1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Virtual Memory Map support
4  *
5  * (C) 2007 sgi. Christoph Lameter.
6  *
7  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8  * virt_to_page, page_address() to be implemented as a base offset
9  * calculation without memory access.
10  *
11  * However, virtual mappings need a page table and TLBs. Many Linux
12  * architectures already map their physical space using 1-1 mappings
13  * via TLBs. For those arches the virtual memory map is essentially
14  * for free if we use the same page size as the 1-1 mappings. In that
15  * case the overhead consists of a few additional pages that are
16  * allocated to create a view of memory for vmemmap.
17  *
18  * The architecture is expected to provide a vmemmap_populate() function
19  * to instantiate the mapping.
20  */
21 #include <linux/mm.h>
22 #include <linux/mmzone.h>
23 #include <linux/memblock.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
30 
31 #include <asm/dma.h>
32 #include <asm/pgalloc.h>
33 
34 #include "internal.h"
35 
36 /*
37  * Allocate a block of memory to be used to back the virtual memory map
38  * or to back the page tables that are used to create the mapping.
39  * Uses the main allocators if they are available, else bootmem.
40  */
41 
__earlyonly_bootmem_alloc(int node,unsigned long size,unsigned long align,unsigned long goal)42 static void * __ref __earlyonly_bootmem_alloc(int node,
43 				unsigned long size,
44 				unsigned long align,
45 				unsigned long goal)
46 {
47 	return memmap_alloc(size, align, goal, node, false);
48 }
49 
vmemmap_alloc_block(unsigned long size,int node)50 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
51 {
52 	/* If the main allocator is up use that, fallback to bootmem. */
53 	if (slab_is_available()) {
54 		gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
55 		int order = get_order(size);
56 		static bool warned;
57 		struct page *page;
58 
59 		page = alloc_pages_node(node, gfp_mask, order);
60 		if (page)
61 			return page_address(page);
62 
63 		if (!warned) {
64 			warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
65 				   "vmemmap alloc failure: order:%u", order);
66 			warned = true;
67 		}
68 		return NULL;
69 	} else
70 		return __earlyonly_bootmem_alloc(node, size, size,
71 				__pa(MAX_DMA_ADDRESS));
72 }
73 
74 static void * __meminit altmap_alloc_block_buf(unsigned long size,
75 					       struct vmem_altmap *altmap);
76 
77 /* need to make sure size is all the same during early stage */
vmemmap_alloc_block_buf(unsigned long size,int node,struct vmem_altmap * altmap)78 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
79 					 struct vmem_altmap *altmap)
80 {
81 	void *ptr;
82 
83 	if (altmap)
84 		return altmap_alloc_block_buf(size, altmap);
85 
86 	ptr = sparse_buffer_alloc(size);
87 	if (!ptr)
88 		ptr = vmemmap_alloc_block(size, node);
89 	return ptr;
90 }
91 
vmem_altmap_next_pfn(struct vmem_altmap * altmap)92 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
93 {
94 	return altmap->base_pfn + altmap->reserve + altmap->alloc
95 		+ altmap->align;
96 }
97 
vmem_altmap_nr_free(struct vmem_altmap * altmap)98 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
99 {
100 	unsigned long allocated = altmap->alloc + altmap->align;
101 
102 	if (altmap->free > allocated)
103 		return altmap->free - allocated;
104 	return 0;
105 }
106 
altmap_alloc_block_buf(unsigned long size,struct vmem_altmap * altmap)107 static void * __meminit altmap_alloc_block_buf(unsigned long size,
108 					       struct vmem_altmap *altmap)
109 {
110 	unsigned long pfn, nr_pfns, nr_align;
111 
112 	if (size & ~PAGE_MASK) {
113 		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
114 				__func__, size);
115 		return NULL;
116 	}
117 
118 	pfn = vmem_altmap_next_pfn(altmap);
119 	nr_pfns = size >> PAGE_SHIFT;
120 	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
121 	nr_align = ALIGN(pfn, nr_align) - pfn;
122 	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
123 		return NULL;
124 
125 	altmap->alloc += nr_pfns;
126 	altmap->align += nr_align;
127 	pfn += nr_align;
128 
129 	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
130 			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
131 	return __va(__pfn_to_phys(pfn));
132 }
133 
vmemmap_verify(pte_t * pte,int node,unsigned long start,unsigned long end)134 void __meminit vmemmap_verify(pte_t *pte, int node,
135 				unsigned long start, unsigned long end)
136 {
137 	unsigned long pfn = pte_pfn(ptep_get(pte));
138 	int actual_node = early_pfn_to_nid(pfn);
139 
140 	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
141 		pr_warn_once("[%lx-%lx] potential offnode page_structs\n",
142 			start, end - 1);
143 }
144 
vmemmap_pte_populate(pmd_t * pmd,unsigned long addr,int node,struct vmem_altmap * altmap,struct page * reuse)145 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
146 				       struct vmem_altmap *altmap,
147 				       struct page *reuse)
148 {
149 	pte_t *pte = pte_offset_kernel(pmd, addr);
150 	if (pte_none(ptep_get(pte))) {
151 		pte_t entry;
152 		void *p;
153 
154 		if (!reuse) {
155 			p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
156 			if (!p)
157 				return NULL;
158 		} else {
159 			/*
160 			 * When a PTE/PMD entry is freed from the init_mm
161 			 * there's a free_pages() call to this page allocated
162 			 * above. Thus this get_page() is paired with the
163 			 * put_page_testzero() on the freeing path.
164 			 * This can only called by certain ZONE_DEVICE path,
165 			 * and through vmemmap_populate_compound_pages() when
166 			 * slab is available.
167 			 */
168 			get_page(reuse);
169 			p = page_to_virt(reuse);
170 		}
171 		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
172 		set_pte_at(&init_mm, addr, pte, entry);
173 	}
174 	return pte;
175 }
176 
vmemmap_alloc_block_zero(unsigned long size,int node)177 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
178 {
179 	void *p = vmemmap_alloc_block(size, node);
180 
181 	if (!p)
182 		return NULL;
183 	memset(p, 0, size);
184 
185 	return p;
186 }
187 
vmemmap_pmd_populate(pud_t * pud,unsigned long addr,int node)188 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
189 {
190 	pmd_t *pmd = pmd_offset(pud, addr);
191 	if (pmd_none(*pmd)) {
192 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
193 		if (!p)
194 			return NULL;
195 		kernel_pte_init(p);
196 		pmd_populate_kernel(&init_mm, pmd, p);
197 	}
198 	return pmd;
199 }
200 
vmemmap_pud_populate(p4d_t * p4d,unsigned long addr,int node)201 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
202 {
203 	pud_t *pud = pud_offset(p4d, addr);
204 	if (pud_none(*pud)) {
205 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
206 		if (!p)
207 			return NULL;
208 		pmd_init(p);
209 		pud_populate(&init_mm, pud, p);
210 	}
211 	return pud;
212 }
213 
vmemmap_p4d_populate(pgd_t * pgd,unsigned long addr,int node)214 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
215 {
216 	p4d_t *p4d = p4d_offset(pgd, addr);
217 	if (p4d_none(*p4d)) {
218 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
219 		if (!p)
220 			return NULL;
221 		pud_init(p);
222 		p4d_populate(&init_mm, p4d, p);
223 	}
224 	return p4d;
225 }
226 
vmemmap_pgd_populate(unsigned long addr,int node)227 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
228 {
229 	pgd_t *pgd = pgd_offset_k(addr);
230 	if (pgd_none(*pgd)) {
231 		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
232 		if (!p)
233 			return NULL;
234 		pgd_populate(&init_mm, pgd, p);
235 	}
236 	return pgd;
237 }
238 
vmemmap_populate_address(unsigned long addr,int node,struct vmem_altmap * altmap,struct page * reuse)239 static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node,
240 					      struct vmem_altmap *altmap,
241 					      struct page *reuse)
242 {
243 	pgd_t *pgd;
244 	p4d_t *p4d;
245 	pud_t *pud;
246 	pmd_t *pmd;
247 	pte_t *pte;
248 
249 	pgd = vmemmap_pgd_populate(addr, node);
250 	if (!pgd)
251 		return NULL;
252 	p4d = vmemmap_p4d_populate(pgd, addr, node);
253 	if (!p4d)
254 		return NULL;
255 	pud = vmemmap_pud_populate(p4d, addr, node);
256 	if (!pud)
257 		return NULL;
258 	pmd = vmemmap_pmd_populate(pud, addr, node);
259 	if (!pmd)
260 		return NULL;
261 	pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse);
262 	if (!pte)
263 		return NULL;
264 	vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
265 
266 	return pte;
267 }
268 
vmemmap_populate_range(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap,struct page * reuse)269 static int __meminit vmemmap_populate_range(unsigned long start,
270 					    unsigned long end, int node,
271 					    struct vmem_altmap *altmap,
272 					    struct page *reuse)
273 {
274 	unsigned long addr = start;
275 	pte_t *pte;
276 
277 	for (; addr < end; addr += PAGE_SIZE) {
278 		pte = vmemmap_populate_address(addr, node, altmap, reuse);
279 		if (!pte)
280 			return -ENOMEM;
281 	}
282 
283 	return 0;
284 }
285 
vmemmap_populate_basepages(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)286 int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
287 					 int node, struct vmem_altmap *altmap)
288 {
289 	return vmemmap_populate_range(start, end, node, altmap, NULL);
290 }
291 
vmemmap_set_pmd(pmd_t * pmd,void * p,int node,unsigned long addr,unsigned long next)292 void __weak __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
293 				      unsigned long addr, unsigned long next)
294 {
295 }
296 
vmemmap_check_pmd(pmd_t * pmd,int node,unsigned long addr,unsigned long next)297 int __weak __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
298 				       unsigned long addr, unsigned long next)
299 {
300 	return 0;
301 }
302 
vmemmap_populate_hugepages(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)303 int __meminit vmemmap_populate_hugepages(unsigned long start, unsigned long end,
304 					 int node, struct vmem_altmap *altmap)
305 {
306 	unsigned long addr;
307 	unsigned long next;
308 	pgd_t *pgd;
309 	p4d_t *p4d;
310 	pud_t *pud;
311 	pmd_t *pmd;
312 
313 	for (addr = start; addr < end; addr = next) {
314 		next = pmd_addr_end(addr, end);
315 
316 		pgd = vmemmap_pgd_populate(addr, node);
317 		if (!pgd)
318 			return -ENOMEM;
319 
320 		p4d = vmemmap_p4d_populate(pgd, addr, node);
321 		if (!p4d)
322 			return -ENOMEM;
323 
324 		pud = vmemmap_pud_populate(p4d, addr, node);
325 		if (!pud)
326 			return -ENOMEM;
327 
328 		pmd = pmd_offset(pud, addr);
329 		if (pmd_none(READ_ONCE(*pmd))) {
330 			void *p;
331 
332 			p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
333 			if (p) {
334 				vmemmap_set_pmd(pmd, p, node, addr, next);
335 				continue;
336 			} else if (altmap) {
337 				/*
338 				 * No fallback: In any case we care about, the
339 				 * altmap should be reasonably sized and aligned
340 				 * such that vmemmap_alloc_block_buf() will always
341 				 * succeed. For consistency with the PTE case,
342 				 * return an error here as failure could indicate
343 				 * a configuration issue with the size of the altmap.
344 				 */
345 				return -ENOMEM;
346 			}
347 		} else if (vmemmap_check_pmd(pmd, node, addr, next))
348 			continue;
349 		if (vmemmap_populate_basepages(addr, next, node, altmap))
350 			return -ENOMEM;
351 	}
352 	return 0;
353 }
354 
355 #ifndef vmemmap_populate_compound_pages
356 /*
357  * For compound pages bigger than section size (e.g. x86 1G compound
358  * pages with 2M subsection size) fill the rest of sections as tail
359  * pages.
360  *
361  * Note that memremap_pages() resets @nr_range value and will increment
362  * it after each range successful onlining. Thus the value or @nr_range
363  * at section memmap populate corresponds to the in-progress range
364  * being onlined here.
365  */
reuse_compound_section(unsigned long start_pfn,struct dev_pagemap * pgmap)366 static bool __meminit reuse_compound_section(unsigned long start_pfn,
367 					     struct dev_pagemap *pgmap)
368 {
369 	unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
370 	unsigned long offset = start_pfn -
371 		PHYS_PFN(pgmap->ranges[pgmap->nr_range].start);
372 
373 	return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION;
374 }
375 
compound_section_tail_page(unsigned long addr)376 static pte_t * __meminit compound_section_tail_page(unsigned long addr)
377 {
378 	pte_t *pte;
379 
380 	addr -= PAGE_SIZE;
381 
382 	/*
383 	 * Assuming sections are populated sequentially, the previous section's
384 	 * page data can be reused.
385 	 */
386 	pte = pte_offset_kernel(pmd_off_k(addr), addr);
387 	if (!pte)
388 		return NULL;
389 
390 	return pte;
391 }
392 
vmemmap_populate_compound_pages(unsigned long start_pfn,unsigned long start,unsigned long end,int node,struct dev_pagemap * pgmap)393 static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
394 						     unsigned long start,
395 						     unsigned long end, int node,
396 						     struct dev_pagemap *pgmap)
397 {
398 	unsigned long size, addr;
399 	pte_t *pte;
400 	int rc;
401 
402 	if (reuse_compound_section(start_pfn, pgmap)) {
403 		pte = compound_section_tail_page(start);
404 		if (!pte)
405 			return -ENOMEM;
406 
407 		/*
408 		 * Reuse the page that was populated in the prior iteration
409 		 * with just tail struct pages.
410 		 */
411 		return vmemmap_populate_range(start, end, node, NULL,
412 					      pte_page(ptep_get(pte)));
413 	}
414 
415 	size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page));
416 	for (addr = start; addr < end; addr += size) {
417 		unsigned long next, last = addr + size;
418 
419 		/* Populate the head page vmemmap page */
420 		pte = vmemmap_populate_address(addr, node, NULL, NULL);
421 		if (!pte)
422 			return -ENOMEM;
423 
424 		/* Populate the tail pages vmemmap page */
425 		next = addr + PAGE_SIZE;
426 		pte = vmemmap_populate_address(next, node, NULL, NULL);
427 		if (!pte)
428 			return -ENOMEM;
429 
430 		/*
431 		 * Reuse the previous page for the rest of tail pages
432 		 * See layout diagram in Documentation/mm/vmemmap_dedup.rst
433 		 */
434 		next += PAGE_SIZE;
435 		rc = vmemmap_populate_range(next, last, node, NULL,
436 					    pte_page(ptep_get(pte)));
437 		if (rc)
438 			return -ENOMEM;
439 	}
440 
441 	return 0;
442 }
443 
444 #endif
445 
__populate_section_memmap(unsigned long pfn,unsigned long nr_pages,int nid,struct vmem_altmap * altmap,struct dev_pagemap * pgmap)446 struct page * __meminit __populate_section_memmap(unsigned long pfn,
447 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
448 		struct dev_pagemap *pgmap)
449 {
450 	unsigned long start = (unsigned long) pfn_to_page(pfn);
451 	unsigned long end = start + nr_pages * sizeof(struct page);
452 	int r;
453 
454 	if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
455 		!IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
456 		return NULL;
457 
458 	if (vmemmap_can_optimize(altmap, pgmap))
459 		r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
460 	else
461 		r = vmemmap_populate(start, end, nid, altmap);
462 
463 	if (r < 0)
464 		return NULL;
465 
466 	if (system_state == SYSTEM_BOOTING)
467 		memmap_boot_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE));
468 	else
469 		memmap_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE));
470 
471 	return pfn_to_page(pfn);
472 }
473