1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET		An implementation of the SOCKET network access protocol.
4  *
5  * Version:	@(#)socket.c	1.1.93	18/02/95
6  *
7  * Authors:	Orest Zborowski, <[email protected]>
8  *		Ross Biro
9  *		Fred N. van Kempen, <[email protected]>
10  *
11  * Fixes:
12  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
13  *					shutdown()
14  *		Alan Cox	:	verify_area() fixes
15  *		Alan Cox	:	Removed DDI
16  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
17  *		Alan Cox	:	Moved a load of checks to the very
18  *					top level.
19  *		Alan Cox	:	Move address structures to/from user
20  *					mode above the protocol layers.
21  *		Rob Janssen	:	Allow 0 length sends.
22  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
23  *					tty drivers).
24  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
25  *		Jeff Uphoff	:	Made max number of sockets command-line
26  *					configurable.
27  *		Matti Aarnio	:	Made the number of sockets dynamic,
28  *					to be allocated when needed, and mr.
29  *					Uphoff's max is used as max to be
30  *					allowed to allocate.
31  *		Linus		:	Argh. removed all the socket allocation
32  *					altogether: it's in the inode now.
33  *		Alan Cox	:	Made sock_alloc()/sock_release() public
34  *					for NetROM and future kernel nfsd type
35  *					stuff.
36  *		Alan Cox	:	sendmsg/recvmsg basics.
37  *		Tom Dyas	:	Export net symbols.
38  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
39  *		Alan Cox	:	Added thread locking to sys_* calls
40  *					for sockets. May have errors at the
41  *					moment.
42  *		Kevin Buhr	:	Fixed the dumb errors in the above.
43  *		Andi Kleen	:	Some small cleanups, optimizations,
44  *					and fixed a copy_from_user() bug.
45  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
46  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
47  *					protocol-independent
48  *
49  *	This module is effectively the top level interface to the BSD socket
50  *	paradigm.
51  *
52  *	Based upon Swansea University Computer Society NET3.039
53  */
54 
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
57 #include <linux/mm.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/splice.h>
61 #include <linux/net.h>
62 #include <linux/interrupt.h>
63 #include <linux/thread_info.h>
64 #include <linux/rcupdate.h>
65 #include <linux/netdevice.h>
66 #include <linux/proc_fs.h>
67 #include <linux/seq_file.h>
68 #include <linux/mutex.h>
69 #include <linux/if_bridge.h>
70 #include <linux/if_vlan.h>
71 #include <linux/ptp_classify.h>
72 #include <linux/init.h>
73 #include <linux/poll.h>
74 #include <linux/cache.h>
75 #include <linux/module.h>
76 #include <linux/highmem.h>
77 #include <linux/mount.h>
78 #include <linux/pseudo_fs.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/compat.h>
82 #include <linux/kmod.h>
83 #include <linux/audit.h>
84 #include <linux/wireless.h>
85 #include <linux/nsproxy.h>
86 #include <linux/magic.h>
87 #include <linux/slab.h>
88 #include <linux/xattr.h>
89 #include <linux/nospec.h>
90 #include <linux/indirect_call_wrapper.h>
91 #include <linux/io_uring/net.h>
92 
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/termios.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 #include <linux/ptp_clock_kernel.h>
111 #include <trace/events/sock.h>
112 
113 #include "core/dev.h"
114 
115 #ifdef CONFIG_NET_RX_BUSY_POLL
116 unsigned int sysctl_net_busy_read __read_mostly;
117 unsigned int sysctl_net_busy_poll __read_mostly;
118 #endif
119 
120 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
121 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
122 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
123 
124 static int sock_close(struct inode *inode, struct file *file);
125 static __poll_t sock_poll(struct file *file,
126 			      struct poll_table_struct *wait);
127 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
128 #ifdef CONFIG_COMPAT
129 static long compat_sock_ioctl(struct file *file,
130 			      unsigned int cmd, unsigned long arg);
131 #endif
132 static int sock_fasync(int fd, struct file *filp, int on);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134 				struct pipe_inode_info *pipe, size_t len,
135 				unsigned int flags);
136 static void sock_splice_eof(struct file *file);
137 
138 #ifdef CONFIG_PROC_FS
sock_show_fdinfo(struct seq_file * m,struct file * f)139 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
140 {
141 	struct socket *sock = f->private_data;
142 	const struct proto_ops *ops = READ_ONCE(sock->ops);
143 
144 	if (ops->show_fdinfo)
145 		ops->show_fdinfo(m, sock);
146 }
147 #else
148 #define sock_show_fdinfo NULL
149 #endif
150 
151 /*
152  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
153  *	in the operation structures but are done directly via the socketcall() multiplexor.
154  */
155 
156 static const struct file_operations socket_file_ops = {
157 	.owner =	THIS_MODULE,
158 	.read_iter =	sock_read_iter,
159 	.write_iter =	sock_write_iter,
160 	.poll =		sock_poll,
161 	.unlocked_ioctl = sock_ioctl,
162 #ifdef CONFIG_COMPAT
163 	.compat_ioctl = compat_sock_ioctl,
164 #endif
165 	.uring_cmd =    io_uring_cmd_sock,
166 	.mmap =		sock_mmap,
167 	.release =	sock_close,
168 	.fasync =	sock_fasync,
169 	.splice_write = splice_to_socket,
170 	.splice_read =	sock_splice_read,
171 	.splice_eof =	sock_splice_eof,
172 	.show_fdinfo =	sock_show_fdinfo,
173 };
174 
175 static const char * const pf_family_names[] = {
176 	[PF_UNSPEC]	= "PF_UNSPEC",
177 	[PF_UNIX]	= "PF_UNIX/PF_LOCAL",
178 	[PF_INET]	= "PF_INET",
179 	[PF_AX25]	= "PF_AX25",
180 	[PF_IPX]	= "PF_IPX",
181 	[PF_APPLETALK]	= "PF_APPLETALK",
182 	[PF_NETROM]	= "PF_NETROM",
183 	[PF_BRIDGE]	= "PF_BRIDGE",
184 	[PF_ATMPVC]	= "PF_ATMPVC",
185 	[PF_X25]	= "PF_X25",
186 	[PF_INET6]	= "PF_INET6",
187 	[PF_ROSE]	= "PF_ROSE",
188 	[PF_DECnet]	= "PF_DECnet",
189 	[PF_NETBEUI]	= "PF_NETBEUI",
190 	[PF_SECURITY]	= "PF_SECURITY",
191 	[PF_KEY]	= "PF_KEY",
192 	[PF_NETLINK]	= "PF_NETLINK/PF_ROUTE",
193 	[PF_PACKET]	= "PF_PACKET",
194 	[PF_ASH]	= "PF_ASH",
195 	[PF_ECONET]	= "PF_ECONET",
196 	[PF_ATMSVC]	= "PF_ATMSVC",
197 	[PF_RDS]	= "PF_RDS",
198 	[PF_SNA]	= "PF_SNA",
199 	[PF_IRDA]	= "PF_IRDA",
200 	[PF_PPPOX]	= "PF_PPPOX",
201 	[PF_WANPIPE]	= "PF_WANPIPE",
202 	[PF_LLC]	= "PF_LLC",
203 	[PF_IB]		= "PF_IB",
204 	[PF_MPLS]	= "PF_MPLS",
205 	[PF_CAN]	= "PF_CAN",
206 	[PF_TIPC]	= "PF_TIPC",
207 	[PF_BLUETOOTH]	= "PF_BLUETOOTH",
208 	[PF_IUCV]	= "PF_IUCV",
209 	[PF_RXRPC]	= "PF_RXRPC",
210 	[PF_ISDN]	= "PF_ISDN",
211 	[PF_PHONET]	= "PF_PHONET",
212 	[PF_IEEE802154]	= "PF_IEEE802154",
213 	[PF_CAIF]	= "PF_CAIF",
214 	[PF_ALG]	= "PF_ALG",
215 	[PF_NFC]	= "PF_NFC",
216 	[PF_VSOCK]	= "PF_VSOCK",
217 	[PF_KCM]	= "PF_KCM",
218 	[PF_QIPCRTR]	= "PF_QIPCRTR",
219 	[PF_SMC]	= "PF_SMC",
220 	[PF_XDP]	= "PF_XDP",
221 	[PF_MCTP]	= "PF_MCTP",
222 };
223 
224 /*
225  *	The protocol list. Each protocol is registered in here.
226  */
227 
228 static DEFINE_SPINLOCK(net_family_lock);
229 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
230 
231 /*
232  * Support routines.
233  * Move socket addresses back and forth across the kernel/user
234  * divide and look after the messy bits.
235  */
236 
237 /**
238  *	move_addr_to_kernel	-	copy a socket address into kernel space
239  *	@uaddr: Address in user space
240  *	@kaddr: Address in kernel space
241  *	@ulen: Length in user space
242  *
243  *	The address is copied into kernel space. If the provided address is
244  *	too long an error code of -EINVAL is returned. If the copy gives
245  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
246  */
247 
move_addr_to_kernel(void __user * uaddr,int ulen,struct sockaddr_storage * kaddr)248 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
249 {
250 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
251 		return -EINVAL;
252 	if (ulen == 0)
253 		return 0;
254 	if (copy_from_user(kaddr, uaddr, ulen))
255 		return -EFAULT;
256 	return audit_sockaddr(ulen, kaddr);
257 }
258 
259 /**
260  *	move_addr_to_user	-	copy an address to user space
261  *	@kaddr: kernel space address
262  *	@klen: length of address in kernel
263  *	@uaddr: user space address
264  *	@ulen: pointer to user length field
265  *
266  *	The value pointed to by ulen on entry is the buffer length available.
267  *	This is overwritten with the buffer space used. -EINVAL is returned
268  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
269  *	is returned if either the buffer or the length field are not
270  *	accessible.
271  *	After copying the data up to the limit the user specifies, the true
272  *	length of the data is written over the length limit the user
273  *	specified. Zero is returned for a success.
274  */
275 
move_addr_to_user(struct sockaddr_storage * kaddr,int klen,void __user * uaddr,int __user * ulen)276 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
277 			     void __user *uaddr, int __user *ulen)
278 {
279 	int err;
280 	int len;
281 
282 	BUG_ON(klen > sizeof(struct sockaddr_storage));
283 	err = get_user(len, ulen);
284 	if (err)
285 		return err;
286 	if (len > klen)
287 		len = klen;
288 	if (len < 0)
289 		return -EINVAL;
290 	if (len) {
291 		if (audit_sockaddr(klen, kaddr))
292 			return -ENOMEM;
293 		if (copy_to_user(uaddr, kaddr, len))
294 			return -EFAULT;
295 	}
296 	/*
297 	 *      "fromlen shall refer to the value before truncation.."
298 	 *                      1003.1g
299 	 */
300 	return __put_user(klen, ulen);
301 }
302 
303 static struct kmem_cache *sock_inode_cachep __ro_after_init;
304 
sock_alloc_inode(struct super_block * sb)305 static struct inode *sock_alloc_inode(struct super_block *sb)
306 {
307 	struct socket_alloc *ei;
308 
309 	ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
310 	if (!ei)
311 		return NULL;
312 	init_waitqueue_head(&ei->socket.wq.wait);
313 	ei->socket.wq.fasync_list = NULL;
314 	ei->socket.wq.flags = 0;
315 
316 	ei->socket.state = SS_UNCONNECTED;
317 	ei->socket.flags = 0;
318 	ei->socket.ops = NULL;
319 	ei->socket.sk = NULL;
320 	ei->socket.file = NULL;
321 
322 	return &ei->vfs_inode;
323 }
324 
sock_free_inode(struct inode * inode)325 static void sock_free_inode(struct inode *inode)
326 {
327 	struct socket_alloc *ei;
328 
329 	ei = container_of(inode, struct socket_alloc, vfs_inode);
330 	kmem_cache_free(sock_inode_cachep, ei);
331 }
332 
init_once(void * foo)333 static void init_once(void *foo)
334 {
335 	struct socket_alloc *ei = (struct socket_alloc *)foo;
336 
337 	inode_init_once(&ei->vfs_inode);
338 }
339 
init_inodecache(void)340 static void init_inodecache(void)
341 {
342 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
343 					      sizeof(struct socket_alloc),
344 					      0,
345 					      (SLAB_HWCACHE_ALIGN |
346 					       SLAB_RECLAIM_ACCOUNT |
347 					       SLAB_ACCOUNT),
348 					      init_once);
349 	BUG_ON(sock_inode_cachep == NULL);
350 }
351 
352 static const struct super_operations sockfs_ops = {
353 	.alloc_inode	= sock_alloc_inode,
354 	.free_inode	= sock_free_inode,
355 	.statfs		= simple_statfs,
356 };
357 
358 /*
359  * sockfs_dname() is called from d_path().
360  */
sockfs_dname(struct dentry * dentry,char * buffer,int buflen)361 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
362 {
363 	return dynamic_dname(buffer, buflen, "socket:[%lu]",
364 				d_inode(dentry)->i_ino);
365 }
366 
367 static const struct dentry_operations sockfs_dentry_operations = {
368 	.d_dname  = sockfs_dname,
369 };
370 
sockfs_xattr_get(const struct xattr_handler * handler,struct dentry * dentry,struct inode * inode,const char * suffix,void * value,size_t size)371 static int sockfs_xattr_get(const struct xattr_handler *handler,
372 			    struct dentry *dentry, struct inode *inode,
373 			    const char *suffix, void *value, size_t size)
374 {
375 	if (value) {
376 		if (dentry->d_name.len + 1 > size)
377 			return -ERANGE;
378 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
379 	}
380 	return dentry->d_name.len + 1;
381 }
382 
383 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
384 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
385 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
386 
387 static const struct xattr_handler sockfs_xattr_handler = {
388 	.name = XATTR_NAME_SOCKPROTONAME,
389 	.get = sockfs_xattr_get,
390 };
391 
sockfs_security_xattr_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * dentry,struct inode * inode,const char * suffix,const void * value,size_t size,int flags)392 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
393 				     struct mnt_idmap *idmap,
394 				     struct dentry *dentry, struct inode *inode,
395 				     const char *suffix, const void *value,
396 				     size_t size, int flags)
397 {
398 	/* Handled by LSM. */
399 	return -EAGAIN;
400 }
401 
402 static const struct xattr_handler sockfs_security_xattr_handler = {
403 	.prefix = XATTR_SECURITY_PREFIX,
404 	.set = sockfs_security_xattr_set,
405 };
406 
407 static const struct xattr_handler * const sockfs_xattr_handlers[] = {
408 	&sockfs_xattr_handler,
409 	&sockfs_security_xattr_handler,
410 	NULL
411 };
412 
sockfs_init_fs_context(struct fs_context * fc)413 static int sockfs_init_fs_context(struct fs_context *fc)
414 {
415 	struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
416 	if (!ctx)
417 		return -ENOMEM;
418 	ctx->ops = &sockfs_ops;
419 	ctx->dops = &sockfs_dentry_operations;
420 	ctx->xattr = sockfs_xattr_handlers;
421 	return 0;
422 }
423 
424 static struct vfsmount *sock_mnt __read_mostly;
425 
426 static struct file_system_type sock_fs_type = {
427 	.name =		"sockfs",
428 	.init_fs_context = sockfs_init_fs_context,
429 	.kill_sb =	kill_anon_super,
430 };
431 
432 /*
433  *	Obtains the first available file descriptor and sets it up for use.
434  *
435  *	These functions create file structures and maps them to fd space
436  *	of the current process. On success it returns file descriptor
437  *	and file struct implicitly stored in sock->file.
438  *	Note that another thread may close file descriptor before we return
439  *	from this function. We use the fact that now we do not refer
440  *	to socket after mapping. If one day we will need it, this
441  *	function will increment ref. count on file by 1.
442  *
443  *	In any case returned fd MAY BE not valid!
444  *	This race condition is unavoidable
445  *	with shared fd spaces, we cannot solve it inside kernel,
446  *	but we take care of internal coherence yet.
447  */
448 
449 /**
450  *	sock_alloc_file - Bind a &socket to a &file
451  *	@sock: socket
452  *	@flags: file status flags
453  *	@dname: protocol name
454  *
455  *	Returns the &file bound with @sock, implicitly storing it
456  *	in sock->file. If dname is %NULL, sets to "".
457  *
458  *	On failure @sock is released, and an ERR pointer is returned.
459  *
460  *	This function uses GFP_KERNEL internally.
461  */
462 
sock_alloc_file(struct socket * sock,int flags,const char * dname)463 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
464 {
465 	struct file *file;
466 
467 	if (!dname)
468 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
469 
470 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
471 				O_RDWR | (flags & O_NONBLOCK),
472 				&socket_file_ops);
473 	if (IS_ERR(file)) {
474 		sock_release(sock);
475 		return file;
476 	}
477 
478 	file->f_mode |= FMODE_NOWAIT;
479 	sock->file = file;
480 	file->private_data = sock;
481 	stream_open(SOCK_INODE(sock), file);
482 	/*
483 	 * Disable permission and pre-content events, but enable legacy
484 	 * inotify events for legacy users.
485 	 */
486 	file_set_fsnotify_mode(file, FMODE_NONOTIFY_PERM);
487 	return file;
488 }
489 EXPORT_SYMBOL(sock_alloc_file);
490 
sock_map_fd(struct socket * sock,int flags)491 static int sock_map_fd(struct socket *sock, int flags)
492 {
493 	struct file *newfile;
494 	int fd = get_unused_fd_flags(flags);
495 	if (unlikely(fd < 0)) {
496 		sock_release(sock);
497 		return fd;
498 	}
499 
500 	newfile = sock_alloc_file(sock, flags, NULL);
501 	if (!IS_ERR(newfile)) {
502 		fd_install(fd, newfile);
503 		return fd;
504 	}
505 
506 	put_unused_fd(fd);
507 	return PTR_ERR(newfile);
508 }
509 
510 /**
511  *	sock_from_file - Return the &socket bounded to @file.
512  *	@file: file
513  *
514  *	On failure returns %NULL.
515  */
516 
sock_from_file(struct file * file)517 struct socket *sock_from_file(struct file *file)
518 {
519 	if (likely(file->f_op == &socket_file_ops))
520 		return file->private_data;	/* set in sock_alloc_file */
521 
522 	return NULL;
523 }
524 EXPORT_SYMBOL(sock_from_file);
525 
526 /**
527  *	sockfd_lookup - Go from a file number to its socket slot
528  *	@fd: file handle
529  *	@err: pointer to an error code return
530  *
531  *	The file handle passed in is locked and the socket it is bound
532  *	to is returned. If an error occurs the err pointer is overwritten
533  *	with a negative errno code and NULL is returned. The function checks
534  *	for both invalid handles and passing a handle which is not a socket.
535  *
536  *	On a success the socket object pointer is returned.
537  */
538 
sockfd_lookup(int fd,int * err)539 struct socket *sockfd_lookup(int fd, int *err)
540 {
541 	struct file *file;
542 	struct socket *sock;
543 
544 	file = fget(fd);
545 	if (!file) {
546 		*err = -EBADF;
547 		return NULL;
548 	}
549 
550 	sock = sock_from_file(file);
551 	if (!sock) {
552 		*err = -ENOTSOCK;
553 		fput(file);
554 	}
555 	return sock;
556 }
557 EXPORT_SYMBOL(sockfd_lookup);
558 
sockfs_listxattr(struct dentry * dentry,char * buffer,size_t size)559 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
560 				size_t size)
561 {
562 	ssize_t len;
563 	ssize_t used = 0;
564 
565 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
566 	if (len < 0)
567 		return len;
568 	used += len;
569 	if (buffer) {
570 		if (size < used)
571 			return -ERANGE;
572 		buffer += len;
573 	}
574 
575 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
576 	used += len;
577 	if (buffer) {
578 		if (size < used)
579 			return -ERANGE;
580 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
581 		buffer += len;
582 	}
583 
584 	return used;
585 }
586 
sockfs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)587 static int sockfs_setattr(struct mnt_idmap *idmap,
588 			  struct dentry *dentry, struct iattr *iattr)
589 {
590 	int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
591 
592 	if (!err && (iattr->ia_valid & ATTR_UID)) {
593 		struct socket *sock = SOCKET_I(d_inode(dentry));
594 
595 		if (sock->sk)
596 			sock->sk->sk_uid = iattr->ia_uid;
597 		else
598 			err = -ENOENT;
599 	}
600 
601 	return err;
602 }
603 
604 static const struct inode_operations sockfs_inode_ops = {
605 	.listxattr = sockfs_listxattr,
606 	.setattr = sockfs_setattr,
607 };
608 
609 /**
610  *	sock_alloc - allocate a socket
611  *
612  *	Allocate a new inode and socket object. The two are bound together
613  *	and initialised. The socket is then returned. If we are out of inodes
614  *	NULL is returned. This functions uses GFP_KERNEL internally.
615  */
616 
sock_alloc(void)617 struct socket *sock_alloc(void)
618 {
619 	struct inode *inode;
620 	struct socket *sock;
621 
622 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
623 	if (!inode)
624 		return NULL;
625 
626 	sock = SOCKET_I(inode);
627 
628 	inode->i_ino = get_next_ino();
629 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
630 	inode->i_uid = current_fsuid();
631 	inode->i_gid = current_fsgid();
632 	inode->i_op = &sockfs_inode_ops;
633 
634 	return sock;
635 }
636 EXPORT_SYMBOL(sock_alloc);
637 
__sock_release(struct socket * sock,struct inode * inode)638 static void __sock_release(struct socket *sock, struct inode *inode)
639 {
640 	const struct proto_ops *ops = READ_ONCE(sock->ops);
641 
642 	if (ops) {
643 		struct module *owner = ops->owner;
644 
645 		if (inode)
646 			inode_lock(inode);
647 		ops->release(sock);
648 		sock->sk = NULL;
649 		if (inode)
650 			inode_unlock(inode);
651 		sock->ops = NULL;
652 		module_put(owner);
653 	}
654 
655 	if (sock->wq.fasync_list)
656 		pr_err("%s: fasync list not empty!\n", __func__);
657 
658 	if (!sock->file) {
659 		iput(SOCK_INODE(sock));
660 		return;
661 	}
662 	sock->file = NULL;
663 }
664 
665 /**
666  *	sock_release - close a socket
667  *	@sock: socket to close
668  *
669  *	The socket is released from the protocol stack if it has a release
670  *	callback, and the inode is then released if the socket is bound to
671  *	an inode not a file.
672  */
sock_release(struct socket * sock)673 void sock_release(struct socket *sock)
674 {
675 	__sock_release(sock, NULL);
676 }
677 EXPORT_SYMBOL(sock_release);
678 
__sock_tx_timestamp(__u32 tsflags,__u8 * tx_flags)679 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags)
680 {
681 	u8 flags = *tx_flags;
682 
683 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
684 		flags |= SKBTX_HW_TSTAMP;
685 
686 		/* PTP hardware clocks can provide a free running cycle counter
687 		 * as a time base for virtual clocks. Tell driver to use the
688 		 * free running cycle counter for timestamp if socket is bound
689 		 * to virtual clock.
690 		 */
691 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
692 			flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
693 	}
694 
695 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
696 		flags |= SKBTX_SW_TSTAMP;
697 
698 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
699 		flags |= SKBTX_SCHED_TSTAMP;
700 
701 	*tx_flags = flags;
702 }
703 EXPORT_SYMBOL(__sock_tx_timestamp);
704 
705 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
706 					   size_t));
707 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
708 					    size_t));
709 
call_trace_sock_send_length(struct sock * sk,int ret,int flags)710 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
711 						 int flags)
712 {
713 	trace_sock_send_length(sk, ret, 0);
714 }
715 
sock_sendmsg_nosec(struct socket * sock,struct msghdr * msg)716 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
717 {
718 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
719 				     inet_sendmsg, sock, msg,
720 				     msg_data_left(msg));
721 	BUG_ON(ret == -EIOCBQUEUED);
722 
723 	if (trace_sock_send_length_enabled())
724 		call_trace_sock_send_length(sock->sk, ret, 0);
725 	return ret;
726 }
727 
__sock_sendmsg(struct socket * sock,struct msghdr * msg)728 static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
729 {
730 	int err = security_socket_sendmsg(sock, msg,
731 					  msg_data_left(msg));
732 
733 	return err ?: sock_sendmsg_nosec(sock, msg);
734 }
735 
736 /**
737  *	sock_sendmsg - send a message through @sock
738  *	@sock: socket
739  *	@msg: message to send
740  *
741  *	Sends @msg through @sock, passing through LSM.
742  *	Returns the number of bytes sent, or an error code.
743  */
sock_sendmsg(struct socket * sock,struct msghdr * msg)744 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
745 {
746 	struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
747 	struct sockaddr_storage address;
748 	int save_len = msg->msg_namelen;
749 	int ret;
750 
751 	if (msg->msg_name) {
752 		memcpy(&address, msg->msg_name, msg->msg_namelen);
753 		msg->msg_name = &address;
754 	}
755 
756 	ret = __sock_sendmsg(sock, msg);
757 	msg->msg_name = save_addr;
758 	msg->msg_namelen = save_len;
759 
760 	return ret;
761 }
762 EXPORT_SYMBOL(sock_sendmsg);
763 
764 /**
765  *	kernel_sendmsg - send a message through @sock (kernel-space)
766  *	@sock: socket
767  *	@msg: message header
768  *	@vec: kernel vec
769  *	@num: vec array length
770  *	@size: total message data size
771  *
772  *	Builds the message data with @vec and sends it through @sock.
773  *	Returns the number of bytes sent, or an error code.
774  */
775 
kernel_sendmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)776 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
777 		   struct kvec *vec, size_t num, size_t size)
778 {
779 	iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
780 	return sock_sendmsg(sock, msg);
781 }
782 EXPORT_SYMBOL(kernel_sendmsg);
783 
skb_is_err_queue(const struct sk_buff * skb)784 static bool skb_is_err_queue(const struct sk_buff *skb)
785 {
786 	/* pkt_type of skbs enqueued on the error queue are set to
787 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
788 	 * in recvmsg, since skbs received on a local socket will never
789 	 * have a pkt_type of PACKET_OUTGOING.
790 	 */
791 	return skb->pkt_type == PACKET_OUTGOING;
792 }
793 
794 /* On transmit, software and hardware timestamps are returned independently.
795  * As the two skb clones share the hardware timestamp, which may be updated
796  * before the software timestamp is received, a hardware TX timestamp may be
797  * returned only if there is no software TX timestamp. Ignore false software
798  * timestamps, which may be made in the __sock_recv_timestamp() call when the
799  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
800  * hardware timestamp.
801  */
skb_is_swtx_tstamp(const struct sk_buff * skb,int false_tstamp)802 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
803 {
804 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
805 }
806 
get_timestamp(struct sock * sk,struct sk_buff * skb,int * if_index)807 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
808 {
809 	bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
810 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
811 	struct net_device *orig_dev;
812 	ktime_t hwtstamp;
813 
814 	rcu_read_lock();
815 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
816 	if (orig_dev) {
817 		*if_index = orig_dev->ifindex;
818 		hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
819 	} else {
820 		hwtstamp = shhwtstamps->hwtstamp;
821 	}
822 	rcu_read_unlock();
823 
824 	return hwtstamp;
825 }
826 
put_ts_pktinfo(struct msghdr * msg,struct sk_buff * skb,int if_index)827 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
828 			   int if_index)
829 {
830 	struct scm_ts_pktinfo ts_pktinfo;
831 	struct net_device *orig_dev;
832 
833 	if (!skb_mac_header_was_set(skb))
834 		return;
835 
836 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
837 
838 	if (!if_index) {
839 		rcu_read_lock();
840 		orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
841 		if (orig_dev)
842 			if_index = orig_dev->ifindex;
843 		rcu_read_unlock();
844 	}
845 	ts_pktinfo.if_index = if_index;
846 
847 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
848 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
849 		 sizeof(ts_pktinfo), &ts_pktinfo);
850 }
851 
852 /*
853  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
854  */
__sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)855 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
856 	struct sk_buff *skb)
857 {
858 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
859 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
860 	struct scm_timestamping_internal tss;
861 	int empty = 1, false_tstamp = 0;
862 	struct skb_shared_hwtstamps *shhwtstamps =
863 		skb_hwtstamps(skb);
864 	int if_index;
865 	ktime_t hwtstamp;
866 	u32 tsflags;
867 
868 	/* Race occurred between timestamp enabling and packet
869 	   receiving.  Fill in the current time for now. */
870 	if (need_software_tstamp && skb->tstamp == 0) {
871 		__net_timestamp(skb);
872 		false_tstamp = 1;
873 	}
874 
875 	if (need_software_tstamp) {
876 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
877 			if (new_tstamp) {
878 				struct __kernel_sock_timeval tv;
879 
880 				skb_get_new_timestamp(skb, &tv);
881 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
882 					 sizeof(tv), &tv);
883 			} else {
884 				struct __kernel_old_timeval tv;
885 
886 				skb_get_timestamp(skb, &tv);
887 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
888 					 sizeof(tv), &tv);
889 			}
890 		} else {
891 			if (new_tstamp) {
892 				struct __kernel_timespec ts;
893 
894 				skb_get_new_timestampns(skb, &ts);
895 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
896 					 sizeof(ts), &ts);
897 			} else {
898 				struct __kernel_old_timespec ts;
899 
900 				skb_get_timestampns(skb, &ts);
901 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
902 					 sizeof(ts), &ts);
903 			}
904 		}
905 	}
906 
907 	memset(&tss, 0, sizeof(tss));
908 	tsflags = READ_ONCE(sk->sk_tsflags);
909 	if ((tsflags & SOF_TIMESTAMPING_SOFTWARE &&
910 	     (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
911 	      skb_is_err_queue(skb) ||
912 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
913 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
914 		empty = 0;
915 	if (shhwtstamps &&
916 	    (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
917 	     (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
918 	      skb_is_err_queue(skb) ||
919 	      !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER))) &&
920 	    !skb_is_swtx_tstamp(skb, false_tstamp)) {
921 		if_index = 0;
922 		if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
923 			hwtstamp = get_timestamp(sk, skb, &if_index);
924 		else
925 			hwtstamp = shhwtstamps->hwtstamp;
926 
927 		if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
928 			hwtstamp = ptp_convert_timestamp(&hwtstamp,
929 							 READ_ONCE(sk->sk_bind_phc));
930 
931 		if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
932 			empty = 0;
933 
934 			if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
935 			    !skb_is_err_queue(skb))
936 				put_ts_pktinfo(msg, skb, if_index);
937 		}
938 	}
939 	if (!empty) {
940 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
941 			put_cmsg_scm_timestamping64(msg, &tss);
942 		else
943 			put_cmsg_scm_timestamping(msg, &tss);
944 
945 		if (skb_is_err_queue(skb) && skb->len &&
946 		    SKB_EXT_ERR(skb)->opt_stats)
947 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
948 				 skb->len, skb->data);
949 	}
950 }
951 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
952 
953 #ifdef CONFIG_WIRELESS
__sock_recv_wifi_status(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)954 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
955 	struct sk_buff *skb)
956 {
957 	int ack;
958 
959 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
960 		return;
961 	if (!skb->wifi_acked_valid)
962 		return;
963 
964 	ack = skb->wifi_acked;
965 
966 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
967 }
968 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
969 #endif
970 
sock_recv_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)971 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
972 				   struct sk_buff *skb)
973 {
974 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
975 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
976 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
977 }
978 
sock_recv_mark(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)979 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
980 			   struct sk_buff *skb)
981 {
982 	if (sock_flag(sk, SOCK_RCVMARK) && skb) {
983 		/* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
984 		__u32 mark = skb->mark;
985 
986 		put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
987 	}
988 }
989 
sock_recv_priority(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)990 static void sock_recv_priority(struct msghdr *msg, struct sock *sk,
991 			       struct sk_buff *skb)
992 {
993 	if (sock_flag(sk, SOCK_RCVPRIORITY) && skb) {
994 		__u32 priority = skb->priority;
995 
996 		put_cmsg(msg, SOL_SOCKET, SO_PRIORITY, sizeof(__u32), &priority);
997 	}
998 }
999 
__sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)1000 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1001 		       struct sk_buff *skb)
1002 {
1003 	sock_recv_timestamp(msg, sk, skb);
1004 	sock_recv_drops(msg, sk, skb);
1005 	sock_recv_mark(msg, sk, skb);
1006 	sock_recv_priority(msg, sk, skb);
1007 }
1008 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1009 
1010 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1011 					   size_t, int));
1012 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1013 					    size_t, int));
1014 
call_trace_sock_recv_length(struct sock * sk,int ret,int flags)1015 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1016 {
1017 	trace_sock_recv_length(sk, ret, flags);
1018 }
1019 
sock_recvmsg_nosec(struct socket * sock,struct msghdr * msg,int flags)1020 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1021 				     int flags)
1022 {
1023 	int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1024 				     inet6_recvmsg,
1025 				     inet_recvmsg, sock, msg,
1026 				     msg_data_left(msg), flags);
1027 	if (trace_sock_recv_length_enabled())
1028 		call_trace_sock_recv_length(sock->sk, ret, flags);
1029 	return ret;
1030 }
1031 
1032 /**
1033  *	sock_recvmsg - receive a message from @sock
1034  *	@sock: socket
1035  *	@msg: message to receive
1036  *	@flags: message flags
1037  *
1038  *	Receives @msg from @sock, passing through LSM. Returns the total number
1039  *	of bytes received, or an error.
1040  */
sock_recvmsg(struct socket * sock,struct msghdr * msg,int flags)1041 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1042 {
1043 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1044 
1045 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
1046 }
1047 EXPORT_SYMBOL(sock_recvmsg);
1048 
1049 /**
1050  *	kernel_recvmsg - Receive a message from a socket (kernel space)
1051  *	@sock: The socket to receive the message from
1052  *	@msg: Received message
1053  *	@vec: Input s/g array for message data
1054  *	@num: Size of input s/g array
1055  *	@size: Number of bytes to read
1056  *	@flags: Message flags (MSG_DONTWAIT, etc...)
1057  *
1058  *	On return the msg structure contains the scatter/gather array passed in the
1059  *	vec argument. The array is modified so that it consists of the unfilled
1060  *	portion of the original array.
1061  *
1062  *	The returned value is the total number of bytes received, or an error.
1063  */
1064 
kernel_recvmsg(struct socket * sock,struct msghdr * msg,struct kvec * vec,size_t num,size_t size,int flags)1065 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1066 		   struct kvec *vec, size_t num, size_t size, int flags)
1067 {
1068 	msg->msg_control_is_user = false;
1069 	iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1070 	return sock_recvmsg(sock, msg, flags);
1071 }
1072 EXPORT_SYMBOL(kernel_recvmsg);
1073 
sock_splice_read(struct file * file,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1074 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1075 				struct pipe_inode_info *pipe, size_t len,
1076 				unsigned int flags)
1077 {
1078 	struct socket *sock = file->private_data;
1079 	const struct proto_ops *ops;
1080 
1081 	ops = READ_ONCE(sock->ops);
1082 	if (unlikely(!ops->splice_read))
1083 		return copy_splice_read(file, ppos, pipe, len, flags);
1084 
1085 	return ops->splice_read(sock, ppos, pipe, len, flags);
1086 }
1087 
sock_splice_eof(struct file * file)1088 static void sock_splice_eof(struct file *file)
1089 {
1090 	struct socket *sock = file->private_data;
1091 	const struct proto_ops *ops;
1092 
1093 	ops = READ_ONCE(sock->ops);
1094 	if (ops->splice_eof)
1095 		ops->splice_eof(sock);
1096 }
1097 
sock_read_iter(struct kiocb * iocb,struct iov_iter * to)1098 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1099 {
1100 	struct file *file = iocb->ki_filp;
1101 	struct socket *sock = file->private_data;
1102 	struct msghdr msg = {.msg_iter = *to,
1103 			     .msg_iocb = iocb};
1104 	ssize_t res;
1105 
1106 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1107 		msg.msg_flags = MSG_DONTWAIT;
1108 
1109 	if (iocb->ki_pos != 0)
1110 		return -ESPIPE;
1111 
1112 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
1113 		return 0;
1114 
1115 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
1116 	*to = msg.msg_iter;
1117 	return res;
1118 }
1119 
sock_write_iter(struct kiocb * iocb,struct iov_iter * from)1120 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1121 {
1122 	struct file *file = iocb->ki_filp;
1123 	struct socket *sock = file->private_data;
1124 	struct msghdr msg = {.msg_iter = *from,
1125 			     .msg_iocb = iocb};
1126 	ssize_t res;
1127 
1128 	if (iocb->ki_pos != 0)
1129 		return -ESPIPE;
1130 
1131 	if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1132 		msg.msg_flags = MSG_DONTWAIT;
1133 
1134 	if (sock->type == SOCK_SEQPACKET)
1135 		msg.msg_flags |= MSG_EOR;
1136 
1137 	res = __sock_sendmsg(sock, &msg);
1138 	*from = msg.msg_iter;
1139 	return res;
1140 }
1141 
1142 /*
1143  * Atomic setting of ioctl hooks to avoid race
1144  * with module unload.
1145  */
1146 
1147 static DEFINE_MUTEX(br_ioctl_mutex);
1148 static int (*br_ioctl_hook)(struct net *net, unsigned int cmd,
1149 			    void __user *uarg);
1150 
brioctl_set(int (* hook)(struct net * net,unsigned int cmd,void __user * uarg))1151 void brioctl_set(int (*hook)(struct net *net, unsigned int cmd,
1152 			     void __user *uarg))
1153 {
1154 	mutex_lock(&br_ioctl_mutex);
1155 	br_ioctl_hook = hook;
1156 	mutex_unlock(&br_ioctl_mutex);
1157 }
1158 EXPORT_SYMBOL(brioctl_set);
1159 
br_ioctl_call(struct net * net,unsigned int cmd,void __user * uarg)1160 int br_ioctl_call(struct net *net, unsigned int cmd, void __user *uarg)
1161 {
1162 	int err = -ENOPKG;
1163 
1164 	if (!br_ioctl_hook)
1165 		request_module("bridge");
1166 
1167 	mutex_lock(&br_ioctl_mutex);
1168 	if (br_ioctl_hook)
1169 		err = br_ioctl_hook(net, cmd, uarg);
1170 	mutex_unlock(&br_ioctl_mutex);
1171 
1172 	return err;
1173 }
1174 
1175 static DEFINE_MUTEX(vlan_ioctl_mutex);
1176 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1177 
vlan_ioctl_set(int (* hook)(struct net *,void __user *))1178 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1179 {
1180 	mutex_lock(&vlan_ioctl_mutex);
1181 	vlan_ioctl_hook = hook;
1182 	mutex_unlock(&vlan_ioctl_mutex);
1183 }
1184 EXPORT_SYMBOL(vlan_ioctl_set);
1185 
sock_do_ioctl(struct net * net,struct socket * sock,unsigned int cmd,unsigned long arg)1186 static long sock_do_ioctl(struct net *net, struct socket *sock,
1187 			  unsigned int cmd, unsigned long arg)
1188 {
1189 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1190 	struct ifreq ifr;
1191 	bool need_copyout;
1192 	int err;
1193 	void __user *argp = (void __user *)arg;
1194 	void __user *data;
1195 
1196 	err = ops->ioctl(sock, cmd, arg);
1197 
1198 	/*
1199 	 * If this ioctl is unknown try to hand it down
1200 	 * to the NIC driver.
1201 	 */
1202 	if (err != -ENOIOCTLCMD)
1203 		return err;
1204 
1205 	if (!is_socket_ioctl_cmd(cmd))
1206 		return -ENOTTY;
1207 
1208 	if (get_user_ifreq(&ifr, &data, argp))
1209 		return -EFAULT;
1210 	err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1211 	if (!err && need_copyout)
1212 		if (put_user_ifreq(&ifr, argp))
1213 			return -EFAULT;
1214 
1215 	return err;
1216 }
1217 
1218 /*
1219  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1220  *	what to do with it - that's up to the protocol still.
1221  */
1222 
sock_ioctl(struct file * file,unsigned cmd,unsigned long arg)1223 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1224 {
1225 	const struct proto_ops  *ops;
1226 	struct socket *sock;
1227 	struct sock *sk;
1228 	void __user *argp = (void __user *)arg;
1229 	int pid, err;
1230 	struct net *net;
1231 
1232 	sock = file->private_data;
1233 	ops = READ_ONCE(sock->ops);
1234 	sk = sock->sk;
1235 	net = sock_net(sk);
1236 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1237 		struct ifreq ifr;
1238 		void __user *data;
1239 		bool need_copyout;
1240 		if (get_user_ifreq(&ifr, &data, argp))
1241 			return -EFAULT;
1242 		err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1243 		if (!err && need_copyout)
1244 			if (put_user_ifreq(&ifr, argp))
1245 				return -EFAULT;
1246 	} else
1247 #ifdef CONFIG_WEXT_CORE
1248 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1249 		err = wext_handle_ioctl(net, cmd, argp);
1250 	} else
1251 #endif
1252 		switch (cmd) {
1253 		case FIOSETOWN:
1254 		case SIOCSPGRP:
1255 			err = -EFAULT;
1256 			if (get_user(pid, (int __user *)argp))
1257 				break;
1258 			err = f_setown(sock->file, pid, 1);
1259 			break;
1260 		case FIOGETOWN:
1261 		case SIOCGPGRP:
1262 			err = put_user(f_getown(sock->file),
1263 				       (int __user *)argp);
1264 			break;
1265 		case SIOCGIFBR:
1266 		case SIOCSIFBR:
1267 		case SIOCBRADDBR:
1268 		case SIOCBRDELBR:
1269 		case SIOCBRADDIF:
1270 		case SIOCBRDELIF:
1271 			err = br_ioctl_call(net, cmd, argp);
1272 			break;
1273 		case SIOCGIFVLAN:
1274 		case SIOCSIFVLAN:
1275 			err = -ENOPKG;
1276 			if (!vlan_ioctl_hook)
1277 				request_module("8021q");
1278 
1279 			mutex_lock(&vlan_ioctl_mutex);
1280 			if (vlan_ioctl_hook)
1281 				err = vlan_ioctl_hook(net, argp);
1282 			mutex_unlock(&vlan_ioctl_mutex);
1283 			break;
1284 		case SIOCGSKNS:
1285 			err = -EPERM;
1286 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1287 				break;
1288 
1289 			err = open_related_ns(&net->ns, get_net_ns);
1290 			break;
1291 		case SIOCGSTAMP_OLD:
1292 		case SIOCGSTAMPNS_OLD:
1293 			if (!ops->gettstamp) {
1294 				err = -ENOIOCTLCMD;
1295 				break;
1296 			}
1297 			err = ops->gettstamp(sock, argp,
1298 					     cmd == SIOCGSTAMP_OLD,
1299 					     !IS_ENABLED(CONFIG_64BIT));
1300 			break;
1301 		case SIOCGSTAMP_NEW:
1302 		case SIOCGSTAMPNS_NEW:
1303 			if (!ops->gettstamp) {
1304 				err = -ENOIOCTLCMD;
1305 				break;
1306 			}
1307 			err = ops->gettstamp(sock, argp,
1308 					     cmd == SIOCGSTAMP_NEW,
1309 					     false);
1310 			break;
1311 
1312 		case SIOCGIFCONF:
1313 			err = dev_ifconf(net, argp);
1314 			break;
1315 
1316 		default:
1317 			err = sock_do_ioctl(net, sock, cmd, arg);
1318 			break;
1319 		}
1320 	return err;
1321 }
1322 
1323 /**
1324  *	sock_create_lite - creates a socket
1325  *	@family: protocol family (AF_INET, ...)
1326  *	@type: communication type (SOCK_STREAM, ...)
1327  *	@protocol: protocol (0, ...)
1328  *	@res: new socket
1329  *
1330  *	Creates a new socket and assigns it to @res, passing through LSM.
1331  *	The new socket initialization is not complete, see kernel_accept().
1332  *	Returns 0 or an error. On failure @res is set to %NULL.
1333  *	This function internally uses GFP_KERNEL.
1334  */
1335 
sock_create_lite(int family,int type,int protocol,struct socket ** res)1336 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1337 {
1338 	int err;
1339 	struct socket *sock = NULL;
1340 
1341 	err = security_socket_create(family, type, protocol, 1);
1342 	if (err)
1343 		goto out;
1344 
1345 	sock = sock_alloc();
1346 	if (!sock) {
1347 		err = -ENOMEM;
1348 		goto out;
1349 	}
1350 
1351 	sock->type = type;
1352 	err = security_socket_post_create(sock, family, type, protocol, 1);
1353 	if (err)
1354 		goto out_release;
1355 
1356 out:
1357 	*res = sock;
1358 	return err;
1359 out_release:
1360 	sock_release(sock);
1361 	sock = NULL;
1362 	goto out;
1363 }
1364 EXPORT_SYMBOL(sock_create_lite);
1365 
1366 /* No kernel lock held - perfect */
sock_poll(struct file * file,poll_table * wait)1367 static __poll_t sock_poll(struct file *file, poll_table *wait)
1368 {
1369 	struct socket *sock = file->private_data;
1370 	const struct proto_ops *ops = READ_ONCE(sock->ops);
1371 	__poll_t events = poll_requested_events(wait), flag = 0;
1372 
1373 	if (!ops->poll)
1374 		return 0;
1375 
1376 	if (sk_can_busy_loop(sock->sk)) {
1377 		/* poll once if requested by the syscall */
1378 		if (events & POLL_BUSY_LOOP)
1379 			sk_busy_loop(sock->sk, 1);
1380 
1381 		/* if this socket can poll_ll, tell the system call */
1382 		flag = POLL_BUSY_LOOP;
1383 	}
1384 
1385 	return ops->poll(file, sock, wait) | flag;
1386 }
1387 
sock_mmap(struct file * file,struct vm_area_struct * vma)1388 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1389 {
1390 	struct socket *sock = file->private_data;
1391 
1392 	return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1393 }
1394 
sock_close(struct inode * inode,struct file * filp)1395 static int sock_close(struct inode *inode, struct file *filp)
1396 {
1397 	__sock_release(SOCKET_I(inode), inode);
1398 	return 0;
1399 }
1400 
1401 /*
1402  *	Update the socket async list
1403  *
1404  *	Fasync_list locking strategy.
1405  *
1406  *	1. fasync_list is modified only under process context socket lock
1407  *	   i.e. under semaphore.
1408  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1409  *	   or under socket lock
1410  */
1411 
sock_fasync(int fd,struct file * filp,int on)1412 static int sock_fasync(int fd, struct file *filp, int on)
1413 {
1414 	struct socket *sock = filp->private_data;
1415 	struct sock *sk = sock->sk;
1416 	struct socket_wq *wq = &sock->wq;
1417 
1418 	if (sk == NULL)
1419 		return -EINVAL;
1420 
1421 	lock_sock(sk);
1422 	fasync_helper(fd, filp, on, &wq->fasync_list);
1423 
1424 	if (!wq->fasync_list)
1425 		sock_reset_flag(sk, SOCK_FASYNC);
1426 	else
1427 		sock_set_flag(sk, SOCK_FASYNC);
1428 
1429 	release_sock(sk);
1430 	return 0;
1431 }
1432 
1433 /* This function may be called only under rcu_lock */
1434 
sock_wake_async(struct socket_wq * wq,int how,int band)1435 int sock_wake_async(struct socket_wq *wq, int how, int band)
1436 {
1437 	if (!wq || !wq->fasync_list)
1438 		return -1;
1439 
1440 	switch (how) {
1441 	case SOCK_WAKE_WAITD:
1442 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1443 			break;
1444 		goto call_kill;
1445 	case SOCK_WAKE_SPACE:
1446 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1447 			break;
1448 		fallthrough;
1449 	case SOCK_WAKE_IO:
1450 call_kill:
1451 		kill_fasync(&wq->fasync_list, SIGIO, band);
1452 		break;
1453 	case SOCK_WAKE_URG:
1454 		kill_fasync(&wq->fasync_list, SIGURG, band);
1455 	}
1456 
1457 	return 0;
1458 }
1459 EXPORT_SYMBOL(sock_wake_async);
1460 
1461 /**
1462  *	__sock_create - creates a socket
1463  *	@net: net namespace
1464  *	@family: protocol family (AF_INET, ...)
1465  *	@type: communication type (SOCK_STREAM, ...)
1466  *	@protocol: protocol (0, ...)
1467  *	@res: new socket
1468  *	@kern: boolean for kernel space sockets
1469  *
1470  *	Creates a new socket and assigns it to @res, passing through LSM.
1471  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1472  *	be set to true if the socket resides in kernel space.
1473  *	This function internally uses GFP_KERNEL.
1474  */
1475 
__sock_create(struct net * net,int family,int type,int protocol,struct socket ** res,int kern)1476 int __sock_create(struct net *net, int family, int type, int protocol,
1477 			 struct socket **res, int kern)
1478 {
1479 	int err;
1480 	struct socket *sock;
1481 	const struct net_proto_family *pf;
1482 
1483 	/*
1484 	 *      Check protocol is in range
1485 	 */
1486 	if (family < 0 || family >= NPROTO)
1487 		return -EAFNOSUPPORT;
1488 	if (type < 0 || type >= SOCK_MAX)
1489 		return -EINVAL;
1490 
1491 	/* Compatibility.
1492 
1493 	   This uglymoron is moved from INET layer to here to avoid
1494 	   deadlock in module load.
1495 	 */
1496 	if (family == PF_INET && type == SOCK_PACKET) {
1497 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1498 			     current->comm);
1499 		family = PF_PACKET;
1500 	}
1501 
1502 	err = security_socket_create(family, type, protocol, kern);
1503 	if (err)
1504 		return err;
1505 
1506 	/*
1507 	 *	Allocate the socket and allow the family to set things up. if
1508 	 *	the protocol is 0, the family is instructed to select an appropriate
1509 	 *	default.
1510 	 */
1511 	sock = sock_alloc();
1512 	if (!sock) {
1513 		net_warn_ratelimited("socket: no more sockets\n");
1514 		return -ENFILE;	/* Not exactly a match, but its the
1515 				   closest posix thing */
1516 	}
1517 
1518 	sock->type = type;
1519 
1520 #ifdef CONFIG_MODULES
1521 	/* Attempt to load a protocol module if the find failed.
1522 	 *
1523 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1524 	 * requested real, full-featured networking support upon configuration.
1525 	 * Otherwise module support will break!
1526 	 */
1527 	if (rcu_access_pointer(net_families[family]) == NULL)
1528 		request_module("net-pf-%d", family);
1529 #endif
1530 
1531 	rcu_read_lock();
1532 	pf = rcu_dereference(net_families[family]);
1533 	err = -EAFNOSUPPORT;
1534 	if (!pf)
1535 		goto out_release;
1536 
1537 	/*
1538 	 * We will call the ->create function, that possibly is in a loadable
1539 	 * module, so we have to bump that loadable module refcnt first.
1540 	 */
1541 	if (!try_module_get(pf->owner))
1542 		goto out_release;
1543 
1544 	/* Now protected by module ref count */
1545 	rcu_read_unlock();
1546 
1547 	err = pf->create(net, sock, protocol, kern);
1548 	if (err < 0) {
1549 		/* ->create should release the allocated sock->sk object on error
1550 		 * and make sure sock->sk is set to NULL to avoid use-after-free
1551 		 */
1552 		DEBUG_NET_WARN_ONCE(sock->sk,
1553 				    "%ps must clear sock->sk on failure, family: %d, type: %d, protocol: %d\n",
1554 				    pf->create, family, type, protocol);
1555 		goto out_module_put;
1556 	}
1557 
1558 	/*
1559 	 * Now to bump the refcnt of the [loadable] module that owns this
1560 	 * socket at sock_release time we decrement its refcnt.
1561 	 */
1562 	if (!try_module_get(sock->ops->owner))
1563 		goto out_module_busy;
1564 
1565 	/*
1566 	 * Now that we're done with the ->create function, the [loadable]
1567 	 * module can have its refcnt decremented
1568 	 */
1569 	module_put(pf->owner);
1570 	err = security_socket_post_create(sock, family, type, protocol, kern);
1571 	if (err)
1572 		goto out_sock_release;
1573 	*res = sock;
1574 
1575 	return 0;
1576 
1577 out_module_busy:
1578 	err = -EAFNOSUPPORT;
1579 out_module_put:
1580 	sock->ops = NULL;
1581 	module_put(pf->owner);
1582 out_sock_release:
1583 	sock_release(sock);
1584 	return err;
1585 
1586 out_release:
1587 	rcu_read_unlock();
1588 	goto out_sock_release;
1589 }
1590 EXPORT_SYMBOL(__sock_create);
1591 
1592 /**
1593  *	sock_create - creates a socket
1594  *	@family: protocol family (AF_INET, ...)
1595  *	@type: communication type (SOCK_STREAM, ...)
1596  *	@protocol: protocol (0, ...)
1597  *	@res: new socket
1598  *
1599  *	A wrapper around __sock_create().
1600  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1601  */
1602 
sock_create(int family,int type,int protocol,struct socket ** res)1603 int sock_create(int family, int type, int protocol, struct socket **res)
1604 {
1605 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1606 }
1607 EXPORT_SYMBOL(sock_create);
1608 
1609 /**
1610  *	sock_create_kern - creates a socket (kernel space)
1611  *	@net: net namespace
1612  *	@family: protocol family (AF_INET, ...)
1613  *	@type: communication type (SOCK_STREAM, ...)
1614  *	@protocol: protocol (0, ...)
1615  *	@res: new socket
1616  *
1617  *	A wrapper around __sock_create().
1618  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1619  */
1620 
sock_create_kern(struct net * net,int family,int type,int protocol,struct socket ** res)1621 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1622 {
1623 	return __sock_create(net, family, type, protocol, res, 1);
1624 }
1625 EXPORT_SYMBOL(sock_create_kern);
1626 
__sys_socket_create(int family,int type,int protocol)1627 static struct socket *__sys_socket_create(int family, int type, int protocol)
1628 {
1629 	struct socket *sock;
1630 	int retval;
1631 
1632 	/* Check the SOCK_* constants for consistency.  */
1633 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1634 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1635 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1636 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1637 
1638 	if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1639 		return ERR_PTR(-EINVAL);
1640 	type &= SOCK_TYPE_MASK;
1641 
1642 	retval = sock_create(family, type, protocol, &sock);
1643 	if (retval < 0)
1644 		return ERR_PTR(retval);
1645 
1646 	return sock;
1647 }
1648 
__sys_socket_file(int family,int type,int protocol)1649 struct file *__sys_socket_file(int family, int type, int protocol)
1650 {
1651 	struct socket *sock;
1652 	int flags;
1653 
1654 	sock = __sys_socket_create(family, type, protocol);
1655 	if (IS_ERR(sock))
1656 		return ERR_CAST(sock);
1657 
1658 	flags = type & ~SOCK_TYPE_MASK;
1659 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1660 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1661 
1662 	return sock_alloc_file(sock, flags, NULL);
1663 }
1664 
1665 /*	A hook for bpf progs to attach to and update socket protocol.
1666  *
1667  *	A static noinline declaration here could cause the compiler to
1668  *	optimize away the function. A global noinline declaration will
1669  *	keep the definition, but may optimize away the callsite.
1670  *	Therefore, __weak is needed to ensure that the call is still
1671  *	emitted, by telling the compiler that we don't know what the
1672  *	function might eventually be.
1673  */
1674 
1675 __bpf_hook_start();
1676 
update_socket_protocol(int family,int type,int protocol)1677 __weak noinline int update_socket_protocol(int family, int type, int protocol)
1678 {
1679 	return protocol;
1680 }
1681 
1682 __bpf_hook_end();
1683 
__sys_socket(int family,int type,int protocol)1684 int __sys_socket(int family, int type, int protocol)
1685 {
1686 	struct socket *sock;
1687 	int flags;
1688 
1689 	sock = __sys_socket_create(family, type,
1690 				   update_socket_protocol(family, type, protocol));
1691 	if (IS_ERR(sock))
1692 		return PTR_ERR(sock);
1693 
1694 	flags = type & ~SOCK_TYPE_MASK;
1695 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1696 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1697 
1698 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1699 }
1700 
SYSCALL_DEFINE3(socket,int,family,int,type,int,protocol)1701 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1702 {
1703 	return __sys_socket(family, type, protocol);
1704 }
1705 
1706 /*
1707  *	Create a pair of connected sockets.
1708  */
1709 
__sys_socketpair(int family,int type,int protocol,int __user * usockvec)1710 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1711 {
1712 	struct socket *sock1, *sock2;
1713 	int fd1, fd2, err;
1714 	struct file *newfile1, *newfile2;
1715 	int flags;
1716 
1717 	flags = type & ~SOCK_TYPE_MASK;
1718 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1719 		return -EINVAL;
1720 	type &= SOCK_TYPE_MASK;
1721 
1722 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1723 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1724 
1725 	/*
1726 	 * reserve descriptors and make sure we won't fail
1727 	 * to return them to userland.
1728 	 */
1729 	fd1 = get_unused_fd_flags(flags);
1730 	if (unlikely(fd1 < 0))
1731 		return fd1;
1732 
1733 	fd2 = get_unused_fd_flags(flags);
1734 	if (unlikely(fd2 < 0)) {
1735 		put_unused_fd(fd1);
1736 		return fd2;
1737 	}
1738 
1739 	err = put_user(fd1, &usockvec[0]);
1740 	if (err)
1741 		goto out;
1742 
1743 	err = put_user(fd2, &usockvec[1]);
1744 	if (err)
1745 		goto out;
1746 
1747 	/*
1748 	 * Obtain the first socket and check if the underlying protocol
1749 	 * supports the socketpair call.
1750 	 */
1751 
1752 	err = sock_create(family, type, protocol, &sock1);
1753 	if (unlikely(err < 0))
1754 		goto out;
1755 
1756 	err = sock_create(family, type, protocol, &sock2);
1757 	if (unlikely(err < 0)) {
1758 		sock_release(sock1);
1759 		goto out;
1760 	}
1761 
1762 	err = security_socket_socketpair(sock1, sock2);
1763 	if (unlikely(err)) {
1764 		sock_release(sock2);
1765 		sock_release(sock1);
1766 		goto out;
1767 	}
1768 
1769 	err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1770 	if (unlikely(err < 0)) {
1771 		sock_release(sock2);
1772 		sock_release(sock1);
1773 		goto out;
1774 	}
1775 
1776 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1777 	if (IS_ERR(newfile1)) {
1778 		err = PTR_ERR(newfile1);
1779 		sock_release(sock2);
1780 		goto out;
1781 	}
1782 
1783 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1784 	if (IS_ERR(newfile2)) {
1785 		err = PTR_ERR(newfile2);
1786 		fput(newfile1);
1787 		goto out;
1788 	}
1789 
1790 	audit_fd_pair(fd1, fd2);
1791 
1792 	fd_install(fd1, newfile1);
1793 	fd_install(fd2, newfile2);
1794 	return 0;
1795 
1796 out:
1797 	put_unused_fd(fd2);
1798 	put_unused_fd(fd1);
1799 	return err;
1800 }
1801 
SYSCALL_DEFINE4(socketpair,int,family,int,type,int,protocol,int __user *,usockvec)1802 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1803 		int __user *, usockvec)
1804 {
1805 	return __sys_socketpair(family, type, protocol, usockvec);
1806 }
1807 
__sys_bind_socket(struct socket * sock,struct sockaddr_storage * address,int addrlen)1808 int __sys_bind_socket(struct socket *sock, struct sockaddr_storage *address,
1809 		      int addrlen)
1810 {
1811 	int err;
1812 
1813 	err = security_socket_bind(sock, (struct sockaddr *)address,
1814 				   addrlen);
1815 	if (!err)
1816 		err = READ_ONCE(sock->ops)->bind(sock,
1817 						 (struct sockaddr *)address,
1818 						 addrlen);
1819 	return err;
1820 }
1821 
1822 /*
1823  *	Bind a name to a socket. Nothing much to do here since it's
1824  *	the protocol's responsibility to handle the local address.
1825  *
1826  *	We move the socket address to kernel space before we call
1827  *	the protocol layer (having also checked the address is ok).
1828  */
1829 
__sys_bind(int fd,struct sockaddr __user * umyaddr,int addrlen)1830 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1831 {
1832 	struct socket *sock;
1833 	struct sockaddr_storage address;
1834 	CLASS(fd, f)(fd);
1835 	int err;
1836 
1837 	if (fd_empty(f))
1838 		return -EBADF;
1839 	sock = sock_from_file(fd_file(f));
1840 	if (unlikely(!sock))
1841 		return -ENOTSOCK;
1842 
1843 	err = move_addr_to_kernel(umyaddr, addrlen, &address);
1844 	if (unlikely(err))
1845 		return err;
1846 
1847 	return __sys_bind_socket(sock, &address, addrlen);
1848 }
1849 
SYSCALL_DEFINE3(bind,int,fd,struct sockaddr __user *,umyaddr,int,addrlen)1850 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1851 {
1852 	return __sys_bind(fd, umyaddr, addrlen);
1853 }
1854 
1855 /*
1856  *	Perform a listen. Basically, we allow the protocol to do anything
1857  *	necessary for a listen, and if that works, we mark the socket as
1858  *	ready for listening.
1859  */
__sys_listen_socket(struct socket * sock,int backlog)1860 int __sys_listen_socket(struct socket *sock, int backlog)
1861 {
1862 	int somaxconn, err;
1863 
1864 	somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1865 	if ((unsigned int)backlog > somaxconn)
1866 		backlog = somaxconn;
1867 
1868 	err = security_socket_listen(sock, backlog);
1869 	if (!err)
1870 		err = READ_ONCE(sock->ops)->listen(sock, backlog);
1871 	return err;
1872 }
1873 
__sys_listen(int fd,int backlog)1874 int __sys_listen(int fd, int backlog)
1875 {
1876 	CLASS(fd, f)(fd);
1877 	struct socket *sock;
1878 
1879 	if (fd_empty(f))
1880 		return -EBADF;
1881 	sock = sock_from_file(fd_file(f));
1882 	if (unlikely(!sock))
1883 		return -ENOTSOCK;
1884 
1885 	return __sys_listen_socket(sock, backlog);
1886 }
1887 
SYSCALL_DEFINE2(listen,int,fd,int,backlog)1888 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1889 {
1890 	return __sys_listen(fd, backlog);
1891 }
1892 
do_accept(struct file * file,struct proto_accept_arg * arg,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1893 struct file *do_accept(struct file *file, struct proto_accept_arg *arg,
1894 		       struct sockaddr __user *upeer_sockaddr,
1895 		       int __user *upeer_addrlen, int flags)
1896 {
1897 	struct socket *sock, *newsock;
1898 	struct file *newfile;
1899 	int err, len;
1900 	struct sockaddr_storage address;
1901 	const struct proto_ops *ops;
1902 
1903 	sock = sock_from_file(file);
1904 	if (!sock)
1905 		return ERR_PTR(-ENOTSOCK);
1906 
1907 	newsock = sock_alloc();
1908 	if (!newsock)
1909 		return ERR_PTR(-ENFILE);
1910 	ops = READ_ONCE(sock->ops);
1911 
1912 	newsock->type = sock->type;
1913 	newsock->ops = ops;
1914 
1915 	/*
1916 	 * We don't need try_module_get here, as the listening socket (sock)
1917 	 * has the protocol module (sock->ops->owner) held.
1918 	 */
1919 	__module_get(ops->owner);
1920 
1921 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1922 	if (IS_ERR(newfile))
1923 		return newfile;
1924 
1925 	err = security_socket_accept(sock, newsock);
1926 	if (err)
1927 		goto out_fd;
1928 
1929 	arg->flags |= sock->file->f_flags;
1930 	err = ops->accept(sock, newsock, arg);
1931 	if (err < 0)
1932 		goto out_fd;
1933 
1934 	if (upeer_sockaddr) {
1935 		len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1936 		if (len < 0) {
1937 			err = -ECONNABORTED;
1938 			goto out_fd;
1939 		}
1940 		err = move_addr_to_user(&address,
1941 					len, upeer_sockaddr, upeer_addrlen);
1942 		if (err < 0)
1943 			goto out_fd;
1944 	}
1945 
1946 	/* File flags are not inherited via accept() unlike another OSes. */
1947 	return newfile;
1948 out_fd:
1949 	fput(newfile);
1950 	return ERR_PTR(err);
1951 }
1952 
__sys_accept4_file(struct file * file,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1953 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1954 			      int __user *upeer_addrlen, int flags)
1955 {
1956 	struct proto_accept_arg arg = { };
1957 	struct file *newfile;
1958 	int newfd;
1959 
1960 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1961 		return -EINVAL;
1962 
1963 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1964 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1965 
1966 	newfd = get_unused_fd_flags(flags);
1967 	if (unlikely(newfd < 0))
1968 		return newfd;
1969 
1970 	newfile = do_accept(file, &arg, upeer_sockaddr, upeer_addrlen,
1971 			    flags);
1972 	if (IS_ERR(newfile)) {
1973 		put_unused_fd(newfd);
1974 		return PTR_ERR(newfile);
1975 	}
1976 	fd_install(newfd, newfile);
1977 	return newfd;
1978 }
1979 
1980 /*
1981  *	For accept, we attempt to create a new socket, set up the link
1982  *	with the client, wake up the client, then return the new
1983  *	connected fd. We collect the address of the connector in kernel
1984  *	space and move it to user at the very end. This is unclean because
1985  *	we open the socket then return an error.
1986  *
1987  *	1003.1g adds the ability to recvmsg() to query connection pending
1988  *	status to recvmsg. We need to add that support in a way thats
1989  *	clean when we restructure accept also.
1990  */
1991 
__sys_accept4(int fd,struct sockaddr __user * upeer_sockaddr,int __user * upeer_addrlen,int flags)1992 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1993 		  int __user *upeer_addrlen, int flags)
1994 {
1995 	CLASS(fd, f)(fd);
1996 
1997 	if (fd_empty(f))
1998 		return -EBADF;
1999 	return __sys_accept4_file(fd_file(f), upeer_sockaddr,
2000 					 upeer_addrlen, flags);
2001 }
2002 
SYSCALL_DEFINE4(accept4,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen,int,flags)2003 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2004 		int __user *, upeer_addrlen, int, flags)
2005 {
2006 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2007 }
2008 
SYSCALL_DEFINE3(accept,int,fd,struct sockaddr __user *,upeer_sockaddr,int __user *,upeer_addrlen)2009 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2010 		int __user *, upeer_addrlen)
2011 {
2012 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
2013 }
2014 
2015 /*
2016  *	Attempt to connect to a socket with the server address.  The address
2017  *	is in user space so we verify it is OK and move it to kernel space.
2018  *
2019  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2020  *	break bindings
2021  *
2022  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2023  *	other SEQPACKET protocols that take time to connect() as it doesn't
2024  *	include the -EINPROGRESS status for such sockets.
2025  */
2026 
__sys_connect_file(struct file * file,struct sockaddr_storage * address,int addrlen,int file_flags)2027 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2028 		       int addrlen, int file_flags)
2029 {
2030 	struct socket *sock;
2031 	int err;
2032 
2033 	sock = sock_from_file(file);
2034 	if (!sock) {
2035 		err = -ENOTSOCK;
2036 		goto out;
2037 	}
2038 
2039 	err =
2040 	    security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2041 	if (err)
2042 		goto out;
2043 
2044 	err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2045 				addrlen, sock->file->f_flags | file_flags);
2046 out:
2047 	return err;
2048 }
2049 
__sys_connect(int fd,struct sockaddr __user * uservaddr,int addrlen)2050 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2051 {
2052 	struct sockaddr_storage address;
2053 	CLASS(fd, f)(fd);
2054 	int ret;
2055 
2056 	if (fd_empty(f))
2057 		return -EBADF;
2058 
2059 	ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2060 	if (ret)
2061 		return ret;
2062 
2063 	return __sys_connect_file(fd_file(f), &address, addrlen, 0);
2064 }
2065 
SYSCALL_DEFINE3(connect,int,fd,struct sockaddr __user *,uservaddr,int,addrlen)2066 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2067 		int, addrlen)
2068 {
2069 	return __sys_connect(fd, uservaddr, addrlen);
2070 }
2071 
2072 /*
2073  *	Get the local address ('name') of a socket object. Move the obtained
2074  *	name to user space.
2075  */
2076 
__sys_getsockname(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2077 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2078 		      int __user *usockaddr_len)
2079 {
2080 	struct socket *sock;
2081 	struct sockaddr_storage address;
2082 	CLASS(fd, f)(fd);
2083 	int err;
2084 
2085 	if (fd_empty(f))
2086 		return -EBADF;
2087 	sock = sock_from_file(fd_file(f));
2088 	if (unlikely(!sock))
2089 		return -ENOTSOCK;
2090 
2091 	err = security_socket_getsockname(sock);
2092 	if (err)
2093 		return err;
2094 
2095 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2096 	if (err < 0)
2097 		return err;
2098 
2099 	/* "err" is actually length in this case */
2100 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2101 }
2102 
SYSCALL_DEFINE3(getsockname,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2103 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2104 		int __user *, usockaddr_len)
2105 {
2106 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
2107 }
2108 
2109 /*
2110  *	Get the remote address ('name') of a socket object. Move the obtained
2111  *	name to user space.
2112  */
2113 
__sys_getpeername(int fd,struct sockaddr __user * usockaddr,int __user * usockaddr_len)2114 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2115 		      int __user *usockaddr_len)
2116 {
2117 	struct socket *sock;
2118 	struct sockaddr_storage address;
2119 	CLASS(fd, f)(fd);
2120 	int err;
2121 
2122 	if (fd_empty(f))
2123 		return -EBADF;
2124 	sock = sock_from_file(fd_file(f));
2125 	if (unlikely(!sock))
2126 		return -ENOTSOCK;
2127 
2128 	err = security_socket_getpeername(sock);
2129 	if (err)
2130 		return err;
2131 
2132 	err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 1);
2133 	if (err < 0)
2134 		return err;
2135 
2136 	/* "err" is actually length in this case */
2137 	return move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2138 }
2139 
SYSCALL_DEFINE3(getpeername,int,fd,struct sockaddr __user *,usockaddr,int __user *,usockaddr_len)2140 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2141 		int __user *, usockaddr_len)
2142 {
2143 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
2144 }
2145 
2146 /*
2147  *	Send a datagram to a given address. We move the address into kernel
2148  *	space and check the user space data area is readable before invoking
2149  *	the protocol.
2150  */
__sys_sendto(int fd,void __user * buff,size_t len,unsigned int flags,struct sockaddr __user * addr,int addr_len)2151 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2152 		 struct sockaddr __user *addr,  int addr_len)
2153 {
2154 	struct socket *sock;
2155 	struct sockaddr_storage address;
2156 	int err;
2157 	struct msghdr msg;
2158 
2159 	err = import_ubuf(ITER_SOURCE, buff, len, &msg.msg_iter);
2160 	if (unlikely(err))
2161 		return err;
2162 
2163 	CLASS(fd, f)(fd);
2164 	if (fd_empty(f))
2165 		return -EBADF;
2166 	sock = sock_from_file(fd_file(f));
2167 	if (unlikely(!sock))
2168 		return -ENOTSOCK;
2169 
2170 	msg.msg_name = NULL;
2171 	msg.msg_control = NULL;
2172 	msg.msg_controllen = 0;
2173 	msg.msg_namelen = 0;
2174 	msg.msg_ubuf = NULL;
2175 	if (addr) {
2176 		err = move_addr_to_kernel(addr, addr_len, &address);
2177 		if (err < 0)
2178 			return err;
2179 		msg.msg_name = (struct sockaddr *)&address;
2180 		msg.msg_namelen = addr_len;
2181 	}
2182 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2183 	if (sock->file->f_flags & O_NONBLOCK)
2184 		flags |= MSG_DONTWAIT;
2185 	msg.msg_flags = flags;
2186 	return __sock_sendmsg(sock, &msg);
2187 }
2188 
SYSCALL_DEFINE6(sendto,int,fd,void __user *,buff,size_t,len,unsigned int,flags,struct sockaddr __user *,addr,int,addr_len)2189 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2190 		unsigned int, flags, struct sockaddr __user *, addr,
2191 		int, addr_len)
2192 {
2193 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2194 }
2195 
2196 /*
2197  *	Send a datagram down a socket.
2198  */
2199 
SYSCALL_DEFINE4(send,int,fd,void __user *,buff,size_t,len,unsigned int,flags)2200 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2201 		unsigned int, flags)
2202 {
2203 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
2204 }
2205 
2206 /*
2207  *	Receive a frame from the socket and optionally record the address of the
2208  *	sender. We verify the buffers are writable and if needed move the
2209  *	sender address from kernel to user space.
2210  */
__sys_recvfrom(int fd,void __user * ubuf,size_t size,unsigned int flags,struct sockaddr __user * addr,int __user * addr_len)2211 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2212 		   struct sockaddr __user *addr, int __user *addr_len)
2213 {
2214 	struct sockaddr_storage address;
2215 	struct msghdr msg = {
2216 		/* Save some cycles and don't copy the address if not needed */
2217 		.msg_name = addr ? (struct sockaddr *)&address : NULL,
2218 	};
2219 	struct socket *sock;
2220 	int err, err2;
2221 
2222 	err = import_ubuf(ITER_DEST, ubuf, size, &msg.msg_iter);
2223 	if (unlikely(err))
2224 		return err;
2225 
2226 	CLASS(fd, f)(fd);
2227 
2228 	if (fd_empty(f))
2229 		return -EBADF;
2230 	sock = sock_from_file(fd_file(f));
2231 	if (unlikely(!sock))
2232 		return -ENOTSOCK;
2233 
2234 	if (sock->file->f_flags & O_NONBLOCK)
2235 		flags |= MSG_DONTWAIT;
2236 	err = sock_recvmsg(sock, &msg, flags);
2237 
2238 	if (err >= 0 && addr != NULL) {
2239 		err2 = move_addr_to_user(&address,
2240 					 msg.msg_namelen, addr, addr_len);
2241 		if (err2 < 0)
2242 			err = err2;
2243 	}
2244 	return err;
2245 }
2246 
SYSCALL_DEFINE6(recvfrom,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags,struct sockaddr __user *,addr,int __user *,addr_len)2247 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2248 		unsigned int, flags, struct sockaddr __user *, addr,
2249 		int __user *, addr_len)
2250 {
2251 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2252 }
2253 
2254 /*
2255  *	Receive a datagram from a socket.
2256  */
2257 
SYSCALL_DEFINE4(recv,int,fd,void __user *,ubuf,size_t,size,unsigned int,flags)2258 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2259 		unsigned int, flags)
2260 {
2261 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2262 }
2263 
sock_use_custom_sol_socket(const struct socket * sock)2264 static bool sock_use_custom_sol_socket(const struct socket *sock)
2265 {
2266 	return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2267 }
2268 
do_sock_setsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,int optlen)2269 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2270 		       int optname, sockptr_t optval, int optlen)
2271 {
2272 	const struct proto_ops *ops;
2273 	char *kernel_optval = NULL;
2274 	int err;
2275 
2276 	if (optlen < 0)
2277 		return -EINVAL;
2278 
2279 	err = security_socket_setsockopt(sock, level, optname);
2280 	if (err)
2281 		goto out_put;
2282 
2283 	if (!compat)
2284 		err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2285 						     optval, &optlen,
2286 						     &kernel_optval);
2287 	if (err < 0)
2288 		goto out_put;
2289 	if (err > 0) {
2290 		err = 0;
2291 		goto out_put;
2292 	}
2293 
2294 	if (kernel_optval)
2295 		optval = KERNEL_SOCKPTR(kernel_optval);
2296 	ops = READ_ONCE(sock->ops);
2297 	if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2298 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2299 	else if (unlikely(!ops->setsockopt))
2300 		err = -EOPNOTSUPP;
2301 	else
2302 		err = ops->setsockopt(sock, level, optname, optval,
2303 					    optlen);
2304 	kfree(kernel_optval);
2305 out_put:
2306 	return err;
2307 }
2308 EXPORT_SYMBOL(do_sock_setsockopt);
2309 
2310 /* Set a socket option. Because we don't know the option lengths we have
2311  * to pass the user mode parameter for the protocols to sort out.
2312  */
__sys_setsockopt(int fd,int level,int optname,char __user * user_optval,int optlen)2313 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2314 		     int optlen)
2315 {
2316 	sockptr_t optval = USER_SOCKPTR(user_optval);
2317 	bool compat = in_compat_syscall();
2318 	struct socket *sock;
2319 	CLASS(fd, f)(fd);
2320 
2321 	if (fd_empty(f))
2322 		return -EBADF;
2323 	sock = sock_from_file(fd_file(f));
2324 	if (unlikely(!sock))
2325 		return -ENOTSOCK;
2326 
2327 	return do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2328 }
2329 
SYSCALL_DEFINE5(setsockopt,int,fd,int,level,int,optname,char __user *,optval,int,optlen)2330 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2331 		char __user *, optval, int, optlen)
2332 {
2333 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2334 }
2335 
2336 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2337 							 int optname));
2338 
do_sock_getsockopt(struct socket * sock,bool compat,int level,int optname,sockptr_t optval,sockptr_t optlen)2339 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2340 		       int optname, sockptr_t optval, sockptr_t optlen)
2341 {
2342 	int max_optlen __maybe_unused = 0;
2343 	const struct proto_ops *ops;
2344 	int err;
2345 
2346 	err = security_socket_getsockopt(sock, level, optname);
2347 	if (err)
2348 		return err;
2349 
2350 	if (!compat)
2351 		copy_from_sockptr(&max_optlen, optlen, sizeof(int));
2352 
2353 	ops = READ_ONCE(sock->ops);
2354 	if (level == SOL_SOCKET) {
2355 		err = sk_getsockopt(sock->sk, level, optname, optval, optlen);
2356 	} else if (unlikely(!ops->getsockopt)) {
2357 		err = -EOPNOTSUPP;
2358 	} else {
2359 		if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2360 			      "Invalid argument type"))
2361 			return -EOPNOTSUPP;
2362 
2363 		err = ops->getsockopt(sock, level, optname, optval.user,
2364 				      optlen.user);
2365 	}
2366 
2367 	if (!compat)
2368 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2369 						     optval, optlen, max_optlen,
2370 						     err);
2371 
2372 	return err;
2373 }
2374 EXPORT_SYMBOL(do_sock_getsockopt);
2375 
2376 /*
2377  *	Get a socket option. Because we don't know the option lengths we have
2378  *	to pass a user mode parameter for the protocols to sort out.
2379  */
__sys_getsockopt(int fd,int level,int optname,char __user * optval,int __user * optlen)2380 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2381 		int __user *optlen)
2382 {
2383 	struct socket *sock;
2384 	CLASS(fd, f)(fd);
2385 
2386 	if (fd_empty(f))
2387 		return -EBADF;
2388 	sock = sock_from_file(fd_file(f));
2389 	if (unlikely(!sock))
2390 		return -ENOTSOCK;
2391 
2392 	return do_sock_getsockopt(sock, in_compat_syscall(), level, optname,
2393 				 USER_SOCKPTR(optval), USER_SOCKPTR(optlen));
2394 }
2395 
SYSCALL_DEFINE5(getsockopt,int,fd,int,level,int,optname,char __user *,optval,int __user *,optlen)2396 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2397 		char __user *, optval, int __user *, optlen)
2398 {
2399 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2400 }
2401 
2402 /*
2403  *	Shutdown a socket.
2404  */
2405 
__sys_shutdown_sock(struct socket * sock,int how)2406 int __sys_shutdown_sock(struct socket *sock, int how)
2407 {
2408 	int err;
2409 
2410 	err = security_socket_shutdown(sock, how);
2411 	if (!err)
2412 		err = READ_ONCE(sock->ops)->shutdown(sock, how);
2413 
2414 	return err;
2415 }
2416 
__sys_shutdown(int fd,int how)2417 int __sys_shutdown(int fd, int how)
2418 {
2419 	struct socket *sock;
2420 	CLASS(fd, f)(fd);
2421 
2422 	if (fd_empty(f))
2423 		return -EBADF;
2424 	sock = sock_from_file(fd_file(f));
2425 	if (unlikely(!sock))
2426 		return -ENOTSOCK;
2427 
2428 	return __sys_shutdown_sock(sock, how);
2429 }
2430 
SYSCALL_DEFINE2(shutdown,int,fd,int,how)2431 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2432 {
2433 	return __sys_shutdown(fd, how);
2434 }
2435 
2436 /* A couple of helpful macros for getting the address of the 32/64 bit
2437  * fields which are the same type (int / unsigned) on our platforms.
2438  */
2439 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2440 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2441 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2442 
2443 struct used_address {
2444 	struct sockaddr_storage name;
2445 	unsigned int name_len;
2446 };
2447 
__copy_msghdr(struct msghdr * kmsg,struct user_msghdr * msg,struct sockaddr __user ** save_addr)2448 int __copy_msghdr(struct msghdr *kmsg,
2449 		  struct user_msghdr *msg,
2450 		  struct sockaddr __user **save_addr)
2451 {
2452 	ssize_t err;
2453 
2454 	kmsg->msg_control_is_user = true;
2455 	kmsg->msg_get_inq = 0;
2456 	kmsg->msg_control_user = msg->msg_control;
2457 	kmsg->msg_controllen = msg->msg_controllen;
2458 	kmsg->msg_flags = msg->msg_flags;
2459 
2460 	kmsg->msg_namelen = msg->msg_namelen;
2461 	if (!msg->msg_name)
2462 		kmsg->msg_namelen = 0;
2463 
2464 	if (kmsg->msg_namelen < 0)
2465 		return -EINVAL;
2466 
2467 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2468 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2469 
2470 	if (save_addr)
2471 		*save_addr = msg->msg_name;
2472 
2473 	if (msg->msg_name && kmsg->msg_namelen) {
2474 		if (!save_addr) {
2475 			err = move_addr_to_kernel(msg->msg_name,
2476 						  kmsg->msg_namelen,
2477 						  kmsg->msg_name);
2478 			if (err < 0)
2479 				return err;
2480 		}
2481 	} else {
2482 		kmsg->msg_name = NULL;
2483 		kmsg->msg_namelen = 0;
2484 	}
2485 
2486 	if (msg->msg_iovlen > UIO_MAXIOV)
2487 		return -EMSGSIZE;
2488 
2489 	kmsg->msg_iocb = NULL;
2490 	kmsg->msg_ubuf = NULL;
2491 	return 0;
2492 }
2493 
copy_msghdr_from_user(struct msghdr * kmsg,struct user_msghdr __user * umsg,struct sockaddr __user ** save_addr,struct iovec ** iov)2494 static int copy_msghdr_from_user(struct msghdr *kmsg,
2495 				 struct user_msghdr __user *umsg,
2496 				 struct sockaddr __user **save_addr,
2497 				 struct iovec **iov)
2498 {
2499 	struct user_msghdr msg;
2500 	ssize_t err;
2501 
2502 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2503 		return -EFAULT;
2504 
2505 	err = __copy_msghdr(kmsg, &msg, save_addr);
2506 	if (err)
2507 		return err;
2508 
2509 	err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2510 			    msg.msg_iov, msg.msg_iovlen,
2511 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2512 	return err < 0 ? err : 0;
2513 }
2514 
____sys_sendmsg(struct socket * sock,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2515 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2516 			   unsigned int flags, struct used_address *used_address,
2517 			   unsigned int allowed_msghdr_flags)
2518 {
2519 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2520 				__aligned(sizeof(__kernel_size_t));
2521 	/* 20 is size of ipv6_pktinfo */
2522 	unsigned char *ctl_buf = ctl;
2523 	int ctl_len;
2524 	ssize_t err;
2525 
2526 	err = -ENOBUFS;
2527 
2528 	if (msg_sys->msg_controllen > INT_MAX)
2529 		goto out;
2530 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2531 	ctl_len = msg_sys->msg_controllen;
2532 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2533 		err =
2534 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2535 						     sizeof(ctl));
2536 		if (err)
2537 			goto out;
2538 		ctl_buf = msg_sys->msg_control;
2539 		ctl_len = msg_sys->msg_controllen;
2540 	} else if (ctl_len) {
2541 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2542 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2543 		if (ctl_len > sizeof(ctl)) {
2544 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2545 			if (ctl_buf == NULL)
2546 				goto out;
2547 		}
2548 		err = -EFAULT;
2549 		if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2550 			goto out_freectl;
2551 		msg_sys->msg_control = ctl_buf;
2552 		msg_sys->msg_control_is_user = false;
2553 	}
2554 	flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2555 	msg_sys->msg_flags = flags;
2556 
2557 	if (sock->file->f_flags & O_NONBLOCK)
2558 		msg_sys->msg_flags |= MSG_DONTWAIT;
2559 	/*
2560 	 * If this is sendmmsg() and current destination address is same as
2561 	 * previously succeeded address, omit asking LSM's decision.
2562 	 * used_address->name_len is initialized to UINT_MAX so that the first
2563 	 * destination address never matches.
2564 	 */
2565 	if (used_address && msg_sys->msg_name &&
2566 	    used_address->name_len == msg_sys->msg_namelen &&
2567 	    !memcmp(&used_address->name, msg_sys->msg_name,
2568 		    used_address->name_len)) {
2569 		err = sock_sendmsg_nosec(sock, msg_sys);
2570 		goto out_freectl;
2571 	}
2572 	err = __sock_sendmsg(sock, msg_sys);
2573 	/*
2574 	 * If this is sendmmsg() and sending to current destination address was
2575 	 * successful, remember it.
2576 	 */
2577 	if (used_address && err >= 0) {
2578 		used_address->name_len = msg_sys->msg_namelen;
2579 		if (msg_sys->msg_name)
2580 			memcpy(&used_address->name, msg_sys->msg_name,
2581 			       used_address->name_len);
2582 	}
2583 
2584 out_freectl:
2585 	if (ctl_buf != ctl)
2586 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2587 out:
2588 	return err;
2589 }
2590 
sendmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct iovec ** iov)2591 static int sendmsg_copy_msghdr(struct msghdr *msg,
2592 			       struct user_msghdr __user *umsg, unsigned flags,
2593 			       struct iovec **iov)
2594 {
2595 	int err;
2596 
2597 	if (flags & MSG_CMSG_COMPAT) {
2598 		struct compat_msghdr __user *msg_compat;
2599 
2600 		msg_compat = (struct compat_msghdr __user *) umsg;
2601 		err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2602 	} else {
2603 		err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2604 	}
2605 	if (err < 0)
2606 		return err;
2607 
2608 	return 0;
2609 }
2610 
___sys_sendmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,struct used_address * used_address,unsigned int allowed_msghdr_flags)2611 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2612 			 struct msghdr *msg_sys, unsigned int flags,
2613 			 struct used_address *used_address,
2614 			 unsigned int allowed_msghdr_flags)
2615 {
2616 	struct sockaddr_storage address;
2617 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2618 	ssize_t err;
2619 
2620 	msg_sys->msg_name = &address;
2621 
2622 	err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2623 	if (err < 0)
2624 		return err;
2625 
2626 	err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2627 				allowed_msghdr_flags);
2628 	kfree(iov);
2629 	return err;
2630 }
2631 
2632 /*
2633  *	BSD sendmsg interface
2634  */
__sys_sendmsg_sock(struct socket * sock,struct msghdr * msg,unsigned int flags)2635 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2636 			unsigned int flags)
2637 {
2638 	return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2639 }
2640 
__sys_sendmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2641 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2642 		   bool forbid_cmsg_compat)
2643 {
2644 	struct msghdr msg_sys;
2645 	struct socket *sock;
2646 
2647 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2648 		return -EINVAL;
2649 
2650 	CLASS(fd, f)(fd);
2651 
2652 	if (fd_empty(f))
2653 		return -EBADF;
2654 	sock = sock_from_file(fd_file(f));
2655 	if (unlikely(!sock))
2656 		return -ENOTSOCK;
2657 
2658 	return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2659 }
2660 
SYSCALL_DEFINE3(sendmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2661 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2662 {
2663 	return __sys_sendmsg(fd, msg, flags, true);
2664 }
2665 
2666 /*
2667  *	Linux sendmmsg interface
2668  */
2669 
__sys_sendmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,bool forbid_cmsg_compat)2670 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2671 		   unsigned int flags, bool forbid_cmsg_compat)
2672 {
2673 	int err, datagrams;
2674 	struct socket *sock;
2675 	struct mmsghdr __user *entry;
2676 	struct compat_mmsghdr __user *compat_entry;
2677 	struct msghdr msg_sys;
2678 	struct used_address used_address;
2679 	unsigned int oflags = flags;
2680 
2681 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2682 		return -EINVAL;
2683 
2684 	if (vlen > UIO_MAXIOV)
2685 		vlen = UIO_MAXIOV;
2686 
2687 	datagrams = 0;
2688 
2689 	CLASS(fd, f)(fd);
2690 
2691 	if (fd_empty(f))
2692 		return -EBADF;
2693 	sock = sock_from_file(fd_file(f));
2694 	if (unlikely(!sock))
2695 		return -ENOTSOCK;
2696 
2697 	used_address.name_len = UINT_MAX;
2698 	entry = mmsg;
2699 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2700 	err = 0;
2701 	flags |= MSG_BATCH;
2702 
2703 	while (datagrams < vlen) {
2704 		if (datagrams == vlen - 1)
2705 			flags = oflags;
2706 
2707 		if (MSG_CMSG_COMPAT & flags) {
2708 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2709 					     &msg_sys, flags, &used_address, MSG_EOR);
2710 			if (err < 0)
2711 				break;
2712 			err = __put_user(err, &compat_entry->msg_len);
2713 			++compat_entry;
2714 		} else {
2715 			err = ___sys_sendmsg(sock,
2716 					     (struct user_msghdr __user *)entry,
2717 					     &msg_sys, flags, &used_address, MSG_EOR);
2718 			if (err < 0)
2719 				break;
2720 			err = put_user(err, &entry->msg_len);
2721 			++entry;
2722 		}
2723 
2724 		if (err)
2725 			break;
2726 		++datagrams;
2727 		if (msg_data_left(&msg_sys))
2728 			break;
2729 		cond_resched();
2730 	}
2731 
2732 	/* We only return an error if no datagrams were able to be sent */
2733 	if (datagrams != 0)
2734 		return datagrams;
2735 
2736 	return err;
2737 }
2738 
SYSCALL_DEFINE4(sendmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags)2739 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2740 		unsigned int, vlen, unsigned int, flags)
2741 {
2742 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2743 }
2744 
recvmsg_copy_msghdr(struct msghdr * msg,struct user_msghdr __user * umsg,unsigned flags,struct sockaddr __user ** uaddr,struct iovec ** iov)2745 static int recvmsg_copy_msghdr(struct msghdr *msg,
2746 			       struct user_msghdr __user *umsg, unsigned flags,
2747 			       struct sockaddr __user **uaddr,
2748 			       struct iovec **iov)
2749 {
2750 	ssize_t err;
2751 
2752 	if (MSG_CMSG_COMPAT & flags) {
2753 		struct compat_msghdr __user *msg_compat;
2754 
2755 		msg_compat = (struct compat_msghdr __user *) umsg;
2756 		err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2757 	} else {
2758 		err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2759 	}
2760 	if (err < 0)
2761 		return err;
2762 
2763 	return 0;
2764 }
2765 
____sys_recvmsg(struct socket * sock,struct msghdr * msg_sys,struct user_msghdr __user * msg,struct sockaddr __user * uaddr,unsigned int flags,int nosec)2766 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2767 			   struct user_msghdr __user *msg,
2768 			   struct sockaddr __user *uaddr,
2769 			   unsigned int flags, int nosec)
2770 {
2771 	struct compat_msghdr __user *msg_compat =
2772 					(struct compat_msghdr __user *) msg;
2773 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2774 	struct sockaddr_storage addr;
2775 	unsigned long cmsg_ptr;
2776 	int len;
2777 	ssize_t err;
2778 
2779 	msg_sys->msg_name = &addr;
2780 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2781 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2782 
2783 	/* We assume all kernel code knows the size of sockaddr_storage */
2784 	msg_sys->msg_namelen = 0;
2785 
2786 	if (sock->file->f_flags & O_NONBLOCK)
2787 		flags |= MSG_DONTWAIT;
2788 
2789 	if (unlikely(nosec))
2790 		err = sock_recvmsg_nosec(sock, msg_sys, flags);
2791 	else
2792 		err = sock_recvmsg(sock, msg_sys, flags);
2793 
2794 	if (err < 0)
2795 		goto out;
2796 	len = err;
2797 
2798 	if (uaddr != NULL) {
2799 		err = move_addr_to_user(&addr,
2800 					msg_sys->msg_namelen, uaddr,
2801 					uaddr_len);
2802 		if (err < 0)
2803 			goto out;
2804 	}
2805 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2806 			 COMPAT_FLAGS(msg));
2807 	if (err)
2808 		goto out;
2809 	if (MSG_CMSG_COMPAT & flags)
2810 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2811 				 &msg_compat->msg_controllen);
2812 	else
2813 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2814 				 &msg->msg_controllen);
2815 	if (err)
2816 		goto out;
2817 	err = len;
2818 out:
2819 	return err;
2820 }
2821 
___sys_recvmsg(struct socket * sock,struct user_msghdr __user * msg,struct msghdr * msg_sys,unsigned int flags,int nosec)2822 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2823 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2824 {
2825 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2826 	/* user mode address pointers */
2827 	struct sockaddr __user *uaddr;
2828 	ssize_t err;
2829 
2830 	err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2831 	if (err < 0)
2832 		return err;
2833 
2834 	err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2835 	kfree(iov);
2836 	return err;
2837 }
2838 
2839 /*
2840  *	BSD recvmsg interface
2841  */
2842 
__sys_recvmsg_sock(struct socket * sock,struct msghdr * msg,struct user_msghdr __user * umsg,struct sockaddr __user * uaddr,unsigned int flags)2843 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2844 			struct user_msghdr __user *umsg,
2845 			struct sockaddr __user *uaddr, unsigned int flags)
2846 {
2847 	return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2848 }
2849 
__sys_recvmsg(int fd,struct user_msghdr __user * msg,unsigned int flags,bool forbid_cmsg_compat)2850 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2851 		   bool forbid_cmsg_compat)
2852 {
2853 	struct msghdr msg_sys;
2854 	struct socket *sock;
2855 
2856 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2857 		return -EINVAL;
2858 
2859 	CLASS(fd, f)(fd);
2860 
2861 	if (fd_empty(f))
2862 		return -EBADF;
2863 	sock = sock_from_file(fd_file(f));
2864 	if (unlikely(!sock))
2865 		return -ENOTSOCK;
2866 
2867 	return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2868 }
2869 
SYSCALL_DEFINE3(recvmsg,int,fd,struct user_msghdr __user *,msg,unsigned int,flags)2870 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2871 		unsigned int, flags)
2872 {
2873 	return __sys_recvmsg(fd, msg, flags, true);
2874 }
2875 
2876 /*
2877  *     Linux recvmmsg interface
2878  */
2879 
do_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct timespec64 * timeout)2880 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2881 			  unsigned int vlen, unsigned int flags,
2882 			  struct timespec64 *timeout)
2883 {
2884 	int err = 0, datagrams;
2885 	struct socket *sock;
2886 	struct mmsghdr __user *entry;
2887 	struct compat_mmsghdr __user *compat_entry;
2888 	struct msghdr msg_sys;
2889 	struct timespec64 end_time;
2890 	struct timespec64 timeout64;
2891 
2892 	if (timeout &&
2893 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2894 				    timeout->tv_nsec))
2895 		return -EINVAL;
2896 
2897 	datagrams = 0;
2898 
2899 	CLASS(fd, f)(fd);
2900 
2901 	if (fd_empty(f))
2902 		return -EBADF;
2903 	sock = sock_from_file(fd_file(f));
2904 	if (unlikely(!sock))
2905 		return -ENOTSOCK;
2906 
2907 	if (likely(!(flags & MSG_ERRQUEUE))) {
2908 		err = sock_error(sock->sk);
2909 		if (err)
2910 			return err;
2911 	}
2912 
2913 	entry = mmsg;
2914 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2915 
2916 	while (datagrams < vlen) {
2917 		/*
2918 		 * No need to ask LSM for more than the first datagram.
2919 		 */
2920 		if (MSG_CMSG_COMPAT & flags) {
2921 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2922 					     &msg_sys, flags & ~MSG_WAITFORONE,
2923 					     datagrams);
2924 			if (err < 0)
2925 				break;
2926 			err = __put_user(err, &compat_entry->msg_len);
2927 			++compat_entry;
2928 		} else {
2929 			err = ___sys_recvmsg(sock,
2930 					     (struct user_msghdr __user *)entry,
2931 					     &msg_sys, flags & ~MSG_WAITFORONE,
2932 					     datagrams);
2933 			if (err < 0)
2934 				break;
2935 			err = put_user(err, &entry->msg_len);
2936 			++entry;
2937 		}
2938 
2939 		if (err)
2940 			break;
2941 		++datagrams;
2942 
2943 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2944 		if (flags & MSG_WAITFORONE)
2945 			flags |= MSG_DONTWAIT;
2946 
2947 		if (timeout) {
2948 			ktime_get_ts64(&timeout64);
2949 			*timeout = timespec64_sub(end_time, timeout64);
2950 			if (timeout->tv_sec < 0) {
2951 				timeout->tv_sec = timeout->tv_nsec = 0;
2952 				break;
2953 			}
2954 
2955 			/* Timeout, return less than vlen datagrams */
2956 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2957 				break;
2958 		}
2959 
2960 		/* Out of band data, return right away */
2961 		if (msg_sys.msg_flags & MSG_OOB)
2962 			break;
2963 		cond_resched();
2964 	}
2965 
2966 	if (err == 0)
2967 		return datagrams;
2968 
2969 	if (datagrams == 0)
2970 		return err;
2971 
2972 	/*
2973 	 * We may return less entries than requested (vlen) if the
2974 	 * sock is non block and there aren't enough datagrams...
2975 	 */
2976 	if (err != -EAGAIN) {
2977 		/*
2978 		 * ... or  if recvmsg returns an error after we
2979 		 * received some datagrams, where we record the
2980 		 * error to return on the next call or if the
2981 		 * app asks about it using getsockopt(SO_ERROR).
2982 		 */
2983 		WRITE_ONCE(sock->sk->sk_err, -err);
2984 	}
2985 	return datagrams;
2986 }
2987 
__sys_recvmmsg(int fd,struct mmsghdr __user * mmsg,unsigned int vlen,unsigned int flags,struct __kernel_timespec __user * timeout,struct old_timespec32 __user * timeout32)2988 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2989 		   unsigned int vlen, unsigned int flags,
2990 		   struct __kernel_timespec __user *timeout,
2991 		   struct old_timespec32 __user *timeout32)
2992 {
2993 	int datagrams;
2994 	struct timespec64 timeout_sys;
2995 
2996 	if (timeout && get_timespec64(&timeout_sys, timeout))
2997 		return -EFAULT;
2998 
2999 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3000 		return -EFAULT;
3001 
3002 	if (!timeout && !timeout32)
3003 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3004 
3005 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
3006 
3007 	if (datagrams <= 0)
3008 		return datagrams;
3009 
3010 	if (timeout && put_timespec64(&timeout_sys, timeout))
3011 		datagrams = -EFAULT;
3012 
3013 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3014 		datagrams = -EFAULT;
3015 
3016 	return datagrams;
3017 }
3018 
SYSCALL_DEFINE5(recvmmsg,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct __kernel_timespec __user *,timeout)3019 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3020 		unsigned int, vlen, unsigned int, flags,
3021 		struct __kernel_timespec __user *, timeout)
3022 {
3023 	if (flags & MSG_CMSG_COMPAT)
3024 		return -EINVAL;
3025 
3026 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3027 }
3028 
3029 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE5(recvmmsg_time32,int,fd,struct mmsghdr __user *,mmsg,unsigned int,vlen,unsigned int,flags,struct old_timespec32 __user *,timeout)3030 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3031 		unsigned int, vlen, unsigned int, flags,
3032 		struct old_timespec32 __user *, timeout)
3033 {
3034 	if (flags & MSG_CMSG_COMPAT)
3035 		return -EINVAL;
3036 
3037 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
3038 }
3039 #endif
3040 
3041 #ifdef __ARCH_WANT_SYS_SOCKETCALL
3042 /* Argument list sizes for sys_socketcall */
3043 #define AL(x) ((x) * sizeof(unsigned long))
3044 static const unsigned char nargs[21] = {
3045 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3046 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3047 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3048 	AL(4), AL(5), AL(4)
3049 };
3050 
3051 #undef AL
3052 
3053 /*
3054  *	System call vectors.
3055  *
3056  *	Argument checking cleaned up. Saved 20% in size.
3057  *  This function doesn't need to set the kernel lock because
3058  *  it is set by the callees.
3059  */
3060 
SYSCALL_DEFINE2(socketcall,int,call,unsigned long __user *,args)3061 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3062 {
3063 	unsigned long a[AUDITSC_ARGS];
3064 	unsigned long a0, a1;
3065 	int err;
3066 	unsigned int len;
3067 
3068 	if (call < 1 || call > SYS_SENDMMSG)
3069 		return -EINVAL;
3070 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
3071 
3072 	len = nargs[call];
3073 	if (len > sizeof(a))
3074 		return -EINVAL;
3075 
3076 	/* copy_from_user should be SMP safe. */
3077 	if (copy_from_user(a, args, len))
3078 		return -EFAULT;
3079 
3080 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3081 	if (err)
3082 		return err;
3083 
3084 	a0 = a[0];
3085 	a1 = a[1];
3086 
3087 	switch (call) {
3088 	case SYS_SOCKET:
3089 		err = __sys_socket(a0, a1, a[2]);
3090 		break;
3091 	case SYS_BIND:
3092 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3093 		break;
3094 	case SYS_CONNECT:
3095 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3096 		break;
3097 	case SYS_LISTEN:
3098 		err = __sys_listen(a0, a1);
3099 		break;
3100 	case SYS_ACCEPT:
3101 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3102 				    (int __user *)a[2], 0);
3103 		break;
3104 	case SYS_GETSOCKNAME:
3105 		err =
3106 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
3107 				      (int __user *)a[2]);
3108 		break;
3109 	case SYS_GETPEERNAME:
3110 		err =
3111 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
3112 				      (int __user *)a[2]);
3113 		break;
3114 	case SYS_SOCKETPAIR:
3115 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3116 		break;
3117 	case SYS_SEND:
3118 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3119 				   NULL, 0);
3120 		break;
3121 	case SYS_SENDTO:
3122 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3123 				   (struct sockaddr __user *)a[4], a[5]);
3124 		break;
3125 	case SYS_RECV:
3126 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3127 				     NULL, NULL);
3128 		break;
3129 	case SYS_RECVFROM:
3130 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3131 				     (struct sockaddr __user *)a[4],
3132 				     (int __user *)a[5]);
3133 		break;
3134 	case SYS_SHUTDOWN:
3135 		err = __sys_shutdown(a0, a1);
3136 		break;
3137 	case SYS_SETSOCKOPT:
3138 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3139 				       a[4]);
3140 		break;
3141 	case SYS_GETSOCKOPT:
3142 		err =
3143 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3144 				     (int __user *)a[4]);
3145 		break;
3146 	case SYS_SENDMSG:
3147 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3148 				    a[2], true);
3149 		break;
3150 	case SYS_SENDMMSG:
3151 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3152 				     a[3], true);
3153 		break;
3154 	case SYS_RECVMSG:
3155 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3156 				    a[2], true);
3157 		break;
3158 	case SYS_RECVMMSG:
3159 		if (IS_ENABLED(CONFIG_64BIT))
3160 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3161 					     a[2], a[3],
3162 					     (struct __kernel_timespec __user *)a[4],
3163 					     NULL);
3164 		else
3165 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3166 					     a[2], a[3], NULL,
3167 					     (struct old_timespec32 __user *)a[4]);
3168 		break;
3169 	case SYS_ACCEPT4:
3170 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3171 				    (int __user *)a[2], a[3]);
3172 		break;
3173 	default:
3174 		err = -EINVAL;
3175 		break;
3176 	}
3177 	return err;
3178 }
3179 
3180 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
3181 
3182 /**
3183  *	sock_register - add a socket protocol handler
3184  *	@ops: description of protocol
3185  *
3186  *	This function is called by a protocol handler that wants to
3187  *	advertise its address family, and have it linked into the
3188  *	socket interface. The value ops->family corresponds to the
3189  *	socket system call protocol family.
3190  */
sock_register(const struct net_proto_family * ops)3191 int sock_register(const struct net_proto_family *ops)
3192 {
3193 	int err;
3194 
3195 	if (ops->family >= NPROTO) {
3196 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3197 		return -ENOBUFS;
3198 	}
3199 
3200 	spin_lock(&net_family_lock);
3201 	if (rcu_dereference_protected(net_families[ops->family],
3202 				      lockdep_is_held(&net_family_lock)))
3203 		err = -EEXIST;
3204 	else {
3205 		rcu_assign_pointer(net_families[ops->family], ops);
3206 		err = 0;
3207 	}
3208 	spin_unlock(&net_family_lock);
3209 
3210 	pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3211 	return err;
3212 }
3213 EXPORT_SYMBOL(sock_register);
3214 
3215 /**
3216  *	sock_unregister - remove a protocol handler
3217  *	@family: protocol family to remove
3218  *
3219  *	This function is called by a protocol handler that wants to
3220  *	remove its address family, and have it unlinked from the
3221  *	new socket creation.
3222  *
3223  *	If protocol handler is a module, then it can use module reference
3224  *	counts to protect against new references. If protocol handler is not
3225  *	a module then it needs to provide its own protection in
3226  *	the ops->create routine.
3227  */
sock_unregister(int family)3228 void sock_unregister(int family)
3229 {
3230 	BUG_ON(family < 0 || family >= NPROTO);
3231 
3232 	spin_lock(&net_family_lock);
3233 	RCU_INIT_POINTER(net_families[family], NULL);
3234 	spin_unlock(&net_family_lock);
3235 
3236 	synchronize_rcu();
3237 
3238 	pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3239 }
3240 EXPORT_SYMBOL(sock_unregister);
3241 
sock_is_registered(int family)3242 bool sock_is_registered(int family)
3243 {
3244 	return family < NPROTO && rcu_access_pointer(net_families[family]);
3245 }
3246 
sock_init(void)3247 static int __init sock_init(void)
3248 {
3249 	int err;
3250 	/*
3251 	 *      Initialize the network sysctl infrastructure.
3252 	 */
3253 	err = net_sysctl_init();
3254 	if (err)
3255 		goto out;
3256 
3257 	/*
3258 	 *      Initialize skbuff SLAB cache
3259 	 */
3260 	skb_init();
3261 
3262 	/*
3263 	 *      Initialize the protocols module.
3264 	 */
3265 
3266 	init_inodecache();
3267 
3268 	err = register_filesystem(&sock_fs_type);
3269 	if (err)
3270 		goto out;
3271 	sock_mnt = kern_mount(&sock_fs_type);
3272 	if (IS_ERR(sock_mnt)) {
3273 		err = PTR_ERR(sock_mnt);
3274 		goto out_mount;
3275 	}
3276 
3277 	/* The real protocol initialization is performed in later initcalls.
3278 	 */
3279 
3280 #ifdef CONFIG_NETFILTER
3281 	err = netfilter_init();
3282 	if (err)
3283 		goto out;
3284 #endif
3285 
3286 	ptp_classifier_init();
3287 
3288 out:
3289 	return err;
3290 
3291 out_mount:
3292 	unregister_filesystem(&sock_fs_type);
3293 	goto out;
3294 }
3295 
3296 core_initcall(sock_init);	/* early initcall */
3297 
3298 #ifdef CONFIG_PROC_FS
socket_seq_show(struct seq_file * seq)3299 void socket_seq_show(struct seq_file *seq)
3300 {
3301 	seq_printf(seq, "sockets: used %d\n",
3302 		   sock_inuse_get(seq->private));
3303 }
3304 #endif				/* CONFIG_PROC_FS */
3305 
3306 /* Handle the fact that while struct ifreq has the same *layout* on
3307  * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3308  * which are handled elsewhere, it still has different *size* due to
3309  * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3310  * resulting in struct ifreq being 32 and 40 bytes respectively).
3311  * As a result, if the struct happens to be at the end of a page and
3312  * the next page isn't readable/writable, we get a fault. To prevent
3313  * that, copy back and forth to the full size.
3314  */
get_user_ifreq(struct ifreq * ifr,void __user ** ifrdata,void __user * arg)3315 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3316 {
3317 	if (in_compat_syscall()) {
3318 		struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3319 
3320 		memset(ifr, 0, sizeof(*ifr));
3321 		if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3322 			return -EFAULT;
3323 
3324 		if (ifrdata)
3325 			*ifrdata = compat_ptr(ifr32->ifr_data);
3326 
3327 		return 0;
3328 	}
3329 
3330 	if (copy_from_user(ifr, arg, sizeof(*ifr)))
3331 		return -EFAULT;
3332 
3333 	if (ifrdata)
3334 		*ifrdata = ifr->ifr_data;
3335 
3336 	return 0;
3337 }
3338 EXPORT_SYMBOL(get_user_ifreq);
3339 
put_user_ifreq(struct ifreq * ifr,void __user * arg)3340 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3341 {
3342 	size_t size = sizeof(*ifr);
3343 
3344 	if (in_compat_syscall())
3345 		size = sizeof(struct compat_ifreq);
3346 
3347 	if (copy_to_user(arg, ifr, size))
3348 		return -EFAULT;
3349 
3350 	return 0;
3351 }
3352 EXPORT_SYMBOL(put_user_ifreq);
3353 
3354 #ifdef CONFIG_COMPAT
compat_siocwandev(struct net * net,struct compat_ifreq __user * uifr32)3355 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3356 {
3357 	compat_uptr_t uptr32;
3358 	struct ifreq ifr;
3359 	void __user *saved;
3360 	int err;
3361 
3362 	if (get_user_ifreq(&ifr, NULL, uifr32))
3363 		return -EFAULT;
3364 
3365 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3366 		return -EFAULT;
3367 
3368 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3369 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3370 
3371 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3372 	if (!err) {
3373 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3374 		if (put_user_ifreq(&ifr, uifr32))
3375 			err = -EFAULT;
3376 	}
3377 	return err;
3378 }
3379 
3380 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
compat_ifr_data_ioctl(struct net * net,unsigned int cmd,struct compat_ifreq __user * u_ifreq32)3381 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3382 				 struct compat_ifreq __user *u_ifreq32)
3383 {
3384 	struct ifreq ifreq;
3385 	void __user *data;
3386 
3387 	if (!is_socket_ioctl_cmd(cmd))
3388 		return -ENOTTY;
3389 	if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3390 		return -EFAULT;
3391 	ifreq.ifr_data = data;
3392 
3393 	return dev_ioctl(net, cmd, &ifreq, data, NULL);
3394 }
3395 
compat_sock_ioctl_trans(struct file * file,struct socket * sock,unsigned int cmd,unsigned long arg)3396 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3397 			 unsigned int cmd, unsigned long arg)
3398 {
3399 	void __user *argp = compat_ptr(arg);
3400 	struct sock *sk = sock->sk;
3401 	struct net *net = sock_net(sk);
3402 	const struct proto_ops *ops;
3403 
3404 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3405 		return sock_ioctl(file, cmd, (unsigned long)argp);
3406 
3407 	switch (cmd) {
3408 	case SIOCWANDEV:
3409 		return compat_siocwandev(net, argp);
3410 	case SIOCGSTAMP_OLD:
3411 	case SIOCGSTAMPNS_OLD:
3412 		ops = READ_ONCE(sock->ops);
3413 		if (!ops->gettstamp)
3414 			return -ENOIOCTLCMD;
3415 		return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3416 				      !COMPAT_USE_64BIT_TIME);
3417 
3418 	case SIOCETHTOOL:
3419 	case SIOCBONDSLAVEINFOQUERY:
3420 	case SIOCBONDINFOQUERY:
3421 	case SIOCSHWTSTAMP:
3422 	case SIOCGHWTSTAMP:
3423 		return compat_ifr_data_ioctl(net, cmd, argp);
3424 
3425 	case FIOSETOWN:
3426 	case SIOCSPGRP:
3427 	case FIOGETOWN:
3428 	case SIOCGPGRP:
3429 	case SIOCBRADDBR:
3430 	case SIOCBRDELBR:
3431 	case SIOCBRADDIF:
3432 	case SIOCBRDELIF:
3433 	case SIOCGIFVLAN:
3434 	case SIOCSIFVLAN:
3435 	case SIOCGSKNS:
3436 	case SIOCGSTAMP_NEW:
3437 	case SIOCGSTAMPNS_NEW:
3438 	case SIOCGIFCONF:
3439 	case SIOCSIFBR:
3440 	case SIOCGIFBR:
3441 		return sock_ioctl(file, cmd, arg);
3442 
3443 	case SIOCGIFFLAGS:
3444 	case SIOCSIFFLAGS:
3445 	case SIOCGIFMAP:
3446 	case SIOCSIFMAP:
3447 	case SIOCGIFMETRIC:
3448 	case SIOCSIFMETRIC:
3449 	case SIOCGIFMTU:
3450 	case SIOCSIFMTU:
3451 	case SIOCGIFMEM:
3452 	case SIOCSIFMEM:
3453 	case SIOCGIFHWADDR:
3454 	case SIOCSIFHWADDR:
3455 	case SIOCADDMULTI:
3456 	case SIOCDELMULTI:
3457 	case SIOCGIFINDEX:
3458 	case SIOCGIFADDR:
3459 	case SIOCSIFADDR:
3460 	case SIOCSIFHWBROADCAST:
3461 	case SIOCDIFADDR:
3462 	case SIOCGIFBRDADDR:
3463 	case SIOCSIFBRDADDR:
3464 	case SIOCGIFDSTADDR:
3465 	case SIOCSIFDSTADDR:
3466 	case SIOCGIFNETMASK:
3467 	case SIOCSIFNETMASK:
3468 	case SIOCSIFPFLAGS:
3469 	case SIOCGIFPFLAGS:
3470 	case SIOCGIFTXQLEN:
3471 	case SIOCSIFTXQLEN:
3472 	case SIOCGIFNAME:
3473 	case SIOCSIFNAME:
3474 	case SIOCGMIIPHY:
3475 	case SIOCGMIIREG:
3476 	case SIOCSMIIREG:
3477 	case SIOCBONDENSLAVE:
3478 	case SIOCBONDRELEASE:
3479 	case SIOCBONDSETHWADDR:
3480 	case SIOCBONDCHANGEACTIVE:
3481 	case SIOCSARP:
3482 	case SIOCGARP:
3483 	case SIOCDARP:
3484 	case SIOCOUTQ:
3485 	case SIOCOUTQNSD:
3486 	case SIOCATMARK:
3487 		return sock_do_ioctl(net, sock, cmd, arg);
3488 	}
3489 
3490 	return -ENOIOCTLCMD;
3491 }
3492 
compat_sock_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3493 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3494 			      unsigned long arg)
3495 {
3496 	struct socket *sock = file->private_data;
3497 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3498 	int ret = -ENOIOCTLCMD;
3499 	struct sock *sk;
3500 	struct net *net;
3501 
3502 	sk = sock->sk;
3503 	net = sock_net(sk);
3504 
3505 	if (ops->compat_ioctl)
3506 		ret = ops->compat_ioctl(sock, cmd, arg);
3507 
3508 	if (ret == -ENOIOCTLCMD &&
3509 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3510 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3511 
3512 	if (ret == -ENOIOCTLCMD)
3513 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3514 
3515 	return ret;
3516 }
3517 #endif
3518 
3519 /**
3520  *	kernel_bind - bind an address to a socket (kernel space)
3521  *	@sock: socket
3522  *	@addr: address
3523  *	@addrlen: length of address
3524  *
3525  *	Returns 0 or an error.
3526  */
3527 
kernel_bind(struct socket * sock,struct sockaddr * addr,int addrlen)3528 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3529 {
3530 	struct sockaddr_storage address;
3531 
3532 	memcpy(&address, addr, addrlen);
3533 
3534 	return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3535 					  addrlen);
3536 }
3537 EXPORT_SYMBOL(kernel_bind);
3538 
3539 /**
3540  *	kernel_listen - move socket to listening state (kernel space)
3541  *	@sock: socket
3542  *	@backlog: pending connections queue size
3543  *
3544  *	Returns 0 or an error.
3545  */
3546 
kernel_listen(struct socket * sock,int backlog)3547 int kernel_listen(struct socket *sock, int backlog)
3548 {
3549 	return READ_ONCE(sock->ops)->listen(sock, backlog);
3550 }
3551 EXPORT_SYMBOL(kernel_listen);
3552 
3553 /**
3554  *	kernel_accept - accept a connection (kernel space)
3555  *	@sock: listening socket
3556  *	@newsock: new connected socket
3557  *	@flags: flags
3558  *
3559  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3560  *	If it fails, @newsock is guaranteed to be %NULL.
3561  *	Returns 0 or an error.
3562  */
3563 
kernel_accept(struct socket * sock,struct socket ** newsock,int flags)3564 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3565 {
3566 	struct sock *sk = sock->sk;
3567 	const struct proto_ops *ops = READ_ONCE(sock->ops);
3568 	struct proto_accept_arg arg = {
3569 		.flags = flags,
3570 		.kern = true,
3571 	};
3572 	int err;
3573 
3574 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3575 			       newsock);
3576 	if (err < 0)
3577 		goto done;
3578 
3579 	err = ops->accept(sock, *newsock, &arg);
3580 	if (err < 0) {
3581 		sock_release(*newsock);
3582 		*newsock = NULL;
3583 		goto done;
3584 	}
3585 
3586 	(*newsock)->ops = ops;
3587 	__module_get(ops->owner);
3588 
3589 done:
3590 	return err;
3591 }
3592 EXPORT_SYMBOL(kernel_accept);
3593 
3594 /**
3595  *	kernel_connect - connect a socket (kernel space)
3596  *	@sock: socket
3597  *	@addr: address
3598  *	@addrlen: address length
3599  *	@flags: flags (O_NONBLOCK, ...)
3600  *
3601  *	For datagram sockets, @addr is the address to which datagrams are sent
3602  *	by default, and the only address from which datagrams are received.
3603  *	For stream sockets, attempts to connect to @addr.
3604  *	Returns 0 or an error code.
3605  */
3606 
kernel_connect(struct socket * sock,struct sockaddr * addr,int addrlen,int flags)3607 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3608 		   int flags)
3609 {
3610 	struct sockaddr_storage address;
3611 
3612 	memcpy(&address, addr, addrlen);
3613 
3614 	return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3615 					     addrlen, flags);
3616 }
3617 EXPORT_SYMBOL(kernel_connect);
3618 
3619 /**
3620  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3621  *	@sock: socket
3622  *	@addr: address holder
3623  *
3624  * 	Fills the @addr pointer with the address which the socket is bound.
3625  *	Returns the length of the address in bytes or an error code.
3626  */
3627 
kernel_getsockname(struct socket * sock,struct sockaddr * addr)3628 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3629 {
3630 	return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3631 }
3632 EXPORT_SYMBOL(kernel_getsockname);
3633 
3634 /**
3635  *	kernel_getpeername - get the address which the socket is connected (kernel space)
3636  *	@sock: socket
3637  *	@addr: address holder
3638  *
3639  * 	Fills the @addr pointer with the address which the socket is connected.
3640  *	Returns the length of the address in bytes or an error code.
3641  */
3642 
kernel_getpeername(struct socket * sock,struct sockaddr * addr)3643 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3644 {
3645 	return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3646 }
3647 EXPORT_SYMBOL(kernel_getpeername);
3648 
3649 /**
3650  *	kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3651  *	@sock: socket
3652  *	@how: connection part
3653  *
3654  *	Returns 0 or an error.
3655  */
3656 
kernel_sock_shutdown(struct socket * sock,enum sock_shutdown_cmd how)3657 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3658 {
3659 	return READ_ONCE(sock->ops)->shutdown(sock, how);
3660 }
3661 EXPORT_SYMBOL(kernel_sock_shutdown);
3662 
3663 /**
3664  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3665  *	@sk: socket
3666  *
3667  *	This routine returns the IP overhead imposed by a socket i.e.
3668  *	the length of the underlying IP header, depending on whether
3669  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3670  *	on at the socket. Assumes that the caller has a lock on the socket.
3671  */
3672 
kernel_sock_ip_overhead(struct sock * sk)3673 u32 kernel_sock_ip_overhead(struct sock *sk)
3674 {
3675 	struct inet_sock *inet;
3676 	struct ip_options_rcu *opt;
3677 	u32 overhead = 0;
3678 #if IS_ENABLED(CONFIG_IPV6)
3679 	struct ipv6_pinfo *np;
3680 	struct ipv6_txoptions *optv6 = NULL;
3681 #endif /* IS_ENABLED(CONFIG_IPV6) */
3682 
3683 	if (!sk)
3684 		return overhead;
3685 
3686 	switch (sk->sk_family) {
3687 	case AF_INET:
3688 		inet = inet_sk(sk);
3689 		overhead += sizeof(struct iphdr);
3690 		opt = rcu_dereference_protected(inet->inet_opt,
3691 						sock_owned_by_user(sk));
3692 		if (opt)
3693 			overhead += opt->opt.optlen;
3694 		return overhead;
3695 #if IS_ENABLED(CONFIG_IPV6)
3696 	case AF_INET6:
3697 		np = inet6_sk(sk);
3698 		overhead += sizeof(struct ipv6hdr);
3699 		if (np)
3700 			optv6 = rcu_dereference_protected(np->opt,
3701 							  sock_owned_by_user(sk));
3702 		if (optv6)
3703 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3704 		return overhead;
3705 #endif /* IS_ENABLED(CONFIG_IPV6) */
3706 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3707 		return overhead;
3708 	}
3709 }
3710 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3711