1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
45 
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
48 
49 #include "internal.h"
50 
51 /*
52  * Lock order:
53  *   1. slab_mutex (Global Mutex)
54  *   2. node->list_lock (Spinlock)
55  *   3. kmem_cache->cpu_slab->lock (Local lock)
56  *   4. slab_lock(slab) (Only on some arches)
57  *   5. object_map_lock (Only for debugging)
58  *
59  *   slab_mutex
60  *
61  *   The role of the slab_mutex is to protect the list of all the slabs
62  *   and to synchronize major metadata changes to slab cache structures.
63  *   Also synchronizes memory hotplug callbacks.
64  *
65  *   slab_lock
66  *
67  *   The slab_lock is a wrapper around the page lock, thus it is a bit
68  *   spinlock.
69  *
70  *   The slab_lock is only used on arches that do not have the ability
71  *   to do a cmpxchg_double. It only protects:
72  *
73  *	A. slab->freelist	-> List of free objects in a slab
74  *	B. slab->inuse		-> Number of objects in use
75  *	C. slab->objects	-> Number of objects in slab
76  *	D. slab->frozen		-> frozen state
77  *
78  *   Frozen slabs
79  *
80  *   If a slab is frozen then it is exempt from list management. It is
81  *   the cpu slab which is actively allocated from by the processor that
82  *   froze it and it is not on any list. The processor that froze the
83  *   slab is the one who can perform list operations on the slab. Other
84  *   processors may put objects onto the freelist but the processor that
85  *   froze the slab is the only one that can retrieve the objects from the
86  *   slab's freelist.
87  *
88  *   CPU partial slabs
89  *
90  *   The partially empty slabs cached on the CPU partial list are used
91  *   for performance reasons, which speeds up the allocation process.
92  *   These slabs are not frozen, but are also exempt from list management,
93  *   by clearing the PG_workingset flag when moving out of the node
94  *   partial list. Please see __slab_free() for more details.
95  *
96  *   To sum up, the current scheme is:
97  *   - node partial slab: PG_Workingset && !frozen
98  *   - cpu partial slab: !PG_Workingset && !frozen
99  *   - cpu slab: !PG_Workingset && frozen
100  *   - full slab: !PG_Workingset && !frozen
101  *
102  *   list_lock
103  *
104  *   The list_lock protects the partial and full list on each node and
105  *   the partial slab counter. If taken then no new slabs may be added or
106  *   removed from the lists nor make the number of partial slabs be modified.
107  *   (Note that the total number of slabs is an atomic value that may be
108  *   modified without taking the list lock).
109  *
110  *   The list_lock is a centralized lock and thus we avoid taking it as
111  *   much as possible. As long as SLUB does not have to handle partial
112  *   slabs, operations can continue without any centralized lock. F.e.
113  *   allocating a long series of objects that fill up slabs does not require
114  *   the list lock.
115  *
116  *   For debug caches, all allocations are forced to go through a list_lock
117  *   protected region to serialize against concurrent validation.
118  *
119  *   cpu_slab->lock local lock
120  *
121  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
122  *   except the stat counters. This is a percpu structure manipulated only by
123  *   the local cpu, so the lock protects against being preempted or interrupted
124  *   by an irq. Fast path operations rely on lockless operations instead.
125  *
126  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127  *   which means the lockless fastpath cannot be used as it might interfere with
128  *   an in-progress slow path operations. In this case the local lock is always
129  *   taken but it still utilizes the freelist for the common operations.
130  *
131  *   lockless fastpaths
132  *
133  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134  *   are fully lockless when satisfied from the percpu slab (and when
135  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
136  *   They also don't disable preemption or migration or irqs. They rely on
137  *   the transaction id (tid) field to detect being preempted or moved to
138  *   another cpu.
139  *
140  *   irq, preemption, migration considerations
141  *
142  *   Interrupts are disabled as part of list_lock or local_lock operations, or
143  *   around the slab_lock operation, in order to make the slab allocator safe
144  *   to use in the context of an irq.
145  *
146  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149  *   doesn't have to be revalidated in each section protected by the local lock.
150  *
151  * SLUB assigns one slab for allocation to each processor.
152  * Allocations only occur from these slabs called cpu slabs.
153  *
154  * Slabs with free elements are kept on a partial list and during regular
155  * operations no list for full slabs is used. If an object in a full slab is
156  * freed then the slab will show up again on the partial lists.
157  * We track full slabs for debugging purposes though because otherwise we
158  * cannot scan all objects.
159  *
160  * Slabs are freed when they become empty. Teardown and setup is
161  * minimal so we rely on the page allocators per cpu caches for
162  * fast frees and allocs.
163  *
164  * slab->frozen		The slab is frozen and exempt from list processing.
165  * 			This means that the slab is dedicated to a purpose
166  * 			such as satisfying allocations for a specific
167  * 			processor. Objects may be freed in the slab while
168  * 			it is frozen but slab_free will then skip the usual
169  * 			list operations. It is up to the processor holding
170  * 			the slab to integrate the slab into the slab lists
171  * 			when the slab is no longer needed.
172  *
173  * 			One use of this flag is to mark slabs that are
174  * 			used for allocations. Then such a slab becomes a cpu
175  * 			slab. The cpu slab may be equipped with an additional
176  * 			freelist that allows lockless access to
177  * 			free objects in addition to the regular freelist
178  * 			that requires the slab lock.
179  *
180  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
181  * 			options set. This moves	slab handling out of
182  * 			the fast path and disables lockless freelists.
183  */
184 
185 /*
186  * We could simply use migrate_disable()/enable() but as long as it's a
187  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
188  */
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH()	(true)
193 #else
194 #define slub_get_cpu_ptr(var)		\
195 ({					\
196 	migrate_disable();		\
197 	this_cpu_ptr(var);		\
198 })
199 #define slub_put_cpu_ptr(var)		\
200 do {					\
201 	(void)(var);			\
202 	migrate_enable();		\
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH()	(false)
205 #endif
206 
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
212 
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif		/* CONFIG_SLUB_DEBUG */
220 
221 #ifdef CONFIG_NUMA
222 static DEFINE_STATIC_KEY_FALSE(strict_numa);
223 #endif
224 
225 /* Structure holding parameters for get_partial() call chain */
226 struct partial_context {
227 	gfp_t flags;
228 	unsigned int orig_size;
229 	void *object;
230 };
231 
kmem_cache_debug(struct kmem_cache * s)232 static inline bool kmem_cache_debug(struct kmem_cache *s)
233 {
234 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
235 }
236 
fixup_red_left(struct kmem_cache * s,void * p)237 void *fixup_red_left(struct kmem_cache *s, void *p)
238 {
239 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
240 		p += s->red_left_pad;
241 
242 	return p;
243 }
244 
kmem_cache_has_cpu_partial(struct kmem_cache * s)245 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
246 {
247 #ifdef CONFIG_SLUB_CPU_PARTIAL
248 	return !kmem_cache_debug(s);
249 #else
250 	return false;
251 #endif
252 }
253 
254 /*
255  * Issues still to be resolved:
256  *
257  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
258  *
259  * - Variable sizing of the per node arrays
260  */
261 
262 /* Enable to log cmpxchg failures */
263 #undef SLUB_DEBUG_CMPXCHG
264 
265 #ifndef CONFIG_SLUB_TINY
266 /*
267  * Minimum number of partial slabs. These will be left on the partial
268  * lists even if they are empty. kmem_cache_shrink may reclaim them.
269  */
270 #define MIN_PARTIAL 5
271 
272 /*
273  * Maximum number of desirable partial slabs.
274  * The existence of more partial slabs makes kmem_cache_shrink
275  * sort the partial list by the number of objects in use.
276  */
277 #define MAX_PARTIAL 10
278 #else
279 #define MIN_PARTIAL 0
280 #define MAX_PARTIAL 0
281 #endif
282 
283 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
284 				SLAB_POISON | SLAB_STORE_USER)
285 
286 /*
287  * These debug flags cannot use CMPXCHG because there might be consistency
288  * issues when checking or reading debug information
289  */
290 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
291 				SLAB_TRACE)
292 
293 
294 /*
295  * Debugging flags that require metadata to be stored in the slab.  These get
296  * disabled when slab_debug=O is used and a cache's min order increases with
297  * metadata.
298  */
299 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
300 
301 #define OO_SHIFT	16
302 #define OO_MASK		((1 << OO_SHIFT) - 1)
303 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
304 
305 /* Internal SLUB flags */
306 /* Poison object */
307 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
308 /* Use cmpxchg_double */
309 
310 #ifdef system_has_freelist_aba
311 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
312 #else
313 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
314 #endif
315 
316 /*
317  * Tracking user of a slab.
318  */
319 #define TRACK_ADDRS_COUNT 16
320 struct track {
321 	unsigned long addr;	/* Called from address */
322 #ifdef CONFIG_STACKDEPOT
323 	depot_stack_handle_t handle;
324 #endif
325 	int cpu;		/* Was running on cpu */
326 	int pid;		/* Pid context */
327 	unsigned long when;	/* When did the operation occur */
328 };
329 
330 enum track_item { TRACK_ALLOC, TRACK_FREE };
331 
332 #ifdef SLAB_SUPPORTS_SYSFS
333 static int sysfs_slab_add(struct kmem_cache *);
334 static int sysfs_slab_alias(struct kmem_cache *, const char *);
335 #else
sysfs_slab_add(struct kmem_cache * s)336 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)337 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
338 							{ return 0; }
339 #endif
340 
341 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
342 static void debugfs_slab_add(struct kmem_cache *);
343 #else
debugfs_slab_add(struct kmem_cache * s)344 static inline void debugfs_slab_add(struct kmem_cache *s) { }
345 #endif
346 
347 enum stat_item {
348 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
349 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
350 	FREE_FASTPATH,		/* Free to cpu slab */
351 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
352 	FREE_FROZEN,		/* Freeing to frozen slab */
353 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
354 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
355 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
356 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
357 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
358 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
359 	FREE_SLAB,		/* Slab freed to the page allocator */
360 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
361 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
362 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
363 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
364 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
365 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
366 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
367 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
368 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
369 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
370 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
371 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
372 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
373 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
374 	NR_SLUB_STAT_ITEMS
375 };
376 
377 #ifndef CONFIG_SLUB_TINY
378 /*
379  * When changing the layout, make sure freelist and tid are still compatible
380  * with this_cpu_cmpxchg_double() alignment requirements.
381  */
382 struct kmem_cache_cpu {
383 	union {
384 		struct {
385 			void **freelist;	/* Pointer to next available object */
386 			unsigned long tid;	/* Globally unique transaction id */
387 		};
388 		freelist_aba_t freelist_tid;
389 	};
390 	struct slab *slab;	/* The slab from which we are allocating */
391 #ifdef CONFIG_SLUB_CPU_PARTIAL
392 	struct slab *partial;	/* Partially allocated slabs */
393 #endif
394 	local_lock_t lock;	/* Protects the fields above */
395 #ifdef CONFIG_SLUB_STATS
396 	unsigned int stat[NR_SLUB_STAT_ITEMS];
397 #endif
398 };
399 #endif /* CONFIG_SLUB_TINY */
400 
stat(const struct kmem_cache * s,enum stat_item si)401 static inline void stat(const struct kmem_cache *s, enum stat_item si)
402 {
403 #ifdef CONFIG_SLUB_STATS
404 	/*
405 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
406 	 * avoid this_cpu_add()'s irq-disable overhead.
407 	 */
408 	raw_cpu_inc(s->cpu_slab->stat[si]);
409 #endif
410 }
411 
412 static inline
stat_add(const struct kmem_cache * s,enum stat_item si,int v)413 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
414 {
415 #ifdef CONFIG_SLUB_STATS
416 	raw_cpu_add(s->cpu_slab->stat[si], v);
417 #endif
418 }
419 
420 /*
421  * The slab lists for all objects.
422  */
423 struct kmem_cache_node {
424 	spinlock_t list_lock;
425 	unsigned long nr_partial;
426 	struct list_head partial;
427 #ifdef CONFIG_SLUB_DEBUG
428 	atomic_long_t nr_slabs;
429 	atomic_long_t total_objects;
430 	struct list_head full;
431 #endif
432 };
433 
get_node(struct kmem_cache * s,int node)434 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
435 {
436 	return s->node[node];
437 }
438 
439 /*
440  * Iterator over all nodes. The body will be executed for each node that has
441  * a kmem_cache_node structure allocated (which is true for all online nodes)
442  */
443 #define for_each_kmem_cache_node(__s, __node, __n) \
444 	for (__node = 0; __node < nr_node_ids; __node++) \
445 		 if ((__n = get_node(__s, __node)))
446 
447 /*
448  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
449  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
450  * differ during memory hotplug/hotremove operations.
451  * Protected by slab_mutex.
452  */
453 static nodemask_t slab_nodes;
454 
455 #ifndef CONFIG_SLUB_TINY
456 /*
457  * Workqueue used for flush_cpu_slab().
458  */
459 static struct workqueue_struct *flushwq;
460 #endif
461 
462 /********************************************************************
463  * 			Core slab cache functions
464  *******************************************************************/
465 
466 /*
467  * Returns freelist pointer (ptr). With hardening, this is obfuscated
468  * with an XOR of the address where the pointer is held and a per-cache
469  * random number.
470  */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)471 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
472 					    void *ptr, unsigned long ptr_addr)
473 {
474 	unsigned long encoded;
475 
476 #ifdef CONFIG_SLAB_FREELIST_HARDENED
477 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
478 #else
479 	encoded = (unsigned long)ptr;
480 #endif
481 	return (freeptr_t){.v = encoded};
482 }
483 
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)484 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
485 					freeptr_t ptr, unsigned long ptr_addr)
486 {
487 	void *decoded;
488 
489 #ifdef CONFIG_SLAB_FREELIST_HARDENED
490 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
491 #else
492 	decoded = (void *)ptr.v;
493 #endif
494 	return decoded;
495 }
496 
get_freepointer(struct kmem_cache * s,void * object)497 static inline void *get_freepointer(struct kmem_cache *s, void *object)
498 {
499 	unsigned long ptr_addr;
500 	freeptr_t p;
501 
502 	object = kasan_reset_tag(object);
503 	ptr_addr = (unsigned long)object + s->offset;
504 	p = *(freeptr_t *)(ptr_addr);
505 	return freelist_ptr_decode(s, p, ptr_addr);
506 }
507 
508 #ifndef CONFIG_SLUB_TINY
prefetch_freepointer(const struct kmem_cache * s,void * object)509 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
510 {
511 	prefetchw(object + s->offset);
512 }
513 #endif
514 
515 /*
516  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
517  * pointer value in the case the current thread loses the race for the next
518  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
519  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
520  * KMSAN will still check all arguments of cmpxchg because of imperfect
521  * handling of inline assembly.
522  * To work around this problem, we apply __no_kmsan_checks to ensure that
523  * get_freepointer_safe() returns initialized memory.
524  */
525 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)526 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
527 {
528 	unsigned long freepointer_addr;
529 	freeptr_t p;
530 
531 	if (!debug_pagealloc_enabled_static())
532 		return get_freepointer(s, object);
533 
534 	object = kasan_reset_tag(object);
535 	freepointer_addr = (unsigned long)object + s->offset;
536 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
537 	return freelist_ptr_decode(s, p, freepointer_addr);
538 }
539 
set_freepointer(struct kmem_cache * s,void * object,void * fp)540 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
541 {
542 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
543 
544 #ifdef CONFIG_SLAB_FREELIST_HARDENED
545 	BUG_ON(object == fp); /* naive detection of double free or corruption */
546 #endif
547 
548 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
549 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
550 }
551 
552 /*
553  * See comment in calculate_sizes().
554  */
freeptr_outside_object(struct kmem_cache * s)555 static inline bool freeptr_outside_object(struct kmem_cache *s)
556 {
557 	return s->offset >= s->inuse;
558 }
559 
560 /*
561  * Return offset of the end of info block which is inuse + free pointer if
562  * not overlapping with object.
563  */
get_info_end(struct kmem_cache * s)564 static inline unsigned int get_info_end(struct kmem_cache *s)
565 {
566 	if (freeptr_outside_object(s))
567 		return s->inuse + sizeof(void *);
568 	else
569 		return s->inuse;
570 }
571 
572 /* Loop over all objects in a slab */
573 #define for_each_object(__p, __s, __addr, __objects) \
574 	for (__p = fixup_red_left(__s, __addr); \
575 		__p < (__addr) + (__objects) * (__s)->size; \
576 		__p += (__s)->size)
577 
order_objects(unsigned int order,unsigned int size)578 static inline unsigned int order_objects(unsigned int order, unsigned int size)
579 {
580 	return ((unsigned int)PAGE_SIZE << order) / size;
581 }
582 
oo_make(unsigned int order,unsigned int size)583 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
584 		unsigned int size)
585 {
586 	struct kmem_cache_order_objects x = {
587 		(order << OO_SHIFT) + order_objects(order, size)
588 	};
589 
590 	return x;
591 }
592 
oo_order(struct kmem_cache_order_objects x)593 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
594 {
595 	return x.x >> OO_SHIFT;
596 }
597 
oo_objects(struct kmem_cache_order_objects x)598 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
599 {
600 	return x.x & OO_MASK;
601 }
602 
603 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)604 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
605 {
606 	unsigned int nr_slabs;
607 
608 	s->cpu_partial = nr_objects;
609 
610 	/*
611 	 * We take the number of objects but actually limit the number of
612 	 * slabs on the per cpu partial list, in order to limit excessive
613 	 * growth of the list. For simplicity we assume that the slabs will
614 	 * be half-full.
615 	 */
616 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
617 	s->cpu_partial_slabs = nr_slabs;
618 }
619 
slub_get_cpu_partial(struct kmem_cache * s)620 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
621 {
622 	return s->cpu_partial_slabs;
623 }
624 #else
625 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)626 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
627 {
628 }
629 
slub_get_cpu_partial(struct kmem_cache * s)630 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
631 {
632 	return 0;
633 }
634 #endif /* CONFIG_SLUB_CPU_PARTIAL */
635 
636 /*
637  * Per slab locking using the pagelock
638  */
slab_lock(struct slab * slab)639 static __always_inline void slab_lock(struct slab *slab)
640 {
641 	bit_spin_lock(PG_locked, &slab->__page_flags);
642 }
643 
slab_unlock(struct slab * slab)644 static __always_inline void slab_unlock(struct slab *slab)
645 {
646 	bit_spin_unlock(PG_locked, &slab->__page_flags);
647 }
648 
649 static inline bool
__update_freelist_fast(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)650 __update_freelist_fast(struct slab *slab,
651 		      void *freelist_old, unsigned long counters_old,
652 		      void *freelist_new, unsigned long counters_new)
653 {
654 #ifdef system_has_freelist_aba
655 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
656 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
657 
658 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
659 #else
660 	return false;
661 #endif
662 }
663 
664 static inline bool
__update_freelist_slow(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)665 __update_freelist_slow(struct slab *slab,
666 		      void *freelist_old, unsigned long counters_old,
667 		      void *freelist_new, unsigned long counters_new)
668 {
669 	bool ret = false;
670 
671 	slab_lock(slab);
672 	if (slab->freelist == freelist_old &&
673 	    slab->counters == counters_old) {
674 		slab->freelist = freelist_new;
675 		slab->counters = counters_new;
676 		ret = true;
677 	}
678 	slab_unlock(slab);
679 
680 	return ret;
681 }
682 
683 /*
684  * Interrupts must be disabled (for the fallback code to work right), typically
685  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
686  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
687  * allocation/ free operation in hardirq context. Therefore nothing can
688  * interrupt the operation.
689  */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)690 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
691 		void *freelist_old, unsigned long counters_old,
692 		void *freelist_new, unsigned long counters_new,
693 		const char *n)
694 {
695 	bool ret;
696 
697 	if (USE_LOCKLESS_FAST_PATH())
698 		lockdep_assert_irqs_disabled();
699 
700 	if (s->flags & __CMPXCHG_DOUBLE) {
701 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
702 				            freelist_new, counters_new);
703 	} else {
704 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
705 				            freelist_new, counters_new);
706 	}
707 	if (likely(ret))
708 		return true;
709 
710 	cpu_relax();
711 	stat(s, CMPXCHG_DOUBLE_FAIL);
712 
713 #ifdef SLUB_DEBUG_CMPXCHG
714 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
715 #endif
716 
717 	return false;
718 }
719 
slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)720 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
721 		void *freelist_old, unsigned long counters_old,
722 		void *freelist_new, unsigned long counters_new,
723 		const char *n)
724 {
725 	bool ret;
726 
727 	if (s->flags & __CMPXCHG_DOUBLE) {
728 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
729 				            freelist_new, counters_new);
730 	} else {
731 		unsigned long flags;
732 
733 		local_irq_save(flags);
734 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
735 				            freelist_new, counters_new);
736 		local_irq_restore(flags);
737 	}
738 	if (likely(ret))
739 		return true;
740 
741 	cpu_relax();
742 	stat(s, CMPXCHG_DOUBLE_FAIL);
743 
744 #ifdef SLUB_DEBUG_CMPXCHG
745 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
746 #endif
747 
748 	return false;
749 }
750 
751 /*
752  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
753  * family will round up the real request size to these fixed ones, so
754  * there could be an extra area than what is requested. Save the original
755  * request size in the meta data area, for better debug and sanity check.
756  */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)757 static inline void set_orig_size(struct kmem_cache *s,
758 				void *object, unsigned int orig_size)
759 {
760 	void *p = kasan_reset_tag(object);
761 
762 	if (!slub_debug_orig_size(s))
763 		return;
764 
765 	p += get_info_end(s);
766 	p += sizeof(struct track) * 2;
767 
768 	*(unsigned int *)p = orig_size;
769 }
770 
get_orig_size(struct kmem_cache * s,void * object)771 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
772 {
773 	void *p = kasan_reset_tag(object);
774 
775 	if (is_kfence_address(object))
776 		return kfence_ksize(object);
777 
778 	if (!slub_debug_orig_size(s))
779 		return s->object_size;
780 
781 	p += get_info_end(s);
782 	p += sizeof(struct track) * 2;
783 
784 	return *(unsigned int *)p;
785 }
786 
787 #ifdef CONFIG_SLUB_DEBUG
788 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
789 static DEFINE_SPINLOCK(object_map_lock);
790 
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)791 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
792 		       struct slab *slab)
793 {
794 	void *addr = slab_address(slab);
795 	void *p;
796 
797 	bitmap_zero(obj_map, slab->objects);
798 
799 	for (p = slab->freelist; p; p = get_freepointer(s, p))
800 		set_bit(__obj_to_index(s, addr, p), obj_map);
801 }
802 
803 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)804 static bool slab_add_kunit_errors(void)
805 {
806 	struct kunit_resource *resource;
807 
808 	if (!kunit_get_current_test())
809 		return false;
810 
811 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
812 	if (!resource)
813 		return false;
814 
815 	(*(int *)resource->data)++;
816 	kunit_put_resource(resource);
817 	return true;
818 }
819 
slab_in_kunit_test(void)820 bool slab_in_kunit_test(void)
821 {
822 	struct kunit_resource *resource;
823 
824 	if (!kunit_get_current_test())
825 		return false;
826 
827 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
828 	if (!resource)
829 		return false;
830 
831 	kunit_put_resource(resource);
832 	return true;
833 }
834 #else
slab_add_kunit_errors(void)835 static inline bool slab_add_kunit_errors(void) { return false; }
836 #endif
837 
size_from_object(struct kmem_cache * s)838 static inline unsigned int size_from_object(struct kmem_cache *s)
839 {
840 	if (s->flags & SLAB_RED_ZONE)
841 		return s->size - s->red_left_pad;
842 
843 	return s->size;
844 }
845 
restore_red_left(struct kmem_cache * s,void * p)846 static inline void *restore_red_left(struct kmem_cache *s, void *p)
847 {
848 	if (s->flags & SLAB_RED_ZONE)
849 		p -= s->red_left_pad;
850 
851 	return p;
852 }
853 
854 /*
855  * Debug settings:
856  */
857 #if defined(CONFIG_SLUB_DEBUG_ON)
858 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
859 #else
860 static slab_flags_t slub_debug;
861 #endif
862 
863 static char *slub_debug_string;
864 static int disable_higher_order_debug;
865 
866 /*
867  * slub is about to manipulate internal object metadata.  This memory lies
868  * outside the range of the allocated object, so accessing it would normally
869  * be reported by kasan as a bounds error.  metadata_access_enable() is used
870  * to tell kasan that these accesses are OK.
871  */
metadata_access_enable(void)872 static inline void metadata_access_enable(void)
873 {
874 	kasan_disable_current();
875 	kmsan_disable_current();
876 }
877 
metadata_access_disable(void)878 static inline void metadata_access_disable(void)
879 {
880 	kmsan_enable_current();
881 	kasan_enable_current();
882 }
883 
884 /*
885  * Object debugging
886  */
887 
888 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)889 static inline int check_valid_pointer(struct kmem_cache *s,
890 				struct slab *slab, void *object)
891 {
892 	void *base;
893 
894 	if (!object)
895 		return 1;
896 
897 	base = slab_address(slab);
898 	object = kasan_reset_tag(object);
899 	object = restore_red_left(s, object);
900 	if (object < base || object >= base + slab->objects * s->size ||
901 		(object - base) % s->size) {
902 		return 0;
903 	}
904 
905 	return 1;
906 }
907 
print_section(char * level,char * text,u8 * addr,unsigned int length)908 static void print_section(char *level, char *text, u8 *addr,
909 			  unsigned int length)
910 {
911 	metadata_access_enable();
912 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
913 			16, 1, kasan_reset_tag((void *)addr), length, 1);
914 	metadata_access_disable();
915 }
916 
get_track(struct kmem_cache * s,void * object,enum track_item alloc)917 static struct track *get_track(struct kmem_cache *s, void *object,
918 	enum track_item alloc)
919 {
920 	struct track *p;
921 
922 	p = object + get_info_end(s);
923 
924 	return kasan_reset_tag(p + alloc);
925 }
926 
927 #ifdef CONFIG_STACKDEPOT
set_track_prepare(void)928 static noinline depot_stack_handle_t set_track_prepare(void)
929 {
930 	depot_stack_handle_t handle;
931 	unsigned long entries[TRACK_ADDRS_COUNT];
932 	unsigned int nr_entries;
933 
934 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
935 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
936 
937 	return handle;
938 }
939 #else
set_track_prepare(void)940 static inline depot_stack_handle_t set_track_prepare(void)
941 {
942 	return 0;
943 }
944 #endif
945 
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)946 static void set_track_update(struct kmem_cache *s, void *object,
947 			     enum track_item alloc, unsigned long addr,
948 			     depot_stack_handle_t handle)
949 {
950 	struct track *p = get_track(s, object, alloc);
951 
952 #ifdef CONFIG_STACKDEPOT
953 	p->handle = handle;
954 #endif
955 	p->addr = addr;
956 	p->cpu = smp_processor_id();
957 	p->pid = current->pid;
958 	p->when = jiffies;
959 }
960 
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)961 static __always_inline void set_track(struct kmem_cache *s, void *object,
962 				      enum track_item alloc, unsigned long addr)
963 {
964 	depot_stack_handle_t handle = set_track_prepare();
965 
966 	set_track_update(s, object, alloc, addr, handle);
967 }
968 
init_tracking(struct kmem_cache * s,void * object)969 static void init_tracking(struct kmem_cache *s, void *object)
970 {
971 	struct track *p;
972 
973 	if (!(s->flags & SLAB_STORE_USER))
974 		return;
975 
976 	p = get_track(s, object, TRACK_ALLOC);
977 	memset(p, 0, 2*sizeof(struct track));
978 }
979 
print_track(const char * s,struct track * t,unsigned long pr_time)980 static void print_track(const char *s, struct track *t, unsigned long pr_time)
981 {
982 	depot_stack_handle_t handle __maybe_unused;
983 
984 	if (!t->addr)
985 		return;
986 
987 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
988 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
989 #ifdef CONFIG_STACKDEPOT
990 	handle = READ_ONCE(t->handle);
991 	if (handle)
992 		stack_depot_print(handle);
993 	else
994 		pr_err("object allocation/free stack trace missing\n");
995 #endif
996 }
997 
print_tracking(struct kmem_cache * s,void * object)998 void print_tracking(struct kmem_cache *s, void *object)
999 {
1000 	unsigned long pr_time = jiffies;
1001 	if (!(s->flags & SLAB_STORE_USER))
1002 		return;
1003 
1004 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1005 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1006 }
1007 
print_slab_info(const struct slab * slab)1008 static void print_slab_info(const struct slab *slab)
1009 {
1010 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1011 	       slab, slab->objects, slab->inuse, slab->freelist,
1012 	       &slab->__page_flags);
1013 }
1014 
skip_orig_size_check(struct kmem_cache * s,const void * object)1015 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1016 {
1017 	set_orig_size(s, (void *)object, s->object_size);
1018 }
1019 
slab_bug(struct kmem_cache * s,char * fmt,...)1020 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1021 {
1022 	struct va_format vaf;
1023 	va_list args;
1024 
1025 	va_start(args, fmt);
1026 	vaf.fmt = fmt;
1027 	vaf.va = &args;
1028 	pr_err("=============================================================================\n");
1029 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1030 	pr_err("-----------------------------------------------------------------------------\n\n");
1031 	va_end(args);
1032 }
1033 
1034 __printf(2, 3)
slab_fix(struct kmem_cache * s,char * fmt,...)1035 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1036 {
1037 	struct va_format vaf;
1038 	va_list args;
1039 
1040 	if (slab_add_kunit_errors())
1041 		return;
1042 
1043 	va_start(args, fmt);
1044 	vaf.fmt = fmt;
1045 	vaf.va = &args;
1046 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1047 	va_end(args);
1048 }
1049 
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)1050 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1051 {
1052 	unsigned int off;	/* Offset of last byte */
1053 	u8 *addr = slab_address(slab);
1054 
1055 	print_tracking(s, p);
1056 
1057 	print_slab_info(slab);
1058 
1059 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1060 	       p, p - addr, get_freepointer(s, p));
1061 
1062 	if (s->flags & SLAB_RED_ZONE)
1063 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1064 			      s->red_left_pad);
1065 	else if (p > addr + 16)
1066 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1067 
1068 	print_section(KERN_ERR,         "Object   ", p,
1069 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1070 	if (s->flags & SLAB_RED_ZONE)
1071 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1072 			s->inuse - s->object_size);
1073 
1074 	off = get_info_end(s);
1075 
1076 	if (s->flags & SLAB_STORE_USER)
1077 		off += 2 * sizeof(struct track);
1078 
1079 	if (slub_debug_orig_size(s))
1080 		off += sizeof(unsigned int);
1081 
1082 	off += kasan_metadata_size(s, false);
1083 
1084 	if (off != size_from_object(s))
1085 		/* Beginning of the filler is the free pointer */
1086 		print_section(KERN_ERR, "Padding  ", p + off,
1087 			      size_from_object(s) - off);
1088 
1089 	dump_stack();
1090 }
1091 
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,char * reason)1092 static void object_err(struct kmem_cache *s, struct slab *slab,
1093 			u8 *object, char *reason)
1094 {
1095 	if (slab_add_kunit_errors())
1096 		return;
1097 
1098 	slab_bug(s, "%s", reason);
1099 	print_trailer(s, slab, object);
1100 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1101 }
1102 
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1103 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1104 			       void **freelist, void *nextfree)
1105 {
1106 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1107 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1108 		object_err(s, slab, *freelist, "Freechain corrupt");
1109 		*freelist = NULL;
1110 		slab_fix(s, "Isolate corrupted freechain");
1111 		return true;
1112 	}
1113 
1114 	return false;
1115 }
1116 
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1117 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1118 			const char *fmt, ...)
1119 {
1120 	va_list args;
1121 	char buf[100];
1122 
1123 	if (slab_add_kunit_errors())
1124 		return;
1125 
1126 	va_start(args, fmt);
1127 	vsnprintf(buf, sizeof(buf), fmt, args);
1128 	va_end(args);
1129 	slab_bug(s, "%s", buf);
1130 	print_slab_info(slab);
1131 	dump_stack();
1132 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1133 }
1134 
init_object(struct kmem_cache * s,void * object,u8 val)1135 static void init_object(struct kmem_cache *s, void *object, u8 val)
1136 {
1137 	u8 *p = kasan_reset_tag(object);
1138 	unsigned int poison_size = s->object_size;
1139 
1140 	if (s->flags & SLAB_RED_ZONE) {
1141 		/*
1142 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1143 		 * the shadow makes it possible to distinguish uninit-value
1144 		 * from use-after-free.
1145 		 */
1146 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1147 					  s->red_left_pad);
1148 
1149 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1150 			/*
1151 			 * Redzone the extra allocated space by kmalloc than
1152 			 * requested, and the poison size will be limited to
1153 			 * the original request size accordingly.
1154 			 */
1155 			poison_size = get_orig_size(s, object);
1156 		}
1157 	}
1158 
1159 	if (s->flags & __OBJECT_POISON) {
1160 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1161 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1162 	}
1163 
1164 	if (s->flags & SLAB_RED_ZONE)
1165 		memset_no_sanitize_memory(p + poison_size, val,
1166 					  s->inuse - poison_size);
1167 }
1168 
restore_bytes(struct kmem_cache * s,char * message,u8 data,void * from,void * to)1169 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1170 						void *from, void *to)
1171 {
1172 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1173 	memset(from, data, to - from);
1174 }
1175 
1176 #ifdef CONFIG_KMSAN
1177 #define pad_check_attributes noinline __no_kmsan_checks
1178 #else
1179 #define pad_check_attributes
1180 #endif
1181 
1182 static pad_check_attributes int
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,char * what,u8 * start,unsigned int value,unsigned int bytes)1183 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1184 		       u8 *object, char *what,
1185 		       u8 *start, unsigned int value, unsigned int bytes)
1186 {
1187 	u8 *fault;
1188 	u8 *end;
1189 	u8 *addr = slab_address(slab);
1190 
1191 	metadata_access_enable();
1192 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1193 	metadata_access_disable();
1194 	if (!fault)
1195 		return 1;
1196 
1197 	end = start + bytes;
1198 	while (end > fault && end[-1] == value)
1199 		end--;
1200 
1201 	if (slab_add_kunit_errors())
1202 		goto skip_bug_print;
1203 
1204 	slab_bug(s, "%s overwritten", what);
1205 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1206 					fault, end - 1, fault - addr,
1207 					fault[0], value);
1208 
1209 skip_bug_print:
1210 	restore_bytes(s, what, value, fault, end);
1211 	return 0;
1212 }
1213 
1214 /*
1215  * Object layout:
1216  *
1217  * object address
1218  * 	Bytes of the object to be managed.
1219  * 	If the freepointer may overlay the object then the free
1220  *	pointer is at the middle of the object.
1221  *
1222  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1223  * 	0xa5 (POISON_END)
1224  *
1225  * object + s->object_size
1226  * 	Padding to reach word boundary. This is also used for Redzoning.
1227  * 	Padding is extended by another word if Redzoning is enabled and
1228  * 	object_size == inuse.
1229  *
1230  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1231  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1232  *
1233  * object + s->inuse
1234  * 	Meta data starts here.
1235  *
1236  * 	A. Free pointer (if we cannot overwrite object on free)
1237  * 	B. Tracking data for SLAB_STORE_USER
1238  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1239  *	D. Padding to reach required alignment boundary or at minimum
1240  * 		one word if debugging is on to be able to detect writes
1241  * 		before the word boundary.
1242  *
1243  *	Padding is done using 0x5a (POISON_INUSE)
1244  *
1245  * object + s->size
1246  * 	Nothing is used beyond s->size.
1247  *
1248  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1249  * ignored. And therefore no slab options that rely on these boundaries
1250  * may be used with merged slabcaches.
1251  */
1252 
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1253 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1254 {
1255 	unsigned long off = get_info_end(s);	/* The end of info */
1256 
1257 	if (s->flags & SLAB_STORE_USER) {
1258 		/* We also have user information there */
1259 		off += 2 * sizeof(struct track);
1260 
1261 		if (s->flags & SLAB_KMALLOC)
1262 			off += sizeof(unsigned int);
1263 	}
1264 
1265 	off += kasan_metadata_size(s, false);
1266 
1267 	if (size_from_object(s) == off)
1268 		return 1;
1269 
1270 	return check_bytes_and_report(s, slab, p, "Object padding",
1271 			p + off, POISON_INUSE, size_from_object(s) - off);
1272 }
1273 
1274 /* Check the pad bytes at the end of a slab page */
1275 static pad_check_attributes void
slab_pad_check(struct kmem_cache * s,struct slab * slab)1276 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1277 {
1278 	u8 *start;
1279 	u8 *fault;
1280 	u8 *end;
1281 	u8 *pad;
1282 	int length;
1283 	int remainder;
1284 
1285 	if (!(s->flags & SLAB_POISON))
1286 		return;
1287 
1288 	start = slab_address(slab);
1289 	length = slab_size(slab);
1290 	end = start + length;
1291 	remainder = length % s->size;
1292 	if (!remainder)
1293 		return;
1294 
1295 	pad = end - remainder;
1296 	metadata_access_enable();
1297 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1298 	metadata_access_disable();
1299 	if (!fault)
1300 		return;
1301 	while (end > fault && end[-1] == POISON_INUSE)
1302 		end--;
1303 
1304 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1305 			fault, end - 1, fault - start);
1306 	print_section(KERN_ERR, "Padding ", pad, remainder);
1307 
1308 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1309 }
1310 
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1311 static int check_object(struct kmem_cache *s, struct slab *slab,
1312 					void *object, u8 val)
1313 {
1314 	u8 *p = object;
1315 	u8 *endobject = object + s->object_size;
1316 	unsigned int orig_size, kasan_meta_size;
1317 	int ret = 1;
1318 
1319 	if (s->flags & SLAB_RED_ZONE) {
1320 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1321 			object - s->red_left_pad, val, s->red_left_pad))
1322 			ret = 0;
1323 
1324 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1325 			endobject, val, s->inuse - s->object_size))
1326 			ret = 0;
1327 
1328 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1329 			orig_size = get_orig_size(s, object);
1330 
1331 			if (s->object_size > orig_size  &&
1332 				!check_bytes_and_report(s, slab, object,
1333 					"kmalloc Redzone", p + orig_size,
1334 					val, s->object_size - orig_size)) {
1335 				ret = 0;
1336 			}
1337 		}
1338 	} else {
1339 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1340 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1341 				endobject, POISON_INUSE,
1342 				s->inuse - s->object_size))
1343 				ret = 0;
1344 		}
1345 	}
1346 
1347 	if (s->flags & SLAB_POISON) {
1348 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1349 			/*
1350 			 * KASAN can save its free meta data inside of the
1351 			 * object at offset 0. Thus, skip checking the part of
1352 			 * the redzone that overlaps with the meta data.
1353 			 */
1354 			kasan_meta_size = kasan_metadata_size(s, true);
1355 			if (kasan_meta_size < s->object_size - 1 &&
1356 			    !check_bytes_and_report(s, slab, p, "Poison",
1357 					p + kasan_meta_size, POISON_FREE,
1358 					s->object_size - kasan_meta_size - 1))
1359 				ret = 0;
1360 			if (kasan_meta_size < s->object_size &&
1361 			    !check_bytes_and_report(s, slab, p, "End Poison",
1362 					p + s->object_size - 1, POISON_END, 1))
1363 				ret = 0;
1364 		}
1365 		/*
1366 		 * check_pad_bytes cleans up on its own.
1367 		 */
1368 		if (!check_pad_bytes(s, slab, p))
1369 			ret = 0;
1370 	}
1371 
1372 	/*
1373 	 * Cannot check freepointer while object is allocated if
1374 	 * object and freepointer overlap.
1375 	 */
1376 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1377 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1378 		object_err(s, slab, p, "Freepointer corrupt");
1379 		/*
1380 		 * No choice but to zap it and thus lose the remainder
1381 		 * of the free objects in this slab. May cause
1382 		 * another error because the object count is now wrong.
1383 		 */
1384 		set_freepointer(s, p, NULL);
1385 		ret = 0;
1386 	}
1387 
1388 	if (!ret && !slab_in_kunit_test()) {
1389 		print_trailer(s, slab, object);
1390 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1391 	}
1392 
1393 	return ret;
1394 }
1395 
check_slab(struct kmem_cache * s,struct slab * slab)1396 static int check_slab(struct kmem_cache *s, struct slab *slab)
1397 {
1398 	int maxobj;
1399 
1400 	if (!folio_test_slab(slab_folio(slab))) {
1401 		slab_err(s, slab, "Not a valid slab page");
1402 		return 0;
1403 	}
1404 
1405 	maxobj = order_objects(slab_order(slab), s->size);
1406 	if (slab->objects > maxobj) {
1407 		slab_err(s, slab, "objects %u > max %u",
1408 			slab->objects, maxobj);
1409 		return 0;
1410 	}
1411 	if (slab->inuse > slab->objects) {
1412 		slab_err(s, slab, "inuse %u > max %u",
1413 			slab->inuse, slab->objects);
1414 		return 0;
1415 	}
1416 	if (slab->frozen) {
1417 		slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1418 		return 0;
1419 	}
1420 
1421 	/* Slab_pad_check fixes things up after itself */
1422 	slab_pad_check(s, slab);
1423 	return 1;
1424 }
1425 
1426 /*
1427  * Determine if a certain object in a slab is on the freelist. Must hold the
1428  * slab lock to guarantee that the chains are in a consistent state.
1429  */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1430 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1431 {
1432 	int nr = 0;
1433 	void *fp;
1434 	void *object = NULL;
1435 	int max_objects;
1436 
1437 	fp = slab->freelist;
1438 	while (fp && nr <= slab->objects) {
1439 		if (fp == search)
1440 			return 1;
1441 		if (!check_valid_pointer(s, slab, fp)) {
1442 			if (object) {
1443 				object_err(s, slab, object,
1444 					"Freechain corrupt");
1445 				set_freepointer(s, object, NULL);
1446 			} else {
1447 				slab_err(s, slab, "Freepointer corrupt");
1448 				slab->freelist = NULL;
1449 				slab->inuse = slab->objects;
1450 				slab_fix(s, "Freelist cleared");
1451 				return 0;
1452 			}
1453 			break;
1454 		}
1455 		object = fp;
1456 		fp = get_freepointer(s, object);
1457 		nr++;
1458 	}
1459 
1460 	max_objects = order_objects(slab_order(slab), s->size);
1461 	if (max_objects > MAX_OBJS_PER_PAGE)
1462 		max_objects = MAX_OBJS_PER_PAGE;
1463 
1464 	if (slab->objects != max_objects) {
1465 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1466 			 slab->objects, max_objects);
1467 		slab->objects = max_objects;
1468 		slab_fix(s, "Number of objects adjusted");
1469 	}
1470 	if (slab->inuse != slab->objects - nr) {
1471 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1472 			 slab->inuse, slab->objects - nr);
1473 		slab->inuse = slab->objects - nr;
1474 		slab_fix(s, "Object count adjusted");
1475 	}
1476 	return search == NULL;
1477 }
1478 
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1479 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1480 								int alloc)
1481 {
1482 	if (s->flags & SLAB_TRACE) {
1483 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1484 			s->name,
1485 			alloc ? "alloc" : "free",
1486 			object, slab->inuse,
1487 			slab->freelist);
1488 
1489 		if (!alloc)
1490 			print_section(KERN_INFO, "Object ", (void *)object,
1491 					s->object_size);
1492 
1493 		dump_stack();
1494 	}
1495 }
1496 
1497 /*
1498  * Tracking of fully allocated slabs for debugging purposes.
1499  */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1500 static void add_full(struct kmem_cache *s,
1501 	struct kmem_cache_node *n, struct slab *slab)
1502 {
1503 	if (!(s->flags & SLAB_STORE_USER))
1504 		return;
1505 
1506 	lockdep_assert_held(&n->list_lock);
1507 	list_add(&slab->slab_list, &n->full);
1508 }
1509 
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1510 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1511 {
1512 	if (!(s->flags & SLAB_STORE_USER))
1513 		return;
1514 
1515 	lockdep_assert_held(&n->list_lock);
1516 	list_del(&slab->slab_list);
1517 }
1518 
node_nr_slabs(struct kmem_cache_node * n)1519 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1520 {
1521 	return atomic_long_read(&n->nr_slabs);
1522 }
1523 
inc_slabs_node(struct kmem_cache * s,int node,int objects)1524 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1525 {
1526 	struct kmem_cache_node *n = get_node(s, node);
1527 
1528 	atomic_long_inc(&n->nr_slabs);
1529 	atomic_long_add(objects, &n->total_objects);
1530 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1531 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1532 {
1533 	struct kmem_cache_node *n = get_node(s, node);
1534 
1535 	atomic_long_dec(&n->nr_slabs);
1536 	atomic_long_sub(objects, &n->total_objects);
1537 }
1538 
1539 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1540 static void setup_object_debug(struct kmem_cache *s, void *object)
1541 {
1542 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1543 		return;
1544 
1545 	init_object(s, object, SLUB_RED_INACTIVE);
1546 	init_tracking(s, object);
1547 }
1548 
1549 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1550 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1551 {
1552 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1553 		return;
1554 
1555 	metadata_access_enable();
1556 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1557 	metadata_access_disable();
1558 }
1559 
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1560 static inline int alloc_consistency_checks(struct kmem_cache *s,
1561 					struct slab *slab, void *object)
1562 {
1563 	if (!check_slab(s, slab))
1564 		return 0;
1565 
1566 	if (!check_valid_pointer(s, slab, object)) {
1567 		object_err(s, slab, object, "Freelist Pointer check fails");
1568 		return 0;
1569 	}
1570 
1571 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1572 		return 0;
1573 
1574 	return 1;
1575 }
1576 
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1577 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1578 			struct slab *slab, void *object, int orig_size)
1579 {
1580 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1581 		if (!alloc_consistency_checks(s, slab, object))
1582 			goto bad;
1583 	}
1584 
1585 	/* Success. Perform special debug activities for allocs */
1586 	trace(s, slab, object, 1);
1587 	set_orig_size(s, object, orig_size);
1588 	init_object(s, object, SLUB_RED_ACTIVE);
1589 	return true;
1590 
1591 bad:
1592 	if (folio_test_slab(slab_folio(slab))) {
1593 		/*
1594 		 * If this is a slab page then lets do the best we can
1595 		 * to avoid issues in the future. Marking all objects
1596 		 * as used avoids touching the remaining objects.
1597 		 */
1598 		slab_fix(s, "Marking all objects used");
1599 		slab->inuse = slab->objects;
1600 		slab->freelist = NULL;
1601 		slab->frozen = 1; /* mark consistency-failed slab as frozen */
1602 	}
1603 	return false;
1604 }
1605 
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1606 static inline int free_consistency_checks(struct kmem_cache *s,
1607 		struct slab *slab, void *object, unsigned long addr)
1608 {
1609 	if (!check_valid_pointer(s, slab, object)) {
1610 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1611 		return 0;
1612 	}
1613 
1614 	if (on_freelist(s, slab, object)) {
1615 		object_err(s, slab, object, "Object already free");
1616 		return 0;
1617 	}
1618 
1619 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1620 		return 0;
1621 
1622 	if (unlikely(s != slab->slab_cache)) {
1623 		if (!folio_test_slab(slab_folio(slab))) {
1624 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1625 				 object);
1626 		} else if (!slab->slab_cache) {
1627 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1628 			       object);
1629 			dump_stack();
1630 		} else
1631 			object_err(s, slab, object,
1632 					"page slab pointer corrupt.");
1633 		return 0;
1634 	}
1635 	return 1;
1636 }
1637 
1638 /*
1639  * Parse a block of slab_debug options. Blocks are delimited by ';'
1640  *
1641  * @str:    start of block
1642  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1643  * @slabs:  return start of list of slabs, or NULL when there's no list
1644  * @init:   assume this is initial parsing and not per-kmem-create parsing
1645  *
1646  * returns the start of next block if there's any, or NULL
1647  */
1648 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1649 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1650 {
1651 	bool higher_order_disable = false;
1652 
1653 	/* Skip any completely empty blocks */
1654 	while (*str && *str == ';')
1655 		str++;
1656 
1657 	if (*str == ',') {
1658 		/*
1659 		 * No options but restriction on slabs. This means full
1660 		 * debugging for slabs matching a pattern.
1661 		 */
1662 		*flags = DEBUG_DEFAULT_FLAGS;
1663 		goto check_slabs;
1664 	}
1665 	*flags = 0;
1666 
1667 	/* Determine which debug features should be switched on */
1668 	for (; *str && *str != ',' && *str != ';'; str++) {
1669 		switch (tolower(*str)) {
1670 		case '-':
1671 			*flags = 0;
1672 			break;
1673 		case 'f':
1674 			*flags |= SLAB_CONSISTENCY_CHECKS;
1675 			break;
1676 		case 'z':
1677 			*flags |= SLAB_RED_ZONE;
1678 			break;
1679 		case 'p':
1680 			*flags |= SLAB_POISON;
1681 			break;
1682 		case 'u':
1683 			*flags |= SLAB_STORE_USER;
1684 			break;
1685 		case 't':
1686 			*flags |= SLAB_TRACE;
1687 			break;
1688 		case 'a':
1689 			*flags |= SLAB_FAILSLAB;
1690 			break;
1691 		case 'o':
1692 			/*
1693 			 * Avoid enabling debugging on caches if its minimum
1694 			 * order would increase as a result.
1695 			 */
1696 			higher_order_disable = true;
1697 			break;
1698 		default:
1699 			if (init)
1700 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1701 		}
1702 	}
1703 check_slabs:
1704 	if (*str == ',')
1705 		*slabs = ++str;
1706 	else
1707 		*slabs = NULL;
1708 
1709 	/* Skip over the slab list */
1710 	while (*str && *str != ';')
1711 		str++;
1712 
1713 	/* Skip any completely empty blocks */
1714 	while (*str && *str == ';')
1715 		str++;
1716 
1717 	if (init && higher_order_disable)
1718 		disable_higher_order_debug = 1;
1719 
1720 	if (*str)
1721 		return str;
1722 	else
1723 		return NULL;
1724 }
1725 
setup_slub_debug(char * str)1726 static int __init setup_slub_debug(char *str)
1727 {
1728 	slab_flags_t flags;
1729 	slab_flags_t global_flags;
1730 	char *saved_str;
1731 	char *slab_list;
1732 	bool global_slub_debug_changed = false;
1733 	bool slab_list_specified = false;
1734 
1735 	global_flags = DEBUG_DEFAULT_FLAGS;
1736 	if (*str++ != '=' || !*str)
1737 		/*
1738 		 * No options specified. Switch on full debugging.
1739 		 */
1740 		goto out;
1741 
1742 	saved_str = str;
1743 	while (str) {
1744 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1745 
1746 		if (!slab_list) {
1747 			global_flags = flags;
1748 			global_slub_debug_changed = true;
1749 		} else {
1750 			slab_list_specified = true;
1751 			if (flags & SLAB_STORE_USER)
1752 				stack_depot_request_early_init();
1753 		}
1754 	}
1755 
1756 	/*
1757 	 * For backwards compatibility, a single list of flags with list of
1758 	 * slabs means debugging is only changed for those slabs, so the global
1759 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1760 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1761 	 * long as there is no option specifying flags without a slab list.
1762 	 */
1763 	if (slab_list_specified) {
1764 		if (!global_slub_debug_changed)
1765 			global_flags = slub_debug;
1766 		slub_debug_string = saved_str;
1767 	}
1768 out:
1769 	slub_debug = global_flags;
1770 	if (slub_debug & SLAB_STORE_USER)
1771 		stack_depot_request_early_init();
1772 	if (slub_debug != 0 || slub_debug_string)
1773 		static_branch_enable(&slub_debug_enabled);
1774 	else
1775 		static_branch_disable(&slub_debug_enabled);
1776 	if ((static_branch_unlikely(&init_on_alloc) ||
1777 	     static_branch_unlikely(&init_on_free)) &&
1778 	    (slub_debug & SLAB_POISON))
1779 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1780 	return 1;
1781 }
1782 
1783 __setup("slab_debug", setup_slub_debug);
1784 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1785 
1786 /*
1787  * kmem_cache_flags - apply debugging options to the cache
1788  * @flags:		flags to set
1789  * @name:		name of the cache
1790  *
1791  * Debug option(s) are applied to @flags. In addition to the debug
1792  * option(s), if a slab name (or multiple) is specified i.e.
1793  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1794  * then only the select slabs will receive the debug option(s).
1795  */
kmem_cache_flags(slab_flags_t flags,const char * name)1796 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1797 {
1798 	char *iter;
1799 	size_t len;
1800 	char *next_block;
1801 	slab_flags_t block_flags;
1802 	slab_flags_t slub_debug_local = slub_debug;
1803 
1804 	if (flags & SLAB_NO_USER_FLAGS)
1805 		return flags;
1806 
1807 	/*
1808 	 * If the slab cache is for debugging (e.g. kmemleak) then
1809 	 * don't store user (stack trace) information by default,
1810 	 * but let the user enable it via the command line below.
1811 	 */
1812 	if (flags & SLAB_NOLEAKTRACE)
1813 		slub_debug_local &= ~SLAB_STORE_USER;
1814 
1815 	len = strlen(name);
1816 	next_block = slub_debug_string;
1817 	/* Go through all blocks of debug options, see if any matches our slab's name */
1818 	while (next_block) {
1819 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1820 		if (!iter)
1821 			continue;
1822 		/* Found a block that has a slab list, search it */
1823 		while (*iter) {
1824 			char *end, *glob;
1825 			size_t cmplen;
1826 
1827 			end = strchrnul(iter, ',');
1828 			if (next_block && next_block < end)
1829 				end = next_block - 1;
1830 
1831 			glob = strnchr(iter, end - iter, '*');
1832 			if (glob)
1833 				cmplen = glob - iter;
1834 			else
1835 				cmplen = max_t(size_t, len, (end - iter));
1836 
1837 			if (!strncmp(name, iter, cmplen)) {
1838 				flags |= block_flags;
1839 				return flags;
1840 			}
1841 
1842 			if (!*end || *end == ';')
1843 				break;
1844 			iter = end + 1;
1845 		}
1846 	}
1847 
1848 	return flags | slub_debug_local;
1849 }
1850 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1851 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1852 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1853 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1854 
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1855 static inline bool alloc_debug_processing(struct kmem_cache *s,
1856 	struct slab *slab, void *object, int orig_size) { return true; }
1857 
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1858 static inline bool free_debug_processing(struct kmem_cache *s,
1859 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1860 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1861 
slab_pad_check(struct kmem_cache * s,struct slab * slab)1862 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1863 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1864 			void *object, u8 val) { return 1; }
set_track_prepare(void)1865 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)1866 static inline void set_track(struct kmem_cache *s, void *object,
1867 			     enum track_item alloc, unsigned long addr) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1868 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1869 					struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1870 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1871 					struct slab *slab) {}
kmem_cache_flags(slab_flags_t flags,const char * name)1872 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1873 {
1874 	return flags;
1875 }
1876 #define slub_debug 0
1877 
1878 #define disable_higher_order_debug 0
1879 
node_nr_slabs(struct kmem_cache_node * n)1880 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1881 							{ return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1882 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1883 							int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1884 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1885 							int objects) {}
1886 #ifndef CONFIG_SLUB_TINY
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1887 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1888 			       void **freelist, void *nextfree)
1889 {
1890 	return false;
1891 }
1892 #endif
1893 #endif /* CONFIG_SLUB_DEBUG */
1894 
1895 #ifdef CONFIG_SLAB_OBJ_EXT
1896 
1897 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1898 
mark_objexts_empty(struct slabobj_ext * obj_exts)1899 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1900 {
1901 	struct slabobj_ext *slab_exts;
1902 	struct slab *obj_exts_slab;
1903 
1904 	obj_exts_slab = virt_to_slab(obj_exts);
1905 	slab_exts = slab_obj_exts(obj_exts_slab);
1906 	if (slab_exts) {
1907 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1908 						 obj_exts_slab, obj_exts);
1909 		/* codetag should be NULL */
1910 		WARN_ON(slab_exts[offs].ref.ct);
1911 		set_codetag_empty(&slab_exts[offs].ref);
1912 	}
1913 }
1914 
mark_failed_objexts_alloc(struct slab * slab)1915 static inline void mark_failed_objexts_alloc(struct slab *slab)
1916 {
1917 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1918 }
1919 
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)1920 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1921 			struct slabobj_ext *vec, unsigned int objects)
1922 {
1923 	/*
1924 	 * If vector previously failed to allocate then we have live
1925 	 * objects with no tag reference. Mark all references in this
1926 	 * vector as empty to avoid warnings later on.
1927 	 */
1928 	if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1929 		unsigned int i;
1930 
1931 		for (i = 0; i < objects; i++)
1932 			set_codetag_empty(&vec[i].ref);
1933 	}
1934 }
1935 
1936 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1937 
mark_objexts_empty(struct slabobj_ext * obj_exts)1938 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
mark_failed_objexts_alloc(struct slab * slab)1939 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)1940 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1941 			struct slabobj_ext *vec, unsigned int objects) {}
1942 
1943 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1944 
1945 /*
1946  * The allocated objcg pointers array is not accounted directly.
1947  * Moreover, it should not come from DMA buffer and is not readily
1948  * reclaimable. So those GFP bits should be masked off.
1949  */
1950 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
1951 				__GFP_ACCOUNT | __GFP_NOFAIL)
1952 
init_slab_obj_exts(struct slab * slab)1953 static inline void init_slab_obj_exts(struct slab *slab)
1954 {
1955 	slab->obj_exts = 0;
1956 }
1957 
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)1958 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1959 		        gfp_t gfp, bool new_slab)
1960 {
1961 	unsigned int objects = objs_per_slab(s, slab);
1962 	unsigned long new_exts;
1963 	unsigned long old_exts;
1964 	struct slabobj_ext *vec;
1965 
1966 	gfp &= ~OBJCGS_CLEAR_MASK;
1967 	/* Prevent recursive extension vector allocation */
1968 	gfp |= __GFP_NO_OBJ_EXT;
1969 	vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1970 			   slab_nid(slab));
1971 	if (!vec) {
1972 		/* Mark vectors which failed to allocate */
1973 		if (new_slab)
1974 			mark_failed_objexts_alloc(slab);
1975 
1976 		return -ENOMEM;
1977 	}
1978 
1979 	new_exts = (unsigned long)vec;
1980 #ifdef CONFIG_MEMCG
1981 	new_exts |= MEMCG_DATA_OBJEXTS;
1982 #endif
1983 	old_exts = READ_ONCE(slab->obj_exts);
1984 	handle_failed_objexts_alloc(old_exts, vec, objects);
1985 	if (new_slab) {
1986 		/*
1987 		 * If the slab is brand new and nobody can yet access its
1988 		 * obj_exts, no synchronization is required and obj_exts can
1989 		 * be simply assigned.
1990 		 */
1991 		slab->obj_exts = new_exts;
1992 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1993 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
1994 		/*
1995 		 * If the slab is already in use, somebody can allocate and
1996 		 * assign slabobj_exts in parallel. In this case the existing
1997 		 * objcg vector should be reused.
1998 		 */
1999 		mark_objexts_empty(vec);
2000 		kfree(vec);
2001 		return 0;
2002 	}
2003 
2004 	kmemleak_not_leak(vec);
2005 	return 0;
2006 }
2007 
free_slab_obj_exts(struct slab * slab)2008 static inline void free_slab_obj_exts(struct slab *slab)
2009 {
2010 	struct slabobj_ext *obj_exts;
2011 
2012 	obj_exts = slab_obj_exts(slab);
2013 	if (!obj_exts)
2014 		return;
2015 
2016 	/*
2017 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2018 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2019 	 * warning if slab has extensions but the extension of an object is
2020 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2021 	 * the extension for obj_exts is expected to be NULL.
2022 	 */
2023 	mark_objexts_empty(obj_exts);
2024 	kfree(obj_exts);
2025 	slab->obj_exts = 0;
2026 }
2027 
need_slab_obj_ext(void)2028 static inline bool need_slab_obj_ext(void)
2029 {
2030 	if (mem_alloc_profiling_enabled())
2031 		return true;
2032 
2033 	/*
2034 	 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2035 	 * inside memcg_slab_post_alloc_hook. No other users for now.
2036 	 */
2037 	return false;
2038 }
2039 
2040 #else /* CONFIG_SLAB_OBJ_EXT */
2041 
init_slab_obj_exts(struct slab * slab)2042 static inline void init_slab_obj_exts(struct slab *slab)
2043 {
2044 }
2045 
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2046 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2047 			       gfp_t gfp, bool new_slab)
2048 {
2049 	return 0;
2050 }
2051 
free_slab_obj_exts(struct slab * slab)2052 static inline void free_slab_obj_exts(struct slab *slab)
2053 {
2054 }
2055 
need_slab_obj_ext(void)2056 static inline bool need_slab_obj_ext(void)
2057 {
2058 	return false;
2059 }
2060 
2061 #endif /* CONFIG_SLAB_OBJ_EXT */
2062 
2063 #ifdef CONFIG_MEM_ALLOC_PROFILING
2064 
2065 static inline struct slabobj_ext *
prepare_slab_obj_exts_hook(struct kmem_cache * s,gfp_t flags,void * p)2066 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2067 {
2068 	struct slab *slab;
2069 
2070 	if (!p)
2071 		return NULL;
2072 
2073 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2074 		return NULL;
2075 
2076 	if (flags & __GFP_NO_OBJ_EXT)
2077 		return NULL;
2078 
2079 	slab = virt_to_slab(p);
2080 	if (!slab_obj_exts(slab) &&
2081 	    WARN(alloc_slab_obj_exts(slab, s, flags, false),
2082 		 "%s, %s: Failed to create slab extension vector!\n",
2083 		 __func__, s->name))
2084 		return NULL;
2085 
2086 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2087 }
2088 
2089 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2090 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2091 {
2092 	if (need_slab_obj_ext()) {
2093 		struct slabobj_ext *obj_exts;
2094 
2095 		obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2096 		/*
2097 		 * Currently obj_exts is used only for allocation profiling.
2098 		 * If other users appear then mem_alloc_profiling_enabled()
2099 		 * check should be added before alloc_tag_add().
2100 		 */
2101 		if (likely(obj_exts))
2102 			alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2103 	}
2104 }
2105 
2106 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2107 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2108 			     int objects)
2109 {
2110 	struct slabobj_ext *obj_exts;
2111 	int i;
2112 
2113 	if (!mem_alloc_profiling_enabled())
2114 		return;
2115 
2116 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2117 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2118 		return;
2119 
2120 	obj_exts = slab_obj_exts(slab);
2121 	if (!obj_exts)
2122 		return;
2123 
2124 	for (i = 0; i < objects; i++) {
2125 		unsigned int off = obj_to_index(s, slab, p[i]);
2126 
2127 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2128 	}
2129 }
2130 
2131 #else /* CONFIG_MEM_ALLOC_PROFILING */
2132 
2133 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2134 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2135 {
2136 }
2137 
2138 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2139 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2140 			     int objects)
2141 {
2142 }
2143 
2144 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2145 
2146 
2147 #ifdef CONFIG_MEMCG
2148 
2149 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2150 
2151 static __fastpath_inline
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2152 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2153 				gfp_t flags, size_t size, void **p)
2154 {
2155 	if (likely(!memcg_kmem_online()))
2156 		return true;
2157 
2158 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2159 		return true;
2160 
2161 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2162 		return true;
2163 
2164 	if (likely(size == 1)) {
2165 		memcg_alloc_abort_single(s, *p);
2166 		*p = NULL;
2167 	} else {
2168 		kmem_cache_free_bulk(s, size, p);
2169 	}
2170 
2171 	return false;
2172 }
2173 
2174 static __fastpath_inline
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2175 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2176 			  int objects)
2177 {
2178 	struct slabobj_ext *obj_exts;
2179 
2180 	if (!memcg_kmem_online())
2181 		return;
2182 
2183 	obj_exts = slab_obj_exts(slab);
2184 	if (likely(!obj_exts))
2185 		return;
2186 
2187 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2188 }
2189 
2190 static __fastpath_inline
memcg_slab_post_charge(void * p,gfp_t flags)2191 bool memcg_slab_post_charge(void *p, gfp_t flags)
2192 {
2193 	struct slabobj_ext *slab_exts;
2194 	struct kmem_cache *s;
2195 	struct folio *folio;
2196 	struct slab *slab;
2197 	unsigned long off;
2198 
2199 	folio = virt_to_folio(p);
2200 	if (!folio_test_slab(folio)) {
2201 		int size;
2202 
2203 		if (folio_memcg_kmem(folio))
2204 			return true;
2205 
2206 		if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2207 					     folio_order(folio)))
2208 			return false;
2209 
2210 		/*
2211 		 * This folio has already been accounted in the global stats but
2212 		 * not in the memcg stats. So, subtract from the global and use
2213 		 * the interface which adds to both global and memcg stats.
2214 		 */
2215 		size = folio_size(folio);
2216 		node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2217 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2218 		return true;
2219 	}
2220 
2221 	slab = folio_slab(folio);
2222 	s = slab->slab_cache;
2223 
2224 	/*
2225 	 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2226 	 * of slab_obj_exts being allocated from the same slab and thus the slab
2227 	 * becoming effectively unfreeable.
2228 	 */
2229 	if (is_kmalloc_normal(s))
2230 		return true;
2231 
2232 	/* Ignore already charged objects. */
2233 	slab_exts = slab_obj_exts(slab);
2234 	if (slab_exts) {
2235 		off = obj_to_index(s, slab, p);
2236 		if (unlikely(slab_exts[off].objcg))
2237 			return true;
2238 	}
2239 
2240 	return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2241 }
2242 
2243 #else /* CONFIG_MEMCG */
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2244 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2245 					      struct list_lru *lru,
2246 					      gfp_t flags, size_t size,
2247 					      void **p)
2248 {
2249 	return true;
2250 }
2251 
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2252 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2253 					void **p, int objects)
2254 {
2255 }
2256 
memcg_slab_post_charge(void * p,gfp_t flags)2257 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2258 {
2259 	return true;
2260 }
2261 #endif /* CONFIG_MEMCG */
2262 
2263 #ifdef CONFIG_SLUB_RCU_DEBUG
2264 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2265 
2266 struct rcu_delayed_free {
2267 	struct rcu_head head;
2268 	void *object;
2269 };
2270 #endif
2271 
2272 /*
2273  * Hooks for other subsystems that check memory allocations. In a typical
2274  * production configuration these hooks all should produce no code at all.
2275  *
2276  * Returns true if freeing of the object can proceed, false if its reuse
2277  * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2278  * to KFENCE.
2279  */
2280 static __always_inline
slab_free_hook(struct kmem_cache * s,void * x,bool init,bool after_rcu_delay)2281 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2282 		    bool after_rcu_delay)
2283 {
2284 	/* Are the object contents still accessible? */
2285 	bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2286 
2287 	kmemleak_free_recursive(x, s->flags);
2288 	kmsan_slab_free(s, x);
2289 
2290 	debug_check_no_locks_freed(x, s->object_size);
2291 
2292 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2293 		debug_check_no_obj_freed(x, s->object_size);
2294 
2295 	/* Use KCSAN to help debug racy use-after-free. */
2296 	if (!still_accessible)
2297 		__kcsan_check_access(x, s->object_size,
2298 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2299 
2300 	if (kfence_free(x))
2301 		return false;
2302 
2303 	/*
2304 	 * Give KASAN a chance to notice an invalid free operation before we
2305 	 * modify the object.
2306 	 */
2307 	if (kasan_slab_pre_free(s, x))
2308 		return false;
2309 
2310 #ifdef CONFIG_SLUB_RCU_DEBUG
2311 	if (still_accessible) {
2312 		struct rcu_delayed_free *delayed_free;
2313 
2314 		delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2315 		if (delayed_free) {
2316 			/*
2317 			 * Let KASAN track our call stack as a "related work
2318 			 * creation", just like if the object had been freed
2319 			 * normally via kfree_rcu().
2320 			 * We have to do this manually because the rcu_head is
2321 			 * not located inside the object.
2322 			 */
2323 			kasan_record_aux_stack(x);
2324 
2325 			delayed_free->object = x;
2326 			call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2327 			return false;
2328 		}
2329 	}
2330 #endif /* CONFIG_SLUB_RCU_DEBUG */
2331 
2332 	/*
2333 	 * As memory initialization might be integrated into KASAN,
2334 	 * kasan_slab_free and initialization memset's must be
2335 	 * kept together to avoid discrepancies in behavior.
2336 	 *
2337 	 * The initialization memset's clear the object and the metadata,
2338 	 * but don't touch the SLAB redzone.
2339 	 *
2340 	 * The object's freepointer is also avoided if stored outside the
2341 	 * object.
2342 	 */
2343 	if (unlikely(init)) {
2344 		int rsize;
2345 		unsigned int inuse, orig_size;
2346 
2347 		inuse = get_info_end(s);
2348 		orig_size = get_orig_size(s, x);
2349 		if (!kasan_has_integrated_init())
2350 			memset(kasan_reset_tag(x), 0, orig_size);
2351 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2352 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2353 		       s->size - inuse - rsize);
2354 		/*
2355 		 * Restore orig_size, otherwize kmalloc redzone overwritten
2356 		 * would be reported
2357 		 */
2358 		set_orig_size(s, x, orig_size);
2359 
2360 	}
2361 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2362 	return !kasan_slab_free(s, x, init, still_accessible);
2363 }
2364 
2365 static __fastpath_inline
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)2366 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2367 			     int *cnt)
2368 {
2369 
2370 	void *object;
2371 	void *next = *head;
2372 	void *old_tail = *tail;
2373 	bool init;
2374 
2375 	if (is_kfence_address(next)) {
2376 		slab_free_hook(s, next, false, false);
2377 		return false;
2378 	}
2379 
2380 	/* Head and tail of the reconstructed freelist */
2381 	*head = NULL;
2382 	*tail = NULL;
2383 
2384 	init = slab_want_init_on_free(s);
2385 
2386 	do {
2387 		object = next;
2388 		next = get_freepointer(s, object);
2389 
2390 		/* If object's reuse doesn't have to be delayed */
2391 		if (likely(slab_free_hook(s, object, init, false))) {
2392 			/* Move object to the new freelist */
2393 			set_freepointer(s, object, *head);
2394 			*head = object;
2395 			if (!*tail)
2396 				*tail = object;
2397 		} else {
2398 			/*
2399 			 * Adjust the reconstructed freelist depth
2400 			 * accordingly if object's reuse is delayed.
2401 			 */
2402 			--(*cnt);
2403 		}
2404 	} while (object != old_tail);
2405 
2406 	return *head != NULL;
2407 }
2408 
setup_object(struct kmem_cache * s,void * object)2409 static void *setup_object(struct kmem_cache *s, void *object)
2410 {
2411 	setup_object_debug(s, object);
2412 	object = kasan_init_slab_obj(s, object);
2413 	if (unlikely(s->ctor)) {
2414 		kasan_unpoison_new_object(s, object);
2415 		s->ctor(object);
2416 		kasan_poison_new_object(s, object);
2417 	}
2418 	return object;
2419 }
2420 
2421 /*
2422  * Slab allocation and freeing
2423  */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo)2424 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2425 		struct kmem_cache_order_objects oo)
2426 {
2427 	struct folio *folio;
2428 	struct slab *slab;
2429 	unsigned int order = oo_order(oo);
2430 
2431 	if (node == NUMA_NO_NODE)
2432 		folio = (struct folio *)alloc_frozen_pages(flags, order);
2433 	else
2434 		folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
2435 
2436 	if (!folio)
2437 		return NULL;
2438 
2439 	slab = folio_slab(folio);
2440 	__folio_set_slab(folio);
2441 	if (folio_is_pfmemalloc(folio))
2442 		slab_set_pfmemalloc(slab);
2443 
2444 	return slab;
2445 }
2446 
2447 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2448 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)2449 static int init_cache_random_seq(struct kmem_cache *s)
2450 {
2451 	unsigned int count = oo_objects(s->oo);
2452 	int err;
2453 
2454 	/* Bailout if already initialised */
2455 	if (s->random_seq)
2456 		return 0;
2457 
2458 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2459 	if (err) {
2460 		pr_err("SLUB: Unable to initialize free list for %s\n",
2461 			s->name);
2462 		return err;
2463 	}
2464 
2465 	/* Transform to an offset on the set of pages */
2466 	if (s->random_seq) {
2467 		unsigned int i;
2468 
2469 		for (i = 0; i < count; i++)
2470 			s->random_seq[i] *= s->size;
2471 	}
2472 	return 0;
2473 }
2474 
2475 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)2476 static void __init init_freelist_randomization(void)
2477 {
2478 	struct kmem_cache *s;
2479 
2480 	mutex_lock(&slab_mutex);
2481 
2482 	list_for_each_entry(s, &slab_caches, list)
2483 		init_cache_random_seq(s);
2484 
2485 	mutex_unlock(&slab_mutex);
2486 }
2487 
2488 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)2489 static void *next_freelist_entry(struct kmem_cache *s,
2490 				unsigned long *pos, void *start,
2491 				unsigned long page_limit,
2492 				unsigned long freelist_count)
2493 {
2494 	unsigned int idx;
2495 
2496 	/*
2497 	 * If the target page allocation failed, the number of objects on the
2498 	 * page might be smaller than the usual size defined by the cache.
2499 	 */
2500 	do {
2501 		idx = s->random_seq[*pos];
2502 		*pos += 1;
2503 		if (*pos >= freelist_count)
2504 			*pos = 0;
2505 	} while (unlikely(idx >= page_limit));
2506 
2507 	return (char *)start + idx;
2508 }
2509 
2510 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2511 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2512 {
2513 	void *start;
2514 	void *cur;
2515 	void *next;
2516 	unsigned long idx, pos, page_limit, freelist_count;
2517 
2518 	if (slab->objects < 2 || !s->random_seq)
2519 		return false;
2520 
2521 	freelist_count = oo_objects(s->oo);
2522 	pos = get_random_u32_below(freelist_count);
2523 
2524 	page_limit = slab->objects * s->size;
2525 	start = fixup_red_left(s, slab_address(slab));
2526 
2527 	/* First entry is used as the base of the freelist */
2528 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2529 	cur = setup_object(s, cur);
2530 	slab->freelist = cur;
2531 
2532 	for (idx = 1; idx < slab->objects; idx++) {
2533 		next = next_freelist_entry(s, &pos, start, page_limit,
2534 			freelist_count);
2535 		next = setup_object(s, next);
2536 		set_freepointer(s, cur, next);
2537 		cur = next;
2538 	}
2539 	set_freepointer(s, cur, NULL);
2540 
2541 	return true;
2542 }
2543 #else
init_cache_random_seq(struct kmem_cache * s)2544 static inline int init_cache_random_seq(struct kmem_cache *s)
2545 {
2546 	return 0;
2547 }
init_freelist_randomization(void)2548 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2549 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2550 {
2551 	return false;
2552 }
2553 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2554 
account_slab(struct slab * slab,int order,struct kmem_cache * s,gfp_t gfp)2555 static __always_inline void account_slab(struct slab *slab, int order,
2556 					 struct kmem_cache *s, gfp_t gfp)
2557 {
2558 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2559 		alloc_slab_obj_exts(slab, s, gfp, true);
2560 
2561 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2562 			    PAGE_SIZE << order);
2563 }
2564 
unaccount_slab(struct slab * slab,int order,struct kmem_cache * s)2565 static __always_inline void unaccount_slab(struct slab *slab, int order,
2566 					   struct kmem_cache *s)
2567 {
2568 	if (memcg_kmem_online() || need_slab_obj_ext())
2569 		free_slab_obj_exts(slab);
2570 
2571 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2572 			    -(PAGE_SIZE << order));
2573 }
2574 
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)2575 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2576 {
2577 	struct slab *slab;
2578 	struct kmem_cache_order_objects oo = s->oo;
2579 	gfp_t alloc_gfp;
2580 	void *start, *p, *next;
2581 	int idx;
2582 	bool shuffle;
2583 
2584 	flags &= gfp_allowed_mask;
2585 
2586 	flags |= s->allocflags;
2587 
2588 	/*
2589 	 * Let the initial higher-order allocation fail under memory pressure
2590 	 * so we fall-back to the minimum order allocation.
2591 	 */
2592 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2593 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2594 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2595 
2596 	slab = alloc_slab_page(alloc_gfp, node, oo);
2597 	if (unlikely(!slab)) {
2598 		oo = s->min;
2599 		alloc_gfp = flags;
2600 		/*
2601 		 * Allocation may have failed due to fragmentation.
2602 		 * Try a lower order alloc if possible
2603 		 */
2604 		slab = alloc_slab_page(alloc_gfp, node, oo);
2605 		if (unlikely(!slab))
2606 			return NULL;
2607 		stat(s, ORDER_FALLBACK);
2608 	}
2609 
2610 	slab->objects = oo_objects(oo);
2611 	slab->inuse = 0;
2612 	slab->frozen = 0;
2613 	init_slab_obj_exts(slab);
2614 
2615 	account_slab(slab, oo_order(oo), s, flags);
2616 
2617 	slab->slab_cache = s;
2618 
2619 	kasan_poison_slab(slab);
2620 
2621 	start = slab_address(slab);
2622 
2623 	setup_slab_debug(s, slab, start);
2624 
2625 	shuffle = shuffle_freelist(s, slab);
2626 
2627 	if (!shuffle) {
2628 		start = fixup_red_left(s, start);
2629 		start = setup_object(s, start);
2630 		slab->freelist = start;
2631 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2632 			next = p + s->size;
2633 			next = setup_object(s, next);
2634 			set_freepointer(s, p, next);
2635 			p = next;
2636 		}
2637 		set_freepointer(s, p, NULL);
2638 	}
2639 
2640 	return slab;
2641 }
2642 
new_slab(struct kmem_cache * s,gfp_t flags,int node)2643 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2644 {
2645 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2646 		flags = kmalloc_fix_flags(flags);
2647 
2648 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2649 
2650 	return allocate_slab(s,
2651 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2652 }
2653 
__free_slab(struct kmem_cache * s,struct slab * slab)2654 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2655 {
2656 	struct folio *folio = slab_folio(slab);
2657 	int order = folio_order(folio);
2658 	int pages = 1 << order;
2659 
2660 	__slab_clear_pfmemalloc(slab);
2661 	folio->mapping = NULL;
2662 	__folio_clear_slab(folio);
2663 	mm_account_reclaimed_pages(pages);
2664 	unaccount_slab(slab, order, s);
2665 	free_frozen_pages(&folio->page, order);
2666 }
2667 
rcu_free_slab(struct rcu_head * h)2668 static void rcu_free_slab(struct rcu_head *h)
2669 {
2670 	struct slab *slab = container_of(h, struct slab, rcu_head);
2671 
2672 	__free_slab(slab->slab_cache, slab);
2673 }
2674 
free_slab(struct kmem_cache * s,struct slab * slab)2675 static void free_slab(struct kmem_cache *s, struct slab *slab)
2676 {
2677 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2678 		void *p;
2679 
2680 		slab_pad_check(s, slab);
2681 		for_each_object(p, s, slab_address(slab), slab->objects)
2682 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2683 	}
2684 
2685 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2686 		call_rcu(&slab->rcu_head, rcu_free_slab);
2687 	else
2688 		__free_slab(s, slab);
2689 }
2690 
discard_slab(struct kmem_cache * s,struct slab * slab)2691 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2692 {
2693 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2694 	free_slab(s, slab);
2695 }
2696 
2697 /*
2698  * SLUB reuses PG_workingset bit to keep track of whether it's on
2699  * the per-node partial list.
2700  */
slab_test_node_partial(const struct slab * slab)2701 static inline bool slab_test_node_partial(const struct slab *slab)
2702 {
2703 	return folio_test_workingset(slab_folio(slab));
2704 }
2705 
slab_set_node_partial(struct slab * slab)2706 static inline void slab_set_node_partial(struct slab *slab)
2707 {
2708 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2709 }
2710 
slab_clear_node_partial(struct slab * slab)2711 static inline void slab_clear_node_partial(struct slab *slab)
2712 {
2713 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2714 }
2715 
2716 /*
2717  * Management of partially allocated slabs.
2718  */
2719 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2720 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2721 {
2722 	n->nr_partial++;
2723 	if (tail == DEACTIVATE_TO_TAIL)
2724 		list_add_tail(&slab->slab_list, &n->partial);
2725 	else
2726 		list_add(&slab->slab_list, &n->partial);
2727 	slab_set_node_partial(slab);
2728 }
2729 
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2730 static inline void add_partial(struct kmem_cache_node *n,
2731 				struct slab *slab, int tail)
2732 {
2733 	lockdep_assert_held(&n->list_lock);
2734 	__add_partial(n, slab, tail);
2735 }
2736 
remove_partial(struct kmem_cache_node * n,struct slab * slab)2737 static inline void remove_partial(struct kmem_cache_node *n,
2738 					struct slab *slab)
2739 {
2740 	lockdep_assert_held(&n->list_lock);
2741 	list_del(&slab->slab_list);
2742 	slab_clear_node_partial(slab);
2743 	n->nr_partial--;
2744 }
2745 
2746 /*
2747  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2748  * slab from the n->partial list. Remove only a single object from the slab, do
2749  * the alloc_debug_processing() checks and leave the slab on the list, or move
2750  * it to full list if it was the last free object.
2751  */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)2752 static void *alloc_single_from_partial(struct kmem_cache *s,
2753 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2754 {
2755 	void *object;
2756 
2757 	lockdep_assert_held(&n->list_lock);
2758 
2759 	object = slab->freelist;
2760 	slab->freelist = get_freepointer(s, object);
2761 	slab->inuse++;
2762 
2763 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2764 		if (folio_test_slab(slab_folio(slab)))
2765 			remove_partial(n, slab);
2766 		return NULL;
2767 	}
2768 
2769 	if (slab->inuse == slab->objects) {
2770 		remove_partial(n, slab);
2771 		add_full(s, n, slab);
2772 	}
2773 
2774 	return object;
2775 }
2776 
2777 /*
2778  * Called only for kmem_cache_debug() caches to allocate from a freshly
2779  * allocated slab. Allocate a single object instead of whole freelist
2780  * and put the slab to the partial (or full) list.
2781  */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size)2782 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2783 					struct slab *slab, int orig_size)
2784 {
2785 	int nid = slab_nid(slab);
2786 	struct kmem_cache_node *n = get_node(s, nid);
2787 	unsigned long flags;
2788 	void *object;
2789 
2790 
2791 	object = slab->freelist;
2792 	slab->freelist = get_freepointer(s, object);
2793 	slab->inuse = 1;
2794 
2795 	if (!alloc_debug_processing(s, slab, object, orig_size))
2796 		/*
2797 		 * It's not really expected that this would fail on a
2798 		 * freshly allocated slab, but a concurrent memory
2799 		 * corruption in theory could cause that.
2800 		 */
2801 		return NULL;
2802 
2803 	spin_lock_irqsave(&n->list_lock, flags);
2804 
2805 	if (slab->inuse == slab->objects)
2806 		add_full(s, n, slab);
2807 	else
2808 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2809 
2810 	inc_slabs_node(s, nid, slab->objects);
2811 	spin_unlock_irqrestore(&n->list_lock, flags);
2812 
2813 	return object;
2814 }
2815 
2816 #ifdef CONFIG_SLUB_CPU_PARTIAL
2817 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2818 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2819 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2820 				   int drain) { }
2821 #endif
2822 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2823 
2824 /*
2825  * Try to allocate a partial slab from a specific node.
2826  */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)2827 static struct slab *get_partial_node(struct kmem_cache *s,
2828 				     struct kmem_cache_node *n,
2829 				     struct partial_context *pc)
2830 {
2831 	struct slab *slab, *slab2, *partial = NULL;
2832 	unsigned long flags;
2833 	unsigned int partial_slabs = 0;
2834 
2835 	/*
2836 	 * Racy check. If we mistakenly see no partial slabs then we
2837 	 * just allocate an empty slab. If we mistakenly try to get a
2838 	 * partial slab and there is none available then get_partial()
2839 	 * will return NULL.
2840 	 */
2841 	if (!n || !n->nr_partial)
2842 		return NULL;
2843 
2844 	spin_lock_irqsave(&n->list_lock, flags);
2845 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2846 		if (!pfmemalloc_match(slab, pc->flags))
2847 			continue;
2848 
2849 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2850 			void *object = alloc_single_from_partial(s, n, slab,
2851 							pc->orig_size);
2852 			if (object) {
2853 				partial = slab;
2854 				pc->object = object;
2855 				break;
2856 			}
2857 			continue;
2858 		}
2859 
2860 		remove_partial(n, slab);
2861 
2862 		if (!partial) {
2863 			partial = slab;
2864 			stat(s, ALLOC_FROM_PARTIAL);
2865 
2866 			if ((slub_get_cpu_partial(s) == 0)) {
2867 				break;
2868 			}
2869 		} else {
2870 			put_cpu_partial(s, slab, 0);
2871 			stat(s, CPU_PARTIAL_NODE);
2872 
2873 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2874 				break;
2875 			}
2876 		}
2877 	}
2878 	spin_unlock_irqrestore(&n->list_lock, flags);
2879 	return partial;
2880 }
2881 
2882 /*
2883  * Get a slab from somewhere. Search in increasing NUMA distances.
2884  */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)2885 static struct slab *get_any_partial(struct kmem_cache *s,
2886 				    struct partial_context *pc)
2887 {
2888 #ifdef CONFIG_NUMA
2889 	struct zonelist *zonelist;
2890 	struct zoneref *z;
2891 	struct zone *zone;
2892 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2893 	struct slab *slab;
2894 	unsigned int cpuset_mems_cookie;
2895 
2896 	/*
2897 	 * The defrag ratio allows a configuration of the tradeoffs between
2898 	 * inter node defragmentation and node local allocations. A lower
2899 	 * defrag_ratio increases the tendency to do local allocations
2900 	 * instead of attempting to obtain partial slabs from other nodes.
2901 	 *
2902 	 * If the defrag_ratio is set to 0 then kmalloc() always
2903 	 * returns node local objects. If the ratio is higher then kmalloc()
2904 	 * may return off node objects because partial slabs are obtained
2905 	 * from other nodes and filled up.
2906 	 *
2907 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2908 	 * (which makes defrag_ratio = 1000) then every (well almost)
2909 	 * allocation will first attempt to defrag slab caches on other nodes.
2910 	 * This means scanning over all nodes to look for partial slabs which
2911 	 * may be expensive if we do it every time we are trying to find a slab
2912 	 * with available objects.
2913 	 */
2914 	if (!s->remote_node_defrag_ratio ||
2915 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2916 		return NULL;
2917 
2918 	do {
2919 		cpuset_mems_cookie = read_mems_allowed_begin();
2920 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2921 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2922 			struct kmem_cache_node *n;
2923 
2924 			n = get_node(s, zone_to_nid(zone));
2925 
2926 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2927 					n->nr_partial > s->min_partial) {
2928 				slab = get_partial_node(s, n, pc);
2929 				if (slab) {
2930 					/*
2931 					 * Don't check read_mems_allowed_retry()
2932 					 * here - if mems_allowed was updated in
2933 					 * parallel, that was a harmless race
2934 					 * between allocation and the cpuset
2935 					 * update
2936 					 */
2937 					return slab;
2938 				}
2939 			}
2940 		}
2941 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2942 #endif	/* CONFIG_NUMA */
2943 	return NULL;
2944 }
2945 
2946 /*
2947  * Get a partial slab, lock it and return it.
2948  */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)2949 static struct slab *get_partial(struct kmem_cache *s, int node,
2950 				struct partial_context *pc)
2951 {
2952 	struct slab *slab;
2953 	int searchnode = node;
2954 
2955 	if (node == NUMA_NO_NODE)
2956 		searchnode = numa_mem_id();
2957 
2958 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2959 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2960 		return slab;
2961 
2962 	return get_any_partial(s, pc);
2963 }
2964 
2965 #ifndef CONFIG_SLUB_TINY
2966 
2967 #ifdef CONFIG_PREEMPTION
2968 /*
2969  * Calculate the next globally unique transaction for disambiguation
2970  * during cmpxchg. The transactions start with the cpu number and are then
2971  * incremented by CONFIG_NR_CPUS.
2972  */
2973 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2974 #else
2975 /*
2976  * No preemption supported therefore also no need to check for
2977  * different cpus.
2978  */
2979 #define TID_STEP 1
2980 #endif /* CONFIG_PREEMPTION */
2981 
next_tid(unsigned long tid)2982 static inline unsigned long next_tid(unsigned long tid)
2983 {
2984 	return tid + TID_STEP;
2985 }
2986 
2987 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)2988 static inline unsigned int tid_to_cpu(unsigned long tid)
2989 {
2990 	return tid % TID_STEP;
2991 }
2992 
tid_to_event(unsigned long tid)2993 static inline unsigned long tid_to_event(unsigned long tid)
2994 {
2995 	return tid / TID_STEP;
2996 }
2997 #endif
2998 
init_tid(int cpu)2999 static inline unsigned int init_tid(int cpu)
3000 {
3001 	return cpu;
3002 }
3003 
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)3004 static inline void note_cmpxchg_failure(const char *n,
3005 		const struct kmem_cache *s, unsigned long tid)
3006 {
3007 #ifdef SLUB_DEBUG_CMPXCHG
3008 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3009 
3010 	pr_info("%s %s: cmpxchg redo ", n, s->name);
3011 
3012 #ifdef CONFIG_PREEMPTION
3013 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
3014 		pr_warn("due to cpu change %d -> %d\n",
3015 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
3016 	else
3017 #endif
3018 	if (tid_to_event(tid) != tid_to_event(actual_tid))
3019 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
3020 			tid_to_event(tid), tid_to_event(actual_tid));
3021 	else
3022 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3023 			actual_tid, tid, next_tid(tid));
3024 #endif
3025 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3026 }
3027 
init_kmem_cache_cpus(struct kmem_cache * s)3028 static void init_kmem_cache_cpus(struct kmem_cache *s)
3029 {
3030 	int cpu;
3031 	struct kmem_cache_cpu *c;
3032 
3033 	for_each_possible_cpu(cpu) {
3034 		c = per_cpu_ptr(s->cpu_slab, cpu);
3035 		local_lock_init(&c->lock);
3036 		c->tid = init_tid(cpu);
3037 	}
3038 }
3039 
3040 /*
3041  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3042  * unfreezes the slabs and puts it on the proper list.
3043  * Assumes the slab has been already safely taken away from kmem_cache_cpu
3044  * by the caller.
3045  */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)3046 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3047 			    void *freelist)
3048 {
3049 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3050 	int free_delta = 0;
3051 	void *nextfree, *freelist_iter, *freelist_tail;
3052 	int tail = DEACTIVATE_TO_HEAD;
3053 	unsigned long flags = 0;
3054 	struct slab new;
3055 	struct slab old;
3056 
3057 	if (READ_ONCE(slab->freelist)) {
3058 		stat(s, DEACTIVATE_REMOTE_FREES);
3059 		tail = DEACTIVATE_TO_TAIL;
3060 	}
3061 
3062 	/*
3063 	 * Stage one: Count the objects on cpu's freelist as free_delta and
3064 	 * remember the last object in freelist_tail for later splicing.
3065 	 */
3066 	freelist_tail = NULL;
3067 	freelist_iter = freelist;
3068 	while (freelist_iter) {
3069 		nextfree = get_freepointer(s, freelist_iter);
3070 
3071 		/*
3072 		 * If 'nextfree' is invalid, it is possible that the object at
3073 		 * 'freelist_iter' is already corrupted.  So isolate all objects
3074 		 * starting at 'freelist_iter' by skipping them.
3075 		 */
3076 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3077 			break;
3078 
3079 		freelist_tail = freelist_iter;
3080 		free_delta++;
3081 
3082 		freelist_iter = nextfree;
3083 	}
3084 
3085 	/*
3086 	 * Stage two: Unfreeze the slab while splicing the per-cpu
3087 	 * freelist to the head of slab's freelist.
3088 	 */
3089 	do {
3090 		old.freelist = READ_ONCE(slab->freelist);
3091 		old.counters = READ_ONCE(slab->counters);
3092 		VM_BUG_ON(!old.frozen);
3093 
3094 		/* Determine target state of the slab */
3095 		new.counters = old.counters;
3096 		new.frozen = 0;
3097 		if (freelist_tail) {
3098 			new.inuse -= free_delta;
3099 			set_freepointer(s, freelist_tail, old.freelist);
3100 			new.freelist = freelist;
3101 		} else {
3102 			new.freelist = old.freelist;
3103 		}
3104 	} while (!slab_update_freelist(s, slab,
3105 		old.freelist, old.counters,
3106 		new.freelist, new.counters,
3107 		"unfreezing slab"));
3108 
3109 	/*
3110 	 * Stage three: Manipulate the slab list based on the updated state.
3111 	 */
3112 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3113 		stat(s, DEACTIVATE_EMPTY);
3114 		discard_slab(s, slab);
3115 		stat(s, FREE_SLAB);
3116 	} else if (new.freelist) {
3117 		spin_lock_irqsave(&n->list_lock, flags);
3118 		add_partial(n, slab, tail);
3119 		spin_unlock_irqrestore(&n->list_lock, flags);
3120 		stat(s, tail);
3121 	} else {
3122 		stat(s, DEACTIVATE_FULL);
3123 	}
3124 }
3125 
3126 #ifdef CONFIG_SLUB_CPU_PARTIAL
__put_partials(struct kmem_cache * s,struct slab * partial_slab)3127 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3128 {
3129 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3130 	struct slab *slab, *slab_to_discard = NULL;
3131 	unsigned long flags = 0;
3132 
3133 	while (partial_slab) {
3134 		slab = partial_slab;
3135 		partial_slab = slab->next;
3136 
3137 		n2 = get_node(s, slab_nid(slab));
3138 		if (n != n2) {
3139 			if (n)
3140 				spin_unlock_irqrestore(&n->list_lock, flags);
3141 
3142 			n = n2;
3143 			spin_lock_irqsave(&n->list_lock, flags);
3144 		}
3145 
3146 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3147 			slab->next = slab_to_discard;
3148 			slab_to_discard = slab;
3149 		} else {
3150 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3151 			stat(s, FREE_ADD_PARTIAL);
3152 		}
3153 	}
3154 
3155 	if (n)
3156 		spin_unlock_irqrestore(&n->list_lock, flags);
3157 
3158 	while (slab_to_discard) {
3159 		slab = slab_to_discard;
3160 		slab_to_discard = slab_to_discard->next;
3161 
3162 		stat(s, DEACTIVATE_EMPTY);
3163 		discard_slab(s, slab);
3164 		stat(s, FREE_SLAB);
3165 	}
3166 }
3167 
3168 /*
3169  * Put all the cpu partial slabs to the node partial list.
3170  */
put_partials(struct kmem_cache * s)3171 static void put_partials(struct kmem_cache *s)
3172 {
3173 	struct slab *partial_slab;
3174 	unsigned long flags;
3175 
3176 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3177 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3178 	this_cpu_write(s->cpu_slab->partial, NULL);
3179 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3180 
3181 	if (partial_slab)
3182 		__put_partials(s, partial_slab);
3183 }
3184 
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3185 static void put_partials_cpu(struct kmem_cache *s,
3186 			     struct kmem_cache_cpu *c)
3187 {
3188 	struct slab *partial_slab;
3189 
3190 	partial_slab = slub_percpu_partial(c);
3191 	c->partial = NULL;
3192 
3193 	if (partial_slab)
3194 		__put_partials(s, partial_slab);
3195 }
3196 
3197 /*
3198  * Put a slab into a partial slab slot if available.
3199  *
3200  * If we did not find a slot then simply move all the partials to the
3201  * per node partial list.
3202  */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3203 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3204 {
3205 	struct slab *oldslab;
3206 	struct slab *slab_to_put = NULL;
3207 	unsigned long flags;
3208 	int slabs = 0;
3209 
3210 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3211 
3212 	oldslab = this_cpu_read(s->cpu_slab->partial);
3213 
3214 	if (oldslab) {
3215 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3216 			/*
3217 			 * Partial array is full. Move the existing set to the
3218 			 * per node partial list. Postpone the actual unfreezing
3219 			 * outside of the critical section.
3220 			 */
3221 			slab_to_put = oldslab;
3222 			oldslab = NULL;
3223 		} else {
3224 			slabs = oldslab->slabs;
3225 		}
3226 	}
3227 
3228 	slabs++;
3229 
3230 	slab->slabs = slabs;
3231 	slab->next = oldslab;
3232 
3233 	this_cpu_write(s->cpu_slab->partial, slab);
3234 
3235 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3236 
3237 	if (slab_to_put) {
3238 		__put_partials(s, slab_to_put);
3239 		stat(s, CPU_PARTIAL_DRAIN);
3240 	}
3241 }
3242 
3243 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3244 
put_partials(struct kmem_cache * s)3245 static inline void put_partials(struct kmem_cache *s) { }
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3246 static inline void put_partials_cpu(struct kmem_cache *s,
3247 				    struct kmem_cache_cpu *c) { }
3248 
3249 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3250 
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)3251 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3252 {
3253 	unsigned long flags;
3254 	struct slab *slab;
3255 	void *freelist;
3256 
3257 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3258 
3259 	slab = c->slab;
3260 	freelist = c->freelist;
3261 
3262 	c->slab = NULL;
3263 	c->freelist = NULL;
3264 	c->tid = next_tid(c->tid);
3265 
3266 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3267 
3268 	if (slab) {
3269 		deactivate_slab(s, slab, freelist);
3270 		stat(s, CPUSLAB_FLUSH);
3271 	}
3272 }
3273 
__flush_cpu_slab(struct kmem_cache * s,int cpu)3274 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3275 {
3276 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3277 	void *freelist = c->freelist;
3278 	struct slab *slab = c->slab;
3279 
3280 	c->slab = NULL;
3281 	c->freelist = NULL;
3282 	c->tid = next_tid(c->tid);
3283 
3284 	if (slab) {
3285 		deactivate_slab(s, slab, freelist);
3286 		stat(s, CPUSLAB_FLUSH);
3287 	}
3288 
3289 	put_partials_cpu(s, c);
3290 }
3291 
3292 struct slub_flush_work {
3293 	struct work_struct work;
3294 	struct kmem_cache *s;
3295 	bool skip;
3296 };
3297 
3298 /*
3299  * Flush cpu slab.
3300  *
3301  * Called from CPU work handler with migration disabled.
3302  */
flush_cpu_slab(struct work_struct * w)3303 static void flush_cpu_slab(struct work_struct *w)
3304 {
3305 	struct kmem_cache *s;
3306 	struct kmem_cache_cpu *c;
3307 	struct slub_flush_work *sfw;
3308 
3309 	sfw = container_of(w, struct slub_flush_work, work);
3310 
3311 	s = sfw->s;
3312 	c = this_cpu_ptr(s->cpu_slab);
3313 
3314 	if (c->slab)
3315 		flush_slab(s, c);
3316 
3317 	put_partials(s);
3318 }
3319 
has_cpu_slab(int cpu,struct kmem_cache * s)3320 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3321 {
3322 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3323 
3324 	return c->slab || slub_percpu_partial(c);
3325 }
3326 
3327 static DEFINE_MUTEX(flush_lock);
3328 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3329 
flush_all_cpus_locked(struct kmem_cache * s)3330 static void flush_all_cpus_locked(struct kmem_cache *s)
3331 {
3332 	struct slub_flush_work *sfw;
3333 	unsigned int cpu;
3334 
3335 	lockdep_assert_cpus_held();
3336 	mutex_lock(&flush_lock);
3337 
3338 	for_each_online_cpu(cpu) {
3339 		sfw = &per_cpu(slub_flush, cpu);
3340 		if (!has_cpu_slab(cpu, s)) {
3341 			sfw->skip = true;
3342 			continue;
3343 		}
3344 		INIT_WORK(&sfw->work, flush_cpu_slab);
3345 		sfw->skip = false;
3346 		sfw->s = s;
3347 		queue_work_on(cpu, flushwq, &sfw->work);
3348 	}
3349 
3350 	for_each_online_cpu(cpu) {
3351 		sfw = &per_cpu(slub_flush, cpu);
3352 		if (sfw->skip)
3353 			continue;
3354 		flush_work(&sfw->work);
3355 	}
3356 
3357 	mutex_unlock(&flush_lock);
3358 }
3359 
flush_all(struct kmem_cache * s)3360 static void flush_all(struct kmem_cache *s)
3361 {
3362 	cpus_read_lock();
3363 	flush_all_cpus_locked(s);
3364 	cpus_read_unlock();
3365 }
3366 
3367 /*
3368  * Use the cpu notifier to insure that the cpu slabs are flushed when
3369  * necessary.
3370  */
slub_cpu_dead(unsigned int cpu)3371 static int slub_cpu_dead(unsigned int cpu)
3372 {
3373 	struct kmem_cache *s;
3374 
3375 	mutex_lock(&slab_mutex);
3376 	list_for_each_entry(s, &slab_caches, list)
3377 		__flush_cpu_slab(s, cpu);
3378 	mutex_unlock(&slab_mutex);
3379 	return 0;
3380 }
3381 
3382 #else /* CONFIG_SLUB_TINY */
flush_all_cpus_locked(struct kmem_cache * s)3383 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
flush_all(struct kmem_cache * s)3384 static inline void flush_all(struct kmem_cache *s) { }
__flush_cpu_slab(struct kmem_cache * s,int cpu)3385 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
slub_cpu_dead(unsigned int cpu)3386 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3387 #endif /* CONFIG_SLUB_TINY */
3388 
3389 /*
3390  * Check if the objects in a per cpu structure fit numa
3391  * locality expectations.
3392  */
node_match(struct slab * slab,int node)3393 static inline int node_match(struct slab *slab, int node)
3394 {
3395 #ifdef CONFIG_NUMA
3396 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3397 		return 0;
3398 #endif
3399 	return 1;
3400 }
3401 
3402 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)3403 static int count_free(struct slab *slab)
3404 {
3405 	return slab->objects - slab->inuse;
3406 }
3407 
node_nr_objs(struct kmem_cache_node * n)3408 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3409 {
3410 	return atomic_long_read(&n->total_objects);
3411 }
3412 
3413 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)3414 static inline bool free_debug_processing(struct kmem_cache *s,
3415 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3416 	unsigned long addr, depot_stack_handle_t handle)
3417 {
3418 	bool checks_ok = false;
3419 	void *object = head;
3420 	int cnt = 0;
3421 
3422 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3423 		if (!check_slab(s, slab))
3424 			goto out;
3425 	}
3426 
3427 	if (slab->inuse < *bulk_cnt) {
3428 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3429 			 slab->inuse, *bulk_cnt);
3430 		goto out;
3431 	}
3432 
3433 next_object:
3434 
3435 	if (++cnt > *bulk_cnt)
3436 		goto out_cnt;
3437 
3438 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3439 		if (!free_consistency_checks(s, slab, object, addr))
3440 			goto out;
3441 	}
3442 
3443 	if (s->flags & SLAB_STORE_USER)
3444 		set_track_update(s, object, TRACK_FREE, addr, handle);
3445 	trace(s, slab, object, 0);
3446 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3447 	init_object(s, object, SLUB_RED_INACTIVE);
3448 
3449 	/* Reached end of constructed freelist yet? */
3450 	if (object != tail) {
3451 		object = get_freepointer(s, object);
3452 		goto next_object;
3453 	}
3454 	checks_ok = true;
3455 
3456 out_cnt:
3457 	if (cnt != *bulk_cnt) {
3458 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3459 			 *bulk_cnt, cnt);
3460 		*bulk_cnt = cnt;
3461 	}
3462 
3463 out:
3464 
3465 	if (!checks_ok)
3466 		slab_fix(s, "Object at 0x%p not freed", object);
3467 
3468 	return checks_ok;
3469 }
3470 #endif /* CONFIG_SLUB_DEBUG */
3471 
3472 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))3473 static unsigned long count_partial(struct kmem_cache_node *n,
3474 					int (*get_count)(struct slab *))
3475 {
3476 	unsigned long flags;
3477 	unsigned long x = 0;
3478 	struct slab *slab;
3479 
3480 	spin_lock_irqsave(&n->list_lock, flags);
3481 	list_for_each_entry(slab, &n->partial, slab_list)
3482 		x += get_count(slab);
3483 	spin_unlock_irqrestore(&n->list_lock, flags);
3484 	return x;
3485 }
3486 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3487 
3488 #ifdef CONFIG_SLUB_DEBUG
3489 #define MAX_PARTIAL_TO_SCAN 10000
3490 
count_partial_free_approx(struct kmem_cache_node * n)3491 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3492 {
3493 	unsigned long flags;
3494 	unsigned long x = 0;
3495 	struct slab *slab;
3496 
3497 	spin_lock_irqsave(&n->list_lock, flags);
3498 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3499 		list_for_each_entry(slab, &n->partial, slab_list)
3500 			x += slab->objects - slab->inuse;
3501 	} else {
3502 		/*
3503 		 * For a long list, approximate the total count of objects in
3504 		 * it to meet the limit on the number of slabs to scan.
3505 		 * Scan from both the list's head and tail for better accuracy.
3506 		 */
3507 		unsigned long scanned = 0;
3508 
3509 		list_for_each_entry(slab, &n->partial, slab_list) {
3510 			x += slab->objects - slab->inuse;
3511 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3512 				break;
3513 		}
3514 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3515 			x += slab->objects - slab->inuse;
3516 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3517 				break;
3518 		}
3519 		x = mult_frac(x, n->nr_partial, scanned);
3520 		x = min(x, node_nr_objs(n));
3521 	}
3522 	spin_unlock_irqrestore(&n->list_lock, flags);
3523 	return x;
3524 }
3525 
3526 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3527 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3528 {
3529 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3530 				      DEFAULT_RATELIMIT_BURST);
3531 	int cpu = raw_smp_processor_id();
3532 	int node;
3533 	struct kmem_cache_node *n;
3534 
3535 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3536 		return;
3537 
3538 	pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3539 		cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3540 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3541 		s->name, s->object_size, s->size, oo_order(s->oo),
3542 		oo_order(s->min));
3543 
3544 	if (oo_order(s->min) > get_order(s->object_size))
3545 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3546 			s->name);
3547 
3548 	for_each_kmem_cache_node(s, node, n) {
3549 		unsigned long nr_slabs;
3550 		unsigned long nr_objs;
3551 		unsigned long nr_free;
3552 
3553 		nr_free  = count_partial_free_approx(n);
3554 		nr_slabs = node_nr_slabs(n);
3555 		nr_objs  = node_nr_objs(n);
3556 
3557 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3558 			node, nr_slabs, nr_objs, nr_free);
3559 	}
3560 }
3561 #else /* CONFIG_SLUB_DEBUG */
3562 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3563 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3564 #endif
3565 
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)3566 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3567 {
3568 	if (unlikely(slab_test_pfmemalloc(slab)))
3569 		return gfp_pfmemalloc_allowed(gfpflags);
3570 
3571 	return true;
3572 }
3573 
3574 #ifndef CONFIG_SLUB_TINY
3575 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)3576 __update_cpu_freelist_fast(struct kmem_cache *s,
3577 			   void *freelist_old, void *freelist_new,
3578 			   unsigned long tid)
3579 {
3580 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3581 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3582 
3583 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3584 					     &old.full, new.full);
3585 }
3586 
3587 /*
3588  * Check the slab->freelist and either transfer the freelist to the
3589  * per cpu freelist or deactivate the slab.
3590  *
3591  * The slab is still frozen if the return value is not NULL.
3592  *
3593  * If this function returns NULL then the slab has been unfrozen.
3594  */
get_freelist(struct kmem_cache * s,struct slab * slab)3595 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3596 {
3597 	struct slab new;
3598 	unsigned long counters;
3599 	void *freelist;
3600 
3601 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3602 
3603 	do {
3604 		freelist = slab->freelist;
3605 		counters = slab->counters;
3606 
3607 		new.counters = counters;
3608 
3609 		new.inuse = slab->objects;
3610 		new.frozen = freelist != NULL;
3611 
3612 	} while (!__slab_update_freelist(s, slab,
3613 		freelist, counters,
3614 		NULL, new.counters,
3615 		"get_freelist"));
3616 
3617 	return freelist;
3618 }
3619 
3620 /*
3621  * Freeze the partial slab and return the pointer to the freelist.
3622  */
freeze_slab(struct kmem_cache * s,struct slab * slab)3623 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3624 {
3625 	struct slab new;
3626 	unsigned long counters;
3627 	void *freelist;
3628 
3629 	do {
3630 		freelist = slab->freelist;
3631 		counters = slab->counters;
3632 
3633 		new.counters = counters;
3634 		VM_BUG_ON(new.frozen);
3635 
3636 		new.inuse = slab->objects;
3637 		new.frozen = 1;
3638 
3639 	} while (!slab_update_freelist(s, slab,
3640 		freelist, counters,
3641 		NULL, new.counters,
3642 		"freeze_slab"));
3643 
3644 	return freelist;
3645 }
3646 
3647 /*
3648  * Slow path. The lockless freelist is empty or we need to perform
3649  * debugging duties.
3650  *
3651  * Processing is still very fast if new objects have been freed to the
3652  * regular freelist. In that case we simply take over the regular freelist
3653  * as the lockless freelist and zap the regular freelist.
3654  *
3655  * If that is not working then we fall back to the partial lists. We take the
3656  * first element of the freelist as the object to allocate now and move the
3657  * rest of the freelist to the lockless freelist.
3658  *
3659  * And if we were unable to get a new slab from the partial slab lists then
3660  * we need to allocate a new slab. This is the slowest path since it involves
3661  * a call to the page allocator and the setup of a new slab.
3662  *
3663  * Version of __slab_alloc to use when we know that preemption is
3664  * already disabled (which is the case for bulk allocation).
3665  */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3666 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3667 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3668 {
3669 	void *freelist;
3670 	struct slab *slab;
3671 	unsigned long flags;
3672 	struct partial_context pc;
3673 	bool try_thisnode = true;
3674 
3675 	stat(s, ALLOC_SLOWPATH);
3676 
3677 reread_slab:
3678 
3679 	slab = READ_ONCE(c->slab);
3680 	if (!slab) {
3681 		/*
3682 		 * if the node is not online or has no normal memory, just
3683 		 * ignore the node constraint
3684 		 */
3685 		if (unlikely(node != NUMA_NO_NODE &&
3686 			     !node_isset(node, slab_nodes)))
3687 			node = NUMA_NO_NODE;
3688 		goto new_slab;
3689 	}
3690 
3691 	if (unlikely(!node_match(slab, node))) {
3692 		/*
3693 		 * same as above but node_match() being false already
3694 		 * implies node != NUMA_NO_NODE
3695 		 */
3696 		if (!node_isset(node, slab_nodes)) {
3697 			node = NUMA_NO_NODE;
3698 		} else {
3699 			stat(s, ALLOC_NODE_MISMATCH);
3700 			goto deactivate_slab;
3701 		}
3702 	}
3703 
3704 	/*
3705 	 * By rights, we should be searching for a slab page that was
3706 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3707 	 * information when the page leaves the per-cpu allocator
3708 	 */
3709 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3710 		goto deactivate_slab;
3711 
3712 	/* must check again c->slab in case we got preempted and it changed */
3713 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3714 	if (unlikely(slab != c->slab)) {
3715 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3716 		goto reread_slab;
3717 	}
3718 	freelist = c->freelist;
3719 	if (freelist)
3720 		goto load_freelist;
3721 
3722 	freelist = get_freelist(s, slab);
3723 
3724 	if (!freelist) {
3725 		c->slab = NULL;
3726 		c->tid = next_tid(c->tid);
3727 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3728 		stat(s, DEACTIVATE_BYPASS);
3729 		goto new_slab;
3730 	}
3731 
3732 	stat(s, ALLOC_REFILL);
3733 
3734 load_freelist:
3735 
3736 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3737 
3738 	/*
3739 	 * freelist is pointing to the list of objects to be used.
3740 	 * slab is pointing to the slab from which the objects are obtained.
3741 	 * That slab must be frozen for per cpu allocations to work.
3742 	 */
3743 	VM_BUG_ON(!c->slab->frozen);
3744 	c->freelist = get_freepointer(s, freelist);
3745 	c->tid = next_tid(c->tid);
3746 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3747 	return freelist;
3748 
3749 deactivate_slab:
3750 
3751 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3752 	if (slab != c->slab) {
3753 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3754 		goto reread_slab;
3755 	}
3756 	freelist = c->freelist;
3757 	c->slab = NULL;
3758 	c->freelist = NULL;
3759 	c->tid = next_tid(c->tid);
3760 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3761 	deactivate_slab(s, slab, freelist);
3762 
3763 new_slab:
3764 
3765 #ifdef CONFIG_SLUB_CPU_PARTIAL
3766 	while (slub_percpu_partial(c)) {
3767 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3768 		if (unlikely(c->slab)) {
3769 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3770 			goto reread_slab;
3771 		}
3772 		if (unlikely(!slub_percpu_partial(c))) {
3773 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3774 			/* we were preempted and partial list got empty */
3775 			goto new_objects;
3776 		}
3777 
3778 		slab = slub_percpu_partial(c);
3779 		slub_set_percpu_partial(c, slab);
3780 
3781 		if (likely(node_match(slab, node) &&
3782 			   pfmemalloc_match(slab, gfpflags))) {
3783 			c->slab = slab;
3784 			freelist = get_freelist(s, slab);
3785 			VM_BUG_ON(!freelist);
3786 			stat(s, CPU_PARTIAL_ALLOC);
3787 			goto load_freelist;
3788 		}
3789 
3790 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3791 
3792 		slab->next = NULL;
3793 		__put_partials(s, slab);
3794 	}
3795 #endif
3796 
3797 new_objects:
3798 
3799 	pc.flags = gfpflags;
3800 	/*
3801 	 * When a preferred node is indicated but no __GFP_THISNODE
3802 	 *
3803 	 * 1) try to get a partial slab from target node only by having
3804 	 *    __GFP_THISNODE in pc.flags for get_partial()
3805 	 * 2) if 1) failed, try to allocate a new slab from target node with
3806 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3807 	 * 3) if 2) failed, retry with original gfpflags which will allow
3808 	 *    get_partial() try partial lists of other nodes before potentially
3809 	 *    allocating new page from other nodes
3810 	 */
3811 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3812 		     && try_thisnode))
3813 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3814 
3815 	pc.orig_size = orig_size;
3816 	slab = get_partial(s, node, &pc);
3817 	if (slab) {
3818 		if (kmem_cache_debug(s)) {
3819 			freelist = pc.object;
3820 			/*
3821 			 * For debug caches here we had to go through
3822 			 * alloc_single_from_partial() so just store the
3823 			 * tracking info and return the object.
3824 			 */
3825 			if (s->flags & SLAB_STORE_USER)
3826 				set_track(s, freelist, TRACK_ALLOC, addr);
3827 
3828 			return freelist;
3829 		}
3830 
3831 		freelist = freeze_slab(s, slab);
3832 		goto retry_load_slab;
3833 	}
3834 
3835 	slub_put_cpu_ptr(s->cpu_slab);
3836 	slab = new_slab(s, pc.flags, node);
3837 	c = slub_get_cpu_ptr(s->cpu_slab);
3838 
3839 	if (unlikely(!slab)) {
3840 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3841 		    && try_thisnode) {
3842 			try_thisnode = false;
3843 			goto new_objects;
3844 		}
3845 		slab_out_of_memory(s, gfpflags, node);
3846 		return NULL;
3847 	}
3848 
3849 	stat(s, ALLOC_SLAB);
3850 
3851 	if (kmem_cache_debug(s)) {
3852 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3853 
3854 		if (unlikely(!freelist))
3855 			goto new_objects;
3856 
3857 		if (s->flags & SLAB_STORE_USER)
3858 			set_track(s, freelist, TRACK_ALLOC, addr);
3859 
3860 		return freelist;
3861 	}
3862 
3863 	/*
3864 	 * No other reference to the slab yet so we can
3865 	 * muck around with it freely without cmpxchg
3866 	 */
3867 	freelist = slab->freelist;
3868 	slab->freelist = NULL;
3869 	slab->inuse = slab->objects;
3870 	slab->frozen = 1;
3871 
3872 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3873 
3874 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3875 		/*
3876 		 * For !pfmemalloc_match() case we don't load freelist so that
3877 		 * we don't make further mismatched allocations easier.
3878 		 */
3879 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3880 		return freelist;
3881 	}
3882 
3883 retry_load_slab:
3884 
3885 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3886 	if (unlikely(c->slab)) {
3887 		void *flush_freelist = c->freelist;
3888 		struct slab *flush_slab = c->slab;
3889 
3890 		c->slab = NULL;
3891 		c->freelist = NULL;
3892 		c->tid = next_tid(c->tid);
3893 
3894 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3895 
3896 		deactivate_slab(s, flush_slab, flush_freelist);
3897 
3898 		stat(s, CPUSLAB_FLUSH);
3899 
3900 		goto retry_load_slab;
3901 	}
3902 	c->slab = slab;
3903 
3904 	goto load_freelist;
3905 }
3906 
3907 /*
3908  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3909  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3910  * pointer.
3911  */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3912 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3913 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3914 {
3915 	void *p;
3916 
3917 #ifdef CONFIG_PREEMPT_COUNT
3918 	/*
3919 	 * We may have been preempted and rescheduled on a different
3920 	 * cpu before disabling preemption. Need to reload cpu area
3921 	 * pointer.
3922 	 */
3923 	c = slub_get_cpu_ptr(s->cpu_slab);
3924 #endif
3925 
3926 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3927 #ifdef CONFIG_PREEMPT_COUNT
3928 	slub_put_cpu_ptr(s->cpu_slab);
3929 #endif
3930 	return p;
3931 }
3932 
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3933 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3934 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3935 {
3936 	struct kmem_cache_cpu *c;
3937 	struct slab *slab;
3938 	unsigned long tid;
3939 	void *object;
3940 
3941 redo:
3942 	/*
3943 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3944 	 * enabled. We may switch back and forth between cpus while
3945 	 * reading from one cpu area. That does not matter as long
3946 	 * as we end up on the original cpu again when doing the cmpxchg.
3947 	 *
3948 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3949 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3950 	 * the tid. If we are preempted and switched to another cpu between the
3951 	 * two reads, it's OK as the two are still associated with the same cpu
3952 	 * and cmpxchg later will validate the cpu.
3953 	 */
3954 	c = raw_cpu_ptr(s->cpu_slab);
3955 	tid = READ_ONCE(c->tid);
3956 
3957 	/*
3958 	 * Irqless object alloc/free algorithm used here depends on sequence
3959 	 * of fetching cpu_slab's data. tid should be fetched before anything
3960 	 * on c to guarantee that object and slab associated with previous tid
3961 	 * won't be used with current tid. If we fetch tid first, object and
3962 	 * slab could be one associated with next tid and our alloc/free
3963 	 * request will be failed. In this case, we will retry. So, no problem.
3964 	 */
3965 	barrier();
3966 
3967 	/*
3968 	 * The transaction ids are globally unique per cpu and per operation on
3969 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3970 	 * occurs on the right processor and that there was no operation on the
3971 	 * linked list in between.
3972 	 */
3973 
3974 	object = c->freelist;
3975 	slab = c->slab;
3976 
3977 #ifdef CONFIG_NUMA
3978 	if (static_branch_unlikely(&strict_numa) &&
3979 			node == NUMA_NO_NODE) {
3980 
3981 		struct mempolicy *mpol = current->mempolicy;
3982 
3983 		if (mpol) {
3984 			/*
3985 			 * Special BIND rule support. If existing slab
3986 			 * is in permitted set then do not redirect
3987 			 * to a particular node.
3988 			 * Otherwise we apply the memory policy to get
3989 			 * the node we need to allocate on.
3990 			 */
3991 			if (mpol->mode != MPOL_BIND || !slab ||
3992 					!node_isset(slab_nid(slab), mpol->nodes))
3993 
3994 				node = mempolicy_slab_node();
3995 		}
3996 	}
3997 #endif
3998 
3999 	if (!USE_LOCKLESS_FAST_PATH() ||
4000 	    unlikely(!object || !slab || !node_match(slab, node))) {
4001 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4002 	} else {
4003 		void *next_object = get_freepointer_safe(s, object);
4004 
4005 		/*
4006 		 * The cmpxchg will only match if there was no additional
4007 		 * operation and if we are on the right processor.
4008 		 *
4009 		 * The cmpxchg does the following atomically (without lock
4010 		 * semantics!)
4011 		 * 1. Relocate first pointer to the current per cpu area.
4012 		 * 2. Verify that tid and freelist have not been changed
4013 		 * 3. If they were not changed replace tid and freelist
4014 		 *
4015 		 * Since this is without lock semantics the protection is only
4016 		 * against code executing on this cpu *not* from access by
4017 		 * other cpus.
4018 		 */
4019 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4020 			note_cmpxchg_failure("slab_alloc", s, tid);
4021 			goto redo;
4022 		}
4023 		prefetch_freepointer(s, next_object);
4024 		stat(s, ALLOC_FASTPATH);
4025 	}
4026 
4027 	return object;
4028 }
4029 #else /* CONFIG_SLUB_TINY */
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4030 static void *__slab_alloc_node(struct kmem_cache *s,
4031 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4032 {
4033 	struct partial_context pc;
4034 	struct slab *slab;
4035 	void *object;
4036 
4037 	pc.flags = gfpflags;
4038 	pc.orig_size = orig_size;
4039 	slab = get_partial(s, node, &pc);
4040 
4041 	if (slab)
4042 		return pc.object;
4043 
4044 	slab = new_slab(s, gfpflags, node);
4045 	if (unlikely(!slab)) {
4046 		slab_out_of_memory(s, gfpflags, node);
4047 		return NULL;
4048 	}
4049 
4050 	object = alloc_single_from_new_slab(s, slab, orig_size);
4051 
4052 	return object;
4053 }
4054 #endif /* CONFIG_SLUB_TINY */
4055 
4056 /*
4057  * If the object has been wiped upon free, make sure it's fully initialized by
4058  * zeroing out freelist pointer.
4059  *
4060  * Note that we also wipe custom freelist pointers.
4061  */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)4062 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4063 						   void *obj)
4064 {
4065 	if (unlikely(slab_want_init_on_free(s)) && obj &&
4066 	    !freeptr_outside_object(s))
4067 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4068 			0, sizeof(void *));
4069 }
4070 
4071 static __fastpath_inline
slab_pre_alloc_hook(struct kmem_cache * s,gfp_t flags)4072 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4073 {
4074 	flags &= gfp_allowed_mask;
4075 
4076 	might_alloc(flags);
4077 
4078 	if (unlikely(should_failslab(s, flags)))
4079 		return NULL;
4080 
4081 	return s;
4082 }
4083 
4084 static __fastpath_inline
slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p,bool init,unsigned int orig_size)4085 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4086 			  gfp_t flags, size_t size, void **p, bool init,
4087 			  unsigned int orig_size)
4088 {
4089 	unsigned int zero_size = s->object_size;
4090 	bool kasan_init = init;
4091 	size_t i;
4092 	gfp_t init_flags = flags & gfp_allowed_mask;
4093 
4094 	/*
4095 	 * For kmalloc object, the allocated memory size(object_size) is likely
4096 	 * larger than the requested size(orig_size). If redzone check is
4097 	 * enabled for the extra space, don't zero it, as it will be redzoned
4098 	 * soon. The redzone operation for this extra space could be seen as a
4099 	 * replacement of current poisoning under certain debug option, and
4100 	 * won't break other sanity checks.
4101 	 */
4102 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4103 	    (s->flags & SLAB_KMALLOC))
4104 		zero_size = orig_size;
4105 
4106 	/*
4107 	 * When slab_debug is enabled, avoid memory initialization integrated
4108 	 * into KASAN and instead zero out the memory via the memset below with
4109 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4110 	 * cause false-positive reports. This does not lead to a performance
4111 	 * penalty on production builds, as slab_debug is not intended to be
4112 	 * enabled there.
4113 	 */
4114 	if (__slub_debug_enabled())
4115 		kasan_init = false;
4116 
4117 	/*
4118 	 * As memory initialization might be integrated into KASAN,
4119 	 * kasan_slab_alloc and initialization memset must be
4120 	 * kept together to avoid discrepancies in behavior.
4121 	 *
4122 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4123 	 */
4124 	for (i = 0; i < size; i++) {
4125 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4126 		if (p[i] && init && (!kasan_init ||
4127 				     !kasan_has_integrated_init()))
4128 			memset(p[i], 0, zero_size);
4129 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
4130 					 s->flags, init_flags);
4131 		kmsan_slab_alloc(s, p[i], init_flags);
4132 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4133 	}
4134 
4135 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4136 }
4137 
4138 /*
4139  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4140  * have the fastpath folded into their functions. So no function call
4141  * overhead for requests that can be satisfied on the fastpath.
4142  *
4143  * The fastpath works by first checking if the lockless freelist can be used.
4144  * If not then __slab_alloc is called for slow processing.
4145  *
4146  * Otherwise we can simply pick the next object from the lockless free list.
4147  */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4148 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4149 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4150 {
4151 	void *object;
4152 	bool init = false;
4153 
4154 	s = slab_pre_alloc_hook(s, gfpflags);
4155 	if (unlikely(!s))
4156 		return NULL;
4157 
4158 	object = kfence_alloc(s, orig_size, gfpflags);
4159 	if (unlikely(object))
4160 		goto out;
4161 
4162 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4163 
4164 	maybe_wipe_obj_freeptr(s, object);
4165 	init = slab_want_init_on_alloc(gfpflags, s);
4166 
4167 out:
4168 	/*
4169 	 * When init equals 'true', like for kzalloc() family, only
4170 	 * @orig_size bytes might be zeroed instead of s->object_size
4171 	 * In case this fails due to memcg_slab_post_alloc_hook(),
4172 	 * object is set to NULL
4173 	 */
4174 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4175 
4176 	return object;
4177 }
4178 
kmem_cache_alloc_noprof(struct kmem_cache * s,gfp_t gfpflags)4179 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4180 {
4181 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4182 				    s->object_size);
4183 
4184 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4185 
4186 	return ret;
4187 }
4188 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4189 
kmem_cache_alloc_lru_noprof(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)4190 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4191 			   gfp_t gfpflags)
4192 {
4193 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4194 				    s->object_size);
4195 
4196 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4197 
4198 	return ret;
4199 }
4200 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4201 
kmem_cache_charge(void * objp,gfp_t gfpflags)4202 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4203 {
4204 	if (!memcg_kmem_online())
4205 		return true;
4206 
4207 	return memcg_slab_post_charge(objp, gfpflags);
4208 }
4209 EXPORT_SYMBOL(kmem_cache_charge);
4210 
4211 /**
4212  * kmem_cache_alloc_node - Allocate an object on the specified node
4213  * @s: The cache to allocate from.
4214  * @gfpflags: See kmalloc().
4215  * @node: node number of the target node.
4216  *
4217  * Identical to kmem_cache_alloc but it will allocate memory on the given
4218  * node, which can improve the performance for cpu bound structures.
4219  *
4220  * Fallback to other node is possible if __GFP_THISNODE is not set.
4221  *
4222  * Return: pointer to the new object or %NULL in case of error
4223  */
kmem_cache_alloc_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node)4224 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4225 {
4226 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4227 
4228 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4229 
4230 	return ret;
4231 }
4232 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4233 
4234 /*
4235  * To avoid unnecessary overhead, we pass through large allocation requests
4236  * directly to the page allocator. We use __GFP_COMP, because we will need to
4237  * know the allocation order to free the pages properly in kfree.
4238  */
___kmalloc_large_node(size_t size,gfp_t flags,int node)4239 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4240 {
4241 	struct folio *folio;
4242 	void *ptr = NULL;
4243 	unsigned int order = get_order(size);
4244 
4245 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
4246 		flags = kmalloc_fix_flags(flags);
4247 
4248 	flags |= __GFP_COMP;
4249 	folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4250 	if (folio) {
4251 		ptr = folio_address(folio);
4252 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4253 				      PAGE_SIZE << order);
4254 	}
4255 
4256 	ptr = kasan_kmalloc_large(ptr, size, flags);
4257 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
4258 	kmemleak_alloc(ptr, size, 1, flags);
4259 	kmsan_kmalloc_large(ptr, size, flags);
4260 
4261 	return ptr;
4262 }
4263 
__kmalloc_large_noprof(size_t size,gfp_t flags)4264 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4265 {
4266 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4267 
4268 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4269 		      flags, NUMA_NO_NODE);
4270 	return ret;
4271 }
4272 EXPORT_SYMBOL(__kmalloc_large_noprof);
4273 
__kmalloc_large_node_noprof(size_t size,gfp_t flags,int node)4274 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4275 {
4276 	void *ret = ___kmalloc_large_node(size, flags, node);
4277 
4278 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4279 		      flags, node);
4280 	return ret;
4281 }
4282 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4283 
4284 static __always_inline
__do_kmalloc_node(size_t size,kmem_buckets * b,gfp_t flags,int node,unsigned long caller)4285 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4286 			unsigned long caller)
4287 {
4288 	struct kmem_cache *s;
4289 	void *ret;
4290 
4291 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4292 		ret = __kmalloc_large_node_noprof(size, flags, node);
4293 		trace_kmalloc(caller, ret, size,
4294 			      PAGE_SIZE << get_order(size), flags, node);
4295 		return ret;
4296 	}
4297 
4298 	if (unlikely(!size))
4299 		return ZERO_SIZE_PTR;
4300 
4301 	s = kmalloc_slab(size, b, flags, caller);
4302 
4303 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4304 	ret = kasan_kmalloc(s, ret, size, flags);
4305 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4306 	return ret;
4307 }
__kmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)4308 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4309 {
4310 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4311 }
4312 EXPORT_SYMBOL(__kmalloc_node_noprof);
4313 
__kmalloc_noprof(size_t size,gfp_t flags)4314 void *__kmalloc_noprof(size_t size, gfp_t flags)
4315 {
4316 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4317 }
4318 EXPORT_SYMBOL(__kmalloc_noprof);
4319 
__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node,unsigned long caller)4320 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4321 					 int node, unsigned long caller)
4322 {
4323 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4324 
4325 }
4326 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4327 
__kmalloc_cache_noprof(struct kmem_cache * s,gfp_t gfpflags,size_t size)4328 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4329 {
4330 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4331 					    _RET_IP_, size);
4332 
4333 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4334 
4335 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4336 	return ret;
4337 }
4338 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4339 
__kmalloc_cache_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)4340 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4341 				  int node, size_t size)
4342 {
4343 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4344 
4345 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4346 
4347 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4348 	return ret;
4349 }
4350 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4351 
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)4352 static noinline void free_to_partial_list(
4353 	struct kmem_cache *s, struct slab *slab,
4354 	void *head, void *tail, int bulk_cnt,
4355 	unsigned long addr)
4356 {
4357 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4358 	struct slab *slab_free = NULL;
4359 	int cnt = bulk_cnt;
4360 	unsigned long flags;
4361 	depot_stack_handle_t handle = 0;
4362 
4363 	if (s->flags & SLAB_STORE_USER)
4364 		handle = set_track_prepare();
4365 
4366 	spin_lock_irqsave(&n->list_lock, flags);
4367 
4368 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4369 		void *prior = slab->freelist;
4370 
4371 		/* Perform the actual freeing while we still hold the locks */
4372 		slab->inuse -= cnt;
4373 		set_freepointer(s, tail, prior);
4374 		slab->freelist = head;
4375 
4376 		/*
4377 		 * If the slab is empty, and node's partial list is full,
4378 		 * it should be discarded anyway no matter it's on full or
4379 		 * partial list.
4380 		 */
4381 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4382 			slab_free = slab;
4383 
4384 		if (!prior) {
4385 			/* was on full list */
4386 			remove_full(s, n, slab);
4387 			if (!slab_free) {
4388 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4389 				stat(s, FREE_ADD_PARTIAL);
4390 			}
4391 		} else if (slab_free) {
4392 			remove_partial(n, slab);
4393 			stat(s, FREE_REMOVE_PARTIAL);
4394 		}
4395 	}
4396 
4397 	if (slab_free) {
4398 		/*
4399 		 * Update the counters while still holding n->list_lock to
4400 		 * prevent spurious validation warnings
4401 		 */
4402 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4403 	}
4404 
4405 	spin_unlock_irqrestore(&n->list_lock, flags);
4406 
4407 	if (slab_free) {
4408 		stat(s, FREE_SLAB);
4409 		free_slab(s, slab_free);
4410 	}
4411 }
4412 
4413 /*
4414  * Slow path handling. This may still be called frequently since objects
4415  * have a longer lifetime than the cpu slabs in most processing loads.
4416  *
4417  * So we still attempt to reduce cache line usage. Just take the slab
4418  * lock and free the item. If there is no additional partial slab
4419  * handling required then we can return immediately.
4420  */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4421 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4422 			void *head, void *tail, int cnt,
4423 			unsigned long addr)
4424 
4425 {
4426 	void *prior;
4427 	int was_frozen;
4428 	struct slab new;
4429 	unsigned long counters;
4430 	struct kmem_cache_node *n = NULL;
4431 	unsigned long flags;
4432 	bool on_node_partial;
4433 
4434 	stat(s, FREE_SLOWPATH);
4435 
4436 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4437 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4438 		return;
4439 	}
4440 
4441 	do {
4442 		if (unlikely(n)) {
4443 			spin_unlock_irqrestore(&n->list_lock, flags);
4444 			n = NULL;
4445 		}
4446 		prior = slab->freelist;
4447 		counters = slab->counters;
4448 		set_freepointer(s, tail, prior);
4449 		new.counters = counters;
4450 		was_frozen = new.frozen;
4451 		new.inuse -= cnt;
4452 		if ((!new.inuse || !prior) && !was_frozen) {
4453 			/* Needs to be taken off a list */
4454 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4455 
4456 				n = get_node(s, slab_nid(slab));
4457 				/*
4458 				 * Speculatively acquire the list_lock.
4459 				 * If the cmpxchg does not succeed then we may
4460 				 * drop the list_lock without any processing.
4461 				 *
4462 				 * Otherwise the list_lock will synchronize with
4463 				 * other processors updating the list of slabs.
4464 				 */
4465 				spin_lock_irqsave(&n->list_lock, flags);
4466 
4467 				on_node_partial = slab_test_node_partial(slab);
4468 			}
4469 		}
4470 
4471 	} while (!slab_update_freelist(s, slab,
4472 		prior, counters,
4473 		head, new.counters,
4474 		"__slab_free"));
4475 
4476 	if (likely(!n)) {
4477 
4478 		if (likely(was_frozen)) {
4479 			/*
4480 			 * The list lock was not taken therefore no list
4481 			 * activity can be necessary.
4482 			 */
4483 			stat(s, FREE_FROZEN);
4484 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4485 			/*
4486 			 * If we started with a full slab then put it onto the
4487 			 * per cpu partial list.
4488 			 */
4489 			put_cpu_partial(s, slab, 1);
4490 			stat(s, CPU_PARTIAL_FREE);
4491 		}
4492 
4493 		return;
4494 	}
4495 
4496 	/*
4497 	 * This slab was partially empty but not on the per-node partial list,
4498 	 * in which case we shouldn't manipulate its list, just return.
4499 	 */
4500 	if (prior && !on_node_partial) {
4501 		spin_unlock_irqrestore(&n->list_lock, flags);
4502 		return;
4503 	}
4504 
4505 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4506 		goto slab_empty;
4507 
4508 	/*
4509 	 * Objects left in the slab. If it was not on the partial list before
4510 	 * then add it.
4511 	 */
4512 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4513 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4514 		stat(s, FREE_ADD_PARTIAL);
4515 	}
4516 	spin_unlock_irqrestore(&n->list_lock, flags);
4517 	return;
4518 
4519 slab_empty:
4520 	if (prior) {
4521 		/*
4522 		 * Slab on the partial list.
4523 		 */
4524 		remove_partial(n, slab);
4525 		stat(s, FREE_REMOVE_PARTIAL);
4526 	}
4527 
4528 	spin_unlock_irqrestore(&n->list_lock, flags);
4529 	stat(s, FREE_SLAB);
4530 	discard_slab(s, slab);
4531 }
4532 
4533 #ifndef CONFIG_SLUB_TINY
4534 /*
4535  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4536  * can perform fastpath freeing without additional function calls.
4537  *
4538  * The fastpath is only possible if we are freeing to the current cpu slab
4539  * of this processor. This typically the case if we have just allocated
4540  * the item before.
4541  *
4542  * If fastpath is not possible then fall back to __slab_free where we deal
4543  * with all sorts of special processing.
4544  *
4545  * Bulk free of a freelist with several objects (all pointing to the
4546  * same slab) possible by specifying head and tail ptr, plus objects
4547  * count (cnt). Bulk free indicated by tail pointer being set.
4548  */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4549 static __always_inline void do_slab_free(struct kmem_cache *s,
4550 				struct slab *slab, void *head, void *tail,
4551 				int cnt, unsigned long addr)
4552 {
4553 	struct kmem_cache_cpu *c;
4554 	unsigned long tid;
4555 	void **freelist;
4556 
4557 redo:
4558 	/*
4559 	 * Determine the currently cpus per cpu slab.
4560 	 * The cpu may change afterward. However that does not matter since
4561 	 * data is retrieved via this pointer. If we are on the same cpu
4562 	 * during the cmpxchg then the free will succeed.
4563 	 */
4564 	c = raw_cpu_ptr(s->cpu_slab);
4565 	tid = READ_ONCE(c->tid);
4566 
4567 	/* Same with comment on barrier() in __slab_alloc_node() */
4568 	barrier();
4569 
4570 	if (unlikely(slab != c->slab)) {
4571 		__slab_free(s, slab, head, tail, cnt, addr);
4572 		return;
4573 	}
4574 
4575 	if (USE_LOCKLESS_FAST_PATH()) {
4576 		freelist = READ_ONCE(c->freelist);
4577 
4578 		set_freepointer(s, tail, freelist);
4579 
4580 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4581 			note_cmpxchg_failure("slab_free", s, tid);
4582 			goto redo;
4583 		}
4584 	} else {
4585 		/* Update the free list under the local lock */
4586 		local_lock(&s->cpu_slab->lock);
4587 		c = this_cpu_ptr(s->cpu_slab);
4588 		if (unlikely(slab != c->slab)) {
4589 			local_unlock(&s->cpu_slab->lock);
4590 			goto redo;
4591 		}
4592 		tid = c->tid;
4593 		freelist = c->freelist;
4594 
4595 		set_freepointer(s, tail, freelist);
4596 		c->freelist = head;
4597 		c->tid = next_tid(tid);
4598 
4599 		local_unlock(&s->cpu_slab->lock);
4600 	}
4601 	stat_add(s, FREE_FASTPATH, cnt);
4602 }
4603 #else /* CONFIG_SLUB_TINY */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4604 static void do_slab_free(struct kmem_cache *s,
4605 				struct slab *slab, void *head, void *tail,
4606 				int cnt, unsigned long addr)
4607 {
4608 	__slab_free(s, slab, head, tail, cnt, addr);
4609 }
4610 #endif /* CONFIG_SLUB_TINY */
4611 
4612 static __fastpath_inline
slab_free(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)4613 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4614 	       unsigned long addr)
4615 {
4616 	memcg_slab_free_hook(s, slab, &object, 1);
4617 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
4618 
4619 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4620 		do_slab_free(s, slab, object, object, 1, addr);
4621 }
4622 
4623 #ifdef CONFIG_MEMCG
4624 /* Do not inline the rare memcg charging failed path into the allocation path */
4625 static noinline
memcg_alloc_abort_single(struct kmem_cache * s,void * object)4626 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4627 {
4628 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4629 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4630 }
4631 #endif
4632 
4633 static __fastpath_inline
slab_free_bulk(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)4634 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4635 		    void *tail, void **p, int cnt, unsigned long addr)
4636 {
4637 	memcg_slab_free_hook(s, slab, p, cnt);
4638 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
4639 	/*
4640 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4641 	 * to remove objects, whose reuse must be delayed.
4642 	 */
4643 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4644 		do_slab_free(s, slab, head, tail, cnt, addr);
4645 }
4646 
4647 #ifdef CONFIG_SLUB_RCU_DEBUG
slab_free_after_rcu_debug(struct rcu_head * rcu_head)4648 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4649 {
4650 	struct rcu_delayed_free *delayed_free =
4651 			container_of(rcu_head, struct rcu_delayed_free, head);
4652 	void *object = delayed_free->object;
4653 	struct slab *slab = virt_to_slab(object);
4654 	struct kmem_cache *s;
4655 
4656 	kfree(delayed_free);
4657 
4658 	if (WARN_ON(is_kfence_address(object)))
4659 		return;
4660 
4661 	/* find the object and the cache again */
4662 	if (WARN_ON(!slab))
4663 		return;
4664 	s = slab->slab_cache;
4665 	if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4666 		return;
4667 
4668 	/* resume freeing */
4669 	if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4670 		do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4671 }
4672 #endif /* CONFIG_SLUB_RCU_DEBUG */
4673 
4674 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)4675 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4676 {
4677 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4678 }
4679 #endif
4680 
virt_to_cache(const void * obj)4681 static inline struct kmem_cache *virt_to_cache(const void *obj)
4682 {
4683 	struct slab *slab;
4684 
4685 	slab = virt_to_slab(obj);
4686 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4687 		return NULL;
4688 	return slab->slab_cache;
4689 }
4690 
cache_from_obj(struct kmem_cache * s,void * x)4691 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4692 {
4693 	struct kmem_cache *cachep;
4694 
4695 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4696 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4697 		return s;
4698 
4699 	cachep = virt_to_cache(x);
4700 	if (WARN(cachep && cachep != s,
4701 		 "%s: Wrong slab cache. %s but object is from %s\n",
4702 		 __func__, s->name, cachep->name))
4703 		print_tracking(cachep, x);
4704 	return cachep;
4705 }
4706 
4707 /**
4708  * kmem_cache_free - Deallocate an object
4709  * @s: The cache the allocation was from.
4710  * @x: The previously allocated object.
4711  *
4712  * Free an object which was previously allocated from this
4713  * cache.
4714  */
kmem_cache_free(struct kmem_cache * s,void * x)4715 void kmem_cache_free(struct kmem_cache *s, void *x)
4716 {
4717 	s = cache_from_obj(s, x);
4718 	if (!s)
4719 		return;
4720 	trace_kmem_cache_free(_RET_IP_, x, s);
4721 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4722 }
4723 EXPORT_SYMBOL(kmem_cache_free);
4724 
free_large_kmalloc(struct folio * folio,void * object)4725 static void free_large_kmalloc(struct folio *folio, void *object)
4726 {
4727 	unsigned int order = folio_order(folio);
4728 
4729 	if (WARN_ON_ONCE(order == 0))
4730 		pr_warn_once("object pointer: 0x%p\n", object);
4731 
4732 	kmemleak_free(object);
4733 	kasan_kfree_large(object);
4734 	kmsan_kfree_large(object);
4735 
4736 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4737 			      -(PAGE_SIZE << order));
4738 	folio_put(folio);
4739 }
4740 
4741 /**
4742  * kfree - free previously allocated memory
4743  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4744  *
4745  * If @object is NULL, no operation is performed.
4746  */
kfree(const void * object)4747 void kfree(const void *object)
4748 {
4749 	struct folio *folio;
4750 	struct slab *slab;
4751 	struct kmem_cache *s;
4752 	void *x = (void *)object;
4753 
4754 	trace_kfree(_RET_IP_, object);
4755 
4756 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4757 		return;
4758 
4759 	folio = virt_to_folio(object);
4760 	if (unlikely(!folio_test_slab(folio))) {
4761 		free_large_kmalloc(folio, (void *)object);
4762 		return;
4763 	}
4764 
4765 	slab = folio_slab(folio);
4766 	s = slab->slab_cache;
4767 	slab_free(s, slab, x, _RET_IP_);
4768 }
4769 EXPORT_SYMBOL(kfree);
4770 
4771 static __always_inline __realloc_size(2) void *
__do_krealloc(const void * p,size_t new_size,gfp_t flags)4772 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
4773 {
4774 	void *ret;
4775 	size_t ks = 0;
4776 	int orig_size = 0;
4777 	struct kmem_cache *s = NULL;
4778 
4779 	if (unlikely(ZERO_OR_NULL_PTR(p)))
4780 		goto alloc_new;
4781 
4782 	/* Check for double-free. */
4783 	if (!kasan_check_byte(p))
4784 		return NULL;
4785 
4786 	if (is_kfence_address(p)) {
4787 		ks = orig_size = kfence_ksize(p);
4788 	} else {
4789 		struct folio *folio;
4790 
4791 		folio = virt_to_folio(p);
4792 		if (unlikely(!folio_test_slab(folio))) {
4793 			/* Big kmalloc object */
4794 			WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
4795 			WARN_ON(p != folio_address(folio));
4796 			ks = folio_size(folio);
4797 		} else {
4798 			s = folio_slab(folio)->slab_cache;
4799 			orig_size = get_orig_size(s, (void *)p);
4800 			ks = s->object_size;
4801 		}
4802 	}
4803 
4804 	/* If the old object doesn't fit, allocate a bigger one */
4805 	if (new_size > ks)
4806 		goto alloc_new;
4807 
4808 	/* Zero out spare memory. */
4809 	if (want_init_on_alloc(flags)) {
4810 		kasan_disable_current();
4811 		if (orig_size && orig_size < new_size)
4812 			memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
4813 		else
4814 			memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
4815 		kasan_enable_current();
4816 	}
4817 
4818 	/* Setup kmalloc redzone when needed */
4819 	if (s && slub_debug_orig_size(s)) {
4820 		set_orig_size(s, (void *)p, new_size);
4821 		if (s->flags & SLAB_RED_ZONE && new_size < ks)
4822 			memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
4823 						SLUB_RED_ACTIVE, ks - new_size);
4824 	}
4825 
4826 	p = kasan_krealloc(p, new_size, flags);
4827 	return (void *)p;
4828 
4829 alloc_new:
4830 	ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
4831 	if (ret && p) {
4832 		/* Disable KASAN checks as the object's redzone is accessed. */
4833 		kasan_disable_current();
4834 		memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
4835 		kasan_enable_current();
4836 	}
4837 
4838 	return ret;
4839 }
4840 
4841 /**
4842  * krealloc - reallocate memory. The contents will remain unchanged.
4843  * @p: object to reallocate memory for.
4844  * @new_size: how many bytes of memory are required.
4845  * @flags: the type of memory to allocate.
4846  *
4847  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
4848  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4849  *
4850  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4851  * initial memory allocation, every subsequent call to this API for the same
4852  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4853  * __GFP_ZERO is not fully honored by this API.
4854  *
4855  * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
4856  * size of an allocation (but not the exact size it was allocated with) and
4857  * hence implements the following semantics for shrinking and growing buffers
4858  * with __GFP_ZERO.
4859  *
4860  *         new             bucket
4861  * 0       size             size
4862  * |--------|----------------|
4863  * |  keep  |      zero      |
4864  *
4865  * Otherwise, the original allocation size 'orig_size' could be used to
4866  * precisely clear the requested size, and the new size will also be stored
4867  * as the new 'orig_size'.
4868  *
4869  * In any case, the contents of the object pointed to are preserved up to the
4870  * lesser of the new and old sizes.
4871  *
4872  * Return: pointer to the allocated memory or %NULL in case of error
4873  */
krealloc_noprof(const void * p,size_t new_size,gfp_t flags)4874 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
4875 {
4876 	void *ret;
4877 
4878 	if (unlikely(!new_size)) {
4879 		kfree(p);
4880 		return ZERO_SIZE_PTR;
4881 	}
4882 
4883 	ret = __do_krealloc(p, new_size, flags);
4884 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
4885 		kfree(p);
4886 
4887 	return ret;
4888 }
4889 EXPORT_SYMBOL(krealloc_noprof);
4890 
4891 struct detached_freelist {
4892 	struct slab *slab;
4893 	void *tail;
4894 	void *freelist;
4895 	int cnt;
4896 	struct kmem_cache *s;
4897 };
4898 
4899 /*
4900  * This function progressively scans the array with free objects (with
4901  * a limited look ahead) and extract objects belonging to the same
4902  * slab.  It builds a detached freelist directly within the given
4903  * slab/objects.  This can happen without any need for
4904  * synchronization, because the objects are owned by running process.
4905  * The freelist is build up as a single linked list in the objects.
4906  * The idea is, that this detached freelist can then be bulk
4907  * transferred to the real freelist(s), but only requiring a single
4908  * synchronization primitive.  Look ahead in the array is limited due
4909  * to performance reasons.
4910  */
4911 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)4912 int build_detached_freelist(struct kmem_cache *s, size_t size,
4913 			    void **p, struct detached_freelist *df)
4914 {
4915 	int lookahead = 3;
4916 	void *object;
4917 	struct folio *folio;
4918 	size_t same;
4919 
4920 	object = p[--size];
4921 	folio = virt_to_folio(object);
4922 	if (!s) {
4923 		/* Handle kalloc'ed objects */
4924 		if (unlikely(!folio_test_slab(folio))) {
4925 			free_large_kmalloc(folio, object);
4926 			df->slab = NULL;
4927 			return size;
4928 		}
4929 		/* Derive kmem_cache from object */
4930 		df->slab = folio_slab(folio);
4931 		df->s = df->slab->slab_cache;
4932 	} else {
4933 		df->slab = folio_slab(folio);
4934 		df->s = cache_from_obj(s, object); /* Support for memcg */
4935 	}
4936 
4937 	/* Start new detached freelist */
4938 	df->tail = object;
4939 	df->freelist = object;
4940 	df->cnt = 1;
4941 
4942 	if (is_kfence_address(object))
4943 		return size;
4944 
4945 	set_freepointer(df->s, object, NULL);
4946 
4947 	same = size;
4948 	while (size) {
4949 		object = p[--size];
4950 		/* df->slab is always set at this point */
4951 		if (df->slab == virt_to_slab(object)) {
4952 			/* Opportunity build freelist */
4953 			set_freepointer(df->s, object, df->freelist);
4954 			df->freelist = object;
4955 			df->cnt++;
4956 			same--;
4957 			if (size != same)
4958 				swap(p[size], p[same]);
4959 			continue;
4960 		}
4961 
4962 		/* Limit look ahead search */
4963 		if (!--lookahead)
4964 			break;
4965 	}
4966 
4967 	return same;
4968 }
4969 
4970 /*
4971  * Internal bulk free of objects that were not initialised by the post alloc
4972  * hooks and thus should not be processed by the free hooks
4973  */
__kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)4974 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4975 {
4976 	if (!size)
4977 		return;
4978 
4979 	do {
4980 		struct detached_freelist df;
4981 
4982 		size = build_detached_freelist(s, size, p, &df);
4983 		if (!df.slab)
4984 			continue;
4985 
4986 		if (kfence_free(df.freelist))
4987 			continue;
4988 
4989 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4990 			     _RET_IP_);
4991 	} while (likely(size));
4992 }
4993 
4994 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)4995 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4996 {
4997 	if (!size)
4998 		return;
4999 
5000 	do {
5001 		struct detached_freelist df;
5002 
5003 		size = build_detached_freelist(s, size, p, &df);
5004 		if (!df.slab)
5005 			continue;
5006 
5007 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
5008 			       df.cnt, _RET_IP_);
5009 	} while (likely(size));
5010 }
5011 EXPORT_SYMBOL(kmem_cache_free_bulk);
5012 
5013 #ifndef CONFIG_SLUB_TINY
5014 static inline
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5015 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
5016 			    void **p)
5017 {
5018 	struct kmem_cache_cpu *c;
5019 	unsigned long irqflags;
5020 	int i;
5021 
5022 	/*
5023 	 * Drain objects in the per cpu slab, while disabling local
5024 	 * IRQs, which protects against PREEMPT and interrupts
5025 	 * handlers invoking normal fastpath.
5026 	 */
5027 	c = slub_get_cpu_ptr(s->cpu_slab);
5028 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5029 
5030 	for (i = 0; i < size; i++) {
5031 		void *object = kfence_alloc(s, s->object_size, flags);
5032 
5033 		if (unlikely(object)) {
5034 			p[i] = object;
5035 			continue;
5036 		}
5037 
5038 		object = c->freelist;
5039 		if (unlikely(!object)) {
5040 			/*
5041 			 * We may have removed an object from c->freelist using
5042 			 * the fastpath in the previous iteration; in that case,
5043 			 * c->tid has not been bumped yet.
5044 			 * Since ___slab_alloc() may reenable interrupts while
5045 			 * allocating memory, we should bump c->tid now.
5046 			 */
5047 			c->tid = next_tid(c->tid);
5048 
5049 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5050 
5051 			/*
5052 			 * Invoking slow path likely have side-effect
5053 			 * of re-populating per CPU c->freelist
5054 			 */
5055 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
5056 					    _RET_IP_, c, s->object_size);
5057 			if (unlikely(!p[i]))
5058 				goto error;
5059 
5060 			c = this_cpu_ptr(s->cpu_slab);
5061 			maybe_wipe_obj_freeptr(s, p[i]);
5062 
5063 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5064 
5065 			continue; /* goto for-loop */
5066 		}
5067 		c->freelist = get_freepointer(s, object);
5068 		p[i] = object;
5069 		maybe_wipe_obj_freeptr(s, p[i]);
5070 		stat(s, ALLOC_FASTPATH);
5071 	}
5072 	c->tid = next_tid(c->tid);
5073 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5074 	slub_put_cpu_ptr(s->cpu_slab);
5075 
5076 	return i;
5077 
5078 error:
5079 	slub_put_cpu_ptr(s->cpu_slab);
5080 	__kmem_cache_free_bulk(s, i, p);
5081 	return 0;
5082 
5083 }
5084 #else /* CONFIG_SLUB_TINY */
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5085 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
5086 				   size_t size, void **p)
5087 {
5088 	int i;
5089 
5090 	for (i = 0; i < size; i++) {
5091 		void *object = kfence_alloc(s, s->object_size, flags);
5092 
5093 		if (unlikely(object)) {
5094 			p[i] = object;
5095 			continue;
5096 		}
5097 
5098 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
5099 					 _RET_IP_, s->object_size);
5100 		if (unlikely(!p[i]))
5101 			goto error;
5102 
5103 		maybe_wipe_obj_freeptr(s, p[i]);
5104 	}
5105 
5106 	return i;
5107 
5108 error:
5109 	__kmem_cache_free_bulk(s, i, p);
5110 	return 0;
5111 }
5112 #endif /* CONFIG_SLUB_TINY */
5113 
5114 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk_noprof(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5115 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
5116 				 void **p)
5117 {
5118 	int i;
5119 
5120 	if (!size)
5121 		return 0;
5122 
5123 	s = slab_pre_alloc_hook(s, flags);
5124 	if (unlikely(!s))
5125 		return 0;
5126 
5127 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
5128 	if (unlikely(i == 0))
5129 		return 0;
5130 
5131 	/*
5132 	 * memcg and kmem_cache debug support and memory initialization.
5133 	 * Done outside of the IRQ disabled fastpath loop.
5134 	 */
5135 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
5136 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
5137 		return 0;
5138 	}
5139 	return i;
5140 }
5141 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
5142 
5143 
5144 /*
5145  * Object placement in a slab is made very easy because we always start at
5146  * offset 0. If we tune the size of the object to the alignment then we can
5147  * get the required alignment by putting one properly sized object after
5148  * another.
5149  *
5150  * Notice that the allocation order determines the sizes of the per cpu
5151  * caches. Each processor has always one slab available for allocations.
5152  * Increasing the allocation order reduces the number of times that slabs
5153  * must be moved on and off the partial lists and is therefore a factor in
5154  * locking overhead.
5155  */
5156 
5157 /*
5158  * Minimum / Maximum order of slab pages. This influences locking overhead
5159  * and slab fragmentation. A higher order reduces the number of partial slabs
5160  * and increases the number of allocations possible without having to
5161  * take the list_lock.
5162  */
5163 static unsigned int slub_min_order;
5164 static unsigned int slub_max_order =
5165 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5166 static unsigned int slub_min_objects;
5167 
5168 /*
5169  * Calculate the order of allocation given an slab object size.
5170  *
5171  * The order of allocation has significant impact on performance and other
5172  * system components. Generally order 0 allocations should be preferred since
5173  * order 0 does not cause fragmentation in the page allocator. Larger objects
5174  * be problematic to put into order 0 slabs because there may be too much
5175  * unused space left. We go to a higher order if more than 1/16th of the slab
5176  * would be wasted.
5177  *
5178  * In order to reach satisfactory performance we must ensure that a minimum
5179  * number of objects is in one slab. Otherwise we may generate too much
5180  * activity on the partial lists which requires taking the list_lock. This is
5181  * less a concern for large slabs though which are rarely used.
5182  *
5183  * slab_max_order specifies the order where we begin to stop considering the
5184  * number of objects in a slab as critical. If we reach slab_max_order then
5185  * we try to keep the page order as low as possible. So we accept more waste
5186  * of space in favor of a small page order.
5187  *
5188  * Higher order allocations also allow the placement of more objects in a
5189  * slab and thereby reduce object handling overhead. If the user has
5190  * requested a higher minimum order then we start with that one instead of
5191  * the smallest order which will fit the object.
5192  */
calc_slab_order(unsigned int size,unsigned int min_order,unsigned int max_order,unsigned int fract_leftover)5193 static inline unsigned int calc_slab_order(unsigned int size,
5194 		unsigned int min_order, unsigned int max_order,
5195 		unsigned int fract_leftover)
5196 {
5197 	unsigned int order;
5198 
5199 	for (order = min_order; order <= max_order; order++) {
5200 
5201 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5202 		unsigned int rem;
5203 
5204 		rem = slab_size % size;
5205 
5206 		if (rem <= slab_size / fract_leftover)
5207 			break;
5208 	}
5209 
5210 	return order;
5211 }
5212 
calculate_order(unsigned int size)5213 static inline int calculate_order(unsigned int size)
5214 {
5215 	unsigned int order;
5216 	unsigned int min_objects;
5217 	unsigned int max_objects;
5218 	unsigned int min_order;
5219 
5220 	min_objects = slub_min_objects;
5221 	if (!min_objects) {
5222 		/*
5223 		 * Some architectures will only update present cpus when
5224 		 * onlining them, so don't trust the number if it's just 1. But
5225 		 * we also don't want to use nr_cpu_ids always, as on some other
5226 		 * architectures, there can be many possible cpus, but never
5227 		 * onlined. Here we compromise between trying to avoid too high
5228 		 * order on systems that appear larger than they are, and too
5229 		 * low order on systems that appear smaller than they are.
5230 		 */
5231 		unsigned int nr_cpus = num_present_cpus();
5232 		if (nr_cpus <= 1)
5233 			nr_cpus = nr_cpu_ids;
5234 		min_objects = 4 * (fls(nr_cpus) + 1);
5235 	}
5236 	/* min_objects can't be 0 because get_order(0) is undefined */
5237 	max_objects = max(order_objects(slub_max_order, size), 1U);
5238 	min_objects = min(min_objects, max_objects);
5239 
5240 	min_order = max_t(unsigned int, slub_min_order,
5241 			  get_order(min_objects * size));
5242 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5243 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5244 
5245 	/*
5246 	 * Attempt to find best configuration for a slab. This works by first
5247 	 * attempting to generate a layout with the best possible configuration
5248 	 * and backing off gradually.
5249 	 *
5250 	 * We start with accepting at most 1/16 waste and try to find the
5251 	 * smallest order from min_objects-derived/slab_min_order up to
5252 	 * slab_max_order that will satisfy the constraint. Note that increasing
5253 	 * the order can only result in same or less fractional waste, not more.
5254 	 *
5255 	 * If that fails, we increase the acceptable fraction of waste and try
5256 	 * again. The last iteration with fraction of 1/2 would effectively
5257 	 * accept any waste and give us the order determined by min_objects, as
5258 	 * long as at least single object fits within slab_max_order.
5259 	 */
5260 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5261 		order = calc_slab_order(size, min_order, slub_max_order,
5262 					fraction);
5263 		if (order <= slub_max_order)
5264 			return order;
5265 	}
5266 
5267 	/*
5268 	 * Doh this slab cannot be placed using slab_max_order.
5269 	 */
5270 	order = get_order(size);
5271 	if (order <= MAX_PAGE_ORDER)
5272 		return order;
5273 	return -ENOSYS;
5274 }
5275 
5276 static void
init_kmem_cache_node(struct kmem_cache_node * n)5277 init_kmem_cache_node(struct kmem_cache_node *n)
5278 {
5279 	n->nr_partial = 0;
5280 	spin_lock_init(&n->list_lock);
5281 	INIT_LIST_HEAD(&n->partial);
5282 #ifdef CONFIG_SLUB_DEBUG
5283 	atomic_long_set(&n->nr_slabs, 0);
5284 	atomic_long_set(&n->total_objects, 0);
5285 	INIT_LIST_HEAD(&n->full);
5286 #endif
5287 }
5288 
5289 #ifndef CONFIG_SLUB_TINY
alloc_kmem_cache_cpus(struct kmem_cache * s)5290 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5291 {
5292 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5293 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5294 			sizeof(struct kmem_cache_cpu));
5295 
5296 	/*
5297 	 * Must align to double word boundary for the double cmpxchg
5298 	 * instructions to work; see __pcpu_double_call_return_bool().
5299 	 */
5300 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5301 				     2 * sizeof(void *));
5302 
5303 	if (!s->cpu_slab)
5304 		return 0;
5305 
5306 	init_kmem_cache_cpus(s);
5307 
5308 	return 1;
5309 }
5310 #else
alloc_kmem_cache_cpus(struct kmem_cache * s)5311 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5312 {
5313 	return 1;
5314 }
5315 #endif /* CONFIG_SLUB_TINY */
5316 
5317 static struct kmem_cache *kmem_cache_node;
5318 
5319 /*
5320  * No kmalloc_node yet so do it by hand. We know that this is the first
5321  * slab on the node for this slabcache. There are no concurrent accesses
5322  * possible.
5323  *
5324  * Note that this function only works on the kmem_cache_node
5325  * when allocating for the kmem_cache_node. This is used for bootstrapping
5326  * memory on a fresh node that has no slab structures yet.
5327  */
early_kmem_cache_node_alloc(int node)5328 static void early_kmem_cache_node_alloc(int node)
5329 {
5330 	struct slab *slab;
5331 	struct kmem_cache_node *n;
5332 
5333 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5334 
5335 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5336 
5337 	BUG_ON(!slab);
5338 	if (slab_nid(slab) != node) {
5339 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5340 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5341 	}
5342 
5343 	n = slab->freelist;
5344 	BUG_ON(!n);
5345 #ifdef CONFIG_SLUB_DEBUG
5346 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5347 #endif
5348 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5349 	slab->freelist = get_freepointer(kmem_cache_node, n);
5350 	slab->inuse = 1;
5351 	kmem_cache_node->node[node] = n;
5352 	init_kmem_cache_node(n);
5353 	inc_slabs_node(kmem_cache_node, node, slab->objects);
5354 
5355 	/*
5356 	 * No locks need to be taken here as it has just been
5357 	 * initialized and there is no concurrent access.
5358 	 */
5359 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
5360 }
5361 
free_kmem_cache_nodes(struct kmem_cache * s)5362 static void free_kmem_cache_nodes(struct kmem_cache *s)
5363 {
5364 	int node;
5365 	struct kmem_cache_node *n;
5366 
5367 	for_each_kmem_cache_node(s, node, n) {
5368 		s->node[node] = NULL;
5369 		kmem_cache_free(kmem_cache_node, n);
5370 	}
5371 }
5372 
__kmem_cache_release(struct kmem_cache * s)5373 void __kmem_cache_release(struct kmem_cache *s)
5374 {
5375 	cache_random_seq_destroy(s);
5376 #ifndef CONFIG_SLUB_TINY
5377 	free_percpu(s->cpu_slab);
5378 #endif
5379 	free_kmem_cache_nodes(s);
5380 }
5381 
init_kmem_cache_nodes(struct kmem_cache * s)5382 static int init_kmem_cache_nodes(struct kmem_cache *s)
5383 {
5384 	int node;
5385 
5386 	for_each_node_mask(node, slab_nodes) {
5387 		struct kmem_cache_node *n;
5388 
5389 		if (slab_state == DOWN) {
5390 			early_kmem_cache_node_alloc(node);
5391 			continue;
5392 		}
5393 		n = kmem_cache_alloc_node(kmem_cache_node,
5394 						GFP_KERNEL, node);
5395 
5396 		if (!n) {
5397 			free_kmem_cache_nodes(s);
5398 			return 0;
5399 		}
5400 
5401 		init_kmem_cache_node(n);
5402 		s->node[node] = n;
5403 	}
5404 	return 1;
5405 }
5406 
set_cpu_partial(struct kmem_cache * s)5407 static void set_cpu_partial(struct kmem_cache *s)
5408 {
5409 #ifdef CONFIG_SLUB_CPU_PARTIAL
5410 	unsigned int nr_objects;
5411 
5412 	/*
5413 	 * cpu_partial determined the maximum number of objects kept in the
5414 	 * per cpu partial lists of a processor.
5415 	 *
5416 	 * Per cpu partial lists mainly contain slabs that just have one
5417 	 * object freed. If they are used for allocation then they can be
5418 	 * filled up again with minimal effort. The slab will never hit the
5419 	 * per node partial lists and therefore no locking will be required.
5420 	 *
5421 	 * For backwards compatibility reasons, this is determined as number
5422 	 * of objects, even though we now limit maximum number of pages, see
5423 	 * slub_set_cpu_partial()
5424 	 */
5425 	if (!kmem_cache_has_cpu_partial(s))
5426 		nr_objects = 0;
5427 	else if (s->size >= PAGE_SIZE)
5428 		nr_objects = 6;
5429 	else if (s->size >= 1024)
5430 		nr_objects = 24;
5431 	else if (s->size >= 256)
5432 		nr_objects = 52;
5433 	else
5434 		nr_objects = 120;
5435 
5436 	slub_set_cpu_partial(s, nr_objects);
5437 #endif
5438 }
5439 
5440 /*
5441  * calculate_sizes() determines the order and the distribution of data within
5442  * a slab object.
5443  */
calculate_sizes(struct kmem_cache_args * args,struct kmem_cache * s)5444 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5445 {
5446 	slab_flags_t flags = s->flags;
5447 	unsigned int size = s->object_size;
5448 	unsigned int order;
5449 
5450 	/*
5451 	 * Round up object size to the next word boundary. We can only
5452 	 * place the free pointer at word boundaries and this determines
5453 	 * the possible location of the free pointer.
5454 	 */
5455 	size = ALIGN(size, sizeof(void *));
5456 
5457 #ifdef CONFIG_SLUB_DEBUG
5458 	/*
5459 	 * Determine if we can poison the object itself. If the user of
5460 	 * the slab may touch the object after free or before allocation
5461 	 * then we should never poison the object itself.
5462 	 */
5463 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5464 			!s->ctor)
5465 		s->flags |= __OBJECT_POISON;
5466 	else
5467 		s->flags &= ~__OBJECT_POISON;
5468 
5469 
5470 	/*
5471 	 * If we are Redzoning then check if there is some space between the
5472 	 * end of the object and the free pointer. If not then add an
5473 	 * additional word to have some bytes to store Redzone information.
5474 	 */
5475 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5476 		size += sizeof(void *);
5477 #endif
5478 
5479 	/*
5480 	 * With that we have determined the number of bytes in actual use
5481 	 * by the object and redzoning.
5482 	 */
5483 	s->inuse = size;
5484 
5485 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5486 	    (flags & SLAB_POISON) || s->ctor ||
5487 	    ((flags & SLAB_RED_ZONE) &&
5488 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5489 		/*
5490 		 * Relocate free pointer after the object if it is not
5491 		 * permitted to overwrite the first word of the object on
5492 		 * kmem_cache_free.
5493 		 *
5494 		 * This is the case if we do RCU, have a constructor or
5495 		 * destructor, are poisoning the objects, or are
5496 		 * redzoning an object smaller than sizeof(void *) or are
5497 		 * redzoning an object with slub_debug_orig_size() enabled,
5498 		 * in which case the right redzone may be extended.
5499 		 *
5500 		 * The assumption that s->offset >= s->inuse means free
5501 		 * pointer is outside of the object is used in the
5502 		 * freeptr_outside_object() function. If that is no
5503 		 * longer true, the function needs to be modified.
5504 		 */
5505 		s->offset = size;
5506 		size += sizeof(void *);
5507 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5508 		s->offset = args->freeptr_offset;
5509 	} else {
5510 		/*
5511 		 * Store freelist pointer near middle of object to keep
5512 		 * it away from the edges of the object to avoid small
5513 		 * sized over/underflows from neighboring allocations.
5514 		 */
5515 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5516 	}
5517 
5518 #ifdef CONFIG_SLUB_DEBUG
5519 	if (flags & SLAB_STORE_USER) {
5520 		/*
5521 		 * Need to store information about allocs and frees after
5522 		 * the object.
5523 		 */
5524 		size += 2 * sizeof(struct track);
5525 
5526 		/* Save the original kmalloc request size */
5527 		if (flags & SLAB_KMALLOC)
5528 			size += sizeof(unsigned int);
5529 	}
5530 #endif
5531 
5532 	kasan_cache_create(s, &size, &s->flags);
5533 #ifdef CONFIG_SLUB_DEBUG
5534 	if (flags & SLAB_RED_ZONE) {
5535 		/*
5536 		 * Add some empty padding so that we can catch
5537 		 * overwrites from earlier objects rather than let
5538 		 * tracking information or the free pointer be
5539 		 * corrupted if a user writes before the start
5540 		 * of the object.
5541 		 */
5542 		size += sizeof(void *);
5543 
5544 		s->red_left_pad = sizeof(void *);
5545 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5546 		size += s->red_left_pad;
5547 	}
5548 #endif
5549 
5550 	/*
5551 	 * SLUB stores one object immediately after another beginning from
5552 	 * offset 0. In order to align the objects we have to simply size
5553 	 * each object to conform to the alignment.
5554 	 */
5555 	size = ALIGN(size, s->align);
5556 	s->size = size;
5557 	s->reciprocal_size = reciprocal_value(size);
5558 	order = calculate_order(size);
5559 
5560 	if ((int)order < 0)
5561 		return 0;
5562 
5563 	s->allocflags = __GFP_COMP;
5564 
5565 	if (s->flags & SLAB_CACHE_DMA)
5566 		s->allocflags |= GFP_DMA;
5567 
5568 	if (s->flags & SLAB_CACHE_DMA32)
5569 		s->allocflags |= GFP_DMA32;
5570 
5571 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5572 		s->allocflags |= __GFP_RECLAIMABLE;
5573 
5574 	/*
5575 	 * Determine the number of objects per slab
5576 	 */
5577 	s->oo = oo_make(order, size);
5578 	s->min = oo_make(get_order(size), size);
5579 
5580 	return !!oo_objects(s->oo);
5581 }
5582 
list_slab_objects(struct kmem_cache * s,struct slab * slab,const char * text)5583 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5584 			      const char *text)
5585 {
5586 #ifdef CONFIG_SLUB_DEBUG
5587 	void *addr = slab_address(slab);
5588 	void *p;
5589 
5590 	slab_err(s, slab, text, s->name);
5591 
5592 	spin_lock(&object_map_lock);
5593 	__fill_map(object_map, s, slab);
5594 
5595 	for_each_object(p, s, addr, slab->objects) {
5596 
5597 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5598 			if (slab_add_kunit_errors())
5599 				continue;
5600 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5601 			print_tracking(s, p);
5602 		}
5603 	}
5604 	spin_unlock(&object_map_lock);
5605 #endif
5606 }
5607 
5608 /*
5609  * Attempt to free all partial slabs on a node.
5610  * This is called from __kmem_cache_shutdown(). We must take list_lock
5611  * because sysfs file might still access partial list after the shutdowning.
5612  */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)5613 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5614 {
5615 	LIST_HEAD(discard);
5616 	struct slab *slab, *h;
5617 
5618 	BUG_ON(irqs_disabled());
5619 	spin_lock_irq(&n->list_lock);
5620 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5621 		if (!slab->inuse) {
5622 			remove_partial(n, slab);
5623 			list_add(&slab->slab_list, &discard);
5624 		} else {
5625 			list_slab_objects(s, slab,
5626 			  "Objects remaining in %s on __kmem_cache_shutdown()");
5627 		}
5628 	}
5629 	spin_unlock_irq(&n->list_lock);
5630 
5631 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5632 		discard_slab(s, slab);
5633 }
5634 
__kmem_cache_empty(struct kmem_cache * s)5635 bool __kmem_cache_empty(struct kmem_cache *s)
5636 {
5637 	int node;
5638 	struct kmem_cache_node *n;
5639 
5640 	for_each_kmem_cache_node(s, node, n)
5641 		if (n->nr_partial || node_nr_slabs(n))
5642 			return false;
5643 	return true;
5644 }
5645 
5646 /*
5647  * Release all resources used by a slab cache.
5648  */
__kmem_cache_shutdown(struct kmem_cache * s)5649 int __kmem_cache_shutdown(struct kmem_cache *s)
5650 {
5651 	int node;
5652 	struct kmem_cache_node *n;
5653 
5654 	flush_all_cpus_locked(s);
5655 	/* Attempt to free all objects */
5656 	for_each_kmem_cache_node(s, node, n) {
5657 		free_partial(s, n);
5658 		if (n->nr_partial || node_nr_slabs(n))
5659 			return 1;
5660 	}
5661 	return 0;
5662 }
5663 
5664 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)5665 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5666 {
5667 	void *base;
5668 	int __maybe_unused i;
5669 	unsigned int objnr;
5670 	void *objp;
5671 	void *objp0;
5672 	struct kmem_cache *s = slab->slab_cache;
5673 	struct track __maybe_unused *trackp;
5674 
5675 	kpp->kp_ptr = object;
5676 	kpp->kp_slab = slab;
5677 	kpp->kp_slab_cache = s;
5678 	base = slab_address(slab);
5679 	objp0 = kasan_reset_tag(object);
5680 #ifdef CONFIG_SLUB_DEBUG
5681 	objp = restore_red_left(s, objp0);
5682 #else
5683 	objp = objp0;
5684 #endif
5685 	objnr = obj_to_index(s, slab, objp);
5686 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5687 	objp = base + s->size * objnr;
5688 	kpp->kp_objp = objp;
5689 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5690 			 || (objp - base) % s->size) ||
5691 	    !(s->flags & SLAB_STORE_USER))
5692 		return;
5693 #ifdef CONFIG_SLUB_DEBUG
5694 	objp = fixup_red_left(s, objp);
5695 	trackp = get_track(s, objp, TRACK_ALLOC);
5696 	kpp->kp_ret = (void *)trackp->addr;
5697 #ifdef CONFIG_STACKDEPOT
5698 	{
5699 		depot_stack_handle_t handle;
5700 		unsigned long *entries;
5701 		unsigned int nr_entries;
5702 
5703 		handle = READ_ONCE(trackp->handle);
5704 		if (handle) {
5705 			nr_entries = stack_depot_fetch(handle, &entries);
5706 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5707 				kpp->kp_stack[i] = (void *)entries[i];
5708 		}
5709 
5710 		trackp = get_track(s, objp, TRACK_FREE);
5711 		handle = READ_ONCE(trackp->handle);
5712 		if (handle) {
5713 			nr_entries = stack_depot_fetch(handle, &entries);
5714 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5715 				kpp->kp_free_stack[i] = (void *)entries[i];
5716 		}
5717 	}
5718 #endif
5719 #endif
5720 }
5721 #endif
5722 
5723 /********************************************************************
5724  *		Kmalloc subsystem
5725  *******************************************************************/
5726 
setup_slub_min_order(char * str)5727 static int __init setup_slub_min_order(char *str)
5728 {
5729 	get_option(&str, (int *)&slub_min_order);
5730 
5731 	if (slub_min_order > slub_max_order)
5732 		slub_max_order = slub_min_order;
5733 
5734 	return 1;
5735 }
5736 
5737 __setup("slab_min_order=", setup_slub_min_order);
5738 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5739 
5740 
setup_slub_max_order(char * str)5741 static int __init setup_slub_max_order(char *str)
5742 {
5743 	get_option(&str, (int *)&slub_max_order);
5744 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5745 
5746 	if (slub_min_order > slub_max_order)
5747 		slub_min_order = slub_max_order;
5748 
5749 	return 1;
5750 }
5751 
5752 __setup("slab_max_order=", setup_slub_max_order);
5753 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5754 
setup_slub_min_objects(char * str)5755 static int __init setup_slub_min_objects(char *str)
5756 {
5757 	get_option(&str, (int *)&slub_min_objects);
5758 
5759 	return 1;
5760 }
5761 
5762 __setup("slab_min_objects=", setup_slub_min_objects);
5763 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5764 
5765 #ifdef CONFIG_NUMA
setup_slab_strict_numa(char * str)5766 static int __init setup_slab_strict_numa(char *str)
5767 {
5768 	if (nr_node_ids > 1) {
5769 		static_branch_enable(&strict_numa);
5770 		pr_info("SLUB: Strict NUMA enabled.\n");
5771 	} else {
5772 		pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
5773 	}
5774 
5775 	return 1;
5776 }
5777 
5778 __setup("slab_strict_numa", setup_slab_strict_numa);
5779 #endif
5780 
5781 
5782 #ifdef CONFIG_HARDENED_USERCOPY
5783 /*
5784  * Rejects incorrectly sized objects and objects that are to be copied
5785  * to/from userspace but do not fall entirely within the containing slab
5786  * cache's usercopy region.
5787  *
5788  * Returns NULL if check passes, otherwise const char * to name of cache
5789  * to indicate an error.
5790  */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)5791 void __check_heap_object(const void *ptr, unsigned long n,
5792 			 const struct slab *slab, bool to_user)
5793 {
5794 	struct kmem_cache *s;
5795 	unsigned int offset;
5796 	bool is_kfence = is_kfence_address(ptr);
5797 
5798 	ptr = kasan_reset_tag(ptr);
5799 
5800 	/* Find object and usable object size. */
5801 	s = slab->slab_cache;
5802 
5803 	/* Reject impossible pointers. */
5804 	if (ptr < slab_address(slab))
5805 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
5806 			       to_user, 0, n);
5807 
5808 	/* Find offset within object. */
5809 	if (is_kfence)
5810 		offset = ptr - kfence_object_start(ptr);
5811 	else
5812 		offset = (ptr - slab_address(slab)) % s->size;
5813 
5814 	/* Adjust for redzone and reject if within the redzone. */
5815 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5816 		if (offset < s->red_left_pad)
5817 			usercopy_abort("SLUB object in left red zone",
5818 				       s->name, to_user, offset, n);
5819 		offset -= s->red_left_pad;
5820 	}
5821 
5822 	/* Allow address range falling entirely within usercopy region. */
5823 	if (offset >= s->useroffset &&
5824 	    offset - s->useroffset <= s->usersize &&
5825 	    n <= s->useroffset - offset + s->usersize)
5826 		return;
5827 
5828 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
5829 }
5830 #endif /* CONFIG_HARDENED_USERCOPY */
5831 
5832 #define SHRINK_PROMOTE_MAX 32
5833 
5834 /*
5835  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5836  * up most to the head of the partial lists. New allocations will then
5837  * fill those up and thus they can be removed from the partial lists.
5838  *
5839  * The slabs with the least items are placed last. This results in them
5840  * being allocated from last increasing the chance that the last objects
5841  * are freed in them.
5842  */
__kmem_cache_do_shrink(struct kmem_cache * s)5843 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5844 {
5845 	int node;
5846 	int i;
5847 	struct kmem_cache_node *n;
5848 	struct slab *slab;
5849 	struct slab *t;
5850 	struct list_head discard;
5851 	struct list_head promote[SHRINK_PROMOTE_MAX];
5852 	unsigned long flags;
5853 	int ret = 0;
5854 
5855 	for_each_kmem_cache_node(s, node, n) {
5856 		INIT_LIST_HEAD(&discard);
5857 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5858 			INIT_LIST_HEAD(promote + i);
5859 
5860 		spin_lock_irqsave(&n->list_lock, flags);
5861 
5862 		/*
5863 		 * Build lists of slabs to discard or promote.
5864 		 *
5865 		 * Note that concurrent frees may occur while we hold the
5866 		 * list_lock. slab->inuse here is the upper limit.
5867 		 */
5868 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5869 			int free = slab->objects - slab->inuse;
5870 
5871 			/* Do not reread slab->inuse */
5872 			barrier();
5873 
5874 			/* We do not keep full slabs on the list */
5875 			BUG_ON(free <= 0);
5876 
5877 			if (free == slab->objects) {
5878 				list_move(&slab->slab_list, &discard);
5879 				slab_clear_node_partial(slab);
5880 				n->nr_partial--;
5881 				dec_slabs_node(s, node, slab->objects);
5882 			} else if (free <= SHRINK_PROMOTE_MAX)
5883 				list_move(&slab->slab_list, promote + free - 1);
5884 		}
5885 
5886 		/*
5887 		 * Promote the slabs filled up most to the head of the
5888 		 * partial list.
5889 		 */
5890 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5891 			list_splice(promote + i, &n->partial);
5892 
5893 		spin_unlock_irqrestore(&n->list_lock, flags);
5894 
5895 		/* Release empty slabs */
5896 		list_for_each_entry_safe(slab, t, &discard, slab_list)
5897 			free_slab(s, slab);
5898 
5899 		if (node_nr_slabs(n))
5900 			ret = 1;
5901 	}
5902 
5903 	return ret;
5904 }
5905 
__kmem_cache_shrink(struct kmem_cache * s)5906 int __kmem_cache_shrink(struct kmem_cache *s)
5907 {
5908 	flush_all(s);
5909 	return __kmem_cache_do_shrink(s);
5910 }
5911 
slab_mem_going_offline_callback(void * arg)5912 static int slab_mem_going_offline_callback(void *arg)
5913 {
5914 	struct kmem_cache *s;
5915 
5916 	mutex_lock(&slab_mutex);
5917 	list_for_each_entry(s, &slab_caches, list) {
5918 		flush_all_cpus_locked(s);
5919 		__kmem_cache_do_shrink(s);
5920 	}
5921 	mutex_unlock(&slab_mutex);
5922 
5923 	return 0;
5924 }
5925 
slab_mem_offline_callback(void * arg)5926 static void slab_mem_offline_callback(void *arg)
5927 {
5928 	struct memory_notify *marg = arg;
5929 	int offline_node;
5930 
5931 	offline_node = marg->status_change_nid_normal;
5932 
5933 	/*
5934 	 * If the node still has available memory. we need kmem_cache_node
5935 	 * for it yet.
5936 	 */
5937 	if (offline_node < 0)
5938 		return;
5939 
5940 	mutex_lock(&slab_mutex);
5941 	node_clear(offline_node, slab_nodes);
5942 	/*
5943 	 * We no longer free kmem_cache_node structures here, as it would be
5944 	 * racy with all get_node() users, and infeasible to protect them with
5945 	 * slab_mutex.
5946 	 */
5947 	mutex_unlock(&slab_mutex);
5948 }
5949 
slab_mem_going_online_callback(void * arg)5950 static int slab_mem_going_online_callback(void *arg)
5951 {
5952 	struct kmem_cache_node *n;
5953 	struct kmem_cache *s;
5954 	struct memory_notify *marg = arg;
5955 	int nid = marg->status_change_nid_normal;
5956 	int ret = 0;
5957 
5958 	/*
5959 	 * If the node's memory is already available, then kmem_cache_node is
5960 	 * already created. Nothing to do.
5961 	 */
5962 	if (nid < 0)
5963 		return 0;
5964 
5965 	/*
5966 	 * We are bringing a node online. No memory is available yet. We must
5967 	 * allocate a kmem_cache_node structure in order to bring the node
5968 	 * online.
5969 	 */
5970 	mutex_lock(&slab_mutex);
5971 	list_for_each_entry(s, &slab_caches, list) {
5972 		/*
5973 		 * The structure may already exist if the node was previously
5974 		 * onlined and offlined.
5975 		 */
5976 		if (get_node(s, nid))
5977 			continue;
5978 		/*
5979 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
5980 		 *      since memory is not yet available from the node that
5981 		 *      is brought up.
5982 		 */
5983 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5984 		if (!n) {
5985 			ret = -ENOMEM;
5986 			goto out;
5987 		}
5988 		init_kmem_cache_node(n);
5989 		s->node[nid] = n;
5990 	}
5991 	/*
5992 	 * Any cache created after this point will also have kmem_cache_node
5993 	 * initialized for the new node.
5994 	 */
5995 	node_set(nid, slab_nodes);
5996 out:
5997 	mutex_unlock(&slab_mutex);
5998 	return ret;
5999 }
6000 
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)6001 static int slab_memory_callback(struct notifier_block *self,
6002 				unsigned long action, void *arg)
6003 {
6004 	int ret = 0;
6005 
6006 	switch (action) {
6007 	case MEM_GOING_ONLINE:
6008 		ret = slab_mem_going_online_callback(arg);
6009 		break;
6010 	case MEM_GOING_OFFLINE:
6011 		ret = slab_mem_going_offline_callback(arg);
6012 		break;
6013 	case MEM_OFFLINE:
6014 	case MEM_CANCEL_ONLINE:
6015 		slab_mem_offline_callback(arg);
6016 		break;
6017 	case MEM_ONLINE:
6018 	case MEM_CANCEL_OFFLINE:
6019 		break;
6020 	}
6021 	if (ret)
6022 		ret = notifier_from_errno(ret);
6023 	else
6024 		ret = NOTIFY_OK;
6025 	return ret;
6026 }
6027 
6028 /********************************************************************
6029  *			Basic setup of slabs
6030  *******************************************************************/
6031 
6032 /*
6033  * Used for early kmem_cache structures that were allocated using
6034  * the page allocator. Allocate them properly then fix up the pointers
6035  * that may be pointing to the wrong kmem_cache structure.
6036  */
6037 
bootstrap(struct kmem_cache * static_cache)6038 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
6039 {
6040 	int node;
6041 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
6042 	struct kmem_cache_node *n;
6043 
6044 	memcpy(s, static_cache, kmem_cache->object_size);
6045 
6046 	/*
6047 	 * This runs very early, and only the boot processor is supposed to be
6048 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
6049 	 * IPIs around.
6050 	 */
6051 	__flush_cpu_slab(s, smp_processor_id());
6052 	for_each_kmem_cache_node(s, node, n) {
6053 		struct slab *p;
6054 
6055 		list_for_each_entry(p, &n->partial, slab_list)
6056 			p->slab_cache = s;
6057 
6058 #ifdef CONFIG_SLUB_DEBUG
6059 		list_for_each_entry(p, &n->full, slab_list)
6060 			p->slab_cache = s;
6061 #endif
6062 	}
6063 	list_add(&s->list, &slab_caches);
6064 	return s;
6065 }
6066 
kmem_cache_init(void)6067 void __init kmem_cache_init(void)
6068 {
6069 	static __initdata struct kmem_cache boot_kmem_cache,
6070 		boot_kmem_cache_node;
6071 	int node;
6072 
6073 	if (debug_guardpage_minorder())
6074 		slub_max_order = 0;
6075 
6076 	/* Print slub debugging pointers without hashing */
6077 	if (__slub_debug_enabled())
6078 		no_hash_pointers_enable(NULL);
6079 
6080 	kmem_cache_node = &boot_kmem_cache_node;
6081 	kmem_cache = &boot_kmem_cache;
6082 
6083 	/*
6084 	 * Initialize the nodemask for which we will allocate per node
6085 	 * structures. Here we don't need taking slab_mutex yet.
6086 	 */
6087 	for_each_node_state(node, N_NORMAL_MEMORY)
6088 		node_set(node, slab_nodes);
6089 
6090 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
6091 			sizeof(struct kmem_cache_node),
6092 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6093 
6094 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
6095 
6096 	/* Able to allocate the per node structures */
6097 	slab_state = PARTIAL;
6098 
6099 	create_boot_cache(kmem_cache, "kmem_cache",
6100 			offsetof(struct kmem_cache, node) +
6101 				nr_node_ids * sizeof(struct kmem_cache_node *),
6102 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6103 
6104 	kmem_cache = bootstrap(&boot_kmem_cache);
6105 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
6106 
6107 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
6108 	setup_kmalloc_cache_index_table();
6109 	create_kmalloc_caches();
6110 
6111 	/* Setup random freelists for each cache */
6112 	init_freelist_randomization();
6113 
6114 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
6115 				  slub_cpu_dead);
6116 
6117 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6118 		cache_line_size(),
6119 		slub_min_order, slub_max_order, slub_min_objects,
6120 		nr_cpu_ids, nr_node_ids);
6121 }
6122 
kmem_cache_init_late(void)6123 void __init kmem_cache_init_late(void)
6124 {
6125 #ifndef CONFIG_SLUB_TINY
6126 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6127 	WARN_ON(!flushwq);
6128 #endif
6129 }
6130 
6131 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))6132 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6133 		   slab_flags_t flags, void (*ctor)(void *))
6134 {
6135 	struct kmem_cache *s;
6136 
6137 	s = find_mergeable(size, align, flags, name, ctor);
6138 	if (s) {
6139 		if (sysfs_slab_alias(s, name))
6140 			pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
6141 			       name);
6142 
6143 		s->refcount++;
6144 
6145 		/*
6146 		 * Adjust the object sizes so that we clear
6147 		 * the complete object on kzalloc.
6148 		 */
6149 		s->object_size = max(s->object_size, size);
6150 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6151 	}
6152 
6153 	return s;
6154 }
6155 
do_kmem_cache_create(struct kmem_cache * s,const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)6156 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
6157 			 unsigned int size, struct kmem_cache_args *args,
6158 			 slab_flags_t flags)
6159 {
6160 	int err = -EINVAL;
6161 
6162 	s->name = name;
6163 	s->size = s->object_size = size;
6164 
6165 	s->flags = kmem_cache_flags(flags, s->name);
6166 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6167 	s->random = get_random_long();
6168 #endif
6169 	s->align = args->align;
6170 	s->ctor = args->ctor;
6171 #ifdef CONFIG_HARDENED_USERCOPY
6172 	s->useroffset = args->useroffset;
6173 	s->usersize = args->usersize;
6174 #endif
6175 
6176 	if (!calculate_sizes(args, s))
6177 		goto out;
6178 	if (disable_higher_order_debug) {
6179 		/*
6180 		 * Disable debugging flags that store metadata if the min slab
6181 		 * order increased.
6182 		 */
6183 		if (get_order(s->size) > get_order(s->object_size)) {
6184 			s->flags &= ~DEBUG_METADATA_FLAGS;
6185 			s->offset = 0;
6186 			if (!calculate_sizes(args, s))
6187 				goto out;
6188 		}
6189 	}
6190 
6191 #ifdef system_has_freelist_aba
6192 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6193 		/* Enable fast mode */
6194 		s->flags |= __CMPXCHG_DOUBLE;
6195 	}
6196 #endif
6197 
6198 	/*
6199 	 * The larger the object size is, the more slabs we want on the partial
6200 	 * list to avoid pounding the page allocator excessively.
6201 	 */
6202 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6203 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6204 
6205 	set_cpu_partial(s);
6206 
6207 #ifdef CONFIG_NUMA
6208 	s->remote_node_defrag_ratio = 1000;
6209 #endif
6210 
6211 	/* Initialize the pre-computed randomized freelist if slab is up */
6212 	if (slab_state >= UP) {
6213 		if (init_cache_random_seq(s))
6214 			goto out;
6215 	}
6216 
6217 	if (!init_kmem_cache_nodes(s))
6218 		goto out;
6219 
6220 	if (!alloc_kmem_cache_cpus(s))
6221 		goto out;
6222 
6223 	err = 0;
6224 
6225 	/* Mutex is not taken during early boot */
6226 	if (slab_state <= UP)
6227 		goto out;
6228 
6229 	/*
6230 	 * Failing to create sysfs files is not critical to SLUB functionality.
6231 	 * If it fails, proceed with cache creation without these files.
6232 	 */
6233 	if (sysfs_slab_add(s))
6234 		pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
6235 
6236 	if (s->flags & SLAB_STORE_USER)
6237 		debugfs_slab_add(s);
6238 
6239 out:
6240 	if (err)
6241 		__kmem_cache_release(s);
6242 	return err;
6243 }
6244 
6245 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)6246 static int count_inuse(struct slab *slab)
6247 {
6248 	return slab->inuse;
6249 }
6250 
count_total(struct slab * slab)6251 static int count_total(struct slab *slab)
6252 {
6253 	return slab->objects;
6254 }
6255 #endif
6256 
6257 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)6258 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6259 			  unsigned long *obj_map)
6260 {
6261 	void *p;
6262 	void *addr = slab_address(slab);
6263 
6264 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6265 		return;
6266 
6267 	/* Now we know that a valid freelist exists */
6268 	__fill_map(obj_map, s, slab);
6269 	for_each_object(p, s, addr, slab->objects) {
6270 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6271 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6272 
6273 		if (!check_object(s, slab, p, val))
6274 			break;
6275 	}
6276 }
6277 
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)6278 static int validate_slab_node(struct kmem_cache *s,
6279 		struct kmem_cache_node *n, unsigned long *obj_map)
6280 {
6281 	unsigned long count = 0;
6282 	struct slab *slab;
6283 	unsigned long flags;
6284 
6285 	spin_lock_irqsave(&n->list_lock, flags);
6286 
6287 	list_for_each_entry(slab, &n->partial, slab_list) {
6288 		validate_slab(s, slab, obj_map);
6289 		count++;
6290 	}
6291 	if (count != n->nr_partial) {
6292 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6293 		       s->name, count, n->nr_partial);
6294 		slab_add_kunit_errors();
6295 	}
6296 
6297 	if (!(s->flags & SLAB_STORE_USER))
6298 		goto out;
6299 
6300 	list_for_each_entry(slab, &n->full, slab_list) {
6301 		validate_slab(s, slab, obj_map);
6302 		count++;
6303 	}
6304 	if (count != node_nr_slabs(n)) {
6305 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6306 		       s->name, count, node_nr_slabs(n));
6307 		slab_add_kunit_errors();
6308 	}
6309 
6310 out:
6311 	spin_unlock_irqrestore(&n->list_lock, flags);
6312 	return count;
6313 }
6314 
validate_slab_cache(struct kmem_cache * s)6315 long validate_slab_cache(struct kmem_cache *s)
6316 {
6317 	int node;
6318 	unsigned long count = 0;
6319 	struct kmem_cache_node *n;
6320 	unsigned long *obj_map;
6321 
6322 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6323 	if (!obj_map)
6324 		return -ENOMEM;
6325 
6326 	flush_all(s);
6327 	for_each_kmem_cache_node(s, node, n)
6328 		count += validate_slab_node(s, n, obj_map);
6329 
6330 	bitmap_free(obj_map);
6331 
6332 	return count;
6333 }
6334 EXPORT_SYMBOL(validate_slab_cache);
6335 
6336 #ifdef CONFIG_DEBUG_FS
6337 /*
6338  * Generate lists of code addresses where slabcache objects are allocated
6339  * and freed.
6340  */
6341 
6342 struct location {
6343 	depot_stack_handle_t handle;
6344 	unsigned long count;
6345 	unsigned long addr;
6346 	unsigned long waste;
6347 	long long sum_time;
6348 	long min_time;
6349 	long max_time;
6350 	long min_pid;
6351 	long max_pid;
6352 	DECLARE_BITMAP(cpus, NR_CPUS);
6353 	nodemask_t nodes;
6354 };
6355 
6356 struct loc_track {
6357 	unsigned long max;
6358 	unsigned long count;
6359 	struct location *loc;
6360 	loff_t idx;
6361 };
6362 
6363 static struct dentry *slab_debugfs_root;
6364 
free_loc_track(struct loc_track * t)6365 static void free_loc_track(struct loc_track *t)
6366 {
6367 	if (t->max)
6368 		free_pages((unsigned long)t->loc,
6369 			get_order(sizeof(struct location) * t->max));
6370 }
6371 
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)6372 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6373 {
6374 	struct location *l;
6375 	int order;
6376 
6377 	order = get_order(sizeof(struct location) * max);
6378 
6379 	l = (void *)__get_free_pages(flags, order);
6380 	if (!l)
6381 		return 0;
6382 
6383 	if (t->count) {
6384 		memcpy(l, t->loc, sizeof(struct location) * t->count);
6385 		free_loc_track(t);
6386 	}
6387 	t->max = max;
6388 	t->loc = l;
6389 	return 1;
6390 }
6391 
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)6392 static int add_location(struct loc_track *t, struct kmem_cache *s,
6393 				const struct track *track,
6394 				unsigned int orig_size)
6395 {
6396 	long start, end, pos;
6397 	struct location *l;
6398 	unsigned long caddr, chandle, cwaste;
6399 	unsigned long age = jiffies - track->when;
6400 	depot_stack_handle_t handle = 0;
6401 	unsigned int waste = s->object_size - orig_size;
6402 
6403 #ifdef CONFIG_STACKDEPOT
6404 	handle = READ_ONCE(track->handle);
6405 #endif
6406 	start = -1;
6407 	end = t->count;
6408 
6409 	for ( ; ; ) {
6410 		pos = start + (end - start + 1) / 2;
6411 
6412 		/*
6413 		 * There is nothing at "end". If we end up there
6414 		 * we need to add something to before end.
6415 		 */
6416 		if (pos == end)
6417 			break;
6418 
6419 		l = &t->loc[pos];
6420 		caddr = l->addr;
6421 		chandle = l->handle;
6422 		cwaste = l->waste;
6423 		if ((track->addr == caddr) && (handle == chandle) &&
6424 			(waste == cwaste)) {
6425 
6426 			l->count++;
6427 			if (track->when) {
6428 				l->sum_time += age;
6429 				if (age < l->min_time)
6430 					l->min_time = age;
6431 				if (age > l->max_time)
6432 					l->max_time = age;
6433 
6434 				if (track->pid < l->min_pid)
6435 					l->min_pid = track->pid;
6436 				if (track->pid > l->max_pid)
6437 					l->max_pid = track->pid;
6438 
6439 				cpumask_set_cpu(track->cpu,
6440 						to_cpumask(l->cpus));
6441 			}
6442 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
6443 			return 1;
6444 		}
6445 
6446 		if (track->addr < caddr)
6447 			end = pos;
6448 		else if (track->addr == caddr && handle < chandle)
6449 			end = pos;
6450 		else if (track->addr == caddr && handle == chandle &&
6451 				waste < cwaste)
6452 			end = pos;
6453 		else
6454 			start = pos;
6455 	}
6456 
6457 	/*
6458 	 * Not found. Insert new tracking element.
6459 	 */
6460 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6461 		return 0;
6462 
6463 	l = t->loc + pos;
6464 	if (pos < t->count)
6465 		memmove(l + 1, l,
6466 			(t->count - pos) * sizeof(struct location));
6467 	t->count++;
6468 	l->count = 1;
6469 	l->addr = track->addr;
6470 	l->sum_time = age;
6471 	l->min_time = age;
6472 	l->max_time = age;
6473 	l->min_pid = track->pid;
6474 	l->max_pid = track->pid;
6475 	l->handle = handle;
6476 	l->waste = waste;
6477 	cpumask_clear(to_cpumask(l->cpus));
6478 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6479 	nodes_clear(l->nodes);
6480 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6481 	return 1;
6482 }
6483 
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)6484 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6485 		struct slab *slab, enum track_item alloc,
6486 		unsigned long *obj_map)
6487 {
6488 	void *addr = slab_address(slab);
6489 	bool is_alloc = (alloc == TRACK_ALLOC);
6490 	void *p;
6491 
6492 	__fill_map(obj_map, s, slab);
6493 
6494 	for_each_object(p, s, addr, slab->objects)
6495 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6496 			add_location(t, s, get_track(s, p, alloc),
6497 				     is_alloc ? get_orig_size(s, p) :
6498 						s->object_size);
6499 }
6500 #endif  /* CONFIG_DEBUG_FS   */
6501 #endif	/* CONFIG_SLUB_DEBUG */
6502 
6503 #ifdef SLAB_SUPPORTS_SYSFS
6504 enum slab_stat_type {
6505 	SL_ALL,			/* All slabs */
6506 	SL_PARTIAL,		/* Only partially allocated slabs */
6507 	SL_CPU,			/* Only slabs used for cpu caches */
6508 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6509 	SL_TOTAL		/* Determine object capacity not slabs */
6510 };
6511 
6512 #define SO_ALL		(1 << SL_ALL)
6513 #define SO_PARTIAL	(1 << SL_PARTIAL)
6514 #define SO_CPU		(1 << SL_CPU)
6515 #define SO_OBJECTS	(1 << SL_OBJECTS)
6516 #define SO_TOTAL	(1 << SL_TOTAL)
6517 
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)6518 static ssize_t show_slab_objects(struct kmem_cache *s,
6519 				 char *buf, unsigned long flags)
6520 {
6521 	unsigned long total = 0;
6522 	int node;
6523 	int x;
6524 	unsigned long *nodes;
6525 	int len = 0;
6526 
6527 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6528 	if (!nodes)
6529 		return -ENOMEM;
6530 
6531 	if (flags & SO_CPU) {
6532 		int cpu;
6533 
6534 		for_each_possible_cpu(cpu) {
6535 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6536 							       cpu);
6537 			int node;
6538 			struct slab *slab;
6539 
6540 			slab = READ_ONCE(c->slab);
6541 			if (!slab)
6542 				continue;
6543 
6544 			node = slab_nid(slab);
6545 			if (flags & SO_TOTAL)
6546 				x = slab->objects;
6547 			else if (flags & SO_OBJECTS)
6548 				x = slab->inuse;
6549 			else
6550 				x = 1;
6551 
6552 			total += x;
6553 			nodes[node] += x;
6554 
6555 #ifdef CONFIG_SLUB_CPU_PARTIAL
6556 			slab = slub_percpu_partial_read_once(c);
6557 			if (slab) {
6558 				node = slab_nid(slab);
6559 				if (flags & SO_TOTAL)
6560 					WARN_ON_ONCE(1);
6561 				else if (flags & SO_OBJECTS)
6562 					WARN_ON_ONCE(1);
6563 				else
6564 					x = data_race(slab->slabs);
6565 				total += x;
6566 				nodes[node] += x;
6567 			}
6568 #endif
6569 		}
6570 	}
6571 
6572 	/*
6573 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6574 	 * already held which will conflict with an existing lock order:
6575 	 *
6576 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6577 	 *
6578 	 * We don't really need mem_hotplug_lock (to hold off
6579 	 * slab_mem_going_offline_callback) here because slab's memory hot
6580 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6581 	 */
6582 
6583 #ifdef CONFIG_SLUB_DEBUG
6584 	if (flags & SO_ALL) {
6585 		struct kmem_cache_node *n;
6586 
6587 		for_each_kmem_cache_node(s, node, n) {
6588 
6589 			if (flags & SO_TOTAL)
6590 				x = node_nr_objs(n);
6591 			else if (flags & SO_OBJECTS)
6592 				x = node_nr_objs(n) - count_partial(n, count_free);
6593 			else
6594 				x = node_nr_slabs(n);
6595 			total += x;
6596 			nodes[node] += x;
6597 		}
6598 
6599 	} else
6600 #endif
6601 	if (flags & SO_PARTIAL) {
6602 		struct kmem_cache_node *n;
6603 
6604 		for_each_kmem_cache_node(s, node, n) {
6605 			if (flags & SO_TOTAL)
6606 				x = count_partial(n, count_total);
6607 			else if (flags & SO_OBJECTS)
6608 				x = count_partial(n, count_inuse);
6609 			else
6610 				x = n->nr_partial;
6611 			total += x;
6612 			nodes[node] += x;
6613 		}
6614 	}
6615 
6616 	len += sysfs_emit_at(buf, len, "%lu", total);
6617 #ifdef CONFIG_NUMA
6618 	for (node = 0; node < nr_node_ids; node++) {
6619 		if (nodes[node])
6620 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6621 					     node, nodes[node]);
6622 	}
6623 #endif
6624 	len += sysfs_emit_at(buf, len, "\n");
6625 	kfree(nodes);
6626 
6627 	return len;
6628 }
6629 
6630 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6631 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6632 
6633 struct slab_attribute {
6634 	struct attribute attr;
6635 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6636 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6637 };
6638 
6639 #define SLAB_ATTR_RO(_name) \
6640 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6641 
6642 #define SLAB_ATTR(_name) \
6643 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6644 
slab_size_show(struct kmem_cache * s,char * buf)6645 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6646 {
6647 	return sysfs_emit(buf, "%u\n", s->size);
6648 }
6649 SLAB_ATTR_RO(slab_size);
6650 
align_show(struct kmem_cache * s,char * buf)6651 static ssize_t align_show(struct kmem_cache *s, char *buf)
6652 {
6653 	return sysfs_emit(buf, "%u\n", s->align);
6654 }
6655 SLAB_ATTR_RO(align);
6656 
object_size_show(struct kmem_cache * s,char * buf)6657 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6658 {
6659 	return sysfs_emit(buf, "%u\n", s->object_size);
6660 }
6661 SLAB_ATTR_RO(object_size);
6662 
objs_per_slab_show(struct kmem_cache * s,char * buf)6663 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6664 {
6665 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6666 }
6667 SLAB_ATTR_RO(objs_per_slab);
6668 
order_show(struct kmem_cache * s,char * buf)6669 static ssize_t order_show(struct kmem_cache *s, char *buf)
6670 {
6671 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6672 }
6673 SLAB_ATTR_RO(order);
6674 
min_partial_show(struct kmem_cache * s,char * buf)6675 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6676 {
6677 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6678 }
6679 
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)6680 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6681 				 size_t length)
6682 {
6683 	unsigned long min;
6684 	int err;
6685 
6686 	err = kstrtoul(buf, 10, &min);
6687 	if (err)
6688 		return err;
6689 
6690 	s->min_partial = min;
6691 	return length;
6692 }
6693 SLAB_ATTR(min_partial);
6694 
cpu_partial_show(struct kmem_cache * s,char * buf)6695 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6696 {
6697 	unsigned int nr_partial = 0;
6698 #ifdef CONFIG_SLUB_CPU_PARTIAL
6699 	nr_partial = s->cpu_partial;
6700 #endif
6701 
6702 	return sysfs_emit(buf, "%u\n", nr_partial);
6703 }
6704 
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)6705 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6706 				 size_t length)
6707 {
6708 	unsigned int objects;
6709 	int err;
6710 
6711 	err = kstrtouint(buf, 10, &objects);
6712 	if (err)
6713 		return err;
6714 	if (objects && !kmem_cache_has_cpu_partial(s))
6715 		return -EINVAL;
6716 
6717 	slub_set_cpu_partial(s, objects);
6718 	flush_all(s);
6719 	return length;
6720 }
6721 SLAB_ATTR(cpu_partial);
6722 
ctor_show(struct kmem_cache * s,char * buf)6723 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6724 {
6725 	if (!s->ctor)
6726 		return 0;
6727 	return sysfs_emit(buf, "%pS\n", s->ctor);
6728 }
6729 SLAB_ATTR_RO(ctor);
6730 
aliases_show(struct kmem_cache * s,char * buf)6731 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6732 {
6733 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6734 }
6735 SLAB_ATTR_RO(aliases);
6736 
partial_show(struct kmem_cache * s,char * buf)6737 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6738 {
6739 	return show_slab_objects(s, buf, SO_PARTIAL);
6740 }
6741 SLAB_ATTR_RO(partial);
6742 
cpu_slabs_show(struct kmem_cache * s,char * buf)6743 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6744 {
6745 	return show_slab_objects(s, buf, SO_CPU);
6746 }
6747 SLAB_ATTR_RO(cpu_slabs);
6748 
objects_partial_show(struct kmem_cache * s,char * buf)6749 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6750 {
6751 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6752 }
6753 SLAB_ATTR_RO(objects_partial);
6754 
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)6755 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6756 {
6757 	int objects = 0;
6758 	int slabs = 0;
6759 	int cpu __maybe_unused;
6760 	int len = 0;
6761 
6762 #ifdef CONFIG_SLUB_CPU_PARTIAL
6763 	for_each_online_cpu(cpu) {
6764 		struct slab *slab;
6765 
6766 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6767 
6768 		if (slab)
6769 			slabs += data_race(slab->slabs);
6770 	}
6771 #endif
6772 
6773 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
6774 	objects = (slabs * oo_objects(s->oo)) / 2;
6775 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6776 
6777 #ifdef CONFIG_SLUB_CPU_PARTIAL
6778 	for_each_online_cpu(cpu) {
6779 		struct slab *slab;
6780 
6781 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6782 		if (slab) {
6783 			slabs = data_race(slab->slabs);
6784 			objects = (slabs * oo_objects(s->oo)) / 2;
6785 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6786 					     cpu, objects, slabs);
6787 		}
6788 	}
6789 #endif
6790 	len += sysfs_emit_at(buf, len, "\n");
6791 
6792 	return len;
6793 }
6794 SLAB_ATTR_RO(slabs_cpu_partial);
6795 
reclaim_account_show(struct kmem_cache * s,char * buf)6796 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6797 {
6798 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6799 }
6800 SLAB_ATTR_RO(reclaim_account);
6801 
hwcache_align_show(struct kmem_cache * s,char * buf)6802 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6803 {
6804 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6805 }
6806 SLAB_ATTR_RO(hwcache_align);
6807 
6808 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)6809 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6810 {
6811 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6812 }
6813 SLAB_ATTR_RO(cache_dma);
6814 #endif
6815 
6816 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)6817 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6818 {
6819 	return sysfs_emit(buf, "%u\n", s->usersize);
6820 }
6821 SLAB_ATTR_RO(usersize);
6822 #endif
6823 
destroy_by_rcu_show(struct kmem_cache * s,char * buf)6824 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6825 {
6826 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6827 }
6828 SLAB_ATTR_RO(destroy_by_rcu);
6829 
6830 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)6831 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6832 {
6833 	return show_slab_objects(s, buf, SO_ALL);
6834 }
6835 SLAB_ATTR_RO(slabs);
6836 
total_objects_show(struct kmem_cache * s,char * buf)6837 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6838 {
6839 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6840 }
6841 SLAB_ATTR_RO(total_objects);
6842 
objects_show(struct kmem_cache * s,char * buf)6843 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6844 {
6845 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6846 }
6847 SLAB_ATTR_RO(objects);
6848 
sanity_checks_show(struct kmem_cache * s,char * buf)6849 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6850 {
6851 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6852 }
6853 SLAB_ATTR_RO(sanity_checks);
6854 
trace_show(struct kmem_cache * s,char * buf)6855 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6856 {
6857 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6858 }
6859 SLAB_ATTR_RO(trace);
6860 
red_zone_show(struct kmem_cache * s,char * buf)6861 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6862 {
6863 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6864 }
6865 
6866 SLAB_ATTR_RO(red_zone);
6867 
poison_show(struct kmem_cache * s,char * buf)6868 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6869 {
6870 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6871 }
6872 
6873 SLAB_ATTR_RO(poison);
6874 
store_user_show(struct kmem_cache * s,char * buf)6875 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6876 {
6877 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6878 }
6879 
6880 SLAB_ATTR_RO(store_user);
6881 
validate_show(struct kmem_cache * s,char * buf)6882 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6883 {
6884 	return 0;
6885 }
6886 
validate_store(struct kmem_cache * s,const char * buf,size_t length)6887 static ssize_t validate_store(struct kmem_cache *s,
6888 			const char *buf, size_t length)
6889 {
6890 	int ret = -EINVAL;
6891 
6892 	if (buf[0] == '1' && kmem_cache_debug(s)) {
6893 		ret = validate_slab_cache(s);
6894 		if (ret >= 0)
6895 			ret = length;
6896 	}
6897 	return ret;
6898 }
6899 SLAB_ATTR(validate);
6900 
6901 #endif /* CONFIG_SLUB_DEBUG */
6902 
6903 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)6904 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6905 {
6906 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6907 }
6908 
failslab_store(struct kmem_cache * s,const char * buf,size_t length)6909 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6910 				size_t length)
6911 {
6912 	if (s->refcount > 1)
6913 		return -EINVAL;
6914 
6915 	if (buf[0] == '1')
6916 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6917 	else
6918 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6919 
6920 	return length;
6921 }
6922 SLAB_ATTR(failslab);
6923 #endif
6924 
shrink_show(struct kmem_cache * s,char * buf)6925 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6926 {
6927 	return 0;
6928 }
6929 
shrink_store(struct kmem_cache * s,const char * buf,size_t length)6930 static ssize_t shrink_store(struct kmem_cache *s,
6931 			const char *buf, size_t length)
6932 {
6933 	if (buf[0] == '1')
6934 		kmem_cache_shrink(s);
6935 	else
6936 		return -EINVAL;
6937 	return length;
6938 }
6939 SLAB_ATTR(shrink);
6940 
6941 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)6942 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6943 {
6944 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6945 }
6946 
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)6947 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6948 				const char *buf, size_t length)
6949 {
6950 	unsigned int ratio;
6951 	int err;
6952 
6953 	err = kstrtouint(buf, 10, &ratio);
6954 	if (err)
6955 		return err;
6956 	if (ratio > 100)
6957 		return -ERANGE;
6958 
6959 	s->remote_node_defrag_ratio = ratio * 10;
6960 
6961 	return length;
6962 }
6963 SLAB_ATTR(remote_node_defrag_ratio);
6964 #endif
6965 
6966 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)6967 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6968 {
6969 	unsigned long sum  = 0;
6970 	int cpu;
6971 	int len = 0;
6972 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6973 
6974 	if (!data)
6975 		return -ENOMEM;
6976 
6977 	for_each_online_cpu(cpu) {
6978 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6979 
6980 		data[cpu] = x;
6981 		sum += x;
6982 	}
6983 
6984 	len += sysfs_emit_at(buf, len, "%lu", sum);
6985 
6986 #ifdef CONFIG_SMP
6987 	for_each_online_cpu(cpu) {
6988 		if (data[cpu])
6989 			len += sysfs_emit_at(buf, len, " C%d=%u",
6990 					     cpu, data[cpu]);
6991 	}
6992 #endif
6993 	kfree(data);
6994 	len += sysfs_emit_at(buf, len, "\n");
6995 
6996 	return len;
6997 }
6998 
clear_stat(struct kmem_cache * s,enum stat_item si)6999 static void clear_stat(struct kmem_cache *s, enum stat_item si)
7000 {
7001 	int cpu;
7002 
7003 	for_each_online_cpu(cpu)
7004 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
7005 }
7006 
7007 #define STAT_ATTR(si, text) 					\
7008 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
7009 {								\
7010 	return show_stat(s, buf, si);				\
7011 }								\
7012 static ssize_t text##_store(struct kmem_cache *s,		\
7013 				const char *buf, size_t length)	\
7014 {								\
7015 	if (buf[0] != '0')					\
7016 		return -EINVAL;					\
7017 	clear_stat(s, si);					\
7018 	return length;						\
7019 }								\
7020 SLAB_ATTR(text);						\
7021 
7022 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
7023 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
7024 STAT_ATTR(FREE_FASTPATH, free_fastpath);
7025 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
7026 STAT_ATTR(FREE_FROZEN, free_frozen);
7027 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
7028 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
7029 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
7030 STAT_ATTR(ALLOC_SLAB, alloc_slab);
7031 STAT_ATTR(ALLOC_REFILL, alloc_refill);
7032 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
7033 STAT_ATTR(FREE_SLAB, free_slab);
7034 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
7035 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
7036 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
7037 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
7038 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
7039 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
7040 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
7041 STAT_ATTR(ORDER_FALLBACK, order_fallback);
7042 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
7043 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
7044 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
7045 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
7046 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
7047 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
7048 #endif	/* CONFIG_SLUB_STATS */
7049 
7050 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)7051 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
7052 {
7053 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
7054 }
7055 
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)7056 static ssize_t skip_kfence_store(struct kmem_cache *s,
7057 			const char *buf, size_t length)
7058 {
7059 	int ret = length;
7060 
7061 	if (buf[0] == '0')
7062 		s->flags &= ~SLAB_SKIP_KFENCE;
7063 	else if (buf[0] == '1')
7064 		s->flags |= SLAB_SKIP_KFENCE;
7065 	else
7066 		ret = -EINVAL;
7067 
7068 	return ret;
7069 }
7070 SLAB_ATTR(skip_kfence);
7071 #endif
7072 
7073 static struct attribute *slab_attrs[] = {
7074 	&slab_size_attr.attr,
7075 	&object_size_attr.attr,
7076 	&objs_per_slab_attr.attr,
7077 	&order_attr.attr,
7078 	&min_partial_attr.attr,
7079 	&cpu_partial_attr.attr,
7080 	&objects_partial_attr.attr,
7081 	&partial_attr.attr,
7082 	&cpu_slabs_attr.attr,
7083 	&ctor_attr.attr,
7084 	&aliases_attr.attr,
7085 	&align_attr.attr,
7086 	&hwcache_align_attr.attr,
7087 	&reclaim_account_attr.attr,
7088 	&destroy_by_rcu_attr.attr,
7089 	&shrink_attr.attr,
7090 	&slabs_cpu_partial_attr.attr,
7091 #ifdef CONFIG_SLUB_DEBUG
7092 	&total_objects_attr.attr,
7093 	&objects_attr.attr,
7094 	&slabs_attr.attr,
7095 	&sanity_checks_attr.attr,
7096 	&trace_attr.attr,
7097 	&red_zone_attr.attr,
7098 	&poison_attr.attr,
7099 	&store_user_attr.attr,
7100 	&validate_attr.attr,
7101 #endif
7102 #ifdef CONFIG_ZONE_DMA
7103 	&cache_dma_attr.attr,
7104 #endif
7105 #ifdef CONFIG_NUMA
7106 	&remote_node_defrag_ratio_attr.attr,
7107 #endif
7108 #ifdef CONFIG_SLUB_STATS
7109 	&alloc_fastpath_attr.attr,
7110 	&alloc_slowpath_attr.attr,
7111 	&free_fastpath_attr.attr,
7112 	&free_slowpath_attr.attr,
7113 	&free_frozen_attr.attr,
7114 	&free_add_partial_attr.attr,
7115 	&free_remove_partial_attr.attr,
7116 	&alloc_from_partial_attr.attr,
7117 	&alloc_slab_attr.attr,
7118 	&alloc_refill_attr.attr,
7119 	&alloc_node_mismatch_attr.attr,
7120 	&free_slab_attr.attr,
7121 	&cpuslab_flush_attr.attr,
7122 	&deactivate_full_attr.attr,
7123 	&deactivate_empty_attr.attr,
7124 	&deactivate_to_head_attr.attr,
7125 	&deactivate_to_tail_attr.attr,
7126 	&deactivate_remote_frees_attr.attr,
7127 	&deactivate_bypass_attr.attr,
7128 	&order_fallback_attr.attr,
7129 	&cmpxchg_double_fail_attr.attr,
7130 	&cmpxchg_double_cpu_fail_attr.attr,
7131 	&cpu_partial_alloc_attr.attr,
7132 	&cpu_partial_free_attr.attr,
7133 	&cpu_partial_node_attr.attr,
7134 	&cpu_partial_drain_attr.attr,
7135 #endif
7136 #ifdef CONFIG_FAILSLAB
7137 	&failslab_attr.attr,
7138 #endif
7139 #ifdef CONFIG_HARDENED_USERCOPY
7140 	&usersize_attr.attr,
7141 #endif
7142 #ifdef CONFIG_KFENCE
7143 	&skip_kfence_attr.attr,
7144 #endif
7145 
7146 	NULL
7147 };
7148 
7149 static const struct attribute_group slab_attr_group = {
7150 	.attrs = slab_attrs,
7151 };
7152 
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)7153 static ssize_t slab_attr_show(struct kobject *kobj,
7154 				struct attribute *attr,
7155 				char *buf)
7156 {
7157 	struct slab_attribute *attribute;
7158 	struct kmem_cache *s;
7159 
7160 	attribute = to_slab_attr(attr);
7161 	s = to_slab(kobj);
7162 
7163 	if (!attribute->show)
7164 		return -EIO;
7165 
7166 	return attribute->show(s, buf);
7167 }
7168 
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)7169 static ssize_t slab_attr_store(struct kobject *kobj,
7170 				struct attribute *attr,
7171 				const char *buf, size_t len)
7172 {
7173 	struct slab_attribute *attribute;
7174 	struct kmem_cache *s;
7175 
7176 	attribute = to_slab_attr(attr);
7177 	s = to_slab(kobj);
7178 
7179 	if (!attribute->store)
7180 		return -EIO;
7181 
7182 	return attribute->store(s, buf, len);
7183 }
7184 
kmem_cache_release(struct kobject * k)7185 static void kmem_cache_release(struct kobject *k)
7186 {
7187 	slab_kmem_cache_release(to_slab(k));
7188 }
7189 
7190 static const struct sysfs_ops slab_sysfs_ops = {
7191 	.show = slab_attr_show,
7192 	.store = slab_attr_store,
7193 };
7194 
7195 static const struct kobj_type slab_ktype = {
7196 	.sysfs_ops = &slab_sysfs_ops,
7197 	.release = kmem_cache_release,
7198 };
7199 
7200 static struct kset *slab_kset;
7201 
cache_kset(struct kmem_cache * s)7202 static inline struct kset *cache_kset(struct kmem_cache *s)
7203 {
7204 	return slab_kset;
7205 }
7206 
7207 #define ID_STR_LENGTH 32
7208 
7209 /* Create a unique string id for a slab cache:
7210  *
7211  * Format	:[flags-]size
7212  */
create_unique_id(struct kmem_cache * s)7213 static char *create_unique_id(struct kmem_cache *s)
7214 {
7215 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7216 	char *p = name;
7217 
7218 	if (!name)
7219 		return ERR_PTR(-ENOMEM);
7220 
7221 	*p++ = ':';
7222 	/*
7223 	 * First flags affecting slabcache operations. We will only
7224 	 * get here for aliasable slabs so we do not need to support
7225 	 * too many flags. The flags here must cover all flags that
7226 	 * are matched during merging to guarantee that the id is
7227 	 * unique.
7228 	 */
7229 	if (s->flags & SLAB_CACHE_DMA)
7230 		*p++ = 'd';
7231 	if (s->flags & SLAB_CACHE_DMA32)
7232 		*p++ = 'D';
7233 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
7234 		*p++ = 'a';
7235 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
7236 		*p++ = 'F';
7237 	if (s->flags & SLAB_ACCOUNT)
7238 		*p++ = 'A';
7239 	if (p != name + 1)
7240 		*p++ = '-';
7241 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7242 
7243 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7244 		kfree(name);
7245 		return ERR_PTR(-EINVAL);
7246 	}
7247 	kmsan_unpoison_memory(name, p - name);
7248 	return name;
7249 }
7250 
sysfs_slab_add(struct kmem_cache * s)7251 static int sysfs_slab_add(struct kmem_cache *s)
7252 {
7253 	int err;
7254 	const char *name;
7255 	struct kset *kset = cache_kset(s);
7256 	int unmergeable = slab_unmergeable(s);
7257 
7258 	if (!unmergeable && disable_higher_order_debug &&
7259 			(slub_debug & DEBUG_METADATA_FLAGS))
7260 		unmergeable = 1;
7261 
7262 	if (unmergeable) {
7263 		/*
7264 		 * Slabcache can never be merged so we can use the name proper.
7265 		 * This is typically the case for debug situations. In that
7266 		 * case we can catch duplicate names easily.
7267 		 */
7268 		sysfs_remove_link(&slab_kset->kobj, s->name);
7269 		name = s->name;
7270 	} else {
7271 		/*
7272 		 * Create a unique name for the slab as a target
7273 		 * for the symlinks.
7274 		 */
7275 		name = create_unique_id(s);
7276 		if (IS_ERR(name))
7277 			return PTR_ERR(name);
7278 	}
7279 
7280 	s->kobj.kset = kset;
7281 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7282 	if (err)
7283 		goto out;
7284 
7285 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
7286 	if (err)
7287 		goto out_del_kobj;
7288 
7289 	if (!unmergeable) {
7290 		/* Setup first alias */
7291 		sysfs_slab_alias(s, s->name);
7292 	}
7293 out:
7294 	if (!unmergeable)
7295 		kfree(name);
7296 	return err;
7297 out_del_kobj:
7298 	kobject_del(&s->kobj);
7299 	goto out;
7300 }
7301 
sysfs_slab_unlink(struct kmem_cache * s)7302 void sysfs_slab_unlink(struct kmem_cache *s)
7303 {
7304 	if (s->kobj.state_in_sysfs)
7305 		kobject_del(&s->kobj);
7306 }
7307 
sysfs_slab_release(struct kmem_cache * s)7308 void sysfs_slab_release(struct kmem_cache *s)
7309 {
7310 	kobject_put(&s->kobj);
7311 }
7312 
7313 /*
7314  * Need to buffer aliases during bootup until sysfs becomes
7315  * available lest we lose that information.
7316  */
7317 struct saved_alias {
7318 	struct kmem_cache *s;
7319 	const char *name;
7320 	struct saved_alias *next;
7321 };
7322 
7323 static struct saved_alias *alias_list;
7324 
sysfs_slab_alias(struct kmem_cache * s,const char * name)7325 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7326 {
7327 	struct saved_alias *al;
7328 
7329 	if (slab_state == FULL) {
7330 		/*
7331 		 * If we have a leftover link then remove it.
7332 		 */
7333 		sysfs_remove_link(&slab_kset->kobj, name);
7334 		/*
7335 		 * The original cache may have failed to generate sysfs file.
7336 		 * In that case, sysfs_create_link() returns -ENOENT and
7337 		 * symbolic link creation is skipped.
7338 		 */
7339 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7340 	}
7341 
7342 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7343 	if (!al)
7344 		return -ENOMEM;
7345 
7346 	al->s = s;
7347 	al->name = name;
7348 	al->next = alias_list;
7349 	alias_list = al;
7350 	kmsan_unpoison_memory(al, sizeof(*al));
7351 	return 0;
7352 }
7353 
slab_sysfs_init(void)7354 static int __init slab_sysfs_init(void)
7355 {
7356 	struct kmem_cache *s;
7357 	int err;
7358 
7359 	mutex_lock(&slab_mutex);
7360 
7361 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7362 	if (!slab_kset) {
7363 		mutex_unlock(&slab_mutex);
7364 		pr_err("Cannot register slab subsystem.\n");
7365 		return -ENOMEM;
7366 	}
7367 
7368 	slab_state = FULL;
7369 
7370 	list_for_each_entry(s, &slab_caches, list) {
7371 		err = sysfs_slab_add(s);
7372 		if (err)
7373 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7374 			       s->name);
7375 	}
7376 
7377 	while (alias_list) {
7378 		struct saved_alias *al = alias_list;
7379 
7380 		alias_list = alias_list->next;
7381 		err = sysfs_slab_alias(al->s, al->name);
7382 		if (err)
7383 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7384 			       al->name);
7385 		kfree(al);
7386 	}
7387 
7388 	mutex_unlock(&slab_mutex);
7389 	return 0;
7390 }
7391 late_initcall(slab_sysfs_init);
7392 #endif /* SLAB_SUPPORTS_SYSFS */
7393 
7394 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)7395 static int slab_debugfs_show(struct seq_file *seq, void *v)
7396 {
7397 	struct loc_track *t = seq->private;
7398 	struct location *l;
7399 	unsigned long idx;
7400 
7401 	idx = (unsigned long) t->idx;
7402 	if (idx < t->count) {
7403 		l = &t->loc[idx];
7404 
7405 		seq_printf(seq, "%7ld ", l->count);
7406 
7407 		if (l->addr)
7408 			seq_printf(seq, "%pS", (void *)l->addr);
7409 		else
7410 			seq_puts(seq, "<not-available>");
7411 
7412 		if (l->waste)
7413 			seq_printf(seq, " waste=%lu/%lu",
7414 				l->count * l->waste, l->waste);
7415 
7416 		if (l->sum_time != l->min_time) {
7417 			seq_printf(seq, " age=%ld/%llu/%ld",
7418 				l->min_time, div_u64(l->sum_time, l->count),
7419 				l->max_time);
7420 		} else
7421 			seq_printf(seq, " age=%ld", l->min_time);
7422 
7423 		if (l->min_pid != l->max_pid)
7424 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7425 		else
7426 			seq_printf(seq, " pid=%ld",
7427 				l->min_pid);
7428 
7429 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7430 			seq_printf(seq, " cpus=%*pbl",
7431 				 cpumask_pr_args(to_cpumask(l->cpus)));
7432 
7433 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7434 			seq_printf(seq, " nodes=%*pbl",
7435 				 nodemask_pr_args(&l->nodes));
7436 
7437 #ifdef CONFIG_STACKDEPOT
7438 		{
7439 			depot_stack_handle_t handle;
7440 			unsigned long *entries;
7441 			unsigned int nr_entries, j;
7442 
7443 			handle = READ_ONCE(l->handle);
7444 			if (handle) {
7445 				nr_entries = stack_depot_fetch(handle, &entries);
7446 				seq_puts(seq, "\n");
7447 				for (j = 0; j < nr_entries; j++)
7448 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
7449 			}
7450 		}
7451 #endif
7452 		seq_puts(seq, "\n");
7453 	}
7454 
7455 	if (!idx && !t->count)
7456 		seq_puts(seq, "No data\n");
7457 
7458 	return 0;
7459 }
7460 
slab_debugfs_stop(struct seq_file * seq,void * v)7461 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7462 {
7463 }
7464 
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)7465 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7466 {
7467 	struct loc_track *t = seq->private;
7468 
7469 	t->idx = ++(*ppos);
7470 	if (*ppos <= t->count)
7471 		return ppos;
7472 
7473 	return NULL;
7474 }
7475 
cmp_loc_by_count(const void * a,const void * b,const void * data)7476 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7477 {
7478 	struct location *loc1 = (struct location *)a;
7479 	struct location *loc2 = (struct location *)b;
7480 
7481 	if (loc1->count > loc2->count)
7482 		return -1;
7483 	else
7484 		return 1;
7485 }
7486 
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)7487 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7488 {
7489 	struct loc_track *t = seq->private;
7490 
7491 	t->idx = *ppos;
7492 	return ppos;
7493 }
7494 
7495 static const struct seq_operations slab_debugfs_sops = {
7496 	.start  = slab_debugfs_start,
7497 	.next   = slab_debugfs_next,
7498 	.stop   = slab_debugfs_stop,
7499 	.show   = slab_debugfs_show,
7500 };
7501 
slab_debug_trace_open(struct inode * inode,struct file * filep)7502 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7503 {
7504 
7505 	struct kmem_cache_node *n;
7506 	enum track_item alloc;
7507 	int node;
7508 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7509 						sizeof(struct loc_track));
7510 	struct kmem_cache *s = file_inode(filep)->i_private;
7511 	unsigned long *obj_map;
7512 
7513 	if (!t)
7514 		return -ENOMEM;
7515 
7516 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7517 	if (!obj_map) {
7518 		seq_release_private(inode, filep);
7519 		return -ENOMEM;
7520 	}
7521 
7522 	alloc = debugfs_get_aux_num(filep);
7523 
7524 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7525 		bitmap_free(obj_map);
7526 		seq_release_private(inode, filep);
7527 		return -ENOMEM;
7528 	}
7529 
7530 	for_each_kmem_cache_node(s, node, n) {
7531 		unsigned long flags;
7532 		struct slab *slab;
7533 
7534 		if (!node_nr_slabs(n))
7535 			continue;
7536 
7537 		spin_lock_irqsave(&n->list_lock, flags);
7538 		list_for_each_entry(slab, &n->partial, slab_list)
7539 			process_slab(t, s, slab, alloc, obj_map);
7540 		list_for_each_entry(slab, &n->full, slab_list)
7541 			process_slab(t, s, slab, alloc, obj_map);
7542 		spin_unlock_irqrestore(&n->list_lock, flags);
7543 	}
7544 
7545 	/* Sort locations by count */
7546 	sort_r(t->loc, t->count, sizeof(struct location),
7547 		cmp_loc_by_count, NULL, NULL);
7548 
7549 	bitmap_free(obj_map);
7550 	return 0;
7551 }
7552 
slab_debug_trace_release(struct inode * inode,struct file * file)7553 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7554 {
7555 	struct seq_file *seq = file->private_data;
7556 	struct loc_track *t = seq->private;
7557 
7558 	free_loc_track(t);
7559 	return seq_release_private(inode, file);
7560 }
7561 
7562 static const struct file_operations slab_debugfs_fops = {
7563 	.open    = slab_debug_trace_open,
7564 	.read    = seq_read,
7565 	.llseek  = seq_lseek,
7566 	.release = slab_debug_trace_release,
7567 };
7568 
debugfs_slab_add(struct kmem_cache * s)7569 static void debugfs_slab_add(struct kmem_cache *s)
7570 {
7571 	struct dentry *slab_cache_dir;
7572 
7573 	if (unlikely(!slab_debugfs_root))
7574 		return;
7575 
7576 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7577 
7578 	debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
7579 					TRACK_ALLOC, &slab_debugfs_fops);
7580 
7581 	debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
7582 					TRACK_FREE, &slab_debugfs_fops);
7583 }
7584 
debugfs_slab_release(struct kmem_cache * s)7585 void debugfs_slab_release(struct kmem_cache *s)
7586 {
7587 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7588 }
7589 
slab_debugfs_init(void)7590 static int __init slab_debugfs_init(void)
7591 {
7592 	struct kmem_cache *s;
7593 
7594 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7595 
7596 	list_for_each_entry(s, &slab_caches, list)
7597 		if (s->flags & SLAB_STORE_USER)
7598 			debugfs_slab_add(s);
7599 
7600 	return 0;
7601 
7602 }
7603 __initcall(slab_debugfs_init);
7604 #endif
7605 /*
7606  * The /proc/slabinfo ABI
7607  */
7608 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)7609 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7610 {
7611 	unsigned long nr_slabs = 0;
7612 	unsigned long nr_objs = 0;
7613 	unsigned long nr_free = 0;
7614 	int node;
7615 	struct kmem_cache_node *n;
7616 
7617 	for_each_kmem_cache_node(s, node, n) {
7618 		nr_slabs += node_nr_slabs(n);
7619 		nr_objs += node_nr_objs(n);
7620 		nr_free += count_partial_free_approx(n);
7621 	}
7622 
7623 	sinfo->active_objs = nr_objs - nr_free;
7624 	sinfo->num_objs = nr_objs;
7625 	sinfo->active_slabs = nr_slabs;
7626 	sinfo->num_slabs = nr_slabs;
7627 	sinfo->objects_per_slab = oo_objects(s->oo);
7628 	sinfo->cache_order = oo_order(s->oo);
7629 }
7630 #endif /* CONFIG_SLUB_DEBUG */
7631