * On a success the socket object pointer is returned.
537 */
538
sockfd_lookup(int fd,int * err)539 struct socket *sockfd_lookup(int fd, int *err)
540 {
541 struct file *file;
542 struct socket *sock;
543
544 file = fget(fd);
545 if (!file) {
546 *err = -EBADF;
547 return NULL;
548 }
549
550 sock = sock_from_file(file);
551 if (!sock) {
552 *err = -ENOTSOCK;
553 fput(file);
554 }
555 return sock;
556 }
557 EXPORT_SYMBOL(sockfd_lookup);
558
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)559 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
560 size_t size)
561 {
562 ssize_t len;
563 ssize_t used = 0;
564
565 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
566 if (len < 0)
567 return len;
568 used += len;
569 if (buffer) {
570 if (size < used)
571 return -ERANGE;
572 buffer += len;
573 }
574
575 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
576 used += len;
577 if (buffer) {
578 if (size < used)
579 return -ERANGE;
580 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
581 buffer += len;
582 }
583
584 return used;
585 }
586
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)587 static int sockfs_setattr(struct mnt_idmap *idmap,
588 struct dentry *dentry, struct iattr *iattr)
589 {
590 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
591
592 if (!err && (iattr->ia_valid & ATTR_UID)) {
593 struct socket *sock = SOCKET_I(d_inode(dentry));
594
595 if (sock->sk)
596 sock->sk->sk_uid = iattr->ia_uid;
597 else
598 err = -ENOENT;
599 }
600
601 return err;
602 }
603
604 static const struct inode_operations sockfs_inode_ops = {
605 .listxattr = sockfs_listxattr,
606 .setattr = sockfs_setattr,
607 };
608
609 /**
610 * sock_alloc - allocate a socket
611 *
612 * Allocate a new inode and socket object. The two are bound together
613 * and initialised. The socket is then returned. If we are out of inodes
614 * NULL is returned. This functions uses GFP_KERNEL internally.
615 */
616
sock_alloc(void)617 struct socket *sock_alloc(void)
618 {
619 struct inode *inode;
620 struct socket *sock;
621
622 inode = new_inode_pseudo(sock_mnt->mnt_sb);
623 if (!inode)
624 return NULL;
625
626 sock = SOCKET_I(inode);
627
628 inode->i_ino = get_next_ino();
629 inode->i_mode = S_IFSOCK | S_IRWXUGO;
630 inode->i_uid = current_fsuid();
631 inode->i_gid = current_fsgid();
632 inode->i_op = &sockfs_inode_ops;
633
634 return sock;
635 }
636 EXPORT_SYMBOL(sock_alloc);
637
__sock_release(struct socket * sock,struct inode * inode)638 static void __sock_release(struct socket *sock, struct inode *inode)
639 {
640 const struct proto_ops *ops = READ_ONCE(sock->ops);
641
642 if (ops) {
643 struct module *owner = ops->owner;
644
645 if (inode)
646 inode_lock(inode);
647 ops->release(sock);
648 sock->sk = NULL;
649 if (inode)
650 inode_unlock(inode);
651 sock->ops = NULL;
652 module_put(owner);
653 }
654
655 if (sock->wq.fasync_list)
656 pr_err("%s: fasync list not empty!\n", __func__);
657
658 if (!sock->file) {
659 iput(SOCK_INODE(sock));
660 return;
661 }
662 sock->file = NULL;
663 }
664
665 /**
666 * sock_release - close a socket
667 * @sock: socket to close
668 *
669 * The socket is released from the protocol stack if it has a release
670 * callback, and the inode is then released if the socket is bound to
671 * an inode not a file.
672 */
sock_release(struct socket * sock)673 void sock_release(struct socket *sock)
674 {
675 __sock_release(sock, NULL);
676 }
677 EXPORT_SYMBOL(sock_release);
678
__sock_tx_timestamp(__u32 tsflags,__u8 * tx_flags)679 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
680 {
681 u8 flags = *tx_flags;
682
683 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
684 flags |= SKBTX_HW_TSTAMP;
685
686 /* PTP hardware clocks can provide a free running cycle counter
687 * as a time base for virtual clocks. Tell driver to use the
688 * free running cycle counter for timestamp if socket is bound
689 * to virtual clock.
690 */
691 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
692 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
693 }
694
695 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
696 flags |= SKBTX_SW_TSTAMP;
697
698 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
699 flags |= SKBTX_SCHED_TSTAMP;
700
701 *tx_flags = flags;
702 }
703 EXPORT_SYMBOL(__sock_tx_timestamp);
704
705 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
706 size_t));
707 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
708 size_t));
709
call_trace_sock_send_length(struct sock * sk,int ret,int flags)710 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
711 int flags)
712 {
713 trace_sock_send_length(sk, ret, 0);
714 }
715
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)716 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
717 {
718 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
719 inet_sendmsg, sock, msg,
720 msg_data_left(msg));
721 BUG_ON(ret == -EIOCBQUEUED);
722
723 if (trace_sock_send_length_enabled())
724 call_trace_sock_send_length(sock->sk, ret, 0);
725 return ret;
726 }
727
__sock_sendmsg(struct socket * sock,struct msghdr * msg)728 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
729 {
730 int err = security_socket_sendmsg(sock, msg,
731 msg_data_left(msg));
732
733 return err ?: sock_sendmsg_nosec(sock, msg);
734 }
735
736 /**
737 * sock_sendmsg - send a message through @sock
738 * @sock: socket
739 * @msg: message to send
740 *
741 * Sends @msg through @sock, passing through LSM.
742 * Returns the number of bytes sent, or an error code.
743 */
sock_sendmsg(struct socket * sock,struct msghdr * msg)744 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
745 {
746 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
747 struct sockaddr_storage address;
748 int save_len = msg->msg_namelen;
749 int ret;
750
751 if (msg->msg_name) {
752 memcpy(&address, msg->msg_name, msg->msg_namelen);
753 msg->msg_name = &address;
754 }
755
756 ret = __sock_sendmsg(sock, msg);
757 msg->msg_name = save_addr;
758 msg->msg_namelen = save_len;
759
760 return ret;
761 }
762 EXPORT_SYMBOL(sock_sendmsg);
763
764 /**
765 * kernel_sendmsg - send a message through @sock (kernel-space)
766 * @sock: socket
767 * @msg: message header
768 * @vec: kernel vec
769 * @num: vec array length
770 * @size: total message data size
771 *
772 * Builds the message data with @vec and sends it through @sock.
773 * Returns the number of bytes sent, or an error code.
774 */
775
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)776 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
777 struct kvec *vec, size_t num, size_t size)
778 {
779 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
780 return sock_sendmsg(sock, msg);
781 }
782 EXPORT_SYMBOL(kernel_sendmsg);
783
skb_is_err_queue(const struct sk_buff * skb)784 static bool skb_is_err_queue(const struct sk_buff *skb)
785 {
786 /* pkt_type of skbs enqueued on the error queue are set to
787 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
788 * in recvmsg, since skbs received on a local socket will never
789 * have a pkt_type of PACKET_OUTGOING.
790 */
791 return skb->pkt_type == PACKET_OUTGOING;
792 }
793
794 /* On transmit, software and hardware timestamps are returned independently.
795 * As the two skb clones share the hardware timestamp, which may be updated
796 * before the software timestamp is received, a hardware TX timestamp may be
797 * returned only if there is no software TX timestamp. Ignore false software
798 * timestamps, which may be made in the __sock_recv_timestamp() call when the
799 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
800 * hardware timestamp.
801 */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)802 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
803 {
804 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
805 }
806
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)807 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
808 {
809 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
810 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
811 struct net_device *orig_dev;
812 ktime_t hwtstamp;
813
814 rcu_read_lock();
815 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
816 if (orig_dev) {
817 *if_index = orig_dev->ifindex;
818 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
819 } else {
820 hwtstamp = shhwtstamps->hwtstamp;
821 }
822 rcu_read_unlock();
823
824 return hwtstamp;
825 }
826
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)827 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
828 int if_index)
829 {
830 struct scm_ts_pktinfo ts_pktinfo;
831 struct net_device *orig_dev;
832
833 if (!skb_mac_header_was_set(skb))
834 return;
835
836 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
837
838 if (!if_index) {
839 rcu_read_lock();
840 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
841 if (orig_dev)
842 if_index = orig_dev->ifindex;
843 rcu_read_unlock();
844 }
845 ts_pktinfo.if_index = if_index;
846
847 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
848 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
849 sizeof(ts_pktinfo), &ts_pktinfo);
850 }
851
852 /*
853 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
854 */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)855 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
856 struct sk_buff *skb)
857 {
858 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
859 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
860 struct scm_timestamping_internal tss;
861 int empty = 1, false_tstamp = 0;
862 struct skb_shared_hwtstamps *shhwtstamps =
863 skb_hwtstamps(skb);
864 int if_index;
865 ktime_t hwtstamp;
866 u32 tsflags;
867
868 /* Race occurred between timestamp enabling and packet
869 receiving. Fill in the current time for now. */
870 if (need_software_tstamp && skb->tstamp == 0) {
871 __net_timestamp(skb);
872 false_tstamp = 1;
873 }
874
875 if (need_software_tstamp) {
876 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
877 if (new_tstamp) {
878 struct __kernel_sock_timeval tv;
879
880 skb_get_new_timestamp(skb, &tv);
881 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
882 sizeof(tv), &tv);
883 } else {
884 struct __kernel_old_timeval tv;
885
886 skb_get_timestamp(skb, &tv);
887 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
888 sizeof(tv), &tv);
889 }
890 } else {
891 if (new_tstamp) {
892 struct __kernel_timespec ts;
893
894 skb_get_new_timestampns(skb, &ts);
895 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
896 sizeof(ts), &ts);
897 } else {
898 struct __kernel_old_timespec ts;
899
900 skb_get_timestampns(skb, &ts);
901 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
902 sizeof(ts), &ts);
903 }
904 }
905 }
906
907 memset(&tss, 0, sizeof(tss));
908 tsflags = READ_ONCE(sk->sk_tsflags);
909 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
910 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
911 skb_is_err_queue(skb) ||
912 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
913 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
914 empty = 0;
915 if (shhwtstamps &&
916 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
917 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
918 skb_is_err_queue(skb) ||
919 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
920 !skb_is_swtx_tstamp(skb, false_tstamp)) {
921 if_index = 0;
922 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
923 hwtstamp = get_timestamp(sk, skb, &if_index);
924 else
925 hwtstamp = shhwtstamps->hwtstamp;
926
927 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
928 hwtstamp = ptp_convert_timestamp(&hwtstamp,
929 READ_ONCE(sk->sk_bind_phc));
930
931 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
932 empty = 0;
933
934 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
935 !skb_is_err_queue(skb))
936 put_ts_pktinfo(msg, skb, if_index);
937 }
938 }
939 if (!empty) {
940 if (sock_flag(sk, SOCK_TSTAMP_NEW))
941 put_cmsg_scm_timestamping64(msg, &tss);
942 else
943 put_cmsg_scm_timestamping(msg, &tss);
944
945 if (skb_is_err_queue(skb) && skb->len &&
946 SKB_EXT_ERR(skb)->opt_stats)
947 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
948 skb->len, skb->data);
949 }
950 }
951 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
952
953 #ifdef CONFIG_WIRELESS
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)954 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
955 struct sk_buff *skb)
956 {
957 int ack;
958
959 if (!sock_flag(sk, SOCK_WIFI_STATUS))
960 return;
961 if (!skb->wifi_acked_valid)
962 return;
963
964 ack = skb->wifi_acked;
965
966 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
967 }
968 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
969 #endif
970
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)971 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
972 struct sk_buff *skb)
973 {
974 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
975 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
976 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
977 }
978
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)979 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
980 struct sk_buff *skb)
981 {
982 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
983 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
984 __u32 mark = skb->mark;
985
986 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
987 }
988 }
989
sock_recv_priority(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)990 static void sock_recv_priority(struct msghdr *msg, struct sock *sk,
991 struct sk_buff *skb)
992 {
993 if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) {
994 __u32 priority = skb->priority;
995
996 put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority);
997 }
998 }
999
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1000 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1001 struct sk_buff *skb)
1002 {
1003 sock_recv_timestamp(msg, sk, skb);
1004 sock_recv_drops(msg, sk, skb);
1005 sock_recv_mark(msg, sk, skb);
1006 sock_recv_priority(msg, sk, skb);
1007 }
1008 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1009
1010 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1011 size_t, int));
1012 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1013 size_t, int));
1014
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1015 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1016 {
1017 trace_sock_recv_length(sk, ret, flags);
1018 }
1019
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1020 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1021 int flags)
1022 {
1023 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1024 inet6_recvmsg,
1025 inet_recvmsg, sock, msg,
1026 msg_data_left(msg), flags);
1027 if (trace_sock_recv_length_enabled())
1028 call_trace_sock_recv_length(sock->sk, ret, flags);
1029 return ret;
1030 }
1031
1032 /**
1033 * sock_recvmsg - receive a message from @sock
1034 * @sock: socket
1035 * @msg: message to receive
1036 * @flags: message flags
1037 *
1038 * Receives @msg from @sock, passing through LSM. Returns the total number
1039 * of bytes received, or an error.
1040 */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1041 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1042 {
1043 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1044
1045 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1046 }
1047 EXPORT_SYMBOL(sock_recvmsg);
1048
1049 /**
1050 * kernel_recvmsg - Receive a message from a socket (kernel space)
1051 * @sock: The socket to receive the message from
1052 * @msg: Received message
1053 * @vec: Input s/g array for message data
1054 * @num: Size of input s/g array
1055 * @size: Number of bytes to read
1056 * @flags: Message flags (MSG_DONTWAIT, etc...)
1057 *
1058 * On return the msg structure contains the scatter/gather array passed in the
1059 * vec argument. The array is modified so that it consists of the unfilled
1060 * portion of the original array.
1061 *
1062 * The returned value is the total number of bytes received, or an error.
1063 */
1064
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1065 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1066 struct kvec *vec, size_t num, size_t size, int flags)
1067 {
1068 msg->msg_control_is_user = false;
1069 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1070 return sock_recvmsg(sock, msg, flags);
1071 }
1072 EXPORT_SYMBOL(kernel_recvmsg);
1073
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1074 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1075 struct pipe_inode_info *pipe, size_t len,
1076 unsigned int flags)
1077 {
1078 struct socket *sock = file->private_data;
1079 const struct proto_ops *ops;
1080
1081 ops = READ_ONCE(sock->ops);
1082 if (unlikely(!ops->splice_read))
1083 return copy_splice_read(file, ppos, pipe, len, flags);
1084
1085 return ops->splice_read(sock, ppos, pipe, len, flags);
1086 }
1087
sock_splice_eof(struct file * file)1088 static void sock_splice_eof(struct file *file)
1089 {
1090 struct socket *sock = file->private_data;
1091 const struct proto_ops *ops;
1092
1093 ops = READ_ONCE(sock->ops);
1094 if (ops->splice_eof)
1095 ops->splice_eof(sock);
1096 }
1097
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1098 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1099 {
1100 struct file *file = iocb->ki_filp;
1101 struct socket *sock = file->private_data;
1102 struct msghdr msg = {.msg_iter = *to,
1103 .msg_iocb = iocb};
1104 ssize_t res;
1105
1106 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1107 msg.msg_flags = MSG_DONTWAIT;
1108
1109 if (iocb->ki_pos != 0)
1110 return -ESPIPE;
1111
1112 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1113 return 0;
1114
1115 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1116 *to = msg.msg_iter;
1117 return res;
1118 }
1119
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1120 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1121 {
1122 struct file *file = iocb->ki_filp;
1123 struct socket *sock = file->private_data;
1124 struct msghdr msg = {.msg_iter = *from,
1125 .msg_iocb = iocb};
1126 ssize_t res;
1127
1128 if (iocb->ki_pos != 0)
1129 return -ESPIPE;
1130
1131 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1132 msg.msg_flags = MSG_DONTWAIT;
1133
1134 if (sock->type == SOCK_SEQPACKET)
1135 msg.msg_flags |= MSG_EOR;
1136
1137 res = __sock_sendmsg(sock, &msg);
1138 *from = msg.msg_iter;
1139 return res;
1140 }
1141
1142 /*
1143 * Atomic setting of ioctl hooks to avoid race
1144 * with module unload.
1145 */
1146
1147 static DEFINE_MUTEX(br_ioctl_mutex);
1148 static int (*br_ioctl_hook)(struct net *net, unsigned int cmd,
1149 void __user *uarg);
1150
brioctl_set(int (* hook)(struct net * net,unsigned int cmd,void __user * uarg))1151 void brioctl_set(int (*hook)(struct net *net, unsigned int cmd,
1152 void __user *uarg))
1153 {
1154 mutex_lock(&br_ioctl_mutex);
1155 br_ioctl_hook = hook;
1156 mutex_unlock(&br_ioctl_mutex);
1157 }
1158 EXPORT_SYMBOL(brioctl_set);
1159
br_ioctl_call(struct net * net,unsigned int cmd,void __user * uarg)1160 int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg)
1161 {
1162 int err = -ENOPKG;
1163
1164 if (!br_ioctl_hook)
1165 request_module("bridge");
1166
1167 mutex_lock(&br_ioctl_mutex);
1168 if (br_ioctl_hook)
1169 err = br_ioctl_hook(net, cmd, uarg);
1170 mutex_unlock(&br_ioctl_mutex);
1171
1172 return err;
1173 }
1174
1175 static DEFINE_MUTEX(vlan_ioctl_mutex);
1176 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1177
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1178 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1179 {
1180 mutex_lock(&vlan_ioctl_mutex);
1181 vlan_ioctl_hook = hook;
1182 mutex_unlock(&vlan_ioctl_mutex);
1183 }
1184 EXPORT_SYMBOL(vlan_ioctl_set);
1185
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1186 static long sock_do_ioctl(struct net *net, struct socket *sock,
1187 unsigned int cmd, unsigned long arg)
1188 {
1189 const struct proto_ops *ops = READ_ONCE(sock->ops);
1190 struct ifreq ifr;
1191 bool need_copyout;
1192 int err;
1193 void __user *argp = (void __user *)arg;
1194 void __user *data;
1195
1196 err = ops->ioctl(sock, cmd, arg);
1197
1198 /*
1199 * If this ioctl is unknown try to hand it down
1200 * to the NIC driver.
1201 */
1202 if (err != -ENOIOCTLCMD)
1203 return err;
1204
1205 if (!is_socket_ioctl_cmd(cmd))
1206 return -ENOTTY;
1207
1208 if (get_user_ifreq(&ifr, &data, argp))
1209 return -EFAULT;
1210 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1211 if (!err && need_copyout)
1212 if (put_user_ifreq(&ifr, argp))
1213 return -EFAULT;
1214
1215 return err;
1216 }
1217
1218 /*
1219 * With an ioctl, arg may well be a user mode pointer, but we don't know
1220 * what to do with it - that's up to the protocol still.
1221 */
1222
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1223 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1224 {
1225 const struct proto_ops *ops;
1226 struct socket *sock;
1227 struct sock *sk;
1228 void __user *argp = (void __user *)arg;
1229 int pid, err;
1230 struct net *net;
1231
1232 sock = file->private_data;
1233 ops = READ_ONCE(sock->ops);
1234 sk = sock->sk;
1235 net = sock_net(sk);
1236 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1237 struct ifreq ifr;
1238 void __user *data;
1239 bool need_copyout;
1240 if (get_user_ifreq(&ifr, &data, argp))
1241 return -EFAULT;
1242 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1243 if (!err && need_copyout)
1244 if (put_user_ifreq(&ifr, argp))
1245 return -EFAULT;
1246 } else
1247 #ifdef CONFIG_WEXT_CORE
1248 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1249 err = wext_handle_ioctl(net, cmd, argp);
1250 } else
1251 #endif
1252 switch (cmd) {
1253 case FIOSETOWN:
1254 case SIOCSPGRP:
1255 err = -EFAULT;
1256 if (get_user(pid, (int __user *)argp))
1257 break;
1258 err = f_setown(sock->file, pid, 1);
1259 break;
1260 case FIOGETOWN:
1261 case SIOCGPGRP:
1262 err = put_user(f_getown(sock->file),
1263 (int __user *)argp);
1264 break;
1265 case SIOCGIFBR:
1266 case SIOCSIFBR:
1267 case SIOCBRADDBR:
1268 case SIOCBRDELBR:
1269 case SIOCBRADDIF:
1270 case SIOCBRDELIF:
1271 err = br_ioctl_call(net, cmd, argp);
1272 break;
1273 case SIOCGIFVLAN:
1274 case SIOCSIFVLAN:
1275 err = -ENOPKG;
1276 if (!vlan_ioctl_hook)
1277 request_module("8021q");
1278
1279 mutex_lock(&vlan_ioctl_mutex);
1280 if (vlan_ioctl_hook)
1281 err = vlan_ioctl_hook(net, argp);
1282 mutex_unlock(&vlan_ioctl_mutex);
1283 break;
1284 case SIOCGSKNS:
1285 err = -EPERM;
1286 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1287 break;
1288
1289 err = open_related_ns(&net->ns, get_net_ns);
1290 break;
1291 case SIOCGSTAMP_OLD:
1292 case SIOCGSTAMPNS_OLD:
1293 if (!ops->gettstamp) {
1294 err = -ENOIOCTLCMD;
1295 break;
1296 }
1297 err = ops->gettstamp(sock, argp,
1298 cmd == SIOCGSTAMP_OLD,
1299 !IS_ENABLED(CONFIG_64BIT));
1300 break;
1301 case SIOCGSTAMP_NEW:
1302 case SIOCGSTAMPNS_NEW:
1303 if (!ops->gettstamp) {
1304 err = -ENOIOCTLCMD;
1305 break;
1306 }
1307 err = ops->gettstamp(sock, argp,
1308 cmd == SIOCGSTAMP_NEW,
1309 false);
1310 break;
1311
1312 case SIOCGIFCONF:
1313 err = dev_ifconf(net, argp);
1314 break;
1315
1316 default:
1317 err = sock_do_ioctl(net, sock, cmd, arg);
1318 break;
1319 }
1320 return err;
1321 }
1322
1323 /**
1324 * sock_create_lite - creates a socket
1325 * @family: protocol family (AF_INET, ...)
1326 * @type: communication type (SOCK_STREAM, ...)
1327 * @protocol: protocol (0, ...)
1328 * @res: new socket
1329 *
1330 * Creates a new socket and assigns it to @res, passing through LSM.
1331 * The new socket initialization is not complete, see kernel_accept().
1332 * Returns 0 or an error. On failure @res is set to %NULL.
1333 * This function internally uses GFP_KERNEL.
1334 */
1335
sock_create_lite(int family,int type,int protocol,struct socket ** res)1336 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1337 {
1338 int err;
1339 struct socket *sock = NULL;
1340
1341 err = security_socket_create(family, type, protocol, 1);
1342 if (err)
1343 goto out;
1344
1345 sock = sock_alloc();
1346 if (!sock) {
1347 err = -ENOMEM;
1348 goto out;
1349 }
1350
1351 sock->type = type;
1352 err = security_socket_post_create(sock, family, type, protocol, 1);
1353 if (err)
1354 goto out_release;
1355
1356 out:
1357 *res = sock;
1358 return err;
1359 out_release:
1360 sock_release(sock);
1361 sock = NULL;
1362 goto out;
1363 }
1364 EXPORT_SYMBOL(sock_create_lite);
1365
1366 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1367 static __poll_t sock_poll(struct file *file, poll_table *wait)
1368 {
1369 struct socket *sock = file->private_data;
1370 const struct proto_ops *ops = READ_ONCE(sock->ops);
1371 __poll_t events = poll_requested_events(wait), flag = 0;
1372
1373 if (!ops->poll)
1374 return 0;
1375
1376 if (sk_can_busy_loop(sock->sk)) {
1377 /* poll once if requested by the syscall */
1378 if (events & POLL_BUSY_LOOP)
1379 sk_busy_loop(sock->sk, 1);
1380
1381 /* if this socket can poll_ll, tell the system call */
1382 flag = POLL_BUSY_LOOP;
1383 }
1384
1385 return ops->poll(file, sock, wait) | flag;
1386 }
1387
sock_mmap(struct file * file,struct vm_area_struct * vma)1388 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1389 {
1390 struct socket *sock = file->private_data;
1391
1392 return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1393 }
1394
sock_close(struct inode * inode,struct file * filp)1395 static int sock_close(struct inode *inode, struct file *filp)
1396 {
1397 __sock_release(SOCKET_I(inode), inode);
1398 return 0;
1399 }
1400
1401 /*
1402 * Update the socket async list
1403 *
1404 * Fasync_list locking strategy.
1405 *
1406 * 1. fasync_list is modified only under process context socket lock
1407 * i.e. under semaphore.
1408 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1409 * or under socket lock
1410 */
1411
sock_fasync(int fd,struct file * filp,int on)1412 static int sock_fasync(int fd, struct file *filp, int on)
1413 {
1414 struct socket *sock = filp->private_data;
1415 struct sock *sk = sock->sk;
1416 struct socket_wq *wq = &sock->wq;
1417
1418 if (sk == NULL)
1419 return -EINVAL;
1420
1421 lock_sock(sk);
1422 fasync_helper(fd, filp, on, &wq->fasync_list);
1423
1424 if (!wq->fasync_list)
1425 sock_reset_flag(sk, SOCK_FASYNC);
1426 else
1427 sock_set_flag(sk, SOCK_FASYNC);
1428
1429 release_sock(sk);
1430 return 0;
1431 }
1432
1433 /* This function may be called only under rcu_lock */
1434
sock_wake_async(struct socket_wq * wq,int how,int band)1435 int sock_wake_async(struct socket_wq *wq, int how, int band)
1436 {
1437 if (!wq || !wq->fasync_list)
1438 return -1;
1439
1440 switch (how) {
1441 case SOCK_WAKE_WAITD:
1442 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1443 break;
1444 goto call_kill;
1445 case SOCK_WAKE_SPACE:
1446 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1447 break;
1448 fallthrough;
1449 case SOCK_WAKE_IO:
1450 call_kill:
1451 kill_fasync(&wq->fasync_list, SIGIO, band);
1452 break;
1453 case SOCK_WAKE_URG:
1454 kill_fasync(&wq->fasync_list, SIGURG, band);
1455 }
1456
1457 return 0;
1458 }
1459 EXPORT_SYMBOL(sock_wake_async);
1460
1461 /**
1462 * __sock_create - creates a socket
1463 * @net: net namespace
1464 * @family: protocol family (AF_INET, ...)
1465 * @type: communication type (SOCK_STREAM, ...)
1466 * @protocol: protocol (0, ...)
1467 * @res: new socket
1468 * @kern: boolean for kernel space sockets
1469 *
1470 * Creates a new socket and assigns it to @res, passing through LSM.
1471 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1472 * be set to true if the socket resides in kernel space.
1473 * This function internally uses GFP_KERNEL.
1474 */
1475
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1476 int __sock_create(struct net *net, int family, int type, int protocol,
1477 struct socket **res, int kern)
1478 {
1479 int err;
1480 struct socket *sock;
1481 const struct net_proto_family *pf;
1482
1483 /*
1484 * Check protocol is in range
1485 */
1486 if (family < 0 || family >= NPROTO)
1487 return -EAFNOSUPPORT;
1488 if (type < 0 || type >= SOCK_MAX)
1489 return -EINVAL;
1490
1491 /* Compatibility.
1492
1493 This uglymoron is moved from INET layer to here to avoid
1494 deadlock in module load.
1495 */
1496 if (family == PF_INET && type == SOCK_PACKET) {
1497 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1498 current->comm);
1499 family = PF_PACKET;
1500 }
1501
1502 err = security_socket_create(family, type, protocol, kern);
1503 if (err)
1504 return err;
1505
1506 /*
1507 * Allocate the socket and allow the family to set things up. if
1508 * the protocol is 0, the family is instructed to select an appropriate
1509 * default.
1510 */
1511 sock = sock_alloc();
1512 if (!sock) {
1513 net_warn_ratelimited("socket: no more sockets\n");
1514 return -ENFILE; /* Not exactly a match, but its the
1515 closest posix thing */
1516 }
1517
1518 sock->type = type;
1519
1520 #ifdef CONFIG_MODULES
1521 /* Attempt to load a protocol module if the find failed.
1522 *
1523 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1524 * requested real, full-featured networking support upon configuration.
1525 * Otherwise module support will break!
1526 */
1527 if (rcu_access_pointer(net_families[family]) == NULL)
1528 request_module("net-pf-%d", family);
1529 #endif
1530
1531 rcu_read_lock();
1532 pf = rcu_dereference(net_families[family]);
1533 err = -EAFNOSUPPORT;
1534 if (!pf)
1535 goto out_release;
1536
1537 /*
1538 * We will call the ->create function, that possibly is in a loadable
1539 * module, so we have to bump that loadable module refcnt first.
1540 */
1541 if (!try_module_get(pf->owner))
1542 goto out_release;
1543
1544 /* Now protected by module ref count */
1545 rcu_read_unlock();
1546
1547 err = pf->create(net, sock, protocol, kern);
1548 if (err < 0) {
1549 /* ->create should release the allocated sock->sk object on error
1550 * and make sure sock->sk is set to NULL to avoid use-after-free
1551 */
1552 DEBUG_NET_WARN_ONCE(sock->sk,
1553 "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1554 pf->create, family, type, protocol);
1555 goto out_module_put;
1556 }
1557
1558 /*
1559 * Now to bump the refcnt of the [loadable] module that owns this
1560 * socket at sock_release time we decrement its refcnt.
1561 */
1562 if (!try_module_get(sock->ops->owner))
1563 goto out_module_busy;
1564
1565 /*
1566 * Now that we're done with the ->create function, the [loadable]
1567 * module can have its refcnt decremented
1568 */
1569 module_put(pf->owner);
1570 err = security_socket_post_create(sock, family, type, protocol, kern);
1571 if (err)
1572 goto out_sock_release;
1573 *res = sock;
1574
1575 return 0;
1576
1577 out_module_busy:
1578 err = -EAFNOSUPPORT;
1579 out_module_put:
1580 sock->ops = NULL;
1581 module_put(pf->owner);
1582 out_sock_release:
1583 sock_release(sock);
1584 return err;
1585
1586 out_release:
1587 rcu_read_unlock();
1588 goto out_sock_release;
1589 }
1590 EXPORT_SYMBOL(__sock_create);
1591
1592 /**
1593 * sock_create - creates a socket
1594 * @family: protocol family (AF_INET, ...)
1595 * @type: communication type (SOCK_STREAM, ...)
1596 * @protocol: protocol (0, ...)
1597 * @res: new socket
1598 *
1599 * A wrapper around __sock_create().
1600 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1601 */
1602
sock_create(int family,int type,int protocol,struct socket ** res)1603 int sock_create(int family, int type, int protocol, struct socket **res)
1604 {
1605 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1606 }
1607 EXPORT_SYMBOL(sock_create);
1608
1609 /**
1610 * sock_create_kern - creates a socket (kernel space)
1611 * @net: net namespace
1612 * @family: protocol family (AF_INET, ...)
1613 * @type: communication type (SOCK_STREAM, ...)
1614 * @protocol: protocol (0, ...)
1615 * @res: new socket
1616 *
1617 * A wrapper around __sock_create().
1618 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1619 */
1620
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1621 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1622 {
1623 return __sock_create(net, family, type, protocol, res, 1);
1624 }
1625 EXPORT_SYMBOL(sock_create_kern);
1626
__sys_socket_create(int family,int type,int protocol)1627 static struct socket *__sys_socket_create(int family, int type, int protocol)
1628 {
1629 struct socket *sock;
1630 int retval;
1631
1632 /* Check the SOCK_* constants for consistency. */
1633 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1634 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1635 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1636 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1637
1638 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1639 return ERR_PTR(-EINVAL);
1640 type &= SOCK_TYPE_MASK;
1641
1642 retval = sock_create(family, type, protocol, &sock);
1643 if (retval < 0)
1644 return ERR_PTR(retval);
1645
1646 return sock;
1647 }
1648
__sys_socket_file(int family,int type,int protocol)1649 struct file *__sys_socket_file(int family, int type, int protocol)
1650 {
1651 struct socket *sock;
1652 int flags;
1653
1654 sock = __sys_socket_create(family, type, protocol);
1655 if (IS_ERR(sock))
1656 return ERR_CAST(sock);
1657
1658 flags = type & ~SOCK_TYPE_MASK;
1659 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1660 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1661
1662 return sock_alloc_file(sock, flags, NULL);
1663 }
1664
1665 /* A hook for bpf progs to attach to and update socket protocol.
1666 *
1667 * A static noinline declaration here could cause the compiler to
1668 * optimize away the function. A global noinline declaration will
1669 * keep the definition, but may optimize away the callsite.
1670 * Therefore, __weak is needed to ensure that the call is still
1671 * emitted, by telling the compiler that we don't know what the
1672 * function might eventually be.
1673 */
1674
1675 __bpf_hook_start();
1676
update_socket_protocol(int family,int type,int protocol)1677 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1678 {
1679 return protocol;
1680 }
1681
1682 __bpf_hook_end();
1683
__sys_socket(int family,int type,int protocol)1684 int __sys_socket(int family, int type, int protocol)
1685 {
1686 struct socket *sock;
1687 int flags;
1688
1689 sock = __sys_socket_create(family, type,
1690 update_socket_protocol(family, type, protocol));
1691 if (IS_ERR(sock))
1692 return PTR_ERR(sock);
1693
1694 flags = type & ~SOCK_TYPE_MASK;
1695 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1696 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1697
1698 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1699 }
1700
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1701 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1702 {
1703 return __sys_socket(family, type, protocol);
1704 }
1705
1706 /*
1707 * Create a pair of connected sockets.
1708 */
1709
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1710 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1711 {
1712 struct socket *sock1, *sock2;
1713 int fd1, fd2, err;
1714 struct file *newfile1, *newfile2;
1715 int flags;
1716
1717 flags = type & ~SOCK_TYPE_MASK;
1718 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1719 return -EINVAL;
1720 type &= SOCK_TYPE_MASK;
1721
1722 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1723 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1724
1725 /*
1726 * reserve descriptors and make sure we won't fail
1727 * to return them to userland.
1728 */
1729 fd1 = get_unused_fd_flags(flags);
1730 if (unlikely(fd1 < 0))
1731 return fd1;
1732
1733 fd2 = get_unused_fd_flags(flags);
1734 if (unlikely(fd2 < 0)) {
1735 put_unused_fd(fd1);
1736 return fd2;
1737 }
1738
1739 err = put_user(fd1, &usockvec[0]);
1740 if (err)
1741 goto out;
1742
1743 err = put_user(fd2, &usockvec[1]);
1744 if (err)
1745 goto out;
1746
1747 /*
1748 * Obtain the first socket and check if the underlying protocol
1749 * supports the socketpair call.
1750 */
1751
1752 err = sock_create(family, type, protocol, &sock1);
1753 if (unlikely(err < 0))
1754 goto out;
1755
1756 err = sock_create(family, type, protocol, &sock2);
1757 if (unlikely(err < 0)) {
1758 sock_release(sock1);
1759 goto out;
1760 }
1761
1762 err = security_socket_socketpair(sock1, sock2);
1763 if (unlikely(err)) {
1764 sock_release(sock2);
1765 sock_release(sock1);
1766 goto out;
1767 }
1768
1769 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1770 if (unlikely(err < 0)) {
1771 sock_release(sock2);
1772 sock_release(sock1);
1773 goto out;
1774 }
1775
1776 newfile1 = sock_alloc_file(sock1, flags, NULL);
1777 if (IS_ERR(newfile1)) {
1778 err = PTR_ERR(newfile1);
1779 sock_release(sock2);
1780 goto out;
1781 }
1782
1783 newfile2 = sock_alloc_file(sock2, flags, NULL);
1784 if (IS_ERR(newfile2)) {
1785 err = PTR_ERR(newfile2);
1786 fput(newfile1);
1787 goto out;
1788 }
1789
1790 audit_fd_pair(fd1, fd2);
1791
1792 fd_install(fd1, newfile1);
1793 fd_install(fd2, newfile2);
1794 return 0;
1795
1796 out:
1797 put_unused_fd(fd2);
1798 put_unused_fd(fd1);
1799 return err;
1800 }
1801
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1802 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1803 int __user *, usockvec)
1804 {
1805 return __sys_socketpair(family, type, protocol, usockvec);
1806 }
1807
__sys_bind_socket(struct socket * sock,struct sockaddr_storage * address,int addrlen)1808 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1809 int addrlen)
1810 {
1811 int err;
1812
1813 err = security_socket_bind(sock, (struct sockaddr *)address,
1814 addrlen);
1815 if (!err)
1816 err = READ_ONCE(sock->ops)->bind(sock,
1817 (struct sockaddr *)address,
1818 addrlen);
1819 return err;
1820 }
1821
1822 /*
1823 * Bind a name to a socket. Nothing much to do here since it's
1824 * the protocol's responsibility to handle the local address.
1825 *
1826 * We move the socket address to kernel space before we call
1827 * the protocol layer (having also checked the address is ok).
1828 */
1829
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1830 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1831 {
1832 struct socket *sock;
1833 struct sockaddr_storage address;
1834 CLASS(fd, f)(fd);
1835 int err;
1836
1837 if (fd_empty(f))
1838 return -EBADF;
1839 sock = sock_from_file(fd_file(f));
1840 if (unlikely(!sock))
1841 return -ENOTSOCK;
1842
1843 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1844 if (unlikely(err))
1845 return err;
1846
1847 return __sys_bind_socket(sock, &address, addrlen);
1848 }
1849
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1850 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1851 {
1852 return __sys_bind(fd, umyaddr, addrlen);
1853 }
1854
1855 /*
1856 * Perform a listen. Basically, we allow the protocol to do anything
1857 * necessary for a listen, and if that works, we mark the socket as
1858 * ready for listening.
1859 */
__sys_listen_socket(struct socket * sock,int backlog)1860 int __sys_listen_socket(struct socket *sock, int backlog)
1861 {
1862 int somaxconn, err;
1863
1864 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1865 if ((unsigned int)backlog > somaxconn)
1866 backlog = somaxconn;
1867
1868 err = security_socket_listen(sock, backlog);
1869 if (!err)
1870 err = READ_ONCE(sock->ops)->listen(sock, backlog);
1871 return err;
1872 }
1873
__sys_listen(int fd,int backlog)1874 int __sys_listen(int fd, int backlog)
1875 {
1876 CLASS(fd, f)(fd);
1877 struct socket *sock;
1878
1879 if (fd_empty(f))
1880 return -EBADF;
1881 sock = sock_from_file(fd_file(f));
1882 if (unlikely(!sock))
1883 return -ENOTSOCK;
1884
1885 return __sys_listen_socket(sock, backlog);
1886 }
1887
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1888 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1889 {
1890 return __sys_listen(fd, backlog);
1891 }
1892
do_accept(struct file * file,struct proto_accept_arg * arg,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1893 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1894 struct sockaddr __user *upeer_sockaddr,
1895 int __user *upeer_addrlen, int flags)
1896 {
1897 struct socket *sock, *newsock;
1898 struct file *newfile;
1899 int err, len;
1900 struct sockaddr_storage address;
1901 const struct proto_ops *ops;
1902
1903 sock = sock_from_file(file);
1904 if (!sock)
1905 return ERR_PTR(-ENOTSOCK);
1906
1907 newsock = sock_alloc();
1908 if (!newsock)
1909 return ERR_PTR(-ENFILE);
1910 ops = READ_ONCE(sock->ops);
1911
1912 newsock->type = sock->type;
1913 newsock->ops = ops;
1914
1915 /*
1916 * We don't need try_module_get here, as the listening socket (sock)
1917 * has the protocol module (sock->ops->owner) held.
1918 */
1919 __module_get(ops->owner);
1920
1921 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1922 if (IS_ERR(newfile))
1923 return newfile;
1924
1925 err = security_socket_accept(sock, newsock);
1926 if (err)
1927 goto out_fd;
1928
1929 arg->flags |= sock->file->f_flags;
1930 err = ops->accept(sock, newsock, arg);
1931 if (err < 0)
1932 goto out_fd;
1933
1934 if (upeer_sockaddr) {
1935 len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1936 if (len < 0) {
1937 err = -ECONNABORTED;
1938 goto out_fd;
1939 }
1940 err = move_addr_to_user(&address,
1941 len, upeer_sockaddr, upeer_addrlen);
1942 if (err < 0)
1943 goto out_fd;
1944 }
1945
1946 /* File flags are not inherited via accept() unlike another OSes. */
1947 return newfile;
1948 out_fd:
1949 fput(newfile);
1950 return ERR_PTR(err);
1951 }
1952
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1953 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1954 int __user *upeer_addrlen, int flags)
1955 {
1956 struct proto_accept_arg arg = { };
1957 struct file *newfile;
1958 int newfd;
1959
1960 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1961 return -EINVAL;
1962
1963 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1964 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1965
1966 newfd = get_unused_fd_flags(flags);
1967 if (unlikely(newfd < 0))
1968 return newfd;
1969
1970 newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1971 flags);
1972 if (IS_ERR(newfile)) {
1973 put_unused_fd(newfd);
1974 return PTR_ERR(newfile);
1975 }
1976 fd_install(newfd, newfile);
1977 return newfd;
1978 }
1979
1980 /*
1981 * For accept, we attempt to create a new socket, set up the link
1982 * with the client, wake up the client, then return the new
1983 * connected fd. We collect the address of the connector in kernel
1984 * space and move it to user at the very end. This is unclean because
1985 * we open the socket then return an error.
1986 *
1987 * 1003.1g adds the ability to recvmsg() to query connection pending
1988 * status to recvmsg. We need to add that support in a way thats
1989 * clean when we restructure accept also.
1990 */
1991
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1992 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1993 int __user *upeer_addrlen, int flags)
1994 {
1995 CLASS(fd, f)(fd);
1996
1997 if (fd_empty(f))
1998 return -EBADF;
1999 return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2000 upeer_addrlen, flags);
2001 }
2002
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)2003 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2004 int __user *, upeer_addrlen, int, flags)
2005 {
2006 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2007 }
2008
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2009 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2010 int __user *, upeer_addrlen)
2011 {
2012 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2013 }
2014
2015 /*
2016 * Attempt to connect to a socket with the server address. The address
2017 * is in user space so we verify it is OK and move it to kernel space.
2018 *
2019 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2020 * break bindings
2021 *
2022 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2023 * other SEQPACKET protocols that take time to connect() as it doesn't
2024 * include the -EINPROGRESS status for such sockets.
2025 */
2026
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2027 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2028 int addrlen, int file_flags)
2029 {
2030 struct socket *sock;
2031 int err;
2032
2033 sock = sock_from_file(file);
2034 if (!sock) {
2035 err = -ENOTSOCK;
2036 goto out;
2037 }
2038
2039 err =
2040 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2041 if (err)
2042 goto out;
2043
2044 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2045 addrlen, sock->file->f_flags | file_flags);
2046 out:
2047 return err;
2048 }
2049
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2050 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2051 {
2052 struct sockaddr_storage address;
2053 CLASS(fd, f)(fd);
2054 int ret;
2055
2056 if (fd_empty(f))
2057 return -EBADF;
2058
2059 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2060 if (ret)
2061 return ret;
2062
2063 return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2064 }
2065
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2066 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2067 int, addrlen)
2068 {
2069 return __sys_connect(fd, uservaddr, addrlen);
2070 }
2071
2072 /*
2073 * Get the local address ('name') of a socket object. Move the obtained
2074 * name to user space.
2075 */
2076
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2077 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2078 int __user *usockaddr_len)
2079 {
2080 struct socket *sock;
2081 struct sockaddr_storage address;
2082 CLASS(fd, f)(fd);
2083 int err;
2084
2085 if (fd_empty(f))
2086 return -EBADF;
2087 sock = sock_from_file(fd_file(f));
2088 if (unlikely(!sock))
2089 return -ENOTSOCK;
2090
2091 err = security_socket_getsockname(sock);
2092 if (err)
2093 return err;
2094
2095 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2096 if (err < 0)
2097 return err;
2098
2099 /* "err" is actually length in this case */
2100 return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2101 }
2102
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2103 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2104 int __user *, usockaddr_len)
2105 {
2106 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2107 }
2108
2109 /*
2110 * Get the remote address ('name') of a socket object. Move the obtained
2111 * name to user space.
2112 */
2113
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2114 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2115 int __user *usockaddr_len)
2116 {
2117 struct socket *sock;
2118 struct sockaddr_storage address;
2119 CLASS(fd, f)(fd);
2120 int err;
2121
2122 if (fd_empty(f))
2123 return -EBADF;
2124 sock = sock_from_file(fd_file(f));
2125 if (unlikely(!sock))
2126 return -ENOTSOCK;
2127
2128 err = security_socket_getpeername(sock);
2129 if (err)
2130 return err;
2131
2132 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2133 if (err < 0)
2134 return err;
2135
2136 /* "err" is actually length in this case */
2137 return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2138 }
2139
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2140 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2141 int __user *, usockaddr_len)
2142 {
2143 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2144 }
2145
2146 /*
2147 * Send a datagram to a given address. We move the address into kernel
2148 * space and check the user space data area is readable before invoking
2149 * the protocol.
2150 */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2151 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2152 struct sockaddr __user *addr, int addr_len)
2153 {
2154 struct socket *sock;
2155 struct sockaddr_storage address;
2156 int err;
2157 struct msghdr msg;
2158
2159 err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2160 if (unlikely(err))
2161 return err;
2162
2163 CLASS(fd, f)(fd);
2164 if (fd_empty(f))
2165 return -EBADF;
2166 sock = sock_from_file(fd_file(f));
2167 if (unlikely(!sock))
2168 return -ENOTSOCK;
2169
2170 msg.msg_name = NULL;
2171 msg.msg_control = NULL;
2172 msg.msg_controllen = 0;
2173 msg.msg_namelen = 0;
2174 msg.msg_ubuf = NULL;
2175 if (addr) {
2176 err = move_addr_to_kernel(addr, addr_len, &address);
2177 if (err < 0)
2178 return err;
2179 msg.msg_name = (struct sockaddr *)&address;
2180 msg.msg_namelen = addr_len;
2181 }
2182 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2183 if (sock->file->f_flags & O_NONBLOCK)
2184 flags |= MSG_DONTWAIT;
2185 msg.msg_flags = flags;
2186 return __sock_sendmsg(sock, &msg);
2187 }
2188
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2189 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2190 unsigned int, flags, struct sockaddr __user *, addr,
2191 int, addr_len)
2192 {
2193 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2194 }
2195
2196 /*
2197 * Send a datagram down a socket.
2198 */
2199
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2200 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2201 unsigned int, flags)
2202 {
2203 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2204 }
2205
2206 /*
2207 * Receive a frame from the socket and optionally record the address of the
2208 * sender. We verify the buffers are writable and if needed move the
2209 * sender address from kernel to user space.
2210 */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2211 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2212 struct sockaddr __user *addr, int __user *addr_len)
2213 {
2214 struct sockaddr_storage address;
2215 struct msghdr msg = {
2216 /* Save some cycles and don't copy the address if not needed */
2217 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2218 };
2219 struct socket *sock;
2220 int err, err2;
2221
2222 err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2223 if (unlikely(err))
2224 return err;
2225
2226 CLASS(fd, f)(fd);
2227
2228 if (fd_empty(f))
2229 return -EBADF;
2230 sock = sock_from_file(fd_file(f));
2231 if (unlikely(!sock))
2232 return -ENOTSOCK;
2233
2234 if (sock->file->f_flags & O_NONBLOCK)
2235 flags |= MSG_DONTWAIT;
2236 err = sock_recvmsg(sock, &msg, flags);
2237
2238 if (err >= 0 && addr != NULL) {
2239 err2 = move_addr_to_user(&address,
2240 msg.msg_namelen, addr, addr_len);
2241 if (err2 < 0)
2242 err = err2;
2243 }
2244 return err;
2245 }
2246
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2247 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2248 unsigned int, flags, struct sockaddr __user *, addr,
2249 int __user *, addr_len)
2250 {
2251 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2252 }
2253
2254 /*
2255 * Receive a datagram from a socket.
2256 */
2257
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2258 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2259 unsigned int, flags)
2260 {
2261 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2262 }
2263
sock_use_custom_sol_socket(const struct socket * sock)2264 static bool sock_use_custom_sol_socket(const struct socket *sock)
2265 {
2266 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2267 }
2268
do_sock_setsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,int optlen)2269 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2270 int optname, sockptr_t optval, int optlen)
2271 {
2272 const struct proto_ops *ops;
2273 char *kernel_optval = NULL;
2274 int err;
2275
2276 if (optlen < 0)
2277 return -EINVAL;
2278
2279 err = security_socket_setsockopt(sock, level, optname);
2280 if (err)
2281 goto out_put;
2282
2283 if (!compat)
2284 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2285 optval, &optlen,
2286 &kernel_optval);
2287 if (err < 0)
2288 goto out_put;
2289 if (err > 0) {
2290 err = 0;
2291 goto out_put;
2292 }
2293
2294 if (kernel_optval)
2295 optval = KERNEL_SOCKPTR(kernel_optval);
2296 ops = READ_ONCE(sock->ops);
2297 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2298 err = sock_setsockopt(sock, level, optname, optval, optlen);
2299 else if (unlikely(!ops->setsockopt))
2300 err = -EOPNOTSUPP;
2301 else
2302 err = ops->setsockopt(sock, level, optname, optval,
2303 optlen);
2304 kfree(kernel_optval);
2305 out_put:
2306 return err;
2307 }
2308 EXPORT_SYMBOL(do_sock_setsockopt);
2309
2310 /* Set a socket option. Because we don't know the option lengths we have
2311 * to pass the user mode parameter for the protocols to sort out.
2312 */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2313 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2314 int optlen)
2315 {
2316 sockptr_t optval = USER_SOCKPTR(user_optval);
2317 bool compat = in_compat_syscall();
2318 struct socket *sock;
2319 CLASS(fd, f)(fd);
2320
2321 if (fd_empty(f))
2322 return -EBADF;
2323 sock = sock_from_file(fd_file(f));
2324 if (unlikely(!sock))
2325 return -ENOTSOCK;
2326
2327 return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2328 }
2329
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2330 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2331 char __user *, optval, int, optlen)
2332 {
2333 return __sys_setsockopt(fd, level, optname, optval, optlen);
2334 }
2335
2336 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2337 int optname));
2338
do_sock_getsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,sockptr_t optlen)2339 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2340 int optname, sockptr_t optval, sockptr_t optlen)
2341 {
2342 int max_optlen __maybe_unused = 0;
2343 const struct proto_ops *ops;
2344 int err;
2345
2346 err = security_socket_getsockopt(sock, level, optname);
2347 if (err)
2348 return err;
2349
2350 if (!compat)
2351 copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2352
2353 ops = READ_ONCE(sock->ops);
2354 if (level == SOL_SOCKET) {
2355 err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2356 } else if (unlikely(!ops->getsockopt)) {
2357 err = -EOPNOTSUPP;
2358 } else {
2359 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2360 "Invalid argument type"))
2361 return -EOPNOTSUPP;
2362
2363 err = ops->getsockopt(sock, level, optname, optval.user,
2364 optlen.user);
2365 }
2366
2367 if (!compat)
2368 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2369 optval, optlen, max_optlen,
2370 err);
2371
2372 return err;
2373 }
2374 EXPORT_SYMBOL(do_sock_getsockopt);
2375
2376 /*
2377 * Get a socket option. Because we don't know the option lengths we have
2378 * to pass a user mode parameter for the protocols to sort out.
2379 */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2380 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2381 int __user *optlen)
2382 {
2383 struct socket *sock;
2384 CLASS(fd, f)(fd);
2385
2386 if (fd_empty(f))
2387 return -EBADF;
2388 sock = sock_from_file(fd_file(f));
2389 if (unlikely(!sock))
2390 return -ENOTSOCK;
2391
2392 return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2393 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2394 }
2395
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2396 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2397 char __user *, optval, int __user *, optlen)
2398 {
2399 return __sys_getsockopt(fd, level, optname, optval, optlen);
2400 }
2401
2402 /*
2403 * Shutdown a socket.
2404 */
2405
__sys_shutdown_sock(struct socket * sock,int how)2406 int __sys_shutdown_sock(struct socket *sock, int how)
2407 {
2408 int err;
2409
2410 err = security_socket_shutdown(sock, how);
2411 if (!err)
2412 err = READ_ONCE(sock->ops)->shutdown(sock, how);
2413
2414 return err;
2415 }
2416
__sys_shutdown(int fd,int how)2417 int __sys_shutdown(int fd, int how)
2418 {
2419 struct socket *sock;
2420 CLASS(fd, f)(fd);
2421
2422 if (fd_empty(f))
2423 return -EBADF;
2424 sock = sock_from_file(fd_file(f));
2425 if (unlikely(!sock))
2426 return -ENOTSOCK;
2427
2428 return __sys_shutdown_sock(sock, how);
2429 }
2430
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2431 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2432 {
2433 return __sys_shutdown(fd, how);
2434 }
2435
2436 /* A couple of helpful macros for getting the address of the 32/64 bit
2437 * fields which are the same type (int / unsigned) on our platforms.
2438 */
2439 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2440 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2441 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2442
2443 struct used_address {
2444 struct sockaddr_storage name;
2445 unsigned int name_len;
2446 };
2447
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2448 int __copy_msghdr(struct msghdr *kmsg,
2449 struct user_msghdr *msg,
2450 struct sockaddr __user **save_addr)
2451 {
2452 ssize_t err;
2453
2454 kmsg->msg_control_is_user = true;
2455 kmsg->msg_get_inq = 0;
2456 kmsg->msg_control_user = msg->msg_control;
2457 kmsg->msg_controllen = msg->msg_controllen;
2458 kmsg->msg_flags = msg->msg_flags;
2459
2460 kmsg->msg_namelen = msg->msg_namelen;
2461 if (!msg->msg_name)
2462 kmsg->msg_namelen = 0;
2463
2464 if (kmsg->msg_namelen < 0)
2465 return -EINVAL;
2466
2467 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2468 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2469
2470 if (save_addr)
2471 *save_addr = msg->msg_name;
2472
2473 if (msg->msg_name && kmsg->msg_namelen) {
2474 if (!save_addr) {
2475 err = move_addr_to_kernel(msg->msg_name,
2476 kmsg->msg_namelen,
2477 kmsg->msg_name);
2478 if (err < 0)
2479 return err;
2480 }
2481 } else {
2482 kmsg->msg_name = NULL;
2483 kmsg->msg_namelen = 0;
2484 }
2485
2486 if (msg->msg_iovlen > UIO_MAXIOV)
2487 return -EMSGSIZE;
2488
2489 kmsg->msg_iocb = NULL;
2490 kmsg->msg_ubuf = NULL;
2491 return 0;
2492 }
2493
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2494 static int copy_msghdr_from_user(struct msghdr *kmsg,
2495 struct user_msghdr __user *umsg,
2496 struct sockaddr __user **save_addr,
2497 struct iovec **iov)
2498 {
2499 struct user_msghdr msg;
2500 ssize_t err;
2501
2502 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2503 return -EFAULT;
2504
2505 err = __copy_msghdr(kmsg, &msg, save_addr);
2506 if (err)
2507 return err;
2508
2509 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2510 msg.msg_iov, msg.msg_iovlen,
2511 UIO_FASTIOV, iov, &kmsg->msg_iter);
2512 return err < 0 ? err : 0;
2513 }
2514
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2515 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2516 unsigned int flags, struct used_address *used_address,
2517 unsigned int allowed_msghdr_flags)
2518 {
2519 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2520 __aligned(sizeof(__kernel_size_t));
2521 /* 20 is size of ipv6_pktinfo */
2522 unsigned char *ctl_buf = ctl;
2523 int ctl_len;
2524 ssize_t err;
2525
2526 err = -ENOBUFS;
2527
2528 if (msg_sys->msg_controllen > INT_MAX)
2529 goto out;
2530 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2531 ctl_len = msg_sys->msg_controllen;
2532 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2533 err =
2534 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2535 sizeof(ctl));
2536 if (err)
2537 goto out;
2538 ctl_buf = msg_sys->msg_control;
2539 ctl_len = msg_sys->msg_controllen;
2540 } else if (ctl_len) {
2541 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2542 CMSG_ALIGN(sizeof(struct cmsghdr)));
2543 if (ctl_len > sizeof(ctl)) {
2544 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2545 if (ctl_buf == NULL)
2546 goto out;
2547 }
2548 err = -EFAULT;
2549 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2550 goto out_freectl;
2551 msg_sys->msg_control = ctl_buf;
2552 msg_sys->msg_control_is_user = false;
2553 }
2554 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2555 msg_sys->msg_flags = flags;
2556
2557 if (sock->file->f_flags & O_NONBLOCK)
2558 msg_sys->msg_flags |= MSG_DONTWAIT;
2559 /*
2560 * If this is sendmmsg() and current destination address is same as
2561 * previously succeeded address, omit asking LSM's decision.
2562 * used_address->name_len is initialized to UINT_MAX so that the first
2563 * destination address never matches.
2564 */
2565 if (used_address && msg_sys->msg_name &&
2566 used_address->name_len == msg_sys->msg_namelen &&
2567 !memcmp(&used_address->name, msg_sys->msg_name,
2568 used_address->name_len)) {
2569 err = sock_sendmsg_nosec(sock, msg_sys);
2570 goto out_freectl;
2571 }
2572 err = __sock_sendmsg(sock, msg_sys);
2573 /*
2574 * If this is sendmmsg() and sending to current destination address was
2575 * successful, remember it.
2576 */
2577 if (used_address && err >= 0) {
2578 used_address->name_len = msg_sys->msg_namelen;
2579 if (msg_sys->msg_name)
2580 memcpy(&used_address->name, msg_sys->msg_name,
2581 used_address->name_len);
2582 }
2583
2584 out_freectl:
2585 if (ctl_buf != ctl)
2586 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2587 out:
2588 return err;
2589 }
2590
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2591 static int sendmsg_copy_msghdr(struct msghdr *msg,
2592 struct user_msghdr __user *umsg, unsigned flags,
2593 struct iovec **iov)
2594 {
2595 int err;
2596
2597 if (flags & MSG_CMSG_COMPAT) {
2598 struct compat_msghdr __user *msg_compat;
2599
2600 msg_compat = (struct compat_msghdr __user *) umsg;
2601 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2602 } else {
2603 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2604 }
2605 if (err < 0)
2606 return err;
2607
2608 return 0;
2609 }
2610
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2611 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2612 struct msghdr *msg_sys, unsigned int flags,
2613 struct used_address *used_address,
2614 unsigned int allowed_msghdr_flags)
2615 {
2616 struct sockaddr_storage address;
2617 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2618 ssize_t err;
2619
2620 msg_sys->msg_name = &address;
2621
2622 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2623 if (err < 0)
2624 return err;
2625
2626 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2627 allowed_msghdr_flags);
2628 kfree(iov);
2629 return err;
2630 }
2631
2632 /*
2633 * BSD sendmsg interface
2634 */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2635 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2636 unsigned int flags)
2637 {
2638 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2639 }
2640
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2641 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2642 bool forbid_cmsg_compat)
2643 {
2644 struct msghdr msg_sys;
2645 struct socket *sock;
2646
2647 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2648 return -EINVAL;
2649
2650 CLASS(fd, f)(fd);
2651
2652 if (fd_empty(f))
2653 return -EBADF;
2654 sock = sock_from_file(fd_file(f));
2655 if (unlikely(!sock))
2656 return -ENOTSOCK;
2657
2658 return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2659 }
2660
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2661 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2662 {
2663 return __sys_sendmsg(fd, msg, flags, true);
2664 }
2665
2666 /*
2667 * Linux sendmmsg interface
2668 */
2669
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2670 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2671 unsigned int flags, bool forbid_cmsg_compat)
2672 {
2673 int err, datagrams;
2674 struct socket *sock;
2675 struct mmsghdr __user *entry;
2676 struct compat_mmsghdr __user *compat_entry;
2677 struct msghdr msg_sys;
2678 struct used_address used_address;
2679 unsigned int oflags = flags;
2680
2681 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2682 return -EINVAL;
2683
2684 if (vlen > UIO_MAXIOV)
2685 vlen = UIO_MAXIOV;
2686
2687 datagrams = 0;
2688
2689 CLASS(fd, f)(fd);
2690
2691 if (fd_empty(f))
2692 return -EBADF;
2693 sock = sock_from_file(fd_file(f));
2694 if (unlikely(!sock))
2695 return -ENOTSOCK;
2696
2697 used_address.name_len = UINT_MAX;
2698 entry = mmsg;
2699 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2700 err = 0;
2701 flags |= MSG_BATCH;
2702
2703 while (datagrams < vlen) {
2704 if (datagrams == vlen - 1)
2705 flags = oflags;
2706
2707 if (MSG_CMSG_COMPAT & flags) {
2708 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2709 &msg_sys, flags, &used_address, MSG_EOR);
2710 if (err < 0)
2711 break;
2712 err = __put_user(err, &compat_entry->msg_len);
2713 ++compat_entry;
2714 } else {
2715 err = ___sys_sendmsg(sock,
2716 (struct user_msghdr __user *)entry,
2717 &msg_sys, flags, &used_address, MSG_EOR);
2718 if (err < 0)
2719 break;
2720 err = put_user(err, &entry->msg_len);
2721 ++entry;
2722 }
2723
2724 if (err)
2725 break;
2726 ++datagrams;
2727 if (msg_data_left(&msg_sys))
2728 break;
2729 cond_resched();
2730 }
2731
2732 /* We only return an error if no datagrams were able to be sent */
2733 if (datagrams != 0)
2734 return datagrams;
2735
2736 return err;
2737 }
2738
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2739 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2740 unsigned int, vlen, unsigned int, flags)
2741 {
2742 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2743 }
2744
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2745 static int recvmsg_copy_msghdr(struct msghdr *msg,
2746 struct user_msghdr __user *umsg, unsigned flags,
2747 struct sockaddr __user **uaddr,
2748 struct iovec **iov)
2749 {
2750 ssize_t err;
2751
2752 if (MSG_CMSG_COMPAT & flags) {
2753 struct compat_msghdr __user *msg_compat;
2754
2755 msg_compat = (struct compat_msghdr __user *) umsg;
2756 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2757 } else {
2758 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2759 }
2760 if (err < 0)
2761 return err;
2762
2763 return 0;
2764 }
2765
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2766 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2767 struct user_msghdr __user *msg,
2768 struct sockaddr __user *uaddr,
2769 unsigned int flags, int nosec)
2770 {
2771 struct compat_msghdr __user *msg_compat =
2772 (struct compat_msghdr __user *) msg;
2773 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2774 struct sockaddr_storage addr;
2775 unsigned long cmsg_ptr;
2776 int len;
2777 ssize_t err;
2778
2779 msg_sys->msg_name = &addr;
2780 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2781 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2782
2783 /* We assume all kernel code knows the size of sockaddr_storage */
2784 msg_sys->msg_namelen = 0;
2785
2786 if (sock->file->f_flags & O_NONBLOCK)
2787 flags |= MSG_DONTWAIT;
2788
2789 if (unlikely(nosec))
2790 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2791 else
2792 err = sock_recvmsg(sock, msg_sys, flags);
2793
2794 if (err < 0)
2795 goto out;
2796 len = err;
2797
2798 if (uaddr != NULL) {
2799 err = move_addr_to_user(&addr,
2800 msg_sys->msg_namelen, uaddr,
2801 uaddr_len);
2802 if (err < 0)
2803 goto out;
2804 }
2805 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2806 COMPAT_FLAGS(msg));
2807 if (err)
2808 goto out;
2809 if (MSG_CMSG_COMPAT & flags)
2810 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2811 &msg_compat->msg_controllen);
2812 else
2813 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2814 &msg->msg_controllen);
2815 if (err)
2816 goto out;
2817 err = len;
2818 out:
2819 return err;
2820 }
2821
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2822 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2823 struct msghdr *msg_sys, unsigned int flags, int nosec)
2824 {
2825 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2826 /* user mode address pointers */
2827 struct sockaddr __user *uaddr;
2828 ssize_t err;
2829
2830 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2831 if (err < 0)
2832 return err;
2833
2834 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2835 kfree(iov);
2836 return err;
2837 }
2838
2839 /*
2840 * BSD recvmsg interface
2841 */
2842
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2843 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2844 struct user_msghdr __user *umsg,
2845 struct sockaddr __user *uaddr, unsigned int flags)
2846 {
2847 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2848 }
2849
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2850 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2851 bool forbid_cmsg_compat)
2852 {
2853 struct msghdr msg_sys;
2854 struct socket *sock;
2855
2856 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2857 return -EINVAL;
2858
2859 CLASS(fd, f)(fd);
2860
2861 if (fd_empty(f))
2862 return -EBADF;
2863 sock = sock_from_file(fd_file(f));
2864 if (unlikely(!sock))
2865 return -ENOTSOCK;
2866
2867 return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2868 }
2869
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2870 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2871 unsigned int, flags)
2872 {
2873 return __sys_recvmsg(fd, msg, flags, true);
2874 }
2875
2876 /*
2877 * Linux recvmmsg interface
2878 */
2879
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2880 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2881 unsigned int vlen, unsigned int flags,
2882 struct timespec64 *timeout)
2883 {
2884 int err = 0, datagrams;
2885 struct socket *sock;
2886 struct mmsghdr __user *entry;
2887 struct compat_mmsghdr __user *compat_entry;
2888 struct msghdr msg_sys;
2889 struct timespec64 end_time;
2890 struct timespec64 timeout64;
2891
2892 if (timeout &&
2893 poll_select_set_timeout(&end_time, timeout->tv_sec,
2894 timeout->tv_nsec))
2895 return -EINVAL;
2896
2897 datagrams = 0;
2898
2899 CLASS(fd, f)(fd);
2900
2901 if (fd_empty(f))
2902 return -EBADF;
2903 sock = sock_from_file(fd_file(f));
2904 if (unlikely(!sock))
2905 return -ENOTSOCK;
2906
2907 if (likely(!(flags & MSG_ERRQUEUE))) {
2908 err = sock_error(sock->sk);
2909 if (err)
2910 return err;
2911 }
2912
2913 entry = mmsg;
2914 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2915
2916 while (datagrams < vlen) {
2917 /*
2918 * No need to ask LSM for more than the first datagram.
2919 */
2920 if (MSG_CMSG_COMPAT & flags) {
2921 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2922 &msg_sys, flags & ~MSG_WAITFORONE,
2923 datagrams);
2924 if (err < 0)
2925 break;
2926 err = __put_user(err, &compat_entry->msg_len);
2927 ++compat_entry;
2928 } else {
2929 err = ___sys_recvmsg(sock,
2930 (struct user_msghdr __user *)entry,
2931 &msg_sys, flags & ~MSG_WAITFORONE,
2932 datagrams);
2933 if (err < 0)
2934 break;
2935 err = put_user(err, &entry->msg_len);
2936 ++entry;
2937 }
2938
2939 if (err)
2940 break;
2941 ++datagrams;
2942
2943 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2944 if (flags & MSG_WAITFORONE)
2945 flags |= MSG_DONTWAIT;
2946
2947 if (timeout) {
2948 ktime_get_ts64(&timeout64);
2949 *timeout = timespec64_sub(end_time, timeout64);
2950 if (timeout->tv_sec < 0) {
2951 timeout->tv_sec = timeout->tv_nsec = 0;
2952 break;
2953 }
2954
2955 /* Timeout, return less than vlen datagrams */
2956 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2957 break;
2958 }
2959
2960 /* Out of band data, return right away */
2961 if (msg_sys.msg_flags & MSG_OOB)
2962 break;
2963 cond_resched();
2964 }
2965
2966 if (err == 0)
2967 return datagrams;
2968
2969 if (datagrams == 0)
2970 return err;
2971
2972 /*
2973 * We may return less entries than requested (vlen) if the
2974 * sock is non block and there aren't enough datagrams...
2975 */
2976 if (err != -EAGAIN) {
2977 /*
2978 * ... or if recvmsg returns an error after we
2979 * received some datagrams, where we record the
2980 * error to return on the next call or if the
2981 * app asks about it using getsockopt(SO_ERROR).
2982 */
2983 WRITE_ONCE(sock->sk->sk_err, -err);
2984 }
2985 return datagrams;
2986 }
2987
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2988 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2989 unsigned int vlen, unsigned int flags,
2990 struct __kernel_timespec __user *timeout,
2991 struct old_timespec32 __user *timeout32)
2992 {
2993 int datagrams;
2994 struct timespec64 timeout_sys;
2995
2996 if (timeout && get_timespec64(&timeout_sys, timeout))
2997 return -EFAULT;
2998
2999 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3000 return -EFAULT;
3001
3002 if (!timeout && !timeout32)
3003 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3004
3005 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3006
3007 if (datagrams <= 0)
3008 return datagrams;
3009
3010 if (timeout && put_timespec64(&timeout_sys, timeout))
3011 datagrams = -EFAULT;
3012
3013 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3014 datagrams = -EFAULT;
3015
3016 return datagrams;
3017 }
3018
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3019 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3020 unsigned int, vlen, unsigned int, flags,
3021 struct __kernel_timespec __user *, timeout)
3022 {
3023 if (flags & MSG_CMSG_COMPAT)
3024 return -EINVAL;
3025
3026 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3027 }
3028
3029 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3030 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3031 unsigned int, vlen, unsigned int, flags,
3032 struct old_timespec32 __user *, timeout)
3033 {
3034 if (flags & MSG_CMSG_COMPAT)
3035 return -EINVAL;
3036
3037 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3038 }
3039 #endif
3040
3041 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3042 /* Argument list sizes for sys_socketcall */
3043 #define AL(x) ((x) * sizeof(unsigned long))
3044 static const unsigned char nargs[21] = {
3045 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3046 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3047 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3048 AL(4), AL(5), AL(4)
3049 };
3050
3051 #undef AL
3052
3053 /*
3054 * System call vectors.
3055 *
3056 * Argument checking cleaned up. Saved 20% in size.
3057 * This function doesn't need to set the kernel lock because
3058 * it is set by the callees.
3059 */
3060
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3061 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3062 {
3063 unsigned long a[AUDITSC_ARGS];
3064 unsigned long a0, a1;
3065 int err;
3066 unsigned int len;
3067
3068 if (call < 1 || call > SYS_SENDMMSG)
3069 return -EINVAL;
3070 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3071
3072 len = nargs[call];
3073 if (len > sizeof(a))
3074 return -EINVAL;
3075
3076 /* copy_from_user should be SMP safe. */
3077 if (copy_from_user(a, args, len))
3078 return -EFAULT;
3079
3080 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3081 if (err)
3082 return err;
3083
3084 a0 = a[0];
3085 a1 = a[1];
3086
3087 switch (call) {
3088 case SYS_SOCKET:
3089 err = __sys_socket(a0, a1, a[2]);
3090 break;
3091 case SYS_BIND:
3092 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3093 break;
3094 case SYS_CONNECT:
3095 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3096 break;
3097 case SYS_LISTEN:
3098 err = __sys_listen(a0, a1);
3099 break;
3100 case SYS_ACCEPT:
3101 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3102 (int __user *)a[2], 0);
3103 break;
3104 case SYS_GETSOCKNAME:
3105 err =
3106 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3107 (int __user *)a[2]);
3108 break;
3109 case SYS_GETPEERNAME:
3110 err =
3111 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3112 (int __user *)a[2]);
3113 break;
3114 case SYS_SOCKETPAIR:
3115 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3116 break;
3117 case SYS_SEND:
3118 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3119 NULL, 0);
3120 break;
3121 case SYS_SENDTO:
3122 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3123 (struct sockaddr __user *)a[4], a[5]);
3124 break;
3125 case SYS_RECV:
3126 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3127 NULL, NULL);
3128 break;
3129 case SYS_RECVFROM:
3130 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3131 (struct sockaddr __user *)a[4],
3132 (int __user *)a[5]);
3133 break;
3134 case SYS_SHUTDOWN:
3135 err = __sys_shutdown(a0, a1);
3136 break;
3137 case SYS_SETSOCKOPT:
3138 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3139 a[4]);
3140 break;
3141 case SYS_GETSOCKOPT:
3142 err =
3143 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3144 (int __user *)a[4]);
3145 break;
3146 case SYS_SENDMSG:
3147 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3148 a[2], true);
3149 break;
3150 case SYS_SENDMMSG:
3151 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3152 a[3], true);
3153 break;
3154 case SYS_RECVMSG:
3155 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3156 a[2], true);
3157 break;
3158 case SYS_RECVMMSG:
3159 if (IS_ENABLED(CONFIG_64BIT))
3160 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3161 a[2], a[3],
3162 (struct __kernel_timespec __user *)a[4],
3163 NULL);
3164 else
3165 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3166 a[2], a[3], NULL,
3167 (struct old_timespec32 __user *)a[4]);
3168 break;
3169 case SYS_ACCEPT4:
3170 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3171 (int __user *)a[2], a[3]);
3172 break;
3173 default:
3174 err = -EINVAL;
3175 break;
3176 }
3177 return err;
3178 }
3179
3180 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3181
3182 /**
3183 * sock_register - add a socket protocol handler
3184 * @ops: description of protocol
3185 *
3186 * This function is called by a protocol handler that wants to
3187 * advertise its address family, and have it linked into the
3188 * socket interface. The value ops->family corresponds to the
3189 * socket system call protocol family.
3190 */
sock_register(const struct net_proto_family * ops)3191 int sock_register(const struct net_proto_family *ops)
3192 {
3193 int err;
3194
3195 if (ops->family >= NPROTO) {
3196 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3197 return -ENOBUFS;
3198 }
3199
3200 spin_lock(&net_family_lock);
3201 if (rcu_dereference_protected(net_families[ops->family],
3202 lockdep_is_held(&net_family_lock)))
3203 err = -EEXIST;
3204 else {
3205 rcu_assign_pointer(net_families[ops->family], ops);
3206 err = 0;
3207 }
3208 spin_unlock(&net_family_lock);
3209
3210 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3211 return err;
3212 }
3213 EXPORT_SYMBOL(sock_register);
3214
3215 /**
3216 * sock_unregister - remove a protocol handler
3217 * @family: protocol family to remove
3218 *
3219 * This function is called by a protocol handler that wants to
3220 * remove its address family, and have it unlinked from the
3221 * new socket creation.
3222 *
3223 * If protocol handler is a module, then it can use module reference
3224 * counts to protect against new references. If protocol handler is not
3225 * a module then it needs to provide its own protection in
3226 * the ops->create routine.
3227 */
sock_unregister(int family)3228 void sock_unregister(int family)
3229 {
3230 BUG_ON(family < 0 || family >= NPROTO);
3231
3232 spin_lock(&net_family_lock);
3233 RCU_INIT_POINTER(net_families[family], NULL);
3234 spin_unlock(&net_family_lock);
3235
3236 synchronize_rcu();
3237
3238 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3239 }
3240 EXPORT_SYMBOL(sock_unregister);
3241
sock_is_registered(int family)3242 bool sock_is_registered(int family)
3243 {
3244 return family < NPROTO && rcu_access_pointer(net_families[family]);
3245 }
3246
sock_init(void)3247 static int __init sock_init(void)
3248 {
3249 int err;
3250 /*
3251 * Initialize the network sysctl infrastructure.
3252 */
3253 err = net_sysctl_init();
3254 if (err)
3255 goto out;
3256
3257 /*
3258 * Initialize skbuff SLAB cache
3259 */
3260 skb_init();
3261
3262 /*
3263 * Initialize the protocols module.
3264 */
3265
3266 init_inodecache();
3267
3268 err = register_filesystem(&sock_fs_type);
3269 if (err)
3270 goto out;
3271 sock_mnt = kern_mount(&sock_fs_type);
3272 if (IS_ERR(sock_mnt)) {
3273 err = PTR_ERR(sock_mnt);
3274 goto out_mount;
3275 }
3276
3277 /* The real protocol initialization is performed in later initcalls.
3278 */
3279
3280 #ifdef CONFIG_NETFILTER
3281 err = netfilter_init();
3282 if (err)
3283 goto out;
3284 #endif
3285
3286 ptp_classifier_init();
3287
3288 out:
3289 return err;
3290
3291 out_mount:
3292 unregister_filesystem(&sock_fs_type);
3293 goto out;
3294 }
3295
3296 core_initcall(sock_init); /* early initcall */
3297
3298 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3299 void socket_seq_show(struct seq_file *seq)
3300 {
3301 seq_printf(seq, "sockets: used %d\n",
3302 sock_inuse_get(seq->private));
3303 }
3304 #endif /* CONFIG_PROC_FS */
3305
3306 /* Handle the fact that while struct ifreq has the same *layout* on
3307 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3308 * which are handled elsewhere, it still has different *size* due to
3309 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3310 * resulting in struct ifreq being 32 and 40 bytes respectively).
3311 * As a result, if the struct happens to be at the end of a page and
3312 * the next page isn't readable/writable, we get a fault. To prevent
3313 * that, copy back and forth to the full size.
3314 */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3315 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3316 {
3317 if (in_compat_syscall()) {
3318 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3319
3320 memset(ifr, 0, sizeof(*ifr));
3321 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3322 return -EFAULT;
3323
3324 if (ifrdata)
3325 *ifrdata = compat_ptr(ifr32->ifr_data);
3326
3327 return 0;
3328 }
3329
3330 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3331 return -EFAULT;
3332
3333 if (ifrdata)
3334 *ifrdata = ifr->ifr_data;
3335
3336 return 0;
3337 }
3338 EXPORT_SYMBOL(get_user_ifreq);
3339
put_user_ifreq(struct ifreq * ifr,void __user * arg)3340 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3341 {
3342 size_t size = sizeof(*ifr);
3343
3344 if (in_compat_syscall())
3345 size = sizeof(struct compat_ifreq);
3346
3347 if (copy_to_user(arg, ifr, size))
3348 return -EFAULT;
3349
3350 return 0;
3351 }
3352 EXPORT_SYMBOL(put_user_ifreq);
3353
3354 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3355 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3356 {
3357 compat_uptr_t uptr32;
3358 struct ifreq ifr;
3359 void __user *saved;
3360 int err;
3361
3362 if (get_user_ifreq(&ifr, NULL, uifr32))
3363 return -EFAULT;
3364
3365 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3366 return -EFAULT;
3367
3368 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3369 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3370
3371 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3372 if (!err) {
3373 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3374 if (put_user_ifreq(&ifr, uifr32))
3375 err = -EFAULT;
3376 }
3377 return err;
3378 }
3379
3380 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3381 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3382 struct compat_ifreq __user *u_ifreq32)
3383 {
3384 struct ifreq ifreq;
3385 void __user *data;
3386
3387 if (!is_socket_ioctl_cmd(cmd))
3388 return -ENOTTY;
3389 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3390 return -EFAULT;
3391 ifreq.ifr_data = data;
3392
3393 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3394 }
3395
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3396 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3397 unsigned int cmd, unsigned long arg)
3398 {
3399 void __user *argp = compat_ptr(arg);
3400 struct sock *sk = sock->sk;
3401 struct net *net = sock_net(sk);
3402 const struct proto_ops *ops;
3403
3404 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3405 return sock_ioctl(file, cmd, (unsigned long)argp);
3406
3407 switch (cmd) {
3408 case SIOCWANDEV:
3409 return compat_siocwandev(net, argp);
3410 case SIOCGSTAMP_OLD:
3411 case SIOCGSTAMPNS_OLD:
3412 ops = READ_ONCE(sock->ops);
3413 if (!ops->gettstamp)
3414 return -ENOIOCTLCMD;
3415 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3416 !COMPAT_USE_64BIT_TIME);
3417
3418 case SIOCETHTOOL:
3419 case SIOCBONDSLAVEINFOQUERY:
3420 case SIOCBONDINFOQUERY:
3421 case SIOCSHWTSTAMP:
3422 case SIOCGHWTSTAMP:
3423 return compat_ifr_data_ioctl(net, cmd, argp);
3424
3425 case FIOSETOWN:
3426 case SIOCSPGRP:
3427 case FIOGETOWN:
3428 case SIOCGPGRP:
3429 case SIOCBRADDBR:
3430 case SIOCBRDELBR:
3431 case SIOCBRADDIF:
3432 case SIOCBRDELIF:
3433 case SIOCGIFVLAN:
3434 case SIOCSIFVLAN:
3435 case SIOCGSKNS:
3436 case SIOCGSTAMP_NEW:
3437 case SIOCGSTAMPNS_NEW:
3438 case SIOCGIFCONF:
3439 case SIOCSIFBR:
3440 case SIOCGIFBR:
3441 return sock_ioctl(file, cmd, arg);
3442
3443 case SIOCGIFFLAGS:
3444 case SIOCSIFFLAGS:
3445 case SIOCGIFMAP:
3446 case SIOCSIFMAP:
3447 case SIOCGIFMETRIC:
3448 case SIOCSIFMETRIC:
3449 case SIOCGIFMTU:
3450 case SIOCSIFMTU:
3451 case SIOCGIFMEM:
3452 case SIOCSIFMEM:
3453 case SIOCGIFHWADDR:
3454 case SIOCSIFHWADDR:
3455 case SIOCADDMULTI:
3456 case SIOCDELMULTI:
3457 case SIOCGIFINDEX:
3458 case SIOCGIFADDR:
3459 case SIOCSIFADDR:
3460 case SIOCSIFHWBROADCAST:
3461 case SIOCDIFADDR:
3462 case SIOCGIFBRDADDR:
3463 case SIOCSIFBRDADDR:
3464 case SIOCGIFDSTADDR:
3465 case SIOCSIFDSTADDR:
3466 case SIOCGIFNETMASK:
3467 case SIOCSIFNETMASK:
3468 case SIOCSIFPFLAGS:
3469 case SIOCGIFPFLAGS:
3470 case SIOCGIFTXQLEN:
3471 case SIOCSIFTXQLEN:
3472 case SIOCGIFNAME:
3473 case SIOCSIFNAME:
3474 case SIOCGMIIPHY:
3475 case SIOCGMIIREG:
3476 case SIOCSMIIREG:
3477 case SIOCBONDENSLAVE:
3478 case SIOCBONDRELEASE:
3479 case SIOCBONDSETHWADDR:
3480 case SIOCBONDCHANGEACTIVE:
3481 case SIOCSARP:
3482 case SIOCGARP:
3483 case SIOCDARP:
3484 case SIOCOUTQ:
3485 case SIOCOUTQNSD:
3486 case SIOCATMARK:
3487 return sock_do_ioctl(net, sock, cmd, arg);
3488 }
3489
3490 return -ENOIOCTLCMD;
3491 }
3492
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3493 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3494 unsigned long arg)
3495 {
3496 struct socket *sock = file->private_data;
3497 const struct proto_ops *ops = READ_ONCE(sock->ops);
3498 int ret = -ENOIOCTLCMD;
3499 struct sock *sk;
3500 struct net *net;
3501
3502 sk = sock->sk;
3503 net = sock_net(sk);
3504
3505 if (ops->compat_ioctl)
3506 ret = ops->compat_ioctl(sock, cmd, arg);
3507
3508 if (ret == -ENOIOCTLCMD &&
3509 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3510 ret = compat_wext_handle_ioctl(net, cmd, arg);
3511
3512 if (ret == -ENOIOCTLCMD)
3513 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3514
3515 return ret;
3516 }
3517 #endif
3518
3519 /**
3520 * kernel_bind - bind an address to a socket (kernel space)
3521 * @sock: socket
3522 * @addr: address
3523 * @addrlen: length of address
3524 *
3525 * Returns 0 or an error.
3526 */
3527
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3528 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3529 {
3530 struct sockaddr_storage address;
3531
3532 memcpy(&address, addr, addrlen);
3533
3534 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3535 addrlen);
3536 }
3537 EXPORT_SYMBOL(kernel_bind);
3538
3539 /**
3540 * kernel_listen - move socket to listening state (kernel space)
3541 * @sock: socket
3542 * @backlog: pending connections queue size
3543 *
3544 * Returns 0 or an error.
3545 */
3546
kernel_listen(struct socket * sock,int backlog)3547 int kernel_listen(struct socket *sock, int backlog)
3548 {
3549 return READ_ONCE(sock->ops)->listen(sock, backlog);
3550 }
3551 EXPORT_SYMBOL(kernel_listen);
3552
3553 /**
3554 * kernel_accept - accept a connection (kernel space)
3555 * @sock: listening socket
3556 * @newsock: new connected socket
3557 * @flags: flags
3558 *
3559 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3560 * If it fails, @newsock is guaranteed to be %NULL.
3561 * Returns 0 or an error.
3562 */
3563
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3564 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3565 {
3566 struct sock *sk = sock->sk;
3567 const struct proto_ops *ops = READ_ONCE(sock->ops);
3568 struct proto_accept_arg arg = {
3569 .flags = flags,
3570 .kern = true,
3571 };
3572 int err;
3573
3574 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3575 newsock);
3576 if (err < 0)
3577 goto done;
3578
3579 err = ops->accept(sock, *newsock, &arg);
3580 if (err < 0) {
3581 sock_release(*newsock);
3582 *newsock = NULL;
3583 goto done;
3584 }
3585
3586 (*newsock)->ops = ops;
3587 __module_get(ops->owner);
3588
3589 done:
3590 return err;
3591 }
3592 EXPORT_SYMBOL(kernel_accept);
3593
3594 /**
3595 * kernel_connect - connect a socket (kernel space)
3596 * @sock: socket
3597 * @addr: address
3598 * @addrlen: address length
3599 * @flags: flags (O_NONBLOCK, ...)
3600 *
3601 * For datagram sockets, @addr is the address to which datagrams are sent
3602 * by default, and the only address from which datagrams are received.
3603 * For stream sockets, attempts to connect to @addr.
3604 * Returns 0 or an error code.
3605 */
3606
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3607 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3608 int flags)
3609 {
3610 struct sockaddr_storage address;
3611
3612 memcpy(&address, addr, addrlen);
3613
3614 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3615 addrlen, flags);
3616 }
3617 EXPORT_SYMBOL(kernel_connect);
3618
3619 /**
3620 * kernel_getsockname - get the address which the socket is bound (kernel space)
3621 * @sock: socket
3622 * @addr: address holder
3623 *
3624 * Fills the @addr pointer with the address which the socket is bound.
3625 * Returns the length of the address in bytes or an error code.
3626 */
3627
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3628 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3629 {
3630 return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3631 }
3632 EXPORT_SYMBOL(kernel_getsockname);
3633
3634 /**
3635 * kernel_getpeername - get the address which the socket is connected (kernel space)
3636 * @sock: socket
3637 * @addr: address holder
3638 *
3639 * Fills the @addr pointer with the address which the socket is connected.
3640 * Returns the length of the address in bytes or an error code.
3641 */
3642
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3643 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3644 {
3645 return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3646 }
3647 EXPORT_SYMBOL(kernel_getpeername);
3648
3649 /**
3650 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3651 * @sock: socket
3652 * @how: connection part
3653 *
3654 * Returns 0 or an error.
3655 */
3656
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3657 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3658 {
3659 return READ_ONCE(sock->ops)->shutdown(sock, how);
3660 }
3661 EXPORT_SYMBOL(kernel_sock_shutdown);
3662
3663 /**
3664 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3665 * @sk: socket
3666 *
3667 * This routine returns the IP overhead imposed by a socket i.e.
3668 * the length of the underlying IP header, depending on whether
3669 * this is an IPv4 or IPv6 socket and the length from IP options turned
3670 * on at the socket. Assumes that the caller has a lock on the socket.
3671 */
3672
kernel_sock_ip_overhead(struct sock * sk)3673 u32 kernel_sock_ip_overhead(struct sock *sk)
3674 {
3675 struct inet_sock *inet;
3676 struct ip_options_rcu *opt;
3677 u32 overhead = 0;
3678 #if IS_ENABLED(CONFIG_IPV6)
3679 struct ipv6_pinfo *np;
3680 struct ipv6_txoptions *optv6 = NULL;
3681 #endif /* IS_ENABLED(CONFIG_IPV6) */
3682
3683 if (!sk)
3684 return overhead;
3685
3686 switch (sk->sk_family) {
3687 case AF_INET:
3688 inet = inet_sk(sk);
3689 overhead += sizeof(struct iphdr);
3690 opt = rcu_dereference_protected(inet->inet_opt,
3691 sock_owned_by_user(sk));
3692 if (opt)
3693 overhead += opt->opt.optlen;
3694 return overhead;
3695 #if IS_ENABLED(CONFIG_IPV6)
3696 case AF_INET6:
3697 np = inet6_sk(sk);
3698 overhead += sizeof(struct ipv6hdr);
3699 if (np)
3700 optv6 = rcu_dereference_protected(np->opt,
3701 sock_owned_by_user(sk));
3702 if (optv6)
3703 overhead += (optv6->opt_flen + optv6->opt_nflen);
3704 return overhead;
3705 #endif /* IS_ENABLED(CONFIG_IPV6) */
3706 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3707 return overhead;
3708 }
3709 }
3710 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3711