1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * vma.h
4  *
5  * Core VMA manipulation API implemented in vma.c.
6  */
7 #ifndef __MM_VMA_H
8 #define __MM_VMA_H
9 
10 /*
11  * VMA lock generalization
12  */
13 struct vma_prepare {
14 	struct vm_area_struct *vma;
15 	struct vm_area_struct *adj_next;
16 	struct file *file;
17 	struct address_space *mapping;
18 	struct anon_vma *anon_vma;
19 	struct vm_area_struct *insert;
20 	struct vm_area_struct *remove;
21 	struct vm_area_struct *remove2;
22 };
23 
24 struct unlink_vma_file_batch {
25 	int count;
26 	struct vm_area_struct *vmas[8];
27 };
28 
29 /*
30  * vma munmap operation
31  */
32 struct vma_munmap_struct {
33 	struct vma_iterator *vmi;
34 	struct vm_area_struct *vma;     /* The first vma to munmap */
35 	struct vm_area_struct *prev;    /* vma before the munmap area */
36 	struct vm_area_struct *next;    /* vma after the munmap area */
37 	struct list_head *uf;           /* Userfaultfd list_head */
38 	unsigned long start;            /* Aligned start addr (inclusive) */
39 	unsigned long end;              /* Aligned end addr (exclusive) */
40 	unsigned long unmap_start;      /* Unmap PTE start */
41 	unsigned long unmap_end;        /* Unmap PTE end */
42 	int vma_count;                  /* Number of vmas that will be removed */
43 	bool unlock;                    /* Unlock after the munmap */
44 	bool clear_ptes;                /* If there are outstanding PTE to be cleared */
45 	/* 2 byte hole */
46 	unsigned long nr_pages;         /* Number of pages being removed */
47 	unsigned long locked_vm;        /* Number of locked pages */
48 	unsigned long nr_accounted;     /* Number of VM_ACCOUNT pages */
49 	unsigned long exec_vm;
50 	unsigned long stack_vm;
51 	unsigned long data_vm;
52 };
53 
54 enum vma_merge_state {
55 	VMA_MERGE_START,
56 	VMA_MERGE_ERROR_NOMEM,
57 	VMA_MERGE_NOMERGE,
58 	VMA_MERGE_SUCCESS,
59 };
60 
61 enum vma_merge_flags {
62 	VMG_FLAG_DEFAULT = 0,
63 	/*
64 	 * If we can expand, simply do so. We know there is nothing to merge to
65 	 * the right. Does not reset state upon failure to merge. The VMA
66 	 * iterator is assumed to be positioned at the previous VMA, rather than
67 	 * at the gap.
68 	 */
69 	VMG_FLAG_JUST_EXPAND = 1 << 0,
70 };
71 
72 /* Represents a VMA merge operation. */
73 struct vma_merge_struct {
74 	struct mm_struct *mm;
75 	struct vma_iterator *vmi;
76 	pgoff_t pgoff;
77 	struct vm_area_struct *prev;
78 	struct vm_area_struct *next; /* Modified by vma_merge(). */
79 	struct vm_area_struct *vma; /* Either a new VMA or the one being modified. */
80 	unsigned long start;
81 	unsigned long end;
82 	unsigned long flags;
83 	struct file *file;
84 	struct anon_vma *anon_vma;
85 	struct mempolicy *policy;
86 	struct vm_userfaultfd_ctx uffd_ctx;
87 	struct anon_vma_name *anon_name;
88 	enum vma_merge_flags merge_flags;
89 	enum vma_merge_state state;
90 
91 	/*
92 	 * If a merge is possible, but an OOM error occurs, give up and don't
93 	 * execute the merge, returning NULL.
94 	 */
95 	bool give_up_on_oom :1;
96 };
97 
vmg_nomem(struct vma_merge_struct * vmg)98 static inline bool vmg_nomem(struct vma_merge_struct *vmg)
99 {
100 	return vmg->state == VMA_MERGE_ERROR_NOMEM;
101 }
102 
103 /* Assumes addr >= vma->vm_start. */
vma_pgoff_offset(struct vm_area_struct * vma,unsigned long addr)104 static inline pgoff_t vma_pgoff_offset(struct vm_area_struct *vma,
105 				       unsigned long addr)
106 {
107 	return vma->vm_pgoff + PHYS_PFN(addr - vma->vm_start);
108 }
109 
110 #define VMG_STATE(name, mm_, vmi_, start_, end_, flags_, pgoff_)	\
111 	struct vma_merge_struct name = {				\
112 		.mm = mm_,						\
113 		.vmi = vmi_,						\
114 		.start = start_,					\
115 		.end = end_,						\
116 		.flags = flags_,					\
117 		.pgoff = pgoff_,					\
118 		.state = VMA_MERGE_START,				\
119 		.merge_flags = VMG_FLAG_DEFAULT,			\
120 	}
121 
122 #define VMG_VMA_STATE(name, vmi_, prev_, vma_, start_, end_)	\
123 	struct vma_merge_struct name = {			\
124 		.mm = vma_->vm_mm,				\
125 		.vmi = vmi_,					\
126 		.prev = prev_,					\
127 		.next = NULL,					\
128 		.vma = vma_,					\
129 		.start = start_,				\
130 		.end = end_,					\
131 		.flags = vma_->vm_flags,			\
132 		.pgoff = vma_pgoff_offset(vma_, start_),	\
133 		.file = vma_->vm_file,				\
134 		.anon_vma = vma_->anon_vma,			\
135 		.policy = vma_policy(vma_),			\
136 		.uffd_ctx = vma_->vm_userfaultfd_ctx,		\
137 		.anon_name = anon_vma_name(vma_),		\
138 		.state = VMA_MERGE_START,			\
139 		.merge_flags = VMG_FLAG_DEFAULT,		\
140 	}
141 
142 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
143 void validate_mm(struct mm_struct *mm);
144 #else
145 #define validate_mm(mm) do { } while (0)
146 #endif
147 
148 __must_check int vma_expand(struct vma_merge_struct *vmg);
149 __must_check int vma_shrink(struct vma_iterator *vmi,
150 		struct vm_area_struct *vma,
151 		unsigned long start, unsigned long end, pgoff_t pgoff);
152 
vma_iter_store_gfp(struct vma_iterator * vmi,struct vm_area_struct * vma,gfp_t gfp)153 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
154 			struct vm_area_struct *vma, gfp_t gfp)
155 
156 {
157 	if (vmi->mas.status != ma_start &&
158 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
159 		vma_iter_invalidate(vmi);
160 
161 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
162 	mas_store_gfp(&vmi->mas, vma, gfp);
163 	if (unlikely(mas_is_err(&vmi->mas)))
164 		return -ENOMEM;
165 
166 	return 0;
167 }
168 
169 int
170 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
171 		    struct mm_struct *mm, unsigned long start,
172 		    unsigned long end, struct list_head *uf, bool unlock);
173 
174 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
175 		  unsigned long start, size_t len, struct list_head *uf,
176 		  bool unlock);
177 
178 void remove_vma(struct vm_area_struct *vma, bool unreachable);
179 
180 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
181 		struct vm_area_struct *prev, struct vm_area_struct *next);
182 
183 /* We are about to modify the VMA's flags. */
184 __must_check struct vm_area_struct
185 *vma_modify_flags(struct vma_iterator *vmi,
186 		struct vm_area_struct *prev, struct vm_area_struct *vma,
187 		unsigned long start, unsigned long end,
188 		unsigned long new_flags);
189 
190 /* We are about to modify the VMA's flags and/or anon_name. */
191 __must_check struct vm_area_struct
192 *vma_modify_flags_name(struct vma_iterator *vmi,
193 		       struct vm_area_struct *prev,
194 		       struct vm_area_struct *vma,
195 		       unsigned long start,
196 		       unsigned long end,
197 		       unsigned long new_flags,
198 		       struct anon_vma_name *new_name);
199 
200 /* We are about to modify the VMA's memory policy. */
201 __must_check struct vm_area_struct
202 *vma_modify_policy(struct vma_iterator *vmi,
203 		   struct vm_area_struct *prev,
204 		   struct vm_area_struct *vma,
205 		   unsigned long start, unsigned long end,
206 		   struct mempolicy *new_pol);
207 
208 /* We are about to modify the VMA's flags and/or uffd context. */
209 __must_check struct vm_area_struct
210 *vma_modify_flags_uffd(struct vma_iterator *vmi,
211 		       struct vm_area_struct *prev,
212 		       struct vm_area_struct *vma,
213 		       unsigned long start, unsigned long end,
214 		       unsigned long new_flags,
215 		       struct vm_userfaultfd_ctx new_ctx,
216 		       bool give_up_on_oom);
217 
218 __must_check struct vm_area_struct
219 *vma_merge_new_range(struct vma_merge_struct *vmg);
220 
221 __must_check struct vm_area_struct
222 *vma_merge_extend(struct vma_iterator *vmi,
223 		  struct vm_area_struct *vma,
224 		  unsigned long delta);
225 
226 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb);
227 
228 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb);
229 
230 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
231 			       struct vm_area_struct *vma);
232 
233 void unlink_file_vma(struct vm_area_struct *vma);
234 
235 void vma_link_file(struct vm_area_struct *vma);
236 
237 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma);
238 
239 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
240 	unsigned long addr, unsigned long len, pgoff_t pgoff,
241 	bool *need_rmap_locks);
242 
243 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma);
244 
245 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
246 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
247 
248 int mm_take_all_locks(struct mm_struct *mm);
249 void mm_drop_all_locks(struct mm_struct *mm);
250 
251 unsigned long mmap_region(struct file *file, unsigned long addr,
252 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
253 		struct list_head *uf);
254 
255 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
256 		 unsigned long addr, unsigned long request, unsigned long flags);
257 
258 unsigned long unmapped_area(struct vm_unmapped_area_info *info);
259 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
260 
vma_wants_manual_pte_write_upgrade(struct vm_area_struct * vma)261 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
262 {
263 	/*
264 	 * We want to check manually if we can change individual PTEs writable
265 	 * if we can't do that automatically for all PTEs in a mapping. For
266 	 * private mappings, that's always the case when we have write
267 	 * permissions as we properly have to handle COW.
268 	 */
269 	if (vma->vm_flags & VM_SHARED)
270 		return vma_wants_writenotify(vma, vma->vm_page_prot);
271 	return !!(vma->vm_flags & VM_WRITE);
272 }
273 
274 #ifdef CONFIG_MMU
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)275 static inline pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
276 {
277 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
278 }
279 #endif
280 
vma_prev_limit(struct vma_iterator * vmi,unsigned long min)281 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
282 						    unsigned long min)
283 {
284 	return mas_prev(&vmi->mas, min);
285 }
286 
287 /*
288  * These three helpers classifies VMAs for virtual memory accounting.
289  */
290 
291 /*
292  * Executable code area - executable, not writable, not stack
293  */
is_exec_mapping(vm_flags_t flags)294 static inline bool is_exec_mapping(vm_flags_t flags)
295 {
296 	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
297 }
298 
299 /*
300  * Stack area (including shadow stacks)
301  *
302  * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
303  * do_mmap() forbids all other combinations.
304  */
is_stack_mapping(vm_flags_t flags)305 static inline bool is_stack_mapping(vm_flags_t flags)
306 {
307 	return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
308 }
309 
310 /*
311  * Data area - private, writable, not stack
312  */
is_data_mapping(vm_flags_t flags)313 static inline bool is_data_mapping(vm_flags_t flags)
314 {
315 	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
316 }
317 
318 
vma_iter_config(struct vma_iterator * vmi,unsigned long index,unsigned long last)319 static inline void vma_iter_config(struct vma_iterator *vmi,
320 		unsigned long index, unsigned long last)
321 {
322 	__mas_set_range(&vmi->mas, index, last - 1);
323 }
324 
vma_iter_reset(struct vma_iterator * vmi)325 static inline void vma_iter_reset(struct vma_iterator *vmi)
326 {
327 	mas_reset(&vmi->mas);
328 }
329 
330 static inline
vma_iter_prev_range_limit(struct vma_iterator * vmi,unsigned long min)331 struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min)
332 {
333 	return mas_prev_range(&vmi->mas, min);
334 }
335 
336 static inline
vma_iter_next_range_limit(struct vma_iterator * vmi,unsigned long max)337 struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max)
338 {
339 	return mas_next_range(&vmi->mas, max);
340 }
341 
vma_iter_area_lowest(struct vma_iterator * vmi,unsigned long min,unsigned long max,unsigned long size)342 static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min,
343 				       unsigned long max, unsigned long size)
344 {
345 	return mas_empty_area(&vmi->mas, min, max - 1, size);
346 }
347 
vma_iter_area_highest(struct vma_iterator * vmi,unsigned long min,unsigned long max,unsigned long size)348 static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min,
349 					unsigned long max, unsigned long size)
350 {
351 	return mas_empty_area_rev(&vmi->mas, min, max - 1, size);
352 }
353 
354 /*
355  * VMA Iterator functions shared between nommu and mmap
356  */
vma_iter_prealloc(struct vma_iterator * vmi,struct vm_area_struct * vma)357 static inline int vma_iter_prealloc(struct vma_iterator *vmi,
358 		struct vm_area_struct *vma)
359 {
360 	return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
361 }
362 
vma_iter_clear(struct vma_iterator * vmi)363 static inline void vma_iter_clear(struct vma_iterator *vmi)
364 {
365 	mas_store_prealloc(&vmi->mas, NULL);
366 }
367 
vma_iter_load(struct vma_iterator * vmi)368 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
369 {
370 	return mas_walk(&vmi->mas);
371 }
372 
373 /* Store a VMA with preallocated memory */
vma_iter_store(struct vma_iterator * vmi,struct vm_area_struct * vma)374 static inline void vma_iter_store(struct vma_iterator *vmi,
375 				  struct vm_area_struct *vma)
376 {
377 
378 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
379 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
380 			vmi->mas.index > vma->vm_start)) {
381 		pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
382 			vmi->mas.index, vma->vm_start, vma->vm_start,
383 			vma->vm_end, vmi->mas.index, vmi->mas.last);
384 	}
385 	if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
386 			vmi->mas.last <  vma->vm_start)) {
387 		pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
388 		       vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
389 		       vmi->mas.index, vmi->mas.last);
390 	}
391 #endif
392 
393 	if (vmi->mas.status != ma_start &&
394 	    ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
395 		vma_iter_invalidate(vmi);
396 
397 	__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
398 	mas_store_prealloc(&vmi->mas, vma);
399 }
400 
vma_iter_addr(struct vma_iterator * vmi)401 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
402 {
403 	return vmi->mas.index;
404 }
405 
vma_iter_end(struct vma_iterator * vmi)406 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
407 {
408 	return vmi->mas.last + 1;
409 }
410 
vma_iter_bulk_alloc(struct vma_iterator * vmi,unsigned long count)411 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
412 				      unsigned long count)
413 {
414 	return mas_expected_entries(&vmi->mas, count);
415 }
416 
417 static inline
vma_iter_prev_range(struct vma_iterator * vmi)418 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
419 {
420 	return mas_prev_range(&vmi->mas, 0);
421 }
422 
423 /*
424  * Retrieve the next VMA and rewind the iterator to end of the previous VMA, or
425  * if no previous VMA, to index 0.
426  */
427 static inline
vma_iter_next_rewind(struct vma_iterator * vmi,struct vm_area_struct ** pprev)428 struct vm_area_struct *vma_iter_next_rewind(struct vma_iterator *vmi,
429 		struct vm_area_struct **pprev)
430 {
431 	struct vm_area_struct *next = vma_next(vmi);
432 	struct vm_area_struct *prev = vma_prev(vmi);
433 
434 	/*
435 	 * Consider the case where no previous VMA exists. We advance to the
436 	 * next VMA, skipping any gap, then rewind to the start of the range.
437 	 *
438 	 * If we were to unconditionally advance to the next range we'd wind up
439 	 * at the next VMA again, so we check to ensure there is a previous VMA
440 	 * to skip over.
441 	 */
442 	if (prev)
443 		vma_iter_next_range(vmi);
444 
445 	if (pprev)
446 		*pprev = prev;
447 
448 	return next;
449 }
450 
451 #ifdef CONFIG_64BIT
452 
vma_is_sealed(struct vm_area_struct * vma)453 static inline bool vma_is_sealed(struct vm_area_struct *vma)
454 {
455 	return (vma->vm_flags & VM_SEALED);
456 }
457 
458 /*
459  * check if a vma is sealed for modification.
460  * return true, if modification is allowed.
461  */
can_modify_vma(struct vm_area_struct * vma)462 static inline bool can_modify_vma(struct vm_area_struct *vma)
463 {
464 	if (unlikely(vma_is_sealed(vma)))
465 		return false;
466 
467 	return true;
468 }
469 
470 bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior);
471 
472 #else
473 
can_modify_vma(struct vm_area_struct * vma)474 static inline bool can_modify_vma(struct vm_area_struct *vma)
475 {
476 	return true;
477 }
478 
can_modify_vma_madv(struct vm_area_struct * vma,int behavior)479 static inline bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior)
480 {
481 	return true;
482 }
483 
484 #endif
485 
486 #if defined(CONFIG_STACK_GROWSUP)
487 int expand_upwards(struct vm_area_struct *vma, unsigned long address);
488 #endif
489 
490 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
491 
492 int __vm_munmap(unsigned long start, size_t len, bool unlock);
493 
494 #endif	/* __MM_VMA_H */
495