1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
4 *
5 * Authors: Alexey Kuznetsov, <[email protected]>
6 */
7
8 #include <linux/module.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/jiffies.h>
12 #include <linux/string.h>
13 #include <linux/in.h>
14 #include <linux/errno.h>
15 #include <linux/init.h>
16 #include <linux/skbuff.h>
17 #include <linux/siphash.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <net/netlink.h>
21 #include <net/pkt_sched.h>
22 #include <net/pkt_cls.h>
23 #include <net/red.h>
24
25
26 /* Stochastic Fairness Queuing algorithm.
27 =======================================
28
29 Source:
30 Paul E. McKenney "Stochastic Fairness Queuing",
31 IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
32
33 Paul E. McKenney "Stochastic Fairness Queuing",
34 "Interworking: Research and Experience", v.2, 1991, p.113-131.
35
36
37 See also:
38 M. Shreedhar and George Varghese "Efficient Fair
39 Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
40
41
42 This is not the thing that is usually called (W)FQ nowadays.
43 It does not use any timestamp mechanism, but instead
44 processes queues in round-robin order.
45
46 ADVANTAGE:
47
48 - It is very cheap. Both CPU and memory requirements are minimal.
49
50 DRAWBACKS:
51
52 - "Stochastic" -> It is not 100% fair.
53 When hash collisions occur, several flows are considered as one.
54
55 - "Round-robin" -> It introduces larger delays than virtual clock
56 based schemes, and should not be used for isolating interactive
57 traffic from non-interactive. It means, that this scheduler
58 should be used as leaf of CBQ or P3, which put interactive traffic
59 to higher priority band.
60
61 We still need true WFQ for top level CSZ, but using WFQ
62 for the best effort traffic is absolutely pointless:
63 SFQ is superior for this purpose.
64
65 IMPLEMENTATION:
66 This implementation limits :
67 - maximal queue length per flow to 127 packets.
68 - max mtu to 2^18-1;
69 - max 65408 flows,
70 - number of hash buckets to 65536.
71
72 It is easy to increase these values, but not in flight. */
73
74 #define SFQ_MAX_DEPTH 127 /* max number of packets per flow */
75 #define SFQ_DEFAULT_FLOWS 128
76 #define SFQ_MAX_FLOWS (0x10000 - SFQ_MAX_DEPTH - 1) /* max number of flows */
77 #define SFQ_EMPTY_SLOT 0xffff
78 #define SFQ_DEFAULT_HASH_DIVISOR 1024
79
80 /* This type should contain at least SFQ_MAX_DEPTH + 1 + SFQ_MAX_FLOWS values */
81 typedef u16 sfq_index;
82
83 /*
84 * We dont use pointers to save space.
85 * Small indexes [0 ... SFQ_MAX_FLOWS - 1] are 'pointers' to slots[] array
86 * while following values [SFQ_MAX_FLOWS ... SFQ_MAX_FLOWS + SFQ_MAX_DEPTH]
87 * are 'pointers' to dep[] array
88 */
89 struct sfq_head {
90 sfq_index next;
91 sfq_index prev;
92 };
93
94 struct sfq_slot {
95 struct sk_buff *skblist_next;
96 struct sk_buff *skblist_prev;
97 sfq_index qlen; /* number of skbs in skblist */
98 sfq_index next; /* next slot in sfq RR chain */
99 struct sfq_head dep; /* anchor in dep[] chains */
100 unsigned short hash; /* hash value (index in ht[]) */
101 int allot; /* credit for this slot */
102
103 unsigned int backlog;
104 struct red_vars vars;
105 };
106
107 struct sfq_sched_data {
108 /* frequently used fields */
109 int limit; /* limit of total number of packets in this qdisc */
110 unsigned int divisor; /* number of slots in hash table */
111 u8 headdrop;
112 u8 maxdepth; /* limit of packets per flow */
113
114 siphash_key_t perturbation;
115 u8 cur_depth; /* depth of longest slot */
116 u8 flags;
117 struct tcf_proto __rcu *filter_list;
118 struct tcf_block *block;
119 sfq_index *ht; /* Hash table ('divisor' slots) */
120 struct sfq_slot *slots; /* Flows table ('maxflows' entries) */
121
122 struct red_parms *red_parms;
123 struct tc_sfqred_stats stats;
124 struct sfq_slot *tail; /* current slot in round */
125
126 struct sfq_head dep[SFQ_MAX_DEPTH + 1];
127 /* Linked lists of slots, indexed by depth
128 * dep[0] : list of unused flows
129 * dep[1] : list of flows with 1 packet
130 * dep[X] : list of flows with X packets
131 */
132
133 unsigned int maxflows; /* number of flows in flows array */
134 int perturb_period;
135 unsigned int quantum; /* Allotment per round: MUST BE >= MTU */
136 struct timer_list perturb_timer;
137 struct Qdisc *sch;
138 };
139
140 /*
141 * sfq_head are either in a sfq_slot or in dep[] array
142 */
sfq_dep_head(struct sfq_sched_data * q,sfq_index val)143 static inline struct sfq_head *sfq_dep_head(struct sfq_sched_data *q, sfq_index val)
144 {
145 if (val < SFQ_MAX_FLOWS)
146 return &q->slots[val].dep;
147 return &q->dep[val - SFQ_MAX_FLOWS];
148 }
149
sfq_hash(const struct sfq_sched_data * q,const struct sk_buff * skb)150 static unsigned int sfq_hash(const struct sfq_sched_data *q,
151 const struct sk_buff *skb)
152 {
153 return skb_get_hash_perturb(skb, &q->perturbation) & (q->divisor - 1);
154 }
155
sfq_classify(struct sk_buff * skb,struct Qdisc * sch,int * qerr)156 static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
157 int *qerr)
158 {
159 struct sfq_sched_data *q = qdisc_priv(sch);
160 struct tcf_result res;
161 struct tcf_proto *fl;
162 int result;
163
164 if (TC_H_MAJ(skb->priority) == sch->handle &&
165 TC_H_MIN(skb->priority) > 0 &&
166 TC_H_MIN(skb->priority) <= q->divisor)
167 return TC_H_MIN(skb->priority);
168
169 fl = rcu_dereference_bh(q->filter_list);
170 if (!fl)
171 return sfq_hash(q, skb) + 1;
172
173 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
174 result = tcf_classify(skb, NULL, fl, &res, false);
175 if (result >= 0) {
176 #ifdef CONFIG_NET_CLS_ACT
177 switch (result) {
178 case TC_ACT_STOLEN:
179 case TC_ACT_QUEUED:
180 case TC_ACT_TRAP:
181 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
182 fallthrough;
183 case TC_ACT_SHOT:
184 return 0;
185 }
186 #endif
187 if (TC_H_MIN(res.classid) <= q->divisor)
188 return TC_H_MIN(res.classid);
189 }
190 return 0;
191 }
192
193 /*
194 * x : slot number [0 .. SFQ_MAX_FLOWS - 1]
195 */
sfq_link(struct sfq_sched_data * q,sfq_index x)196 static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
197 {
198 sfq_index p, n;
199 struct sfq_slot *slot = &q->slots[x];
200 int qlen = slot->qlen;
201
202 p = qlen + SFQ_MAX_FLOWS;
203 n = q->dep[qlen].next;
204
205 slot->dep.next = n;
206 slot->dep.prev = p;
207
208 q->dep[qlen].next = x; /* sfq_dep_head(q, p)->next = x */
209 sfq_dep_head(q, n)->prev = x;
210 }
211
212 #define sfq_unlink(q, x, n, p) \
213 do { \
214 n = q->slots[x].dep.next; \
215 p = q->slots[x].dep.prev; \
216 sfq_dep_head(q, p)->next = n; \
217 sfq_dep_head(q, n)->prev = p; \
218 } while (0)
219
220
sfq_dec(struct sfq_sched_data * q,sfq_index x)221 static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
222 {
223 sfq_index p, n;
224 int d;
225
226 sfq_unlink(q, x, n, p);
227
228 d = q->slots[x].qlen--;
229 if (n == p && q->cur_depth == d)
230 q->cur_depth--;
231 sfq_link(q, x);
232 }
233
sfq_inc(struct sfq_sched_data * q,sfq_index x)234 static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
235 {
236 sfq_index p, n;
237 int d;
238
239 sfq_unlink(q, x, n, p);
240
241 d = ++q->slots[x].qlen;
242 if (q->cur_depth < d)
243 q->cur_depth = d;
244 sfq_link(q, x);
245 }
246
247 /* helper functions : might be changed when/if skb use a standard list_head */
248
249 /* remove one skb from tail of slot queue */
slot_dequeue_tail(struct sfq_slot * slot)250 static inline struct sk_buff *slot_dequeue_tail(struct sfq_slot *slot)
251 {
252 struct sk_buff *skb = slot->skblist_prev;
253
254 slot->skblist_prev = skb->prev;
255 skb->prev->next = (struct sk_buff *)slot;
256 skb->next = skb->prev = NULL;
257 return skb;
258 }
259
260 /* remove one skb from head of slot queue */
slot_dequeue_head(struct sfq_slot * slot)261 static inline struct sk_buff *slot_dequeue_head(struct sfq_slot *slot)
262 {
263 struct sk_buff *skb = slot->skblist_next;
264
265 slot->skblist_next = skb->next;
266 skb->next->prev = (struct sk_buff *)slot;
267 skb->next = skb->prev = NULL;
268 return skb;
269 }
270
slot_queue_init(struct sfq_slot * slot)271 static inline void slot_queue_init(struct sfq_slot *slot)
272 {
273 memset(slot, 0, sizeof(*slot));
274 slot->skblist_prev = slot->skblist_next = (struct sk_buff *)slot;
275 }
276
277 /* add skb to slot queue (tail add) */
slot_queue_add(struct sfq_slot * slot,struct sk_buff * skb)278 static inline void slot_queue_add(struct sfq_slot *slot, struct sk_buff *skb)
279 {
280 skb->prev = slot->skblist_prev;
281 skb->next = (struct sk_buff *)slot;
282 slot->skblist_prev->next = skb;
283 slot->skblist_prev = skb;
284 }
285
sfq_drop(struct Qdisc * sch,struct sk_buff ** to_free)286 static unsigned int sfq_drop(struct Qdisc *sch, struct sk_buff **to_free)
287 {
288 struct sfq_sched_data *q = qdisc_priv(sch);
289 sfq_index x, d = q->cur_depth;
290 struct sk_buff *skb;
291 unsigned int len;
292 struct sfq_slot *slot;
293
294 /* Queue is full! Find the longest slot and drop tail packet from it */
295 if (d > 1) {
296 x = q->dep[d].next;
297 slot = &q->slots[x];
298 drop:
299 skb = q->headdrop ? slot_dequeue_head(slot) : slot_dequeue_tail(slot);
300 len = qdisc_pkt_len(skb);
301 slot->backlog -= len;
302 sfq_dec(q, x);
303 sch->q.qlen--;
304 qdisc_qstats_backlog_dec(sch, skb);
305 qdisc_drop(skb, sch, to_free);
306 return len;
307 }
308
309 if (d == 1) {
310 /* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
311 x = q->tail->next;
312 slot = &q->slots[x];
313 q->tail->next = slot->next;
314 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
315 goto drop;
316 }
317
318 return 0;
319 }
320
321 /* Is ECN parameter configured */
sfq_prob_mark(const struct sfq_sched_data * q)322 static int sfq_prob_mark(const struct sfq_sched_data *q)
323 {
324 return q->flags & TC_RED_ECN;
325 }
326
327 /* Should packets over max threshold just be marked */
sfq_hard_mark(const struct sfq_sched_data * q)328 static int sfq_hard_mark(const struct sfq_sched_data *q)
329 {
330 return (q->flags & (TC_RED_ECN | TC_RED_HARDDROP)) == TC_RED_ECN;
331 }
332
sfq_headdrop(const struct sfq_sched_data * q)333 static int sfq_headdrop(const struct sfq_sched_data *q)
334 {
335 return q->headdrop;
336 }
337
338 static int
sfq_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)339 sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch, struct sk_buff **to_free)
340 {
341 struct sfq_sched_data *q = qdisc_priv(sch);
342 unsigned int hash, dropped;
343 sfq_index x, qlen;
344 struct sfq_slot *slot;
345 int ret;
346 struct sk_buff *head;
347 int delta;
348
349 hash = sfq_classify(skb, sch, &ret);
350 if (hash == 0) {
351 if (ret & __NET_XMIT_BYPASS)
352 qdisc_qstats_drop(sch);
353 __qdisc_drop(skb, to_free);
354 return ret;
355 }
356 hash--;
357
358 x = q->ht[hash];
359 slot = &q->slots[x];
360 if (x == SFQ_EMPTY_SLOT) {
361 x = q->dep[0].next; /* get a free slot */
362 if (x >= SFQ_MAX_FLOWS)
363 return qdisc_drop(skb, sch, to_free);
364 q->ht[hash] = x;
365 slot = &q->slots[x];
366 slot->hash = hash;
367 slot->backlog = 0; /* should already be 0 anyway... */
368 red_set_vars(&slot->vars);
369 goto enqueue;
370 }
371 if (q->red_parms) {
372 slot->vars.qavg = red_calc_qavg_no_idle_time(q->red_parms,
373 &slot->vars,
374 slot->backlog);
375 switch (red_action(q->red_parms,
376 &slot->vars,
377 slot->vars.qavg)) {
378 case RED_DONT_MARK:
379 break;
380
381 case RED_PROB_MARK:
382 qdisc_qstats_overlimit(sch);
383 if (sfq_prob_mark(q)) {
384 /* We know we have at least one packet in queue */
385 if (sfq_headdrop(q) &&
386 INET_ECN_set_ce(slot->skblist_next)) {
387 q->stats.prob_mark_head++;
388 break;
389 }
390 if (INET_ECN_set_ce(skb)) {
391 q->stats.prob_mark++;
392 break;
393 }
394 }
395 q->stats.prob_drop++;
396 goto congestion_drop;
397
398 case RED_HARD_MARK:
399 qdisc_qstats_overlimit(sch);
400 if (sfq_hard_mark(q)) {
401 /* We know we have at least one packet in queue */
402 if (sfq_headdrop(q) &&
403 INET_ECN_set_ce(slot->skblist_next)) {
404 q->stats.forced_mark_head++;
405 break;
406 }
407 if (INET_ECN_set_ce(skb)) {
408 q->stats.forced_mark++;
409 break;
410 }
411 }
412 q->stats.forced_drop++;
413 goto congestion_drop;
414 }
415 }
416
417 if (slot->qlen >= q->maxdepth) {
418 congestion_drop:
419 if (!sfq_headdrop(q))
420 return qdisc_drop(skb, sch, to_free);
421
422 /* We know we have at least one packet in queue */
423 head = slot_dequeue_head(slot);
424 delta = qdisc_pkt_len(head) - qdisc_pkt_len(skb);
425 sch->qstats.backlog -= delta;
426 slot->backlog -= delta;
427 qdisc_drop(head, sch, to_free);
428
429 slot_queue_add(slot, skb);
430 qdisc_tree_reduce_backlog(sch, 0, delta);
431 return NET_XMIT_CN;
432 }
433
434 enqueue:
435 qdisc_qstats_backlog_inc(sch, skb);
436 slot->backlog += qdisc_pkt_len(skb);
437 slot_queue_add(slot, skb);
438 sfq_inc(q, x);
439 if (slot->qlen == 1) { /* The flow is new */
440 if (q->tail == NULL) { /* It is the first flow */
441 slot->next = x;
442 } else {
443 slot->next = q->tail->next;
444 q->tail->next = x;
445 }
446 /* We put this flow at the end of our flow list.
447 * This might sound unfair for a new flow to wait after old ones,
448 * but we could endup servicing new flows only, and freeze old ones.
449 */
450 q->tail = slot;
451 /* We could use a bigger initial quantum for new flows */
452 slot->allot = q->quantum;
453 }
454 if (++sch->q.qlen <= q->limit)
455 return NET_XMIT_SUCCESS;
456
457 qlen = slot->qlen;
458 dropped = sfq_drop(sch, to_free);
459 /* Return Congestion Notification only if we dropped a packet
460 * from this flow.
461 */
462 if (qlen != slot->qlen) {
463 qdisc_tree_reduce_backlog(sch, 0, dropped - qdisc_pkt_len(skb));
464 return NET_XMIT_CN;
465 }
466
467 /* As we dropped a packet, better let upper stack know this */
468 qdisc_tree_reduce_backlog(sch, 1, dropped);
469 return NET_XMIT_SUCCESS;
470 }
471
472 static struct sk_buff *
sfq_dequeue(struct Qdisc * sch)473 sfq_dequeue(struct Qdisc *sch)
474 {
475 struct sfq_sched_data *q = qdisc_priv(sch);
476 struct sk_buff *skb;
477 sfq_index a, next_a;
478 struct sfq_slot *slot;
479
480 /* No active slots */
481 if (q->tail == NULL)
482 return NULL;
483
484 next_slot:
485 a = q->tail->next;
486 slot = &q->slots[a];
487 if (slot->allot <= 0) {
488 q->tail = slot;
489 slot->allot += q->quantum;
490 goto next_slot;
491 }
492 skb = slot_dequeue_head(slot);
493 sfq_dec(q, a);
494 qdisc_bstats_update(sch, skb);
495 sch->q.qlen--;
496 qdisc_qstats_backlog_dec(sch, skb);
497 slot->backlog -= qdisc_pkt_len(skb);
498 /* Is the slot empty? */
499 if (slot->qlen == 0) {
500 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
501 next_a = slot->next;
502 if (a == next_a) {
503 q->tail = NULL; /* no more active slots */
504 return skb;
505 }
506 q->tail->next = next_a;
507 } else {
508 slot->allot -= qdisc_pkt_len(skb);
509 }
510 return skb;
511 }
512
513 static void
sfq_reset(struct Qdisc * sch)514 sfq_reset(struct Qdisc *sch)
515 {
516 struct sk_buff *skb;
517
518 while ((skb = sfq_dequeue(sch)) != NULL)
519 rtnl_kfree_skbs(skb, skb);
520 }
521
522 /*
523 * When q->perturbation is changed, we rehash all queued skbs
524 * to avoid OOO (Out Of Order) effects.
525 * We dont use sfq_dequeue()/sfq_enqueue() because we dont want to change
526 * counters.
527 */
sfq_rehash(struct Qdisc * sch)528 static void sfq_rehash(struct Qdisc *sch)
529 {
530 struct sfq_sched_data *q = qdisc_priv(sch);
531 struct sk_buff *skb;
532 int i;
533 struct sfq_slot *slot;
534 struct sk_buff_head list;
535 int dropped = 0;
536 unsigned int drop_len = 0;
537
538 __skb_queue_head_init(&list);
539
540 for (i = 0; i < q->maxflows; i++) {
541 slot = &q->slots[i];
542 if (!slot->qlen)
543 continue;
544 while (slot->qlen) {
545 skb = slot_dequeue_head(slot);
546 sfq_dec(q, i);
547 __skb_queue_tail(&list, skb);
548 }
549 slot->backlog = 0;
550 red_set_vars(&slot->vars);
551 q->ht[slot->hash] = SFQ_EMPTY_SLOT;
552 }
553 q->tail = NULL;
554
555 while ((skb = __skb_dequeue(&list)) != NULL) {
556 unsigned int hash = sfq_hash(q, skb);
557 sfq_index x = q->ht[hash];
558
559 slot = &q->slots[x];
560 if (x == SFQ_EMPTY_SLOT) {
561 x = q->dep[0].next; /* get a free slot */
562 if (x >= SFQ_MAX_FLOWS) {
563 drop:
564 qdisc_qstats_backlog_dec(sch, skb);
565 drop_len += qdisc_pkt_len(skb);
566 kfree_skb(skb);
567 dropped++;
568 continue;
569 }
570 q->ht[hash] = x;
571 slot = &q->slots[x];
572 slot->hash = hash;
573 }
574 if (slot->qlen >= q->maxdepth)
575 goto drop;
576 slot_queue_add(slot, skb);
577 if (q->red_parms)
578 slot->vars.qavg = red_calc_qavg(q->red_parms,
579 &slot->vars,
580 slot->backlog);
581 slot->backlog += qdisc_pkt_len(skb);
582 sfq_inc(q, x);
583 if (slot->qlen == 1) { /* The flow is new */
584 if (q->tail == NULL) { /* It is the first flow */
585 slot->next = x;
586 } else {
587 slot->next = q->tail->next;
588 q->tail->next = x;
589 }
590 q->tail = slot;
591 slot->allot = q->quantum;
592 }
593 }
594 sch->q.qlen -= dropped;
595 qdisc_tree_reduce_backlog(sch, dropped, drop_len);
596 }
597
sfq_perturbation(struct timer_list * t)598 static void sfq_perturbation(struct timer_list *t)
599 {
600 struct sfq_sched_data *q = from_timer(q, t, perturb_timer);
601 struct Qdisc *sch = q->sch;
602 spinlock_t *root_lock;
603 siphash_key_t nkey;
604 int period;
605
606 get_random_bytes(&nkey, sizeof(nkey));
607 rcu_read_lock();
608 root_lock = qdisc_lock(qdisc_root_sleeping(sch));
609 spin_lock(root_lock);
610 q->perturbation = nkey;
611 if (!q->filter_list && q->tail)
612 sfq_rehash(sch);
613 spin_unlock(root_lock);
614
615 /* q->perturb_period can change under us from
616 * sfq_change() and sfq_destroy().
617 */
618 period = READ_ONCE(q->perturb_period);
619 if (period)
620 mod_timer(&q->perturb_timer, jiffies + period);
621 rcu_read_unlock();
622 }
623
sfq_change(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)624 static int sfq_change(struct Qdisc *sch, struct nlattr *opt,
625 struct netlink_ext_ack *extack)
626 {
627 struct sfq_sched_data *q = qdisc_priv(sch);
628 struct tc_sfq_qopt *ctl = nla_data(opt);
629 struct tc_sfq_qopt_v1 *ctl_v1 = NULL;
630 unsigned int qlen, dropped = 0;
631 struct red_parms *p = NULL;
632 struct sk_buff *to_free = NULL;
633 struct sk_buff *tail = NULL;
634 unsigned int maxflows;
635 unsigned int quantum;
636 unsigned int divisor;
637 int perturb_period;
638 u8 headdrop;
639 u8 maxdepth;
640 int limit;
641 u8 flags;
642
643
644 if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
645 return -EINVAL;
646 if (opt->nla_len >= nla_attr_size(sizeof(*ctl_v1)))
647 ctl_v1 = nla_data(opt);
648 if (ctl->divisor &&
649 (!is_power_of_2(ctl->divisor) || ctl->divisor > 65536))
650 return -EINVAL;
651
652 if ((int)ctl->quantum < 0) {
653 NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
654 return -EINVAL;
655 }
656 if (ctl_v1 && !red_check_params(ctl_v1->qth_min, ctl_v1->qth_max,
657 ctl_v1->Wlog, ctl_v1->Scell_log, NULL))
658 return -EINVAL;
659 if (ctl_v1 && ctl_v1->qth_min) {
660 p = kmalloc(sizeof(*p), GFP_KERNEL);
661 if (!p)
662 return -ENOMEM;
663 }
664
665 sch_tree_lock(sch);
666
667 limit = q->limit;
668 divisor = q->divisor;
669 headdrop = q->headdrop;
670 maxdepth = q->maxdepth;
671 maxflows = q->maxflows;
672 perturb_period = q->perturb_period;
673 quantum = q->quantum;
674 flags = q->flags;
675
676 /* update and validate configuration */
677 if (ctl->quantum)
678 quantum = ctl->quantum;
679 perturb_period = ctl->perturb_period * HZ;
680 if (ctl->flows)
681 maxflows = min_t(u32, ctl->flows, SFQ_MAX_FLOWS);
682 if (ctl->divisor) {
683 divisor = ctl->divisor;
684 maxflows = min_t(u32, maxflows, divisor);
685 }
686 if (ctl_v1) {
687 if (ctl_v1->depth)
688 maxdepth = min_t(u32, ctl_v1->depth, SFQ_MAX_DEPTH);
689 if (p) {
690 red_set_parms(p,
691 ctl_v1->qth_min, ctl_v1->qth_max,
692 ctl_v1->Wlog,
693 ctl_v1->Plog, ctl_v1->Scell_log,
694 NULL,
695 ctl_v1->max_P);
696 }
697 flags = ctl_v1->flags;
698 headdrop = ctl_v1->headdrop;
699 }
700 if (ctl->limit) {
701 limit = min_t(u32, ctl->limit, maxdepth * maxflows);
702 maxflows = min_t(u32, maxflows, limit);
703 }
704 if (limit == 1) {
705 sch_tree_unlock(sch);
706 kfree(p);
707 NL_SET_ERR_MSG_MOD(extack, "invalid limit");
708 return -EINVAL;
709 }
710
711 /* commit configuration */
712 q->limit = limit;
713 q->divisor = divisor;
714 q->headdrop = headdrop;
715 q->maxdepth = maxdepth;
716 q->maxflows = maxflows;
717 WRITE_ONCE(q->perturb_period, perturb_period);
718 q->quantum = quantum;
719 q->flags = flags;
720 if (p)
721 swap(q->red_parms, p);
722
723 qlen = sch->q.qlen;
724 while (sch->q.qlen > q->limit) {
725 dropped += sfq_drop(sch, &to_free);
726 if (!tail)
727 tail = to_free;
728 }
729
730 rtnl_kfree_skbs(to_free, tail);
731 qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
732
733 del_timer(&q->perturb_timer);
734 if (q->perturb_period) {
735 mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
736 get_random_bytes(&q->perturbation, sizeof(q->perturbation));
737 }
738 sch_tree_unlock(sch);
739 kfree(p);
740 return 0;
741 }
742
sfq_alloc(size_t sz)743 static void *sfq_alloc(size_t sz)
744 {
745 return kvmalloc(sz, GFP_KERNEL);
746 }
747
sfq_free(void * addr)748 static void sfq_free(void *addr)
749 {
750 kvfree(addr);
751 }
752
sfq_destroy(struct Qdisc * sch)753 static void sfq_destroy(struct Qdisc *sch)
754 {
755 struct sfq_sched_data *q = qdisc_priv(sch);
756
757 tcf_block_put(q->block);
758 WRITE_ONCE(q->perturb_period, 0);
759 del_timer_sync(&q->perturb_timer);
760 sfq_free(q->ht);
761 sfq_free(q->slots);
762 kfree(q->red_parms);
763 }
764
sfq_init(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)765 static int sfq_init(struct Qdisc *sch, struct nlattr *opt,
766 struct netlink_ext_ack *extack)
767 {
768 struct sfq_sched_data *q = qdisc_priv(sch);
769 int i;
770 int err;
771
772 q->sch = sch;
773 timer_setup(&q->perturb_timer, sfq_perturbation, TIMER_DEFERRABLE);
774
775 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
776 if (err)
777 return err;
778
779 for (i = 0; i < SFQ_MAX_DEPTH + 1; i++) {
780 q->dep[i].next = i + SFQ_MAX_FLOWS;
781 q->dep[i].prev = i + SFQ_MAX_FLOWS;
782 }
783
784 q->limit = SFQ_MAX_DEPTH;
785 q->maxdepth = SFQ_MAX_DEPTH;
786 q->cur_depth = 0;
787 q->tail = NULL;
788 q->divisor = SFQ_DEFAULT_HASH_DIVISOR;
789 q->maxflows = SFQ_DEFAULT_FLOWS;
790 q->quantum = psched_mtu(qdisc_dev(sch));
791 q->perturb_period = 0;
792 get_random_bytes(&q->perturbation, sizeof(q->perturbation));
793
794 if (opt) {
795 int err = sfq_change(sch, opt, extack);
796 if (err)
797 return err;
798 }
799
800 q->ht = sfq_alloc(sizeof(q->ht[0]) * q->divisor);
801 q->slots = sfq_alloc(sizeof(q->slots[0]) * q->maxflows);
802 if (!q->ht || !q->slots) {
803 /* Note: sfq_destroy() will be called by our caller */
804 return -ENOMEM;
805 }
806
807 for (i = 0; i < q->divisor; i++)
808 q->ht[i] = SFQ_EMPTY_SLOT;
809
810 for (i = 0; i < q->maxflows; i++) {
811 slot_queue_init(&q->slots[i]);
812 sfq_link(q, i);
813 }
814 if (q->limit >= 1)
815 sch->flags |= TCQ_F_CAN_BYPASS;
816 else
817 sch->flags &= ~TCQ_F_CAN_BYPASS;
818 return 0;
819 }
820
sfq_dump(struct Qdisc * sch,struct sk_buff * skb)821 static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
822 {
823 struct sfq_sched_data *q = qdisc_priv(sch);
824 unsigned char *b = skb_tail_pointer(skb);
825 struct tc_sfq_qopt_v1 opt;
826 struct red_parms *p = q->red_parms;
827
828 memset(&opt, 0, sizeof(opt));
829 opt.v0.quantum = q->quantum;
830 opt.v0.perturb_period = q->perturb_period / HZ;
831 opt.v0.limit = q->limit;
832 opt.v0.divisor = q->divisor;
833 opt.v0.flows = q->maxflows;
834 opt.depth = q->maxdepth;
835 opt.headdrop = q->headdrop;
836
837 if (p) {
838 opt.qth_min = p->qth_min >> p->Wlog;
839 opt.qth_max = p->qth_max >> p->Wlog;
840 opt.Wlog = p->Wlog;
841 opt.Plog = p->Plog;
842 opt.Scell_log = p->Scell_log;
843 opt.max_P = p->max_P;
844 }
845 memcpy(&opt.stats, &q->stats, sizeof(opt.stats));
846 opt.flags = q->flags;
847
848 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
849 goto nla_put_failure;
850
851 return skb->len;
852
853 nla_put_failure:
854 nlmsg_trim(skb, b);
855 return -1;
856 }
857
sfq_leaf(struct Qdisc * sch,unsigned long arg)858 static struct Qdisc *sfq_leaf(struct Qdisc *sch, unsigned long arg)
859 {
860 return NULL;
861 }
862
sfq_find(struct Qdisc * sch,u32 classid)863 static unsigned long sfq_find(struct Qdisc *sch, u32 classid)
864 {
865 return 0;
866 }
867
sfq_bind(struct Qdisc * sch,unsigned long parent,u32 classid)868 static unsigned long sfq_bind(struct Qdisc *sch, unsigned long parent,
869 u32 classid)
870 {
871 return 0;
872 }
873
sfq_unbind(struct Qdisc * q,unsigned long cl)874 static void sfq_unbind(struct Qdisc *q, unsigned long cl)
875 {
876 }
877
sfq_tcf_block(struct Qdisc * sch,unsigned long cl,struct netlink_ext_ack * extack)878 static struct tcf_block *sfq_tcf_block(struct Qdisc *sch, unsigned long cl,
879 struct netlink_ext_ack *extack)
880 {
881 struct sfq_sched_data *q = qdisc_priv(sch);
882
883 if (cl)
884 return NULL;
885 return q->block;
886 }
887
sfq_dump_class(struct Qdisc * sch,unsigned long cl,struct sk_buff * skb,struct tcmsg * tcm)888 static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
889 struct sk_buff *skb, struct tcmsg *tcm)
890 {
891 tcm->tcm_handle |= TC_H_MIN(cl);
892 return 0;
893 }
894
sfq_dump_class_stats(struct Qdisc * sch,unsigned long cl,struct gnet_dump * d)895 static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
896 struct gnet_dump *d)
897 {
898 struct sfq_sched_data *q = qdisc_priv(sch);
899 sfq_index idx = q->ht[cl - 1];
900 struct gnet_stats_queue qs = { 0 };
901 struct tc_sfq_xstats xstats = { 0 };
902
903 if (idx != SFQ_EMPTY_SLOT) {
904 const struct sfq_slot *slot = &q->slots[idx];
905
906 xstats.allot = slot->allot;
907 qs.qlen = slot->qlen;
908 qs.backlog = slot->backlog;
909 }
910 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
911 return -1;
912 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
913 }
914
sfq_walk(struct Qdisc * sch,struct qdisc_walker * arg)915 static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
916 {
917 struct sfq_sched_data *q = qdisc_priv(sch);
918 unsigned int i;
919
920 if (arg->stop)
921 return;
922
923 for (i = 0; i < q->divisor; i++) {
924 if (q->ht[i] == SFQ_EMPTY_SLOT) {
925 arg->count++;
926 continue;
927 }
928 if (!tc_qdisc_stats_dump(sch, i + 1, arg))
929 break;
930 }
931 }
932
933 static const struct Qdisc_class_ops sfq_class_ops = {
934 .leaf = sfq_leaf,
935 .find = sfq_find,
936 .tcf_block = sfq_tcf_block,
937 .bind_tcf = sfq_bind,
938 .unbind_tcf = sfq_unbind,
939 .dump = sfq_dump_class,
940 .dump_stats = sfq_dump_class_stats,
941 .walk = sfq_walk,
942 };
943
944 static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
945 .cl_ops = &sfq_class_ops,
946 .id = "sfq",
947 .priv_size = sizeof(struct sfq_sched_data),
948 .enqueue = sfq_enqueue,
949 .dequeue = sfq_dequeue,
950 .peek = qdisc_peek_dequeued,
951 .init = sfq_init,
952 .reset = sfq_reset,
953 .destroy = sfq_destroy,
954 .change = NULL,
955 .dump = sfq_dump,
956 .owner = THIS_MODULE,
957 };
958 MODULE_ALIAS_NET_SCH("sfq");
959
sfq_module_init(void)960 static int __init sfq_module_init(void)
961 {
962 return register_qdisc(&sfq_qdisc_ops);
963 }
sfq_module_exit(void)964 static void __exit sfq_module_exit(void)
965 {
966 unregister_qdisc(&sfq_qdisc_ops);
967 }
968 module_init(sfq_module_init)
969 module_exit(sfq_module_exit)
970 MODULE_LICENSE("GPL");
971 MODULE_DESCRIPTION("Stochastic Fairness qdisc");
972