1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh ([email protected])
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		([email protected])
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
79 
80 #include <trace/events/kmem.h>
81 
82 #include <asm/io.h>
83 #include <asm/mmu_context.h>
84 #include <asm/pgalloc.h>
85 #include <linux/uaccess.h>
86 #include <asm/tlb.h>
87 #include <asm/tlbflush.h>
88 
89 #include "pgalloc-track.h"
90 #include "internal.h"
91 #include "swap.h"
92 
93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95 #endif
96 
97 #ifndef CONFIG_NUMA
98 unsigned long max_mapnr;
99 EXPORT_SYMBOL(max_mapnr);
100 
101 struct page *mem_map;
102 EXPORT_SYMBOL(mem_map);
103 #endif
104 
105 static vm_fault_t do_fault(struct vm_fault *vmf);
106 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
107 static bool vmf_pte_changed(struct vm_fault *vmf);
108 
109 /*
110  * Return true if the original pte was a uffd-wp pte marker (so the pte was
111  * wr-protected).
112  */
vmf_orig_pte_uffd_wp(struct vm_fault * vmf)113 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
114 {
115 	if (!userfaultfd_wp(vmf->vma))
116 		return false;
117 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 		return false;
119 
120 	return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122 
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.
127  */
128 void *high_memory;
129 EXPORT_SYMBOL(high_memory);
130 
131 /*
132  * Randomize the address space (stacks, mmaps, brk, etc.).
133  *
134  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
135  *   as ancient (libc5 based) binaries can segfault. )
136  */
137 int randomize_va_space __read_mostly =
138 #ifdef CONFIG_COMPAT_BRK
139 					1;
140 #else
141 					2;
142 #endif
143 
144 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)145 static inline bool arch_wants_old_prefaulted_pte(void)
146 {
147 	/*
148 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
149 	 * some architectures, even if it's performed in hardware. By
150 	 * default, "false" means prefaulted entries will be 'young'.
151 	 */
152 	return false;
153 }
154 #endif
155 
disable_randmaps(char * s)156 static int __init disable_randmaps(char *s)
157 {
158 	randomize_va_space = 0;
159 	return 1;
160 }
161 __setup("norandmaps", disable_randmaps);
162 
163 unsigned long zero_pfn __read_mostly;
164 EXPORT_SYMBOL(zero_pfn);
165 
166 unsigned long highest_memmap_pfn __read_mostly;
167 
168 /*
169  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
170  */
init_zero_pfn(void)171 static int __init init_zero_pfn(void)
172 {
173 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
174 	return 0;
175 }
176 early_initcall(init_zero_pfn);
177 
mm_trace_rss_stat(struct mm_struct * mm,int member)178 void mm_trace_rss_stat(struct mm_struct *mm, int member)
179 {
180 	trace_rss_stat(mm, member);
181 }
182 
183 /*
184  * Note: this doesn't free the actual pages themselves. That
185  * has been handled earlier when unmapping all the memory regions.
186  */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
188 			   unsigned long addr)
189 {
190 	pgtable_t token = pmd_pgtable(*pmd);
191 	pmd_clear(pmd);
192 	pte_free_tlb(tlb, token, addr);
193 	mm_dec_nr_ptes(tlb->mm);
194 }
195 
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
197 				unsigned long addr, unsigned long end,
198 				unsigned long floor, unsigned long ceiling)
199 {
200 	pmd_t *pmd;
201 	unsigned long next;
202 	unsigned long start;
203 
204 	start = addr;
205 	pmd = pmd_offset(pud, addr);
206 	do {
207 		next = pmd_addr_end(addr, end);
208 		if (pmd_none_or_clear_bad(pmd))
209 			continue;
210 		free_pte_range(tlb, pmd, addr);
211 	} while (pmd++, addr = next, addr != end);
212 
213 	start &= PUD_MASK;
214 	if (start < floor)
215 		return;
216 	if (ceiling) {
217 		ceiling &= PUD_MASK;
218 		if (!ceiling)
219 			return;
220 	}
221 	if (end - 1 > ceiling - 1)
222 		return;
223 
224 	pmd = pmd_offset(pud, start);
225 	pud_clear(pud);
226 	pmd_free_tlb(tlb, pmd, start);
227 	mm_dec_nr_pmds(tlb->mm);
228 }
229 
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
231 				unsigned long addr, unsigned long end,
232 				unsigned long floor, unsigned long ceiling)
233 {
234 	pud_t *pud;
235 	unsigned long next;
236 	unsigned long start;
237 
238 	start = addr;
239 	pud = pud_offset(p4d, addr);
240 	do {
241 		next = pud_addr_end(addr, end);
242 		if (pud_none_or_clear_bad(pud))
243 			continue;
244 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
245 	} while (pud++, addr = next, addr != end);
246 
247 	start &= P4D_MASK;
248 	if (start < floor)
249 		return;
250 	if (ceiling) {
251 		ceiling &= P4D_MASK;
252 		if (!ceiling)
253 			return;
254 	}
255 	if (end - 1 > ceiling - 1)
256 		return;
257 
258 	pud = pud_offset(p4d, start);
259 	p4d_clear(p4d);
260 	pud_free_tlb(tlb, pud, start);
261 	mm_dec_nr_puds(tlb->mm);
262 }
263 
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
265 				unsigned long addr, unsigned long end,
266 				unsigned long floor, unsigned long ceiling)
267 {
268 	p4d_t *p4d;
269 	unsigned long next;
270 	unsigned long start;
271 
272 	start = addr;
273 	p4d = p4d_offset(pgd, addr);
274 	do {
275 		next = p4d_addr_end(addr, end);
276 		if (p4d_none_or_clear_bad(p4d))
277 			continue;
278 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
279 	} while (p4d++, addr = next, addr != end);
280 
281 	start &= PGDIR_MASK;
282 	if (start < floor)
283 		return;
284 	if (ceiling) {
285 		ceiling &= PGDIR_MASK;
286 		if (!ceiling)
287 			return;
288 	}
289 	if (end - 1 > ceiling - 1)
290 		return;
291 
292 	p4d = p4d_offset(pgd, start);
293 	pgd_clear(pgd);
294 	p4d_free_tlb(tlb, p4d, start);
295 }
296 
297 /*
298  * This function frees user-level page tables of a process.
299  */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)300 void free_pgd_range(struct mmu_gather *tlb,
301 			unsigned long addr, unsigned long end,
302 			unsigned long floor, unsigned long ceiling)
303 {
304 	pgd_t *pgd;
305 	unsigned long next;
306 
307 	/*
308 	 * The next few lines have given us lots of grief...
309 	 *
310 	 * Why are we testing PMD* at this top level?  Because often
311 	 * there will be no work to do at all, and we'd prefer not to
312 	 * go all the way down to the bottom just to discover that.
313 	 *
314 	 * Why all these "- 1"s?  Because 0 represents both the bottom
315 	 * of the address space and the top of it (using -1 for the
316 	 * top wouldn't help much: the masks would do the wrong thing).
317 	 * The rule is that addr 0 and floor 0 refer to the bottom of
318 	 * the address space, but end 0 and ceiling 0 refer to the top
319 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
320 	 * that end 0 case should be mythical).
321 	 *
322 	 * Wherever addr is brought up or ceiling brought down, we must
323 	 * be careful to reject "the opposite 0" before it confuses the
324 	 * subsequent tests.  But what about where end is brought down
325 	 * by PMD_SIZE below? no, end can't go down to 0 there.
326 	 *
327 	 * Whereas we round start (addr) and ceiling down, by different
328 	 * masks at different levels, in order to test whether a table
329 	 * now has no other vmas using it, so can be freed, we don't
330 	 * bother to round floor or end up - the tests don't need that.
331 	 */
332 
333 	addr &= PMD_MASK;
334 	if (addr < floor) {
335 		addr += PMD_SIZE;
336 		if (!addr)
337 			return;
338 	}
339 	if (ceiling) {
340 		ceiling &= PMD_MASK;
341 		if (!ceiling)
342 			return;
343 	}
344 	if (end - 1 > ceiling - 1)
345 		end -= PMD_SIZE;
346 	if (addr > end - 1)
347 		return;
348 	/*
349 	 * We add page table cache pages with PAGE_SIZE,
350 	 * (see pte_free_tlb()), flush the tlb if we need
351 	 */
352 	tlb_change_page_size(tlb, PAGE_SIZE);
353 	pgd = pgd_offset(tlb->mm, addr);
354 	do {
355 		next = pgd_addr_end(addr, end);
356 		if (pgd_none_or_clear_bad(pgd))
357 			continue;
358 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
359 	} while (pgd++, addr = next, addr != end);
360 }
361 
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
363 		   struct vm_area_struct *vma, unsigned long floor,
364 		   unsigned long ceiling, bool mm_wr_locked)
365 {
366 	struct unlink_vma_file_batch vb;
367 
368 	do {
369 		unsigned long addr = vma->vm_start;
370 		struct vm_area_struct *next;
371 
372 		/*
373 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 		 * be 0.  This will underflow and is okay.
375 		 */
376 		next = mas_find(mas, ceiling - 1);
377 		if (unlikely(xa_is_zero(next)))
378 			next = NULL;
379 
380 		/*
381 		 * Hide vma from rmap and truncate_pagecache before freeing
382 		 * pgtables
383 		 */
384 		if (mm_wr_locked)
385 			vma_start_write(vma);
386 		unlink_anon_vmas(vma);
387 
388 		if (is_vm_hugetlb_page(vma)) {
389 			unlink_file_vma(vma);
390 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 				floor, next ? next->vm_start : ceiling);
392 		} else {
393 			unlink_file_vma_batch_init(&vb);
394 			unlink_file_vma_batch_add(&vb, vma);
395 
396 			/*
397 			 * Optimization: gather nearby vmas into one call down
398 			 */
399 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
400 			       && !is_vm_hugetlb_page(next)) {
401 				vma = next;
402 				next = mas_find(mas, ceiling - 1);
403 				if (unlikely(xa_is_zero(next)))
404 					next = NULL;
405 				if (mm_wr_locked)
406 					vma_start_write(vma);
407 				unlink_anon_vmas(vma);
408 				unlink_file_vma_batch_add(&vb, vma);
409 			}
410 			unlink_file_vma_batch_final(&vb);
411 			free_pgd_range(tlb, addr, vma->vm_end,
412 				floor, next ? next->vm_start : ceiling);
413 		}
414 		vma = next;
415 	} while (vma);
416 }
417 
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)418 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
419 {
420 	spinlock_t *ptl = pmd_lock(mm, pmd);
421 
422 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
423 		mm_inc_nr_ptes(mm);
424 		/*
425 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
426 		 * visible before the pte is made visible to other CPUs by being
427 		 * put into page tables.
428 		 *
429 		 * The other side of the story is the pointer chasing in the page
430 		 * table walking code (when walking the page table without locking;
431 		 * ie. most of the time). Fortunately, these data accesses consist
432 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
433 		 * being the notable exception) will already guarantee loads are
434 		 * seen in-order. See the alpha page table accessors for the
435 		 * smp_rmb() barriers in page table walking code.
436 		 */
437 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438 		pmd_populate(mm, pmd, *pte);
439 		*pte = NULL;
440 	}
441 	spin_unlock(ptl);
442 }
443 
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)444 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
445 {
446 	pgtable_t new = pte_alloc_one(mm);
447 	if (!new)
448 		return -ENOMEM;
449 
450 	pmd_install(mm, pmd, &new);
451 	if (new)
452 		pte_free(mm, new);
453 	return 0;
454 }
455 
__pte_alloc_kernel(pmd_t * pmd)456 int __pte_alloc_kernel(pmd_t *pmd)
457 {
458 	pte_t *new = pte_alloc_one_kernel(&init_mm);
459 	if (!new)
460 		return -ENOMEM;
461 
462 	spin_lock(&init_mm.page_table_lock);
463 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
464 		smp_wmb(); /* See comment in pmd_install() */
465 		pmd_populate_kernel(&init_mm, pmd, new);
466 		new = NULL;
467 	}
468 	spin_unlock(&init_mm.page_table_lock);
469 	if (new)
470 		pte_free_kernel(&init_mm, new);
471 	return 0;
472 }
473 
init_rss_vec(int * rss)474 static inline void init_rss_vec(int *rss)
475 {
476 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
477 }
478 
add_mm_rss_vec(struct mm_struct * mm,int * rss)479 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
480 {
481 	int i;
482 
483 	for (i = 0; i < NR_MM_COUNTERS; i++)
484 		if (rss[i])
485 			add_mm_counter(mm, i, rss[i]);
486 }
487 
488 /*
489  * This function is called to print an error when a bad pte
490  * is found. For example, we might have a PFN-mapped pte in
491  * a region that doesn't allow it.
492  *
493  * The calling function must still handle the error.
494  */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)495 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
496 			  pte_t pte, struct page *page)
497 {
498 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
499 	p4d_t *p4d = p4d_offset(pgd, addr);
500 	pud_t *pud = pud_offset(p4d, addr);
501 	pmd_t *pmd = pmd_offset(pud, addr);
502 	struct address_space *mapping;
503 	pgoff_t index;
504 	static unsigned long resume;
505 	static unsigned long nr_shown;
506 	static unsigned long nr_unshown;
507 
508 	/*
509 	 * Allow a burst of 60 reports, then keep quiet for that minute;
510 	 * or allow a steady drip of one report per second.
511 	 */
512 	if (nr_shown == 60) {
513 		if (time_before(jiffies, resume)) {
514 			nr_unshown++;
515 			return;
516 		}
517 		if (nr_unshown) {
518 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
519 				 nr_unshown);
520 			nr_unshown = 0;
521 		}
522 		nr_shown = 0;
523 	}
524 	if (nr_shown++ == 0)
525 		resume = jiffies + 60 * HZ;
526 
527 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
528 	index = linear_page_index(vma, addr);
529 
530 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
531 		 current->comm,
532 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
533 	if (page)
534 		dump_page(page, "bad pte");
535 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
536 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
537 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
538 		 vma->vm_file,
539 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
540 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
541 		 mapping ? mapping->a_ops->read_folio : NULL);
542 	dump_stack();
543 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
544 }
545 
546 /*
547  * vm_normal_page -- This function gets the "struct page" associated with a pte.
548  *
549  * "Special" mappings do not wish to be associated with a "struct page" (either
550  * it doesn't exist, or it exists but they don't want to touch it). In this
551  * case, NULL is returned here. "Normal" mappings do have a struct page.
552  *
553  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
554  * pte bit, in which case this function is trivial. Secondly, an architecture
555  * may not have a spare pte bit, which requires a more complicated scheme,
556  * described below.
557  *
558  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
559  * special mapping (even if there are underlying and valid "struct pages").
560  * COWed pages of a VM_PFNMAP are always normal.
561  *
562  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
563  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
564  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
565  * mapping will always honor the rule
566  *
567  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
568  *
569  * And for normal mappings this is false.
570  *
571  * This restricts such mappings to be a linear translation from virtual address
572  * to pfn. To get around this restriction, we allow arbitrary mappings so long
573  * as the vma is not a COW mapping; in that case, we know that all ptes are
574  * special (because none can have been COWed).
575  *
576  *
577  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
578  *
579  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
580  * page" backing, however the difference is that _all_ pages with a struct
581  * page (that is, those where pfn_valid is true) are refcounted and considered
582  * normal pages by the VM. The only exception are zeropages, which are
583  * *never* refcounted.
584  *
585  * The disadvantage is that pages are refcounted (which can be slower and
586  * simply not an option for some PFNMAP users). The advantage is that we
587  * don't have to follow the strict linearity rule of PFNMAP mappings in
588  * order to support COWable mappings.
589  *
590  */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
592 			    pte_t pte)
593 {
594 	unsigned long pfn = pte_pfn(pte);
595 
596 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
597 		if (likely(!pte_special(pte)))
598 			goto check_pfn;
599 		if (vma->vm_ops && vma->vm_ops->find_special_page)
600 			return vma->vm_ops->find_special_page(vma, addr);
601 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
602 			return NULL;
603 		if (is_zero_pfn(pfn))
604 			return NULL;
605 		if (pte_devmap(pte))
606 		/*
607 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
608 		 * and will have refcounts incremented on their struct pages
609 		 * when they are inserted into PTEs, thus they are safe to
610 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
611 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
612 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
613 		 */
614 			return NULL;
615 
616 		print_bad_pte(vma, addr, pte, NULL);
617 		return NULL;
618 	}
619 
620 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
621 
622 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
623 		if (vma->vm_flags & VM_MIXEDMAP) {
624 			if (!pfn_valid(pfn))
625 				return NULL;
626 			if (is_zero_pfn(pfn))
627 				return NULL;
628 			goto out;
629 		} else {
630 			unsigned long off;
631 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
632 			if (pfn == vma->vm_pgoff + off)
633 				return NULL;
634 			if (!is_cow_mapping(vma->vm_flags))
635 				return NULL;
636 		}
637 	}
638 
639 	if (is_zero_pfn(pfn))
640 		return NULL;
641 
642 check_pfn:
643 	if (unlikely(pfn > highest_memmap_pfn)) {
644 		print_bad_pte(vma, addr, pte, NULL);
645 		return NULL;
646 	}
647 
648 	/*
649 	 * NOTE! We still have PageReserved() pages in the page tables.
650 	 * eg. VDSO mappings can cause them to exist.
651 	 */
652 out:
653 	VM_WARN_ON_ONCE(is_zero_pfn(pfn));
654 	return pfn_to_page(pfn);
655 }
656 
vm_normal_folio(struct vm_area_struct * vma,unsigned long addr,pte_t pte)657 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
658 			    pte_t pte)
659 {
660 	struct page *page = vm_normal_page(vma, addr, pte);
661 
662 	if (page)
663 		return page_folio(page);
664 	return NULL;
665 }
666 
667 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)668 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
669 				pmd_t pmd)
670 {
671 	unsigned long pfn = pmd_pfn(pmd);
672 
673 	/* Currently it's only used for huge pfnmaps */
674 	if (unlikely(pmd_special(pmd)))
675 		return NULL;
676 
677 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
678 		if (vma->vm_flags & VM_MIXEDMAP) {
679 			if (!pfn_valid(pfn))
680 				return NULL;
681 			goto out;
682 		} else {
683 			unsigned long off;
684 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
685 			if (pfn == vma->vm_pgoff + off)
686 				return NULL;
687 			if (!is_cow_mapping(vma->vm_flags))
688 				return NULL;
689 		}
690 	}
691 
692 	if (pmd_devmap(pmd))
693 		return NULL;
694 	if (is_huge_zero_pmd(pmd))
695 		return NULL;
696 	if (unlikely(pfn > highest_memmap_pfn))
697 		return NULL;
698 
699 	/*
700 	 * NOTE! We still have PageReserved() pages in the page tables.
701 	 * eg. VDSO mappings can cause them to exist.
702 	 */
703 out:
704 	return pfn_to_page(pfn);
705 }
706 
vm_normal_folio_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)707 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
708 				  unsigned long addr, pmd_t pmd)
709 {
710 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
711 
712 	if (page)
713 		return page_folio(page);
714 	return NULL;
715 }
716 #endif
717 
restore_exclusive_pte(struct vm_area_struct * vma,struct page * page,unsigned long address,pte_t * ptep)718 static void restore_exclusive_pte(struct vm_area_struct *vma,
719 				  struct page *page, unsigned long address,
720 				  pte_t *ptep)
721 {
722 	struct folio *folio = page_folio(page);
723 	pte_t orig_pte;
724 	pte_t pte;
725 	swp_entry_t entry;
726 
727 	orig_pte = ptep_get(ptep);
728 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
729 	if (pte_swp_soft_dirty(orig_pte))
730 		pte = pte_mksoft_dirty(pte);
731 
732 	entry = pte_to_swp_entry(orig_pte);
733 	if (pte_swp_uffd_wp(orig_pte))
734 		pte = pte_mkuffd_wp(pte);
735 	else if (is_writable_device_exclusive_entry(entry))
736 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
737 
738 	VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
739 					   PageAnonExclusive(page)), folio);
740 
741 	/*
742 	 * No need to take a page reference as one was already
743 	 * created when the swap entry was made.
744 	 */
745 	if (folio_test_anon(folio))
746 		folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
747 	else
748 		/*
749 		 * Currently device exclusive access only supports anonymous
750 		 * memory so the entry shouldn't point to a filebacked page.
751 		 */
752 		WARN_ON_ONCE(1);
753 
754 	set_pte_at(vma->vm_mm, address, ptep, pte);
755 
756 	/*
757 	 * No need to invalidate - it was non-present before. However
758 	 * secondary CPUs may have mappings that need invalidating.
759 	 */
760 	update_mmu_cache(vma, address, ptep);
761 }
762 
763 /*
764  * Tries to restore an exclusive pte if the page lock can be acquired without
765  * sleeping.
766  */
767 static int
try_restore_exclusive_pte(pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr)768 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
769 			unsigned long addr)
770 {
771 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
772 	struct page *page = pfn_swap_entry_to_page(entry);
773 
774 	if (trylock_page(page)) {
775 		restore_exclusive_pte(vma, page, addr, src_pte);
776 		unlock_page(page);
777 		return 0;
778 	}
779 
780 	return -EBUSY;
781 }
782 
783 /*
784  * copy one vm_area from one task to the other. Assumes the page tables
785  * already present in the new task to be cleared in the whole range
786  * covered by this vma.
787  */
788 
789 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)790 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
791 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
792 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
793 {
794 	unsigned long vm_flags = dst_vma->vm_flags;
795 	pte_t orig_pte = ptep_get(src_pte);
796 	pte_t pte = orig_pte;
797 	struct folio *folio;
798 	struct page *page;
799 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
800 
801 	if (likely(!non_swap_entry(entry))) {
802 		if (swap_duplicate(entry) < 0)
803 			return -EIO;
804 
805 		/* make sure dst_mm is on swapoff's mmlist. */
806 		if (unlikely(list_empty(&dst_mm->mmlist))) {
807 			spin_lock(&mmlist_lock);
808 			if (list_empty(&dst_mm->mmlist))
809 				list_add(&dst_mm->mmlist,
810 						&src_mm->mmlist);
811 			spin_unlock(&mmlist_lock);
812 		}
813 		/* Mark the swap entry as shared. */
814 		if (pte_swp_exclusive(orig_pte)) {
815 			pte = pte_swp_clear_exclusive(orig_pte);
816 			set_pte_at(src_mm, addr, src_pte, pte);
817 		}
818 		rss[MM_SWAPENTS]++;
819 	} else if (is_migration_entry(entry)) {
820 		folio = pfn_swap_entry_folio(entry);
821 
822 		rss[mm_counter(folio)]++;
823 
824 		if (!is_readable_migration_entry(entry) &&
825 				is_cow_mapping(vm_flags)) {
826 			/*
827 			 * COW mappings require pages in both parent and child
828 			 * to be set to read. A previously exclusive entry is
829 			 * now shared.
830 			 */
831 			entry = make_readable_migration_entry(
832 							swp_offset(entry));
833 			pte = swp_entry_to_pte(entry);
834 			if (pte_swp_soft_dirty(orig_pte))
835 				pte = pte_swp_mksoft_dirty(pte);
836 			if (pte_swp_uffd_wp(orig_pte))
837 				pte = pte_swp_mkuffd_wp(pte);
838 			set_pte_at(src_mm, addr, src_pte, pte);
839 		}
840 	} else if (is_device_private_entry(entry)) {
841 		page = pfn_swap_entry_to_page(entry);
842 		folio = page_folio(page);
843 
844 		/*
845 		 * Update rss count even for unaddressable pages, as
846 		 * they should treated just like normal pages in this
847 		 * respect.
848 		 *
849 		 * We will likely want to have some new rss counters
850 		 * for unaddressable pages, at some point. But for now
851 		 * keep things as they are.
852 		 */
853 		folio_get(folio);
854 		rss[mm_counter(folio)]++;
855 		/* Cannot fail as these pages cannot get pinned. */
856 		folio_try_dup_anon_rmap_pte(folio, page, src_vma);
857 
858 		/*
859 		 * We do not preserve soft-dirty information, because so
860 		 * far, checkpoint/restore is the only feature that
861 		 * requires that. And checkpoint/restore does not work
862 		 * when a device driver is involved (you cannot easily
863 		 * save and restore device driver state).
864 		 */
865 		if (is_writable_device_private_entry(entry) &&
866 		    is_cow_mapping(vm_flags)) {
867 			entry = make_readable_device_private_entry(
868 							swp_offset(entry));
869 			pte = swp_entry_to_pte(entry);
870 			if (pte_swp_uffd_wp(orig_pte))
871 				pte = pte_swp_mkuffd_wp(pte);
872 			set_pte_at(src_mm, addr, src_pte, pte);
873 		}
874 	} else if (is_device_exclusive_entry(entry)) {
875 		/*
876 		 * Make device exclusive entries present by restoring the
877 		 * original entry then copying as for a present pte. Device
878 		 * exclusive entries currently only support private writable
879 		 * (ie. COW) mappings.
880 		 */
881 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
882 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
883 			return -EBUSY;
884 		return -ENOENT;
885 	} else if (is_pte_marker_entry(entry)) {
886 		pte_marker marker = copy_pte_marker(entry, dst_vma);
887 
888 		if (marker)
889 			set_pte_at(dst_mm, addr, dst_pte,
890 				   make_pte_marker(marker));
891 		return 0;
892 	}
893 	if (!userfaultfd_wp(dst_vma))
894 		pte = pte_swp_clear_uffd_wp(pte);
895 	set_pte_at(dst_mm, addr, dst_pte, pte);
896 	return 0;
897 }
898 
899 /*
900  * Copy a present and normal page.
901  *
902  * NOTE! The usual case is that this isn't required;
903  * instead, the caller can just increase the page refcount
904  * and re-use the pte the traditional way.
905  *
906  * And if we need a pre-allocated page but don't yet have
907  * one, return a negative error to let the preallocation
908  * code know so that it can do so outside the page table
909  * lock.
910  */
911 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc,struct page * page)912 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
913 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
914 		  struct folio **prealloc, struct page *page)
915 {
916 	struct folio *new_folio;
917 	pte_t pte;
918 
919 	new_folio = *prealloc;
920 	if (!new_folio)
921 		return -EAGAIN;
922 
923 	/*
924 	 * We have a prealloc page, all good!  Take it
925 	 * over and copy the page & arm it.
926 	 */
927 
928 	if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
929 		return -EHWPOISON;
930 
931 	*prealloc = NULL;
932 	__folio_mark_uptodate(new_folio);
933 	folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
934 	folio_add_lru_vma(new_folio, dst_vma);
935 	rss[MM_ANONPAGES]++;
936 
937 	/* All done, just insert the new page copy in the child */
938 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
939 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
940 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
941 		/* Uffd-wp needs to be delivered to dest pte as well */
942 		pte = pte_mkuffd_wp(pte);
943 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
944 	return 0;
945 }
946 
__copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int nr)947 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
948 		struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
949 		pte_t pte, unsigned long addr, int nr)
950 {
951 	struct mm_struct *src_mm = src_vma->vm_mm;
952 
953 	/* If it's a COW mapping, write protect it both processes. */
954 	if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
955 		wrprotect_ptes(src_mm, addr, src_pte, nr);
956 		pte = pte_wrprotect(pte);
957 	}
958 
959 	/* If it's a shared mapping, mark it clean in the child. */
960 	if (src_vma->vm_flags & VM_SHARED)
961 		pte = pte_mkclean(pte);
962 	pte = pte_mkold(pte);
963 
964 	if (!userfaultfd_wp(dst_vma))
965 		pte = pte_clear_uffd_wp(pte);
966 
967 	set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
968 }
969 
970 /*
971  * Copy one present PTE, trying to batch-process subsequent PTEs that map
972  * consecutive pages of the same folio by copying them as well.
973  *
974  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
975  * Otherwise, returns the number of copied PTEs (at least 1).
976  */
977 static inline int
copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int max_nr,int * rss,struct folio ** prealloc)978 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
979 		 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
980 		 int max_nr, int *rss, struct folio **prealloc)
981 {
982 	struct page *page;
983 	struct folio *folio;
984 	bool any_writable;
985 	fpb_t flags = 0;
986 	int err, nr;
987 
988 	page = vm_normal_page(src_vma, addr, pte);
989 	if (unlikely(!page))
990 		goto copy_pte;
991 
992 	folio = page_folio(page);
993 
994 	/*
995 	 * If we likely have to copy, just don't bother with batching. Make
996 	 * sure that the common "small folio" case is as fast as possible
997 	 * by keeping the batching logic separate.
998 	 */
999 	if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1000 		if (src_vma->vm_flags & VM_SHARED)
1001 			flags |= FPB_IGNORE_DIRTY;
1002 		if (!vma_soft_dirty_enabled(src_vma))
1003 			flags |= FPB_IGNORE_SOFT_DIRTY;
1004 
1005 		nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1006 				     &any_writable, NULL, NULL);
1007 		folio_ref_add(folio, nr);
1008 		if (folio_test_anon(folio)) {
1009 			if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1010 								  nr, src_vma))) {
1011 				folio_ref_sub(folio, nr);
1012 				return -EAGAIN;
1013 			}
1014 			rss[MM_ANONPAGES] += nr;
1015 			VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1016 		} else {
1017 			folio_dup_file_rmap_ptes(folio, page, nr);
1018 			rss[mm_counter_file(folio)] += nr;
1019 		}
1020 		if (any_writable)
1021 			pte = pte_mkwrite(pte, src_vma);
1022 		__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1023 				    addr, nr);
1024 		return nr;
1025 	}
1026 
1027 	folio_get(folio);
1028 	if (folio_test_anon(folio)) {
1029 		/*
1030 		 * If this page may have been pinned by the parent process,
1031 		 * copy the page immediately for the child so that we'll always
1032 		 * guarantee the pinned page won't be randomly replaced in the
1033 		 * future.
1034 		 */
1035 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1036 			/* Page may be pinned, we have to copy. */
1037 			folio_put(folio);
1038 			err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1039 						addr, rss, prealloc, page);
1040 			return err ? err : 1;
1041 		}
1042 		rss[MM_ANONPAGES]++;
1043 		VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1044 	} else {
1045 		folio_dup_file_rmap_pte(folio, page);
1046 		rss[mm_counter_file(folio)]++;
1047 	}
1048 
1049 copy_pte:
1050 	__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1051 	return 1;
1052 }
1053 
folio_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr,bool need_zero)1054 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1055 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1056 {
1057 	struct folio *new_folio;
1058 
1059 	if (need_zero)
1060 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1061 	else
1062 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1063 
1064 	if (!new_folio)
1065 		return NULL;
1066 
1067 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1068 		folio_put(new_folio);
1069 		return NULL;
1070 	}
1071 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1072 
1073 	return new_folio;
1074 }
1075 
1076 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1077 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1078 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079 	       unsigned long end)
1080 {
1081 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1082 	struct mm_struct *src_mm = src_vma->vm_mm;
1083 	pte_t *orig_src_pte, *orig_dst_pte;
1084 	pte_t *src_pte, *dst_pte;
1085 	pmd_t dummy_pmdval;
1086 	pte_t ptent;
1087 	spinlock_t *src_ptl, *dst_ptl;
1088 	int progress, max_nr, ret = 0;
1089 	int rss[NR_MM_COUNTERS];
1090 	swp_entry_t entry = (swp_entry_t){0};
1091 	struct folio *prealloc = NULL;
1092 	int nr;
1093 
1094 again:
1095 	progress = 0;
1096 	init_rss_vec(rss);
1097 
1098 	/*
1099 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1100 	 * error handling here, assume that exclusive mmap_lock on dst and src
1101 	 * protects anon from unexpected THP transitions; with shmem and file
1102 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1103 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1104 	 * can remove such assumptions later, but this is good enough for now.
1105 	 */
1106 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1107 	if (!dst_pte) {
1108 		ret = -ENOMEM;
1109 		goto out;
1110 	}
1111 
1112 	/*
1113 	 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1114 	 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1115 	 * the PTE page is stable, and there is no need to get pmdval and do
1116 	 * pmd_same() check.
1117 	 */
1118 	src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1119 					   &src_ptl);
1120 	if (!src_pte) {
1121 		pte_unmap_unlock(dst_pte, dst_ptl);
1122 		/* ret == 0 */
1123 		goto out;
1124 	}
1125 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1126 	orig_src_pte = src_pte;
1127 	orig_dst_pte = dst_pte;
1128 	arch_enter_lazy_mmu_mode();
1129 
1130 	do {
1131 		nr = 1;
1132 
1133 		/*
1134 		 * We are holding two locks at this point - either of them
1135 		 * could generate latencies in another task on another CPU.
1136 		 */
1137 		if (progress >= 32) {
1138 			progress = 0;
1139 			if (need_resched() ||
1140 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1141 				break;
1142 		}
1143 		ptent = ptep_get(src_pte);
1144 		if (pte_none(ptent)) {
1145 			progress++;
1146 			continue;
1147 		}
1148 		if (unlikely(!pte_present(ptent))) {
1149 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1150 						  dst_pte, src_pte,
1151 						  dst_vma, src_vma,
1152 						  addr, rss);
1153 			if (ret == -EIO) {
1154 				entry = pte_to_swp_entry(ptep_get(src_pte));
1155 				break;
1156 			} else if (ret == -EBUSY) {
1157 				break;
1158 			} else if (!ret) {
1159 				progress += 8;
1160 				continue;
1161 			}
1162 			ptent = ptep_get(src_pte);
1163 			VM_WARN_ON_ONCE(!pte_present(ptent));
1164 
1165 			/*
1166 			 * Device exclusive entry restored, continue by copying
1167 			 * the now present pte.
1168 			 */
1169 			WARN_ON_ONCE(ret != -ENOENT);
1170 		}
1171 		/* copy_present_ptes() will clear `*prealloc' if consumed */
1172 		max_nr = (end - addr) / PAGE_SIZE;
1173 		ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1174 					ptent, addr, max_nr, rss, &prealloc);
1175 		/*
1176 		 * If we need a pre-allocated page for this pte, drop the
1177 		 * locks, allocate, and try again.
1178 		 * If copy failed due to hwpoison in source page, break out.
1179 		 */
1180 		if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1181 			break;
1182 		if (unlikely(prealloc)) {
1183 			/*
1184 			 * pre-alloc page cannot be reused by next time so as
1185 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1186 			 * will allocate page according to address).  This
1187 			 * could only happen if one pinned pte changed.
1188 			 */
1189 			folio_put(prealloc);
1190 			prealloc = NULL;
1191 		}
1192 		nr = ret;
1193 		progress += 8 * nr;
1194 	} while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1195 		 addr != end);
1196 
1197 	arch_leave_lazy_mmu_mode();
1198 	pte_unmap_unlock(orig_src_pte, src_ptl);
1199 	add_mm_rss_vec(dst_mm, rss);
1200 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1201 	cond_resched();
1202 
1203 	if (ret == -EIO) {
1204 		VM_WARN_ON_ONCE(!entry.val);
1205 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1206 			ret = -ENOMEM;
1207 			goto out;
1208 		}
1209 		entry.val = 0;
1210 	} else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1211 		goto out;
1212 	} else if (ret ==  -EAGAIN) {
1213 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1214 		if (!prealloc)
1215 			return -ENOMEM;
1216 	} else if (ret < 0) {
1217 		VM_WARN_ON_ONCE(1);
1218 	}
1219 
1220 	/* We've captured and resolved the error. Reset, try again. */
1221 	ret = 0;
1222 
1223 	if (addr != end)
1224 		goto again;
1225 out:
1226 	if (unlikely(prealloc))
1227 		folio_put(prealloc);
1228 	return ret;
1229 }
1230 
1231 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1232 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1233 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1234 	       unsigned long end)
1235 {
1236 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1237 	struct mm_struct *src_mm = src_vma->vm_mm;
1238 	pmd_t *src_pmd, *dst_pmd;
1239 	unsigned long next;
1240 
1241 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1242 	if (!dst_pmd)
1243 		return -ENOMEM;
1244 	src_pmd = pmd_offset(src_pud, addr);
1245 	do {
1246 		next = pmd_addr_end(addr, end);
1247 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1248 			|| pmd_devmap(*src_pmd)) {
1249 			int err;
1250 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1251 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1252 					    addr, dst_vma, src_vma);
1253 			if (err == -ENOMEM)
1254 				return -ENOMEM;
1255 			if (!err)
1256 				continue;
1257 			/* fall through */
1258 		}
1259 		if (pmd_none_or_clear_bad(src_pmd))
1260 			continue;
1261 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1262 				   addr, next))
1263 			return -ENOMEM;
1264 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1265 	return 0;
1266 }
1267 
1268 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1269 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1270 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1271 	       unsigned long end)
1272 {
1273 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1274 	struct mm_struct *src_mm = src_vma->vm_mm;
1275 	pud_t *src_pud, *dst_pud;
1276 	unsigned long next;
1277 
1278 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1279 	if (!dst_pud)
1280 		return -ENOMEM;
1281 	src_pud = pud_offset(src_p4d, addr);
1282 	do {
1283 		next = pud_addr_end(addr, end);
1284 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1285 			int err;
1286 
1287 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1288 			err = copy_huge_pud(dst_mm, src_mm,
1289 					    dst_pud, src_pud, addr, src_vma);
1290 			if (err == -ENOMEM)
1291 				return -ENOMEM;
1292 			if (!err)
1293 				continue;
1294 			/* fall through */
1295 		}
1296 		if (pud_none_or_clear_bad(src_pud))
1297 			continue;
1298 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1299 				   addr, next))
1300 			return -ENOMEM;
1301 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1302 	return 0;
1303 }
1304 
1305 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1306 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1307 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1308 	       unsigned long end)
1309 {
1310 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1311 	p4d_t *src_p4d, *dst_p4d;
1312 	unsigned long next;
1313 
1314 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1315 	if (!dst_p4d)
1316 		return -ENOMEM;
1317 	src_p4d = p4d_offset(src_pgd, addr);
1318 	do {
1319 		next = p4d_addr_end(addr, end);
1320 		if (p4d_none_or_clear_bad(src_p4d))
1321 			continue;
1322 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1323 				   addr, next))
1324 			return -ENOMEM;
1325 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1326 	return 0;
1327 }
1328 
1329 /*
1330  * Return true if the vma needs to copy the pgtable during this fork().  Return
1331  * false when we can speed up fork() by allowing lazy page faults later until
1332  * when the child accesses the memory range.
1333  */
1334 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1335 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1336 {
1337 	/*
1338 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1339 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1340 	 * contains uffd-wp protection information, that's something we can't
1341 	 * retrieve from page cache, and skip copying will lose those info.
1342 	 */
1343 	if (userfaultfd_wp(dst_vma))
1344 		return true;
1345 
1346 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1347 		return true;
1348 
1349 	if (src_vma->anon_vma)
1350 		return true;
1351 
1352 	/*
1353 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1354 	 * becomes much lighter when there are big shared or private readonly
1355 	 * mappings. The tradeoff is that copy_page_range is more efficient
1356 	 * than faulting.
1357 	 */
1358 	return false;
1359 }
1360 
1361 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1362 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1363 {
1364 	pgd_t *src_pgd, *dst_pgd;
1365 	unsigned long addr = src_vma->vm_start;
1366 	unsigned long end = src_vma->vm_end;
1367 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1368 	struct mm_struct *src_mm = src_vma->vm_mm;
1369 	struct mmu_notifier_range range;
1370 	unsigned long next, pfn;
1371 	bool is_cow;
1372 	int ret;
1373 
1374 	if (!vma_needs_copy(dst_vma, src_vma))
1375 		return 0;
1376 
1377 	if (is_vm_hugetlb_page(src_vma))
1378 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1379 
1380 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1381 		ret = track_pfn_copy(dst_vma, src_vma, &pfn);
1382 		if (ret)
1383 			return ret;
1384 	}
1385 
1386 	/*
1387 	 * We need to invalidate the secondary MMU mappings only when
1388 	 * there could be a permission downgrade on the ptes of the
1389 	 * parent mm. And a permission downgrade will only happen if
1390 	 * is_cow_mapping() returns true.
1391 	 */
1392 	is_cow = is_cow_mapping(src_vma->vm_flags);
1393 
1394 	if (is_cow) {
1395 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1396 					0, src_mm, addr, end);
1397 		mmu_notifier_invalidate_range_start(&range);
1398 		/*
1399 		 * Disabling preemption is not needed for the write side, as
1400 		 * the read side doesn't spin, but goes to the mmap_lock.
1401 		 *
1402 		 * Use the raw variant of the seqcount_t write API to avoid
1403 		 * lockdep complaining about preemptibility.
1404 		 */
1405 		vma_assert_write_locked(src_vma);
1406 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1407 	}
1408 
1409 	ret = 0;
1410 	dst_pgd = pgd_offset(dst_mm, addr);
1411 	src_pgd = pgd_offset(src_mm, addr);
1412 	do {
1413 		next = pgd_addr_end(addr, end);
1414 		if (pgd_none_or_clear_bad(src_pgd))
1415 			continue;
1416 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1417 					    addr, next))) {
1418 			ret = -ENOMEM;
1419 			break;
1420 		}
1421 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1422 
1423 	if (is_cow) {
1424 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1425 		mmu_notifier_invalidate_range_end(&range);
1426 	}
1427 	if (ret && unlikely(src_vma->vm_flags & VM_PFNMAP))
1428 		untrack_pfn_copy(dst_vma, pfn);
1429 	return ret;
1430 }
1431 
1432 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1433 static inline bool should_zap_cows(struct zap_details *details)
1434 {
1435 	/* By default, zap all pages */
1436 	if (!details || details->reclaim_pt)
1437 		return true;
1438 
1439 	/* Or, we zap COWed pages only if the caller wants to */
1440 	return details->even_cows;
1441 }
1442 
1443 /* Decides whether we should zap this folio with the folio pointer specified */
should_zap_folio(struct zap_details * details,struct folio * folio)1444 static inline bool should_zap_folio(struct zap_details *details,
1445 				    struct folio *folio)
1446 {
1447 	/* If we can make a decision without *folio.. */
1448 	if (should_zap_cows(details))
1449 		return true;
1450 
1451 	/* Otherwise we should only zap non-anon folios */
1452 	return !folio_test_anon(folio);
1453 }
1454 
zap_drop_markers(struct zap_details * details)1455 static inline bool zap_drop_markers(struct zap_details *details)
1456 {
1457 	if (!details)
1458 		return false;
1459 
1460 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1461 }
1462 
1463 /*
1464  * This function makes sure that we'll replace the none pte with an uffd-wp
1465  * swap special pte marker when necessary. Must be with the pgtable lock held.
1466  *
1467  * Returns true if uffd-wp ptes was installed, false otherwise.
1468  */
1469 static inline bool
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,int nr,struct zap_details * details,pte_t pteval)1470 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1471 			      unsigned long addr, pte_t *pte, int nr,
1472 			      struct zap_details *details, pte_t pteval)
1473 {
1474 	bool was_installed = false;
1475 
1476 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1477 	/* Zap on anonymous always means dropping everything */
1478 	if (vma_is_anonymous(vma))
1479 		return false;
1480 
1481 	if (zap_drop_markers(details))
1482 		return false;
1483 
1484 	for (;;) {
1485 		/* the PFN in the PTE is irrelevant. */
1486 		if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval))
1487 			was_installed = true;
1488 		if (--nr == 0)
1489 			break;
1490 		pte++;
1491 		addr += PAGE_SIZE;
1492 	}
1493 #endif
1494 	return was_installed;
1495 }
1496 
zap_present_folio_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,struct folio * folio,struct page * page,pte_t * pte,pte_t ptent,unsigned int nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1497 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1498 		struct vm_area_struct *vma, struct folio *folio,
1499 		struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1500 		unsigned long addr, struct zap_details *details, int *rss,
1501 		bool *force_flush, bool *force_break, bool *any_skipped)
1502 {
1503 	struct mm_struct *mm = tlb->mm;
1504 	bool delay_rmap = false;
1505 
1506 	if (!folio_test_anon(folio)) {
1507 		ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1508 		if (pte_dirty(ptent)) {
1509 			folio_mark_dirty(folio);
1510 			if (tlb_delay_rmap(tlb)) {
1511 				delay_rmap = true;
1512 				*force_flush = true;
1513 			}
1514 		}
1515 		if (pte_young(ptent) && likely(vma_has_recency(vma)))
1516 			folio_mark_accessed(folio);
1517 		rss[mm_counter(folio)] -= nr;
1518 	} else {
1519 		/* We don't need up-to-date accessed/dirty bits. */
1520 		clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1521 		rss[MM_ANONPAGES] -= nr;
1522 	}
1523 	/* Checking a single PTE in a batch is sufficient. */
1524 	arch_check_zapped_pte(vma, ptent);
1525 	tlb_remove_tlb_entries(tlb, pte, nr, addr);
1526 	if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1527 		*any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte,
1528 							     nr, details, ptent);
1529 
1530 	if (!delay_rmap) {
1531 		folio_remove_rmap_ptes(folio, page, nr, vma);
1532 
1533 		if (unlikely(folio_mapcount(folio) < 0))
1534 			print_bad_pte(vma, addr, ptent, page);
1535 	}
1536 	if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1537 		*force_flush = true;
1538 		*force_break = true;
1539 	}
1540 }
1541 
1542 /*
1543  * Zap or skip at least one present PTE, trying to batch-process subsequent
1544  * PTEs that map consecutive pages of the same folio.
1545  *
1546  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1547  */
zap_present_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1548 static inline int zap_present_ptes(struct mmu_gather *tlb,
1549 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1550 		unsigned int max_nr, unsigned long addr,
1551 		struct zap_details *details, int *rss, bool *force_flush,
1552 		bool *force_break, bool *any_skipped)
1553 {
1554 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1555 	struct mm_struct *mm = tlb->mm;
1556 	struct folio *folio;
1557 	struct page *page;
1558 	int nr;
1559 
1560 	page = vm_normal_page(vma, addr, ptent);
1561 	if (!page) {
1562 		/* We don't need up-to-date accessed/dirty bits. */
1563 		ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1564 		arch_check_zapped_pte(vma, ptent);
1565 		tlb_remove_tlb_entry(tlb, pte, addr);
1566 		if (userfaultfd_pte_wp(vma, ptent))
1567 			*any_skipped = zap_install_uffd_wp_if_needed(vma, addr,
1568 						pte, 1, details, ptent);
1569 		ksm_might_unmap_zero_page(mm, ptent);
1570 		return 1;
1571 	}
1572 
1573 	folio = page_folio(page);
1574 	if (unlikely(!should_zap_folio(details, folio))) {
1575 		*any_skipped = true;
1576 		return 1;
1577 	}
1578 
1579 	/*
1580 	 * Make sure that the common "small folio" case is as fast as possible
1581 	 * by keeping the batching logic separate.
1582 	 */
1583 	if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1584 		nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1585 				     NULL, NULL, NULL);
1586 
1587 		zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1588 				       addr, details, rss, force_flush,
1589 				       force_break, any_skipped);
1590 		return nr;
1591 	}
1592 	zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1593 			       details, rss, force_flush, force_break, any_skipped);
1594 	return 1;
1595 }
1596 
zap_nonpresent_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * any_skipped)1597 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb,
1598 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1599 		unsigned int max_nr, unsigned long addr,
1600 		struct zap_details *details, int *rss, bool *any_skipped)
1601 {
1602 	swp_entry_t entry;
1603 	int nr = 1;
1604 
1605 	*any_skipped = true;
1606 	entry = pte_to_swp_entry(ptent);
1607 	if (is_device_private_entry(entry) ||
1608 		is_device_exclusive_entry(entry)) {
1609 		struct page *page = pfn_swap_entry_to_page(entry);
1610 		struct folio *folio = page_folio(page);
1611 
1612 		if (unlikely(!should_zap_folio(details, folio)))
1613 			return 1;
1614 		/*
1615 		 * Both device private/exclusive mappings should only
1616 		 * work with anonymous page so far, so we don't need to
1617 		 * consider uffd-wp bit when zap. For more information,
1618 		 * see zap_install_uffd_wp_if_needed().
1619 		 */
1620 		WARN_ON_ONCE(!vma_is_anonymous(vma));
1621 		rss[mm_counter(folio)]--;
1622 		if (is_device_private_entry(entry))
1623 			folio_remove_rmap_pte(folio, page, vma);
1624 		folio_put(folio);
1625 	} else if (!non_swap_entry(entry)) {
1626 		/* Genuine swap entries, hence a private anon pages */
1627 		if (!should_zap_cows(details))
1628 			return 1;
1629 
1630 		nr = swap_pte_batch(pte, max_nr, ptent);
1631 		rss[MM_SWAPENTS] -= nr;
1632 		free_swap_and_cache_nr(entry, nr);
1633 	} else if (is_migration_entry(entry)) {
1634 		struct folio *folio = pfn_swap_entry_folio(entry);
1635 
1636 		if (!should_zap_folio(details, folio))
1637 			return 1;
1638 		rss[mm_counter(folio)]--;
1639 	} else if (pte_marker_entry_uffd_wp(entry)) {
1640 		/*
1641 		 * For anon: always drop the marker; for file: only
1642 		 * drop the marker if explicitly requested.
1643 		 */
1644 		if (!vma_is_anonymous(vma) && !zap_drop_markers(details))
1645 			return 1;
1646 	} else if (is_guard_swp_entry(entry)) {
1647 		/*
1648 		 * Ordinary zapping should not remove guard PTE
1649 		 * markers. Only do so if we should remove PTE markers
1650 		 * in general.
1651 		 */
1652 		if (!zap_drop_markers(details))
1653 			return 1;
1654 	} else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) {
1655 		if (!should_zap_cows(details))
1656 			return 1;
1657 	} else {
1658 		/* We should have covered all the swap entry types */
1659 		pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1660 		WARN_ON_ONCE(1);
1661 	}
1662 	clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm);
1663 	*any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1664 
1665 	return nr;
1666 }
1667 
do_zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,unsigned long addr,unsigned long end,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1668 static inline int do_zap_pte_range(struct mmu_gather *tlb,
1669 				   struct vm_area_struct *vma, pte_t *pte,
1670 				   unsigned long addr, unsigned long end,
1671 				   struct zap_details *details, int *rss,
1672 				   bool *force_flush, bool *force_break,
1673 				   bool *any_skipped)
1674 {
1675 	pte_t ptent = ptep_get(pte);
1676 	int max_nr = (end - addr) / PAGE_SIZE;
1677 	int nr = 0;
1678 
1679 	/* Skip all consecutive none ptes */
1680 	if (pte_none(ptent)) {
1681 		for (nr = 1; nr < max_nr; nr++) {
1682 			ptent = ptep_get(pte + nr);
1683 			if (!pte_none(ptent))
1684 				break;
1685 		}
1686 		max_nr -= nr;
1687 		if (!max_nr)
1688 			return nr;
1689 		pte += nr;
1690 		addr += nr * PAGE_SIZE;
1691 	}
1692 
1693 	if (pte_present(ptent))
1694 		nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr,
1695 				       details, rss, force_flush, force_break,
1696 				       any_skipped);
1697 	else
1698 		nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr,
1699 					  details, rss, any_skipped);
1700 
1701 	return nr;
1702 }
1703 
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1704 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1705 				struct vm_area_struct *vma, pmd_t *pmd,
1706 				unsigned long addr, unsigned long end,
1707 				struct zap_details *details)
1708 {
1709 	bool force_flush = false, force_break = false;
1710 	struct mm_struct *mm = tlb->mm;
1711 	int rss[NR_MM_COUNTERS];
1712 	spinlock_t *ptl;
1713 	pte_t *start_pte;
1714 	pte_t *pte;
1715 	pmd_t pmdval;
1716 	unsigned long start = addr;
1717 	bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details);
1718 	bool direct_reclaim = true;
1719 	int nr;
1720 
1721 retry:
1722 	tlb_change_page_size(tlb, PAGE_SIZE);
1723 	init_rss_vec(rss);
1724 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1725 	if (!pte)
1726 		return addr;
1727 
1728 	flush_tlb_batched_pending(mm);
1729 	arch_enter_lazy_mmu_mode();
1730 	do {
1731 		bool any_skipped = false;
1732 
1733 		if (need_resched()) {
1734 			direct_reclaim = false;
1735 			break;
1736 		}
1737 
1738 		nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
1739 				      &force_flush, &force_break, &any_skipped);
1740 		if (any_skipped)
1741 			can_reclaim_pt = false;
1742 		if (unlikely(force_break)) {
1743 			addr += nr * PAGE_SIZE;
1744 			direct_reclaim = false;
1745 			break;
1746 		}
1747 	} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1748 
1749 	/*
1750 	 * Fast path: try to hold the pmd lock and unmap the PTE page.
1751 	 *
1752 	 * If the pte lock was released midway (retry case), or if the attempt
1753 	 * to hold the pmd lock failed, then we need to recheck all pte entries
1754 	 * to ensure they are still none, thereby preventing the pte entries
1755 	 * from being repopulated by another thread.
1756 	 */
1757 	if (can_reclaim_pt && direct_reclaim && addr == end)
1758 		direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval);
1759 
1760 	add_mm_rss_vec(mm, rss);
1761 	arch_leave_lazy_mmu_mode();
1762 
1763 	/* Do the actual TLB flush before dropping ptl */
1764 	if (force_flush) {
1765 		tlb_flush_mmu_tlbonly(tlb);
1766 		tlb_flush_rmaps(tlb, vma);
1767 	}
1768 	pte_unmap_unlock(start_pte, ptl);
1769 
1770 	/*
1771 	 * If we forced a TLB flush (either due to running out of
1772 	 * batch buffers or because we needed to flush dirty TLB
1773 	 * entries before releasing the ptl), free the batched
1774 	 * memory too. Come back again if we didn't do everything.
1775 	 */
1776 	if (force_flush)
1777 		tlb_flush_mmu(tlb);
1778 
1779 	if (addr != end) {
1780 		cond_resched();
1781 		force_flush = false;
1782 		force_break = false;
1783 		goto retry;
1784 	}
1785 
1786 	if (can_reclaim_pt) {
1787 		if (direct_reclaim)
1788 			free_pte(mm, start, tlb, pmdval);
1789 		else
1790 			try_to_free_pte(mm, pmd, start, tlb);
1791 	}
1792 
1793 	return addr;
1794 }
1795 
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1796 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1797 				struct vm_area_struct *vma, pud_t *pud,
1798 				unsigned long addr, unsigned long end,
1799 				struct zap_details *details)
1800 {
1801 	pmd_t *pmd;
1802 	unsigned long next;
1803 
1804 	pmd = pmd_offset(pud, addr);
1805 	do {
1806 		next = pmd_addr_end(addr, end);
1807 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1808 			if (next - addr != HPAGE_PMD_SIZE)
1809 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1810 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1811 				addr = next;
1812 				continue;
1813 			}
1814 			/* fall through */
1815 		} else if (details && details->single_folio &&
1816 			   folio_test_pmd_mappable(details->single_folio) &&
1817 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1818 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1819 			/*
1820 			 * Take and drop THP pmd lock so that we cannot return
1821 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1822 			 * but not yet decremented compound_mapcount().
1823 			 */
1824 			spin_unlock(ptl);
1825 		}
1826 		if (pmd_none(*pmd)) {
1827 			addr = next;
1828 			continue;
1829 		}
1830 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1831 		if (addr != next)
1832 			pmd--;
1833 	} while (pmd++, cond_resched(), addr != end);
1834 
1835 	return addr;
1836 }
1837 
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1838 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1839 				struct vm_area_struct *vma, p4d_t *p4d,
1840 				unsigned long addr, unsigned long end,
1841 				struct zap_details *details)
1842 {
1843 	pud_t *pud;
1844 	unsigned long next;
1845 
1846 	pud = pud_offset(p4d, addr);
1847 	do {
1848 		next = pud_addr_end(addr, end);
1849 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1850 			if (next - addr != HPAGE_PUD_SIZE) {
1851 				mmap_assert_locked(tlb->mm);
1852 				split_huge_pud(vma, pud, addr);
1853 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1854 				goto next;
1855 			/* fall through */
1856 		}
1857 		if (pud_none_or_clear_bad(pud))
1858 			continue;
1859 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1860 next:
1861 		cond_resched();
1862 	} while (pud++, addr = next, addr != end);
1863 
1864 	return addr;
1865 }
1866 
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1867 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1868 				struct vm_area_struct *vma, pgd_t *pgd,
1869 				unsigned long addr, unsigned long end,
1870 				struct zap_details *details)
1871 {
1872 	p4d_t *p4d;
1873 	unsigned long next;
1874 
1875 	p4d = p4d_offset(pgd, addr);
1876 	do {
1877 		next = p4d_addr_end(addr, end);
1878 		if (p4d_none_or_clear_bad(p4d))
1879 			continue;
1880 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1881 	} while (p4d++, addr = next, addr != end);
1882 
1883 	return addr;
1884 }
1885 
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1886 void unmap_page_range(struct mmu_gather *tlb,
1887 			     struct vm_area_struct *vma,
1888 			     unsigned long addr, unsigned long end,
1889 			     struct zap_details *details)
1890 {
1891 	pgd_t *pgd;
1892 	unsigned long next;
1893 
1894 	BUG_ON(addr >= end);
1895 	tlb_start_vma(tlb, vma);
1896 	pgd = pgd_offset(vma->vm_mm, addr);
1897 	do {
1898 		next = pgd_addr_end(addr, end);
1899 		if (pgd_none_or_clear_bad(pgd))
1900 			continue;
1901 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1902 	} while (pgd++, addr = next, addr != end);
1903 	tlb_end_vma(tlb, vma);
1904 }
1905 
1906 
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details,bool mm_wr_locked)1907 static void unmap_single_vma(struct mmu_gather *tlb,
1908 		struct vm_area_struct *vma, unsigned long start_addr,
1909 		unsigned long end_addr,
1910 		struct zap_details *details, bool mm_wr_locked)
1911 {
1912 	unsigned long start = max(vma->vm_start, start_addr);
1913 	unsigned long end;
1914 
1915 	if (start >= vma->vm_end)
1916 		return;
1917 	end = min(vma->vm_end, end_addr);
1918 	if (end <= vma->vm_start)
1919 		return;
1920 
1921 	if (vma->vm_file)
1922 		uprobe_munmap(vma, start, end);
1923 
1924 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1925 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1926 
1927 	if (start != end) {
1928 		if (unlikely(is_vm_hugetlb_page(vma))) {
1929 			/*
1930 			 * It is undesirable to test vma->vm_file as it
1931 			 * should be non-null for valid hugetlb area.
1932 			 * However, vm_file will be NULL in the error
1933 			 * cleanup path of mmap_region. When
1934 			 * hugetlbfs ->mmap method fails,
1935 			 * mmap_region() nullifies vma->vm_file
1936 			 * before calling this function to clean up.
1937 			 * Since no pte has actually been setup, it is
1938 			 * safe to do nothing in this case.
1939 			 */
1940 			if (vma->vm_file) {
1941 				zap_flags_t zap_flags = details ?
1942 				    details->zap_flags : 0;
1943 				__unmap_hugepage_range(tlb, vma, start, end,
1944 							     NULL, zap_flags);
1945 			}
1946 		} else
1947 			unmap_page_range(tlb, vma, start, end, details);
1948 	}
1949 }
1950 
1951 /**
1952  * unmap_vmas - unmap a range of memory covered by a list of vma's
1953  * @tlb: address of the caller's struct mmu_gather
1954  * @mas: the maple state
1955  * @vma: the starting vma
1956  * @start_addr: virtual address at which to start unmapping
1957  * @end_addr: virtual address at which to end unmapping
1958  * @tree_end: The maximum index to check
1959  * @mm_wr_locked: lock flag
1960  *
1961  * Unmap all pages in the vma list.
1962  *
1963  * Only addresses between `start' and `end' will be unmapped.
1964  *
1965  * The VMA list must be sorted in ascending virtual address order.
1966  *
1967  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1968  * range after unmap_vmas() returns.  So the only responsibility here is to
1969  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1970  * drops the lock and schedules.
1971  */
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end,bool mm_wr_locked)1972 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1973 		struct vm_area_struct *vma, unsigned long start_addr,
1974 		unsigned long end_addr, unsigned long tree_end,
1975 		bool mm_wr_locked)
1976 {
1977 	struct mmu_notifier_range range;
1978 	struct zap_details details = {
1979 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1980 		/* Careful - we need to zap private pages too! */
1981 		.even_cows = true,
1982 	};
1983 
1984 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1985 				start_addr, end_addr);
1986 	mmu_notifier_invalidate_range_start(&range);
1987 	do {
1988 		unsigned long start = start_addr;
1989 		unsigned long end = end_addr;
1990 		hugetlb_zap_begin(vma, &start, &end);
1991 		unmap_single_vma(tlb, vma, start, end, &details,
1992 				 mm_wr_locked);
1993 		hugetlb_zap_end(vma, &details);
1994 		vma = mas_find(mas, tree_end - 1);
1995 	} while (vma && likely(!xa_is_zero(vma)));
1996 	mmu_notifier_invalidate_range_end(&range);
1997 }
1998 
1999 /**
2000  * zap_page_range_single - remove user pages in a given range
2001  * @vma: vm_area_struct holding the applicable pages
2002  * @address: starting address of pages to zap
2003  * @size: number of bytes to zap
2004  * @details: details of shared cache invalidation
2005  *
2006  * The range must fit into one VMA.
2007  */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)2008 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2009 		unsigned long size, struct zap_details *details)
2010 {
2011 	const unsigned long end = address + size;
2012 	struct mmu_notifier_range range;
2013 	struct mmu_gather tlb;
2014 
2015 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2016 				address, end);
2017 	hugetlb_zap_begin(vma, &range.start, &range.end);
2018 	tlb_gather_mmu(&tlb, vma->vm_mm);
2019 	update_hiwater_rss(vma->vm_mm);
2020 	mmu_notifier_invalidate_range_start(&range);
2021 	/*
2022 	 * unmap 'address-end' not 'range.start-range.end' as range
2023 	 * could have been expanded for hugetlb pmd sharing.
2024 	 */
2025 	unmap_single_vma(&tlb, vma, address, end, details, false);
2026 	mmu_notifier_invalidate_range_end(&range);
2027 	tlb_finish_mmu(&tlb);
2028 	hugetlb_zap_end(vma, details);
2029 }
2030 
2031 /**
2032  * zap_vma_ptes - remove ptes mapping the vma
2033  * @vma: vm_area_struct holding ptes to be zapped
2034  * @address: starting address of pages to zap
2035  * @size: number of bytes to zap
2036  *
2037  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
2038  *
2039  * The entire address range must be fully contained within the vma.
2040  *
2041  */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)2042 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2043 		unsigned long size)
2044 {
2045 	if (!range_in_vma(vma, address, address + size) ||
2046 	    		!(vma->vm_flags & VM_PFNMAP))
2047 		return;
2048 
2049 	zap_page_range_single(vma, address, size, NULL);
2050 }
2051 EXPORT_SYMBOL_GPL(zap_vma_ptes);
2052 
walk_to_pmd(struct mm_struct * mm,unsigned long addr)2053 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
2054 {
2055 	pgd_t *pgd;
2056 	p4d_t *p4d;
2057 	pud_t *pud;
2058 	pmd_t *pmd;
2059 
2060 	pgd = pgd_offset(mm, addr);
2061 	p4d = p4d_alloc(mm, pgd, addr);
2062 	if (!p4d)
2063 		return NULL;
2064 	pud = pud_alloc(mm, p4d, addr);
2065 	if (!pud)
2066 		return NULL;
2067 	pmd = pmd_alloc(mm, pud, addr);
2068 	if (!pmd)
2069 		return NULL;
2070 
2071 	VM_BUG_ON(pmd_trans_huge(*pmd));
2072 	return pmd;
2073 }
2074 
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2075 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2076 			spinlock_t **ptl)
2077 {
2078 	pmd_t *pmd = walk_to_pmd(mm, addr);
2079 
2080 	if (!pmd)
2081 		return NULL;
2082 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
2083 }
2084 
vm_mixed_zeropage_allowed(struct vm_area_struct * vma)2085 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2086 {
2087 	VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2088 	/*
2089 	 * Whoever wants to forbid the zeropage after some zeropages
2090 	 * might already have been mapped has to scan the page tables and
2091 	 * bail out on any zeropages. Zeropages in COW mappings can
2092 	 * be unshared using FAULT_FLAG_UNSHARE faults.
2093 	 */
2094 	if (mm_forbids_zeropage(vma->vm_mm))
2095 		return false;
2096 	/* zeropages in COW mappings are common and unproblematic. */
2097 	if (is_cow_mapping(vma->vm_flags))
2098 		return true;
2099 	/* Mappings that do not allow for writable PTEs are unproblematic. */
2100 	if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2101 		return true;
2102 	/*
2103 	 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2104 	 * find the shared zeropage and longterm-pin it, which would
2105 	 * be problematic as soon as the zeropage gets replaced by a different
2106 	 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2107 	 * now differ to what GUP looked up. FSDAX is incompatible to
2108 	 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2109 	 * check_vma_flags).
2110 	 */
2111 	return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2112 	       (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2113 }
2114 
validate_page_before_insert(struct vm_area_struct * vma,struct page * page)2115 static int validate_page_before_insert(struct vm_area_struct *vma,
2116 				       struct page *page)
2117 {
2118 	struct folio *folio = page_folio(page);
2119 
2120 	if (!folio_ref_count(folio))
2121 		return -EINVAL;
2122 	if (unlikely(is_zero_folio(folio))) {
2123 		if (!vm_mixed_zeropage_allowed(vma))
2124 			return -EINVAL;
2125 		return 0;
2126 	}
2127 	if (folio_test_anon(folio) || folio_test_slab(folio) ||
2128 	    page_has_type(page))
2129 		return -EINVAL;
2130 	flush_dcache_folio(folio);
2131 	return 0;
2132 }
2133 
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)2134 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2135 			unsigned long addr, struct page *page, pgprot_t prot)
2136 {
2137 	struct folio *folio = page_folio(page);
2138 	pte_t pteval;
2139 
2140 	if (!pte_none(ptep_get(pte)))
2141 		return -EBUSY;
2142 	/* Ok, finally just insert the thing.. */
2143 	pteval = mk_pte(page, prot);
2144 	if (unlikely(is_zero_folio(folio))) {
2145 		pteval = pte_mkspecial(pteval);
2146 	} else {
2147 		folio_get(folio);
2148 		inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2149 		folio_add_file_rmap_pte(folio, page, vma);
2150 	}
2151 	set_pte_at(vma->vm_mm, addr, pte, pteval);
2152 	return 0;
2153 }
2154 
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)2155 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2156 			struct page *page, pgprot_t prot)
2157 {
2158 	int retval;
2159 	pte_t *pte;
2160 	spinlock_t *ptl;
2161 
2162 	retval = validate_page_before_insert(vma, page);
2163 	if (retval)
2164 		goto out;
2165 	retval = -ENOMEM;
2166 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2167 	if (!pte)
2168 		goto out;
2169 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2170 	pte_unmap_unlock(pte, ptl);
2171 out:
2172 	return retval;
2173 }
2174 
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)2175 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2176 			unsigned long addr, struct page *page, pgprot_t prot)
2177 {
2178 	int err;
2179 
2180 	err = validate_page_before_insert(vma, page);
2181 	if (err)
2182 		return err;
2183 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2184 }
2185 
2186 /* insert_pages() amortizes the cost of spinlock operations
2187  * when inserting pages in a loop.
2188  */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)2189 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2190 			struct page **pages, unsigned long *num, pgprot_t prot)
2191 {
2192 	pmd_t *pmd = NULL;
2193 	pte_t *start_pte, *pte;
2194 	spinlock_t *pte_lock;
2195 	struct mm_struct *const mm = vma->vm_mm;
2196 	unsigned long curr_page_idx = 0;
2197 	unsigned long remaining_pages_total = *num;
2198 	unsigned long pages_to_write_in_pmd;
2199 	int ret;
2200 more:
2201 	ret = -EFAULT;
2202 	pmd = walk_to_pmd(mm, addr);
2203 	if (!pmd)
2204 		goto out;
2205 
2206 	pages_to_write_in_pmd = min_t(unsigned long,
2207 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2208 
2209 	/* Allocate the PTE if necessary; takes PMD lock once only. */
2210 	ret = -ENOMEM;
2211 	if (pte_alloc(mm, pmd))
2212 		goto out;
2213 
2214 	while (pages_to_write_in_pmd) {
2215 		int pte_idx = 0;
2216 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2217 
2218 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2219 		if (!start_pte) {
2220 			ret = -EFAULT;
2221 			goto out;
2222 		}
2223 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2224 			int err = insert_page_in_batch_locked(vma, pte,
2225 				addr, pages[curr_page_idx], prot);
2226 			if (unlikely(err)) {
2227 				pte_unmap_unlock(start_pte, pte_lock);
2228 				ret = err;
2229 				remaining_pages_total -= pte_idx;
2230 				goto out;
2231 			}
2232 			addr += PAGE_SIZE;
2233 			++curr_page_idx;
2234 		}
2235 		pte_unmap_unlock(start_pte, pte_lock);
2236 		pages_to_write_in_pmd -= batch_size;
2237 		remaining_pages_total -= batch_size;
2238 	}
2239 	if (remaining_pages_total)
2240 		goto more;
2241 	ret = 0;
2242 out:
2243 	*num = remaining_pages_total;
2244 	return ret;
2245 }
2246 
2247 /**
2248  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2249  * @vma: user vma to map to
2250  * @addr: target start user address of these pages
2251  * @pages: source kernel pages
2252  * @num: in: number of pages to map. out: number of pages that were *not*
2253  * mapped. (0 means all pages were successfully mapped).
2254  *
2255  * Preferred over vm_insert_page() when inserting multiple pages.
2256  *
2257  * In case of error, we may have mapped a subset of the provided
2258  * pages. It is the caller's responsibility to account for this case.
2259  *
2260  * The same restrictions apply as in vm_insert_page().
2261  */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)2262 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2263 			struct page **pages, unsigned long *num)
2264 {
2265 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2266 
2267 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2268 		return -EFAULT;
2269 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2270 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2271 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2272 		vm_flags_set(vma, VM_MIXEDMAP);
2273 	}
2274 	/* Defer page refcount checking till we're about to map that page. */
2275 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2276 }
2277 EXPORT_SYMBOL(vm_insert_pages);
2278 
2279 /**
2280  * vm_insert_page - insert single page into user vma
2281  * @vma: user vma to map to
2282  * @addr: target user address of this page
2283  * @page: source kernel page
2284  *
2285  * This allows drivers to insert individual pages they've allocated
2286  * into a user vma. The zeropage is supported in some VMAs,
2287  * see vm_mixed_zeropage_allowed().
2288  *
2289  * The page has to be a nice clean _individual_ kernel allocation.
2290  * If you allocate a compound page, you need to have marked it as
2291  * such (__GFP_COMP), or manually just split the page up yourself
2292  * (see split_page()).
2293  *
2294  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2295  * took an arbitrary page protection parameter. This doesn't allow
2296  * that. Your vma protection will have to be set up correctly, which
2297  * means that if you want a shared writable mapping, you'd better
2298  * ask for a shared writable mapping!
2299  *
2300  * The page does not need to be reserved.
2301  *
2302  * Usually this function is called from f_op->mmap() handler
2303  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2304  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2305  * function from other places, for example from page-fault handler.
2306  *
2307  * Return: %0 on success, negative error code otherwise.
2308  */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2309 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2310 			struct page *page)
2311 {
2312 	if (addr < vma->vm_start || addr >= vma->vm_end)
2313 		return -EFAULT;
2314 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2315 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2316 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2317 		vm_flags_set(vma, VM_MIXEDMAP);
2318 	}
2319 	return insert_page(vma, addr, page, vma->vm_page_prot);
2320 }
2321 EXPORT_SYMBOL(vm_insert_page);
2322 
2323 /*
2324  * __vm_map_pages - maps range of kernel pages into user vma
2325  * @vma: user vma to map to
2326  * @pages: pointer to array of source kernel pages
2327  * @num: number of pages in page array
2328  * @offset: user's requested vm_pgoff
2329  *
2330  * This allows drivers to map range of kernel pages into a user vma.
2331  * The zeropage is supported in some VMAs, see
2332  * vm_mixed_zeropage_allowed().
2333  *
2334  * Return: 0 on success and error code otherwise.
2335  */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2336 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2337 				unsigned long num, unsigned long offset)
2338 {
2339 	unsigned long count = vma_pages(vma);
2340 	unsigned long uaddr = vma->vm_start;
2341 	int ret, i;
2342 
2343 	/* Fail if the user requested offset is beyond the end of the object */
2344 	if (offset >= num)
2345 		return -ENXIO;
2346 
2347 	/* Fail if the user requested size exceeds available object size */
2348 	if (count > num - offset)
2349 		return -ENXIO;
2350 
2351 	for (i = 0; i < count; i++) {
2352 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2353 		if (ret < 0)
2354 			return ret;
2355 		uaddr += PAGE_SIZE;
2356 	}
2357 
2358 	return 0;
2359 }
2360 
2361 /**
2362  * vm_map_pages - maps range of kernel pages starts with non zero offset
2363  * @vma: user vma to map to
2364  * @pages: pointer to array of source kernel pages
2365  * @num: number of pages in page array
2366  *
2367  * Maps an object consisting of @num pages, catering for the user's
2368  * requested vm_pgoff
2369  *
2370  * If we fail to insert any page into the vma, the function will return
2371  * immediately leaving any previously inserted pages present.  Callers
2372  * from the mmap handler may immediately return the error as their caller
2373  * will destroy the vma, removing any successfully inserted pages. Other
2374  * callers should make their own arrangements for calling unmap_region().
2375  *
2376  * Context: Process context. Called by mmap handlers.
2377  * Return: 0 on success and error code otherwise.
2378  */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2379 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2380 				unsigned long num)
2381 {
2382 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2383 }
2384 EXPORT_SYMBOL(vm_map_pages);
2385 
2386 /**
2387  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2388  * @vma: user vma to map to
2389  * @pages: pointer to array of source kernel pages
2390  * @num: number of pages in page array
2391  *
2392  * Similar to vm_map_pages(), except that it explicitly sets the offset
2393  * to 0. This function is intended for the drivers that did not consider
2394  * vm_pgoff.
2395  *
2396  * Context: Process context. Called by mmap handlers.
2397  * Return: 0 on success and error code otherwise.
2398  */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2399 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2400 				unsigned long num)
2401 {
2402 	return __vm_map_pages(vma, pages, num, 0);
2403 }
2404 EXPORT_SYMBOL(vm_map_pages_zero);
2405 
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)2406 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2407 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2408 {
2409 	struct mm_struct *mm = vma->vm_mm;
2410 	pte_t *pte, entry;
2411 	spinlock_t *ptl;
2412 
2413 	pte = get_locked_pte(mm, addr, &ptl);
2414 	if (!pte)
2415 		return VM_FAULT_OOM;
2416 	entry = ptep_get(pte);
2417 	if (!pte_none(entry)) {
2418 		if (mkwrite) {
2419 			/*
2420 			 * For read faults on private mappings the PFN passed
2421 			 * in may not match the PFN we have mapped if the
2422 			 * mapped PFN is a writeable COW page.  In the mkwrite
2423 			 * case we are creating a writable PTE for a shared
2424 			 * mapping and we expect the PFNs to match. If they
2425 			 * don't match, we are likely racing with block
2426 			 * allocation and mapping invalidation so just skip the
2427 			 * update.
2428 			 */
2429 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2430 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2431 				goto out_unlock;
2432 			}
2433 			entry = pte_mkyoung(entry);
2434 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2435 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2436 				update_mmu_cache(vma, addr, pte);
2437 		}
2438 		goto out_unlock;
2439 	}
2440 
2441 	/* Ok, finally just insert the thing.. */
2442 	if (pfn_t_devmap(pfn))
2443 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2444 	else
2445 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2446 
2447 	if (mkwrite) {
2448 		entry = pte_mkyoung(entry);
2449 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2450 	}
2451 
2452 	set_pte_at(mm, addr, pte, entry);
2453 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2454 
2455 out_unlock:
2456 	pte_unmap_unlock(pte, ptl);
2457 	return VM_FAULT_NOPAGE;
2458 }
2459 
2460 /**
2461  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2462  * @vma: user vma to map to
2463  * @addr: target user address of this page
2464  * @pfn: source kernel pfn
2465  * @pgprot: pgprot flags for the inserted page
2466  *
2467  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2468  * to override pgprot on a per-page basis.
2469  *
2470  * This only makes sense for IO mappings, and it makes no sense for
2471  * COW mappings.  In general, using multiple vmas is preferable;
2472  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2473  * impractical.
2474  *
2475  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2476  * caching- and encryption bits different than those of @vma->vm_page_prot,
2477  * because the caching- or encryption mode may not be known at mmap() time.
2478  *
2479  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2480  * to set caching and encryption bits for those vmas (except for COW pages).
2481  * This is ensured by core vm only modifying these page table entries using
2482  * functions that don't touch caching- or encryption bits, using pte_modify()
2483  * if needed. (See for example mprotect()).
2484  *
2485  * Also when new page-table entries are created, this is only done using the
2486  * fault() callback, and never using the value of vma->vm_page_prot,
2487  * except for page-table entries that point to anonymous pages as the result
2488  * of COW.
2489  *
2490  * Context: Process context.  May allocate using %GFP_KERNEL.
2491  * Return: vm_fault_t value.
2492  */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2493 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2494 			unsigned long pfn, pgprot_t pgprot)
2495 {
2496 	/*
2497 	 * Technically, architectures with pte_special can avoid all these
2498 	 * restrictions (same for remap_pfn_range).  However we would like
2499 	 * consistency in testing and feature parity among all, so we should
2500 	 * try to keep these invariants in place for everybody.
2501 	 */
2502 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2503 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2504 						(VM_PFNMAP|VM_MIXEDMAP));
2505 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2506 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2507 
2508 	if (addr < vma->vm_start || addr >= vma->vm_end)
2509 		return VM_FAULT_SIGBUS;
2510 
2511 	if (!pfn_modify_allowed(pfn, pgprot))
2512 		return VM_FAULT_SIGBUS;
2513 
2514 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2515 
2516 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2517 			false);
2518 }
2519 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2520 
2521 /**
2522  * vmf_insert_pfn - insert single pfn into user vma
2523  * @vma: user vma to map to
2524  * @addr: target user address of this page
2525  * @pfn: source kernel pfn
2526  *
2527  * Similar to vm_insert_page, this allows drivers to insert individual pages
2528  * they've allocated into a user vma. Same comments apply.
2529  *
2530  * This function should only be called from a vm_ops->fault handler, and
2531  * in that case the handler should return the result of this function.
2532  *
2533  * vma cannot be a COW mapping.
2534  *
2535  * As this is called only for pages that do not currently exist, we
2536  * do not need to flush old virtual caches or the TLB.
2537  *
2538  * Context: Process context.  May allocate using %GFP_KERNEL.
2539  * Return: vm_fault_t value.
2540  */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2541 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2542 			unsigned long pfn)
2543 {
2544 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2545 }
2546 EXPORT_SYMBOL(vmf_insert_pfn);
2547 
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn,bool mkwrite)2548 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2549 {
2550 	if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2551 	    (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2552 		return false;
2553 	/* these checks mirror the abort conditions in vm_normal_page */
2554 	if (vma->vm_flags & VM_MIXEDMAP)
2555 		return true;
2556 	if (pfn_t_devmap(pfn))
2557 		return true;
2558 	if (pfn_t_special(pfn))
2559 		return true;
2560 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2561 		return true;
2562 	return false;
2563 }
2564 
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)2565 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2566 		unsigned long addr, pfn_t pfn, bool mkwrite)
2567 {
2568 	pgprot_t pgprot = vma->vm_page_prot;
2569 	int err;
2570 
2571 	if (!vm_mixed_ok(vma, pfn, mkwrite))
2572 		return VM_FAULT_SIGBUS;
2573 
2574 	if (addr < vma->vm_start || addr >= vma->vm_end)
2575 		return VM_FAULT_SIGBUS;
2576 
2577 	track_pfn_insert(vma, &pgprot, pfn);
2578 
2579 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2580 		return VM_FAULT_SIGBUS;
2581 
2582 	/*
2583 	 * If we don't have pte special, then we have to use the pfn_valid()
2584 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2585 	 * refcount the page if pfn_valid is true (hence insert_page rather
2586 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2587 	 * without pte special, it would there be refcounted as a normal page.
2588 	 */
2589 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2590 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2591 		struct page *page;
2592 
2593 		/*
2594 		 * At this point we are committed to insert_page()
2595 		 * regardless of whether the caller specified flags that
2596 		 * result in pfn_t_has_page() == false.
2597 		 */
2598 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2599 		err = insert_page(vma, addr, page, pgprot);
2600 	} else {
2601 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2602 	}
2603 
2604 	if (err == -ENOMEM)
2605 		return VM_FAULT_OOM;
2606 	if (err < 0 && err != -EBUSY)
2607 		return VM_FAULT_SIGBUS;
2608 
2609 	return VM_FAULT_NOPAGE;
2610 }
2611 
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2612 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2613 		pfn_t pfn)
2614 {
2615 	return __vm_insert_mixed(vma, addr, pfn, false);
2616 }
2617 EXPORT_SYMBOL(vmf_insert_mixed);
2618 
2619 /*
2620  *  If the insertion of PTE failed because someone else already added a
2621  *  different entry in the mean time, we treat that as success as we assume
2622  *  the same entry was actually inserted.
2623  */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2624 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2625 		unsigned long addr, pfn_t pfn)
2626 {
2627 	return __vm_insert_mixed(vma, addr, pfn, true);
2628 }
2629 
2630 /*
2631  * maps a range of physical memory into the requested pages. the old
2632  * mappings are removed. any references to nonexistent pages results
2633  * in null mappings (currently treated as "copy-on-access")
2634  */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2635 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2636 			unsigned long addr, unsigned long end,
2637 			unsigned long pfn, pgprot_t prot)
2638 {
2639 	pte_t *pte, *mapped_pte;
2640 	spinlock_t *ptl;
2641 	int err = 0;
2642 
2643 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2644 	if (!pte)
2645 		return -ENOMEM;
2646 	arch_enter_lazy_mmu_mode();
2647 	do {
2648 		BUG_ON(!pte_none(ptep_get(pte)));
2649 		if (!pfn_modify_allowed(pfn, prot)) {
2650 			err = -EACCES;
2651 			break;
2652 		}
2653 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2654 		pfn++;
2655 	} while (pte++, addr += PAGE_SIZE, addr != end);
2656 	arch_leave_lazy_mmu_mode();
2657 	pte_unmap_unlock(mapped_pte, ptl);
2658 	return err;
2659 }
2660 
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2661 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2662 			unsigned long addr, unsigned long end,
2663 			unsigned long pfn, pgprot_t prot)
2664 {
2665 	pmd_t *pmd;
2666 	unsigned long next;
2667 	int err;
2668 
2669 	pfn -= addr >> PAGE_SHIFT;
2670 	pmd = pmd_alloc(mm, pud, addr);
2671 	if (!pmd)
2672 		return -ENOMEM;
2673 	VM_BUG_ON(pmd_trans_huge(*pmd));
2674 	do {
2675 		next = pmd_addr_end(addr, end);
2676 		err = remap_pte_range(mm, pmd, addr, next,
2677 				pfn + (addr >> PAGE_SHIFT), prot);
2678 		if (err)
2679 			return err;
2680 	} while (pmd++, addr = next, addr != end);
2681 	return 0;
2682 }
2683 
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2684 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2685 			unsigned long addr, unsigned long end,
2686 			unsigned long pfn, pgprot_t prot)
2687 {
2688 	pud_t *pud;
2689 	unsigned long next;
2690 	int err;
2691 
2692 	pfn -= addr >> PAGE_SHIFT;
2693 	pud = pud_alloc(mm, p4d, addr);
2694 	if (!pud)
2695 		return -ENOMEM;
2696 	do {
2697 		next = pud_addr_end(addr, end);
2698 		err = remap_pmd_range(mm, pud, addr, next,
2699 				pfn + (addr >> PAGE_SHIFT), prot);
2700 		if (err)
2701 			return err;
2702 	} while (pud++, addr = next, addr != end);
2703 	return 0;
2704 }
2705 
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2706 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2707 			unsigned long addr, unsigned long end,
2708 			unsigned long pfn, pgprot_t prot)
2709 {
2710 	p4d_t *p4d;
2711 	unsigned long next;
2712 	int err;
2713 
2714 	pfn -= addr >> PAGE_SHIFT;
2715 	p4d = p4d_alloc(mm, pgd, addr);
2716 	if (!p4d)
2717 		return -ENOMEM;
2718 	do {
2719 		next = p4d_addr_end(addr, end);
2720 		err = remap_pud_range(mm, p4d, addr, next,
2721 				pfn + (addr >> PAGE_SHIFT), prot);
2722 		if (err)
2723 			return err;
2724 	} while (p4d++, addr = next, addr != end);
2725 	return 0;
2726 }
2727 
remap_pfn_range_internal(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2728 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2729 		unsigned long pfn, unsigned long size, pgprot_t prot)
2730 {
2731 	pgd_t *pgd;
2732 	unsigned long next;
2733 	unsigned long end = addr + PAGE_ALIGN(size);
2734 	struct mm_struct *mm = vma->vm_mm;
2735 	int err;
2736 
2737 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2738 		return -EINVAL;
2739 
2740 	/*
2741 	 * Physically remapped pages are special. Tell the
2742 	 * rest of the world about it:
2743 	 *   VM_IO tells people not to look at these pages
2744 	 *	(accesses can have side effects).
2745 	 *   VM_PFNMAP tells the core MM that the base pages are just
2746 	 *	raw PFN mappings, and do not have a "struct page" associated
2747 	 *	with them.
2748 	 *   VM_DONTEXPAND
2749 	 *      Disable vma merging and expanding with mremap().
2750 	 *   VM_DONTDUMP
2751 	 *      Omit vma from core dump, even when VM_IO turned off.
2752 	 *
2753 	 * There's a horrible special case to handle copy-on-write
2754 	 * behaviour that some programs depend on. We mark the "original"
2755 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2756 	 * See vm_normal_page() for details.
2757 	 */
2758 	if (is_cow_mapping(vma->vm_flags)) {
2759 		if (addr != vma->vm_start || end != vma->vm_end)
2760 			return -EINVAL;
2761 		vma->vm_pgoff = pfn;
2762 	}
2763 
2764 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2765 
2766 	BUG_ON(addr >= end);
2767 	pfn -= addr >> PAGE_SHIFT;
2768 	pgd = pgd_offset(mm, addr);
2769 	flush_cache_range(vma, addr, end);
2770 	do {
2771 		next = pgd_addr_end(addr, end);
2772 		err = remap_p4d_range(mm, pgd, addr, next,
2773 				pfn + (addr >> PAGE_SHIFT), prot);
2774 		if (err)
2775 			return err;
2776 	} while (pgd++, addr = next, addr != end);
2777 
2778 	return 0;
2779 }
2780 
2781 /*
2782  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2783  * must have pre-validated the caching bits of the pgprot_t.
2784  */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2785 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2786 		unsigned long pfn, unsigned long size, pgprot_t prot)
2787 {
2788 	int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2789 
2790 	if (!error)
2791 		return 0;
2792 
2793 	/*
2794 	 * A partial pfn range mapping is dangerous: it does not
2795 	 * maintain page reference counts, and callers may free
2796 	 * pages due to the error. So zap it early.
2797 	 */
2798 	zap_page_range_single(vma, addr, size, NULL);
2799 	return error;
2800 }
2801 
2802 /**
2803  * remap_pfn_range - remap kernel memory to userspace
2804  * @vma: user vma to map to
2805  * @addr: target page aligned user address to start at
2806  * @pfn: page frame number of kernel physical memory address
2807  * @size: size of mapping area
2808  * @prot: page protection flags for this mapping
2809  *
2810  * Note: this is only safe if the mm semaphore is held when called.
2811  *
2812  * Return: %0 on success, negative error code otherwise.
2813  */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2814 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2815 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2816 {
2817 	int err;
2818 
2819 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2820 	if (err)
2821 		return -EINVAL;
2822 
2823 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2824 	if (err)
2825 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2826 	return err;
2827 }
2828 EXPORT_SYMBOL(remap_pfn_range);
2829 
2830 /**
2831  * vm_iomap_memory - remap memory to userspace
2832  * @vma: user vma to map to
2833  * @start: start of the physical memory to be mapped
2834  * @len: size of area
2835  *
2836  * This is a simplified io_remap_pfn_range() for common driver use. The
2837  * driver just needs to give us the physical memory range to be mapped,
2838  * we'll figure out the rest from the vma information.
2839  *
2840  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2841  * whatever write-combining details or similar.
2842  *
2843  * Return: %0 on success, negative error code otherwise.
2844  */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2845 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2846 {
2847 	unsigned long vm_len, pfn, pages;
2848 
2849 	/* Check that the physical memory area passed in looks valid */
2850 	if (start + len < start)
2851 		return -EINVAL;
2852 	/*
2853 	 * You *really* shouldn't map things that aren't page-aligned,
2854 	 * but we've historically allowed it because IO memory might
2855 	 * just have smaller alignment.
2856 	 */
2857 	len += start & ~PAGE_MASK;
2858 	pfn = start >> PAGE_SHIFT;
2859 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2860 	if (pfn + pages < pfn)
2861 		return -EINVAL;
2862 
2863 	/* We start the mapping 'vm_pgoff' pages into the area */
2864 	if (vma->vm_pgoff > pages)
2865 		return -EINVAL;
2866 	pfn += vma->vm_pgoff;
2867 	pages -= vma->vm_pgoff;
2868 
2869 	/* Can we fit all of the mapping? */
2870 	vm_len = vma->vm_end - vma->vm_start;
2871 	if (vm_len >> PAGE_SHIFT > pages)
2872 		return -EINVAL;
2873 
2874 	/* Ok, let it rip */
2875 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2876 }
2877 EXPORT_SYMBOL(vm_iomap_memory);
2878 
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2879 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2880 				     unsigned long addr, unsigned long end,
2881 				     pte_fn_t fn, void *data, bool create,
2882 				     pgtbl_mod_mask *mask)
2883 {
2884 	pte_t *pte, *mapped_pte;
2885 	int err = 0;
2886 	spinlock_t *ptl;
2887 
2888 	if (create) {
2889 		mapped_pte = pte = (mm == &init_mm) ?
2890 			pte_alloc_kernel_track(pmd, addr, mask) :
2891 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2892 		if (!pte)
2893 			return -ENOMEM;
2894 	} else {
2895 		mapped_pte = pte = (mm == &init_mm) ?
2896 			pte_offset_kernel(pmd, addr) :
2897 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2898 		if (!pte)
2899 			return -EINVAL;
2900 	}
2901 
2902 	arch_enter_lazy_mmu_mode();
2903 
2904 	if (fn) {
2905 		do {
2906 			if (create || !pte_none(ptep_get(pte))) {
2907 				err = fn(pte, addr, data);
2908 				if (err)
2909 					break;
2910 			}
2911 		} while (pte++, addr += PAGE_SIZE, addr != end);
2912 	}
2913 	*mask |= PGTBL_PTE_MODIFIED;
2914 
2915 	arch_leave_lazy_mmu_mode();
2916 
2917 	if (mm != &init_mm)
2918 		pte_unmap_unlock(mapped_pte, ptl);
2919 	return err;
2920 }
2921 
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2922 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2923 				     unsigned long addr, unsigned long end,
2924 				     pte_fn_t fn, void *data, bool create,
2925 				     pgtbl_mod_mask *mask)
2926 {
2927 	pmd_t *pmd;
2928 	unsigned long next;
2929 	int err = 0;
2930 
2931 	BUG_ON(pud_leaf(*pud));
2932 
2933 	if (create) {
2934 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2935 		if (!pmd)
2936 			return -ENOMEM;
2937 	} else {
2938 		pmd = pmd_offset(pud, addr);
2939 	}
2940 	do {
2941 		next = pmd_addr_end(addr, end);
2942 		if (pmd_none(*pmd) && !create)
2943 			continue;
2944 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2945 			return -EINVAL;
2946 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2947 			if (!create)
2948 				continue;
2949 			pmd_clear_bad(pmd);
2950 		}
2951 		err = apply_to_pte_range(mm, pmd, addr, next,
2952 					 fn, data, create, mask);
2953 		if (err)
2954 			break;
2955 	} while (pmd++, addr = next, addr != end);
2956 
2957 	return err;
2958 }
2959 
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2960 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2961 				     unsigned long addr, unsigned long end,
2962 				     pte_fn_t fn, void *data, bool create,
2963 				     pgtbl_mod_mask *mask)
2964 {
2965 	pud_t *pud;
2966 	unsigned long next;
2967 	int err = 0;
2968 
2969 	if (create) {
2970 		pud = pud_alloc_track(mm, p4d, addr, mask);
2971 		if (!pud)
2972 			return -ENOMEM;
2973 	} else {
2974 		pud = pud_offset(p4d, addr);
2975 	}
2976 	do {
2977 		next = pud_addr_end(addr, end);
2978 		if (pud_none(*pud) && !create)
2979 			continue;
2980 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2981 			return -EINVAL;
2982 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2983 			if (!create)
2984 				continue;
2985 			pud_clear_bad(pud);
2986 		}
2987 		err = apply_to_pmd_range(mm, pud, addr, next,
2988 					 fn, data, create, mask);
2989 		if (err)
2990 			break;
2991 	} while (pud++, addr = next, addr != end);
2992 
2993 	return err;
2994 }
2995 
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2996 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2997 				     unsigned long addr, unsigned long end,
2998 				     pte_fn_t fn, void *data, bool create,
2999 				     pgtbl_mod_mask *mask)
3000 {
3001 	p4d_t *p4d;
3002 	unsigned long next;
3003 	int err = 0;
3004 
3005 	if (create) {
3006 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
3007 		if (!p4d)
3008 			return -ENOMEM;
3009 	} else {
3010 		p4d = p4d_offset(pgd, addr);
3011 	}
3012 	do {
3013 		next = p4d_addr_end(addr, end);
3014 		if (p4d_none(*p4d) && !create)
3015 			continue;
3016 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
3017 			return -EINVAL;
3018 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
3019 			if (!create)
3020 				continue;
3021 			p4d_clear_bad(p4d);
3022 		}
3023 		err = apply_to_pud_range(mm, p4d, addr, next,
3024 					 fn, data, create, mask);
3025 		if (err)
3026 			break;
3027 	} while (p4d++, addr = next, addr != end);
3028 
3029 	return err;
3030 }
3031 
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)3032 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3033 				 unsigned long size, pte_fn_t fn,
3034 				 void *data, bool create)
3035 {
3036 	pgd_t *pgd;
3037 	unsigned long start = addr, next;
3038 	unsigned long end = addr + size;
3039 	pgtbl_mod_mask mask = 0;
3040 	int err = 0;
3041 
3042 	if (WARN_ON(addr >= end))
3043 		return -EINVAL;
3044 
3045 	pgd = pgd_offset(mm, addr);
3046 	do {
3047 		next = pgd_addr_end(addr, end);
3048 		if (pgd_none(*pgd) && !create)
3049 			continue;
3050 		if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
3051 			err = -EINVAL;
3052 			break;
3053 		}
3054 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
3055 			if (!create)
3056 				continue;
3057 			pgd_clear_bad(pgd);
3058 		}
3059 		err = apply_to_p4d_range(mm, pgd, addr, next,
3060 					 fn, data, create, &mask);
3061 		if (err)
3062 			break;
3063 	} while (pgd++, addr = next, addr != end);
3064 
3065 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
3066 		arch_sync_kernel_mappings(start, start + size);
3067 
3068 	return err;
3069 }
3070 
3071 /*
3072  * Scan a region of virtual memory, filling in page tables as necessary
3073  * and calling a provided function on each leaf page table.
3074  */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3075 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3076 			unsigned long size, pte_fn_t fn, void *data)
3077 {
3078 	return __apply_to_page_range(mm, addr, size, fn, data, true);
3079 }
3080 EXPORT_SYMBOL_GPL(apply_to_page_range);
3081 
3082 /*
3083  * Scan a region of virtual memory, calling a provided function on
3084  * each leaf page table where it exists.
3085  *
3086  * Unlike apply_to_page_range, this does _not_ fill in page tables
3087  * where they are absent.
3088  */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3089 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3090 				 unsigned long size, pte_fn_t fn, void *data)
3091 {
3092 	return __apply_to_page_range(mm, addr, size, fn, data, false);
3093 }
3094 
3095 /*
3096  * handle_pte_fault chooses page fault handler according to an entry which was
3097  * read non-atomically.  Before making any commitment, on those architectures
3098  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3099  * parts, do_swap_page must check under lock before unmapping the pte and
3100  * proceeding (but do_wp_page is only called after already making such a check;
3101  * and do_anonymous_page can safely check later on).
3102  */
pte_unmap_same(struct vm_fault * vmf)3103 static inline int pte_unmap_same(struct vm_fault *vmf)
3104 {
3105 	int same = 1;
3106 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3107 	if (sizeof(pte_t) > sizeof(unsigned long)) {
3108 		spin_lock(vmf->ptl);
3109 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3110 		spin_unlock(vmf->ptl);
3111 	}
3112 #endif
3113 	pte_unmap(vmf->pte);
3114 	vmf->pte = NULL;
3115 	return same;
3116 }
3117 
3118 /*
3119  * Return:
3120  *	0:		copied succeeded
3121  *	-EHWPOISON:	copy failed due to hwpoison in source page
3122  *	-EAGAIN:	copied failed (some other reason)
3123  */
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)3124 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3125 				      struct vm_fault *vmf)
3126 {
3127 	int ret;
3128 	void *kaddr;
3129 	void __user *uaddr;
3130 	struct vm_area_struct *vma = vmf->vma;
3131 	struct mm_struct *mm = vma->vm_mm;
3132 	unsigned long addr = vmf->address;
3133 
3134 	if (likely(src)) {
3135 		if (copy_mc_user_highpage(dst, src, addr, vma))
3136 			return -EHWPOISON;
3137 		return 0;
3138 	}
3139 
3140 	/*
3141 	 * If the source page was a PFN mapping, we don't have
3142 	 * a "struct page" for it. We do a best-effort copy by
3143 	 * just copying from the original user address. If that
3144 	 * fails, we just zero-fill it. Live with it.
3145 	 */
3146 	kaddr = kmap_local_page(dst);
3147 	pagefault_disable();
3148 	uaddr = (void __user *)(addr & PAGE_MASK);
3149 
3150 	/*
3151 	 * On architectures with software "accessed" bits, we would
3152 	 * take a double page fault, so mark it accessed here.
3153 	 */
3154 	vmf->pte = NULL;
3155 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3156 		pte_t entry;
3157 
3158 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3159 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3160 			/*
3161 			 * Other thread has already handled the fault
3162 			 * and update local tlb only
3163 			 */
3164 			if (vmf->pte)
3165 				update_mmu_tlb(vma, addr, vmf->pte);
3166 			ret = -EAGAIN;
3167 			goto pte_unlock;
3168 		}
3169 
3170 		entry = pte_mkyoung(vmf->orig_pte);
3171 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3172 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3173 	}
3174 
3175 	/*
3176 	 * This really shouldn't fail, because the page is there
3177 	 * in the page tables. But it might just be unreadable,
3178 	 * in which case we just give up and fill the result with
3179 	 * zeroes.
3180 	 */
3181 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3182 		if (vmf->pte)
3183 			goto warn;
3184 
3185 		/* Re-validate under PTL if the page is still mapped */
3186 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3187 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3188 			/* The PTE changed under us, update local tlb */
3189 			if (vmf->pte)
3190 				update_mmu_tlb(vma, addr, vmf->pte);
3191 			ret = -EAGAIN;
3192 			goto pte_unlock;
3193 		}
3194 
3195 		/*
3196 		 * The same page can be mapped back since last copy attempt.
3197 		 * Try to copy again under PTL.
3198 		 */
3199 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3200 			/*
3201 			 * Give a warn in case there can be some obscure
3202 			 * use-case
3203 			 */
3204 warn:
3205 			WARN_ON_ONCE(1);
3206 			clear_page(kaddr);
3207 		}
3208 	}
3209 
3210 	ret = 0;
3211 
3212 pte_unlock:
3213 	if (vmf->pte)
3214 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3215 	pagefault_enable();
3216 	kunmap_local(kaddr);
3217 	flush_dcache_page(dst);
3218 
3219 	return ret;
3220 }
3221 
__get_fault_gfp_mask(struct vm_area_struct * vma)3222 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3223 {
3224 	struct file *vm_file = vma->vm_file;
3225 
3226 	if (vm_file)
3227 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3228 
3229 	/*
3230 	 * Special mappings (e.g. VDSO) do not have any file so fake
3231 	 * a default GFP_KERNEL for them.
3232 	 */
3233 	return GFP_KERNEL;
3234 }
3235 
3236 /*
3237  * Notify the address space that the page is about to become writable so that
3238  * it can prohibit this or wait for the page to get into an appropriate state.
3239  *
3240  * We do this without the lock held, so that it can sleep if it needs to.
3241  */
do_page_mkwrite(struct vm_fault * vmf,struct folio * folio)3242 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3243 {
3244 	vm_fault_t ret;
3245 	unsigned int old_flags = vmf->flags;
3246 
3247 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3248 
3249 	if (vmf->vma->vm_file &&
3250 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3251 		return VM_FAULT_SIGBUS;
3252 
3253 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3254 	/* Restore original flags so that caller is not surprised */
3255 	vmf->flags = old_flags;
3256 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3257 		return ret;
3258 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3259 		folio_lock(folio);
3260 		if (!folio->mapping) {
3261 			folio_unlock(folio);
3262 			return 0; /* retry */
3263 		}
3264 		ret |= VM_FAULT_LOCKED;
3265 	} else
3266 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3267 	return ret;
3268 }
3269 
3270 /*
3271  * Handle dirtying of a page in shared file mapping on a write fault.
3272  *
3273  * The function expects the page to be locked and unlocks it.
3274  */
fault_dirty_shared_page(struct vm_fault * vmf)3275 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3276 {
3277 	struct vm_area_struct *vma = vmf->vma;
3278 	struct address_space *mapping;
3279 	struct folio *folio = page_folio(vmf->page);
3280 	bool dirtied;
3281 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3282 
3283 	dirtied = folio_mark_dirty(folio);
3284 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3285 	/*
3286 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3287 	 * by truncate after folio_unlock().   The address_space itself remains
3288 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3289 	 * release semantics to prevent the compiler from undoing this copying.
3290 	 */
3291 	mapping = folio_raw_mapping(folio);
3292 	folio_unlock(folio);
3293 
3294 	if (!page_mkwrite)
3295 		file_update_time(vma->vm_file);
3296 
3297 	/*
3298 	 * Throttle page dirtying rate down to writeback speed.
3299 	 *
3300 	 * mapping may be NULL here because some device drivers do not
3301 	 * set page.mapping but still dirty their pages
3302 	 *
3303 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3304 	 * is pinning the mapping, as per above.
3305 	 */
3306 	if ((dirtied || page_mkwrite) && mapping) {
3307 		struct file *fpin;
3308 
3309 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3310 		balance_dirty_pages_ratelimited(mapping);
3311 		if (fpin) {
3312 			fput(fpin);
3313 			return VM_FAULT_COMPLETED;
3314 		}
3315 	}
3316 
3317 	return 0;
3318 }
3319 
3320 /*
3321  * Handle write page faults for pages that can be reused in the current vma
3322  *
3323  * This can happen either due to the mapping being with the VM_SHARED flag,
3324  * or due to us being the last reference standing to the page. In either
3325  * case, all we need to do here is to mark the page as writable and update
3326  * any related book-keeping.
3327  */
wp_page_reuse(struct vm_fault * vmf,struct folio * folio)3328 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3329 	__releases(vmf->ptl)
3330 {
3331 	struct vm_area_struct *vma = vmf->vma;
3332 	pte_t entry;
3333 
3334 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3335 	VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3336 
3337 	if (folio) {
3338 		VM_BUG_ON(folio_test_anon(folio) &&
3339 			  !PageAnonExclusive(vmf->page));
3340 		/*
3341 		 * Clear the folio's cpupid information as the existing
3342 		 * information potentially belongs to a now completely
3343 		 * unrelated process.
3344 		 */
3345 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3346 	}
3347 
3348 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3349 	entry = pte_mkyoung(vmf->orig_pte);
3350 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3351 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3352 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3353 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3354 	count_vm_event(PGREUSE);
3355 }
3356 
3357 /*
3358  * We could add a bitflag somewhere, but for now, we know that all
3359  * vm_ops that have a ->map_pages have been audited and don't need
3360  * the mmap_lock to be held.
3361  */
vmf_can_call_fault(const struct vm_fault * vmf)3362 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3363 {
3364 	struct vm_area_struct *vma = vmf->vma;
3365 
3366 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3367 		return 0;
3368 	vma_end_read(vma);
3369 	return VM_FAULT_RETRY;
3370 }
3371 
3372 /**
3373  * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3374  * @vmf: The vm_fault descriptor passed from the fault handler.
3375  *
3376  * When preparing to insert an anonymous page into a VMA from a
3377  * fault handler, call this function rather than anon_vma_prepare().
3378  * If this vma does not already have an associated anon_vma and we are
3379  * only protected by the per-VMA lock, the caller must retry with the
3380  * mmap_lock held.  __anon_vma_prepare() will look at adjacent VMAs to
3381  * determine if this VMA can share its anon_vma, and that's not safe to
3382  * do with only the per-VMA lock held for this VMA.
3383  *
3384  * Return: 0 if fault handling can proceed.  Any other value should be
3385  * returned to the caller.
3386  */
__vmf_anon_prepare(struct vm_fault * vmf)3387 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3388 {
3389 	struct vm_area_struct *vma = vmf->vma;
3390 	vm_fault_t ret = 0;
3391 
3392 	if (likely(vma->anon_vma))
3393 		return 0;
3394 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3395 		if (!mmap_read_trylock(vma->vm_mm))
3396 			return VM_FAULT_RETRY;
3397 	}
3398 	if (__anon_vma_prepare(vma))
3399 		ret = VM_FAULT_OOM;
3400 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3401 		mmap_read_unlock(vma->vm_mm);
3402 	return ret;
3403 }
3404 
3405 /*
3406  * Handle the case of a page which we actually need to copy to a new page,
3407  * either due to COW or unsharing.
3408  *
3409  * Called with mmap_lock locked and the old page referenced, but
3410  * without the ptl held.
3411  *
3412  * High level logic flow:
3413  *
3414  * - Allocate a page, copy the content of the old page to the new one.
3415  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3416  * - Take the PTL. If the pte changed, bail out and release the allocated page
3417  * - If the pte is still the way we remember it, update the page table and all
3418  *   relevant references. This includes dropping the reference the page-table
3419  *   held to the old page, as well as updating the rmap.
3420  * - In any case, unlock the PTL and drop the reference we took to the old page.
3421  */
wp_page_copy(struct vm_fault * vmf)3422 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3423 {
3424 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3425 	struct vm_area_struct *vma = vmf->vma;
3426 	struct mm_struct *mm = vma->vm_mm;
3427 	struct folio *old_folio = NULL;
3428 	struct folio *new_folio = NULL;
3429 	pte_t entry;
3430 	int page_copied = 0;
3431 	struct mmu_notifier_range range;
3432 	vm_fault_t ret;
3433 	bool pfn_is_zero;
3434 
3435 	delayacct_wpcopy_start();
3436 
3437 	if (vmf->page)
3438 		old_folio = page_folio(vmf->page);
3439 	ret = vmf_anon_prepare(vmf);
3440 	if (unlikely(ret))
3441 		goto out;
3442 
3443 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3444 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3445 	if (!new_folio)
3446 		goto oom;
3447 
3448 	if (!pfn_is_zero) {
3449 		int err;
3450 
3451 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3452 		if (err) {
3453 			/*
3454 			 * COW failed, if the fault was solved by other,
3455 			 * it's fine. If not, userspace would re-fault on
3456 			 * the same address and we will handle the fault
3457 			 * from the second attempt.
3458 			 * The -EHWPOISON case will not be retried.
3459 			 */
3460 			folio_put(new_folio);
3461 			if (old_folio)
3462 				folio_put(old_folio);
3463 
3464 			delayacct_wpcopy_end();
3465 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3466 		}
3467 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3468 	}
3469 
3470 	__folio_mark_uptodate(new_folio);
3471 
3472 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3473 				vmf->address & PAGE_MASK,
3474 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3475 	mmu_notifier_invalidate_range_start(&range);
3476 
3477 	/*
3478 	 * Re-check the pte - we dropped the lock
3479 	 */
3480 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3481 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3482 		if (old_folio) {
3483 			if (!folio_test_anon(old_folio)) {
3484 				dec_mm_counter(mm, mm_counter_file(old_folio));
3485 				inc_mm_counter(mm, MM_ANONPAGES);
3486 			}
3487 		} else {
3488 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3489 			inc_mm_counter(mm, MM_ANONPAGES);
3490 		}
3491 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3492 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3493 		entry = pte_sw_mkyoung(entry);
3494 		if (unlikely(unshare)) {
3495 			if (pte_soft_dirty(vmf->orig_pte))
3496 				entry = pte_mksoft_dirty(entry);
3497 			if (pte_uffd_wp(vmf->orig_pte))
3498 				entry = pte_mkuffd_wp(entry);
3499 		} else {
3500 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3501 		}
3502 
3503 		/*
3504 		 * Clear the pte entry and flush it first, before updating the
3505 		 * pte with the new entry, to keep TLBs on different CPUs in
3506 		 * sync. This code used to set the new PTE then flush TLBs, but
3507 		 * that left a window where the new PTE could be loaded into
3508 		 * some TLBs while the old PTE remains in others.
3509 		 */
3510 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3511 		folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3512 		folio_add_lru_vma(new_folio, vma);
3513 		BUG_ON(unshare && pte_write(entry));
3514 		set_pte_at(mm, vmf->address, vmf->pte, entry);
3515 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3516 		if (old_folio) {
3517 			/*
3518 			 * Only after switching the pte to the new page may
3519 			 * we remove the mapcount here. Otherwise another
3520 			 * process may come and find the rmap count decremented
3521 			 * before the pte is switched to the new page, and
3522 			 * "reuse" the old page writing into it while our pte
3523 			 * here still points into it and can be read by other
3524 			 * threads.
3525 			 *
3526 			 * The critical issue is to order this
3527 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3528 			 * above. Those stores are ordered by (if nothing else,)
3529 			 * the barrier present in the atomic_add_negative
3530 			 * in folio_remove_rmap_pte();
3531 			 *
3532 			 * Then the TLB flush in ptep_clear_flush ensures that
3533 			 * no process can access the old page before the
3534 			 * decremented mapcount is visible. And the old page
3535 			 * cannot be reused until after the decremented
3536 			 * mapcount is visible. So transitively, TLBs to
3537 			 * old page will be flushed before it can be reused.
3538 			 */
3539 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3540 		}
3541 
3542 		/* Free the old page.. */
3543 		new_folio = old_folio;
3544 		page_copied = 1;
3545 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3546 	} else if (vmf->pte) {
3547 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3548 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3549 	}
3550 
3551 	mmu_notifier_invalidate_range_end(&range);
3552 
3553 	if (new_folio)
3554 		folio_put(new_folio);
3555 	if (old_folio) {
3556 		if (page_copied)
3557 			free_swap_cache(old_folio);
3558 		folio_put(old_folio);
3559 	}
3560 
3561 	delayacct_wpcopy_end();
3562 	return 0;
3563 oom:
3564 	ret = VM_FAULT_OOM;
3565 out:
3566 	if (old_folio)
3567 		folio_put(old_folio);
3568 
3569 	delayacct_wpcopy_end();
3570 	return ret;
3571 }
3572 
3573 /**
3574  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3575  *			  writeable once the page is prepared
3576  *
3577  * @vmf: structure describing the fault
3578  * @folio: the folio of vmf->page
3579  *
3580  * This function handles all that is needed to finish a write page fault in a
3581  * shared mapping due to PTE being read-only once the mapped page is prepared.
3582  * It handles locking of PTE and modifying it.
3583  *
3584  * The function expects the page to be locked or other protection against
3585  * concurrent faults / writeback (such as DAX radix tree locks).
3586  *
3587  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3588  * we acquired PTE lock.
3589  */
finish_mkwrite_fault(struct vm_fault * vmf,struct folio * folio)3590 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3591 {
3592 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3593 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3594 				       &vmf->ptl);
3595 	if (!vmf->pte)
3596 		return VM_FAULT_NOPAGE;
3597 	/*
3598 	 * We might have raced with another page fault while we released the
3599 	 * pte_offset_map_lock.
3600 	 */
3601 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3602 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3603 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3604 		return VM_FAULT_NOPAGE;
3605 	}
3606 	wp_page_reuse(vmf, folio);
3607 	return 0;
3608 }
3609 
3610 /*
3611  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3612  * mapping
3613  */
wp_pfn_shared(struct vm_fault * vmf)3614 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3615 {
3616 	struct vm_area_struct *vma = vmf->vma;
3617 
3618 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3619 		vm_fault_t ret;
3620 
3621 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3622 		ret = vmf_can_call_fault(vmf);
3623 		if (ret)
3624 			return ret;
3625 
3626 		vmf->flags |= FAULT_FLAG_MKWRITE;
3627 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3628 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3629 			return ret;
3630 		return finish_mkwrite_fault(vmf, NULL);
3631 	}
3632 	wp_page_reuse(vmf, NULL);
3633 	return 0;
3634 }
3635 
wp_page_shared(struct vm_fault * vmf,struct folio * folio)3636 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3637 	__releases(vmf->ptl)
3638 {
3639 	struct vm_area_struct *vma = vmf->vma;
3640 	vm_fault_t ret = 0;
3641 
3642 	folio_get(folio);
3643 
3644 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3645 		vm_fault_t tmp;
3646 
3647 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3648 		tmp = vmf_can_call_fault(vmf);
3649 		if (tmp) {
3650 			folio_put(folio);
3651 			return tmp;
3652 		}
3653 
3654 		tmp = do_page_mkwrite(vmf, folio);
3655 		if (unlikely(!tmp || (tmp &
3656 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3657 			folio_put(folio);
3658 			return tmp;
3659 		}
3660 		tmp = finish_mkwrite_fault(vmf, folio);
3661 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3662 			folio_unlock(folio);
3663 			folio_put(folio);
3664 			return tmp;
3665 		}
3666 	} else {
3667 		wp_page_reuse(vmf, folio);
3668 		folio_lock(folio);
3669 	}
3670 	ret |= fault_dirty_shared_page(vmf);
3671 	folio_put(folio);
3672 
3673 	return ret;
3674 }
3675 
wp_can_reuse_anon_folio(struct folio * folio,struct vm_area_struct * vma)3676 static bool wp_can_reuse_anon_folio(struct folio *folio,
3677 				    struct vm_area_struct *vma)
3678 {
3679 	/*
3680 	 * We could currently only reuse a subpage of a large folio if no
3681 	 * other subpages of the large folios are still mapped. However,
3682 	 * let's just consistently not reuse subpages even if we could
3683 	 * reuse in that scenario, and give back a large folio a bit
3684 	 * sooner.
3685 	 */
3686 	if (folio_test_large(folio))
3687 		return false;
3688 
3689 	/*
3690 	 * We have to verify under folio lock: these early checks are
3691 	 * just an optimization to avoid locking the folio and freeing
3692 	 * the swapcache if there is little hope that we can reuse.
3693 	 *
3694 	 * KSM doesn't necessarily raise the folio refcount.
3695 	 */
3696 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3697 		return false;
3698 	if (!folio_test_lru(folio))
3699 		/*
3700 		 * We cannot easily detect+handle references from
3701 		 * remote LRU caches or references to LRU folios.
3702 		 */
3703 		lru_add_drain();
3704 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3705 		return false;
3706 	if (!folio_trylock(folio))
3707 		return false;
3708 	if (folio_test_swapcache(folio))
3709 		folio_free_swap(folio);
3710 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3711 		folio_unlock(folio);
3712 		return false;
3713 	}
3714 	/*
3715 	 * Ok, we've got the only folio reference from our mapping
3716 	 * and the folio is locked, it's dark out, and we're wearing
3717 	 * sunglasses. Hit it.
3718 	 */
3719 	folio_move_anon_rmap(folio, vma);
3720 	folio_unlock(folio);
3721 	return true;
3722 }
3723 
3724 /*
3725  * This routine handles present pages, when
3726  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3727  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3728  *   (FAULT_FLAG_UNSHARE)
3729  *
3730  * It is done by copying the page to a new address and decrementing the
3731  * shared-page counter for the old page.
3732  *
3733  * Note that this routine assumes that the protection checks have been
3734  * done by the caller (the low-level page fault routine in most cases).
3735  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3736  * done any necessary COW.
3737  *
3738  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3739  * though the page will change only once the write actually happens. This
3740  * avoids a few races, and potentially makes it more efficient.
3741  *
3742  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3743  * but allow concurrent faults), with pte both mapped and locked.
3744  * We return with mmap_lock still held, but pte unmapped and unlocked.
3745  */
do_wp_page(struct vm_fault * vmf)3746 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3747 	__releases(vmf->ptl)
3748 {
3749 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3750 	struct vm_area_struct *vma = vmf->vma;
3751 	struct folio *folio = NULL;
3752 	pte_t pte;
3753 
3754 	if (likely(!unshare)) {
3755 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3756 			if (!userfaultfd_wp_async(vma)) {
3757 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3758 				return handle_userfault(vmf, VM_UFFD_WP);
3759 			}
3760 
3761 			/*
3762 			 * Nothing needed (cache flush, TLB invalidations,
3763 			 * etc.) because we're only removing the uffd-wp bit,
3764 			 * which is completely invisible to the user.
3765 			 */
3766 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3767 
3768 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3769 			/*
3770 			 * Update this to be prepared for following up CoW
3771 			 * handling
3772 			 */
3773 			vmf->orig_pte = pte;
3774 		}
3775 
3776 		/*
3777 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3778 		 * is flushed in this case before copying.
3779 		 */
3780 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3781 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3782 			flush_tlb_page(vmf->vma, vmf->address);
3783 	}
3784 
3785 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3786 
3787 	if (vmf->page)
3788 		folio = page_folio(vmf->page);
3789 
3790 	/*
3791 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3792 	 * FAULT_FLAG_WRITE set at this point.
3793 	 */
3794 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3795 		/*
3796 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3797 		 * VM_PFNMAP VMA.
3798 		 *
3799 		 * We should not cow pages in a shared writeable mapping.
3800 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3801 		 */
3802 		if (!vmf->page)
3803 			return wp_pfn_shared(vmf);
3804 		return wp_page_shared(vmf, folio);
3805 	}
3806 
3807 	/*
3808 	 * Private mapping: create an exclusive anonymous page copy if reuse
3809 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3810 	 *
3811 	 * If we encounter a page that is marked exclusive, we must reuse
3812 	 * the page without further checks.
3813 	 */
3814 	if (folio && folio_test_anon(folio) &&
3815 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3816 		if (!PageAnonExclusive(vmf->page))
3817 			SetPageAnonExclusive(vmf->page);
3818 		if (unlikely(unshare)) {
3819 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3820 			return 0;
3821 		}
3822 		wp_page_reuse(vmf, folio);
3823 		return 0;
3824 	}
3825 	/*
3826 	 * Ok, we need to copy. Oh, well..
3827 	 */
3828 	if (folio)
3829 		folio_get(folio);
3830 
3831 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3832 #ifdef CONFIG_KSM
3833 	if (folio && folio_test_ksm(folio))
3834 		count_vm_event(COW_KSM);
3835 #endif
3836 	return wp_page_copy(vmf);
3837 }
3838 
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3839 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3840 		unsigned long start_addr, unsigned long end_addr,
3841 		struct zap_details *details)
3842 {
3843 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3844 }
3845 
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)3846 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3847 					    pgoff_t first_index,
3848 					    pgoff_t last_index,
3849 					    struct zap_details *details)
3850 {
3851 	struct vm_area_struct *vma;
3852 	pgoff_t vba, vea, zba, zea;
3853 
3854 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3855 		vba = vma->vm_pgoff;
3856 		vea = vba + vma_pages(vma) - 1;
3857 		zba = max(first_index, vba);
3858 		zea = min(last_index, vea);
3859 
3860 		unmap_mapping_range_vma(vma,
3861 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3862 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3863 				details);
3864 	}
3865 }
3866 
3867 /**
3868  * unmap_mapping_folio() - Unmap single folio from processes.
3869  * @folio: The locked folio to be unmapped.
3870  *
3871  * Unmap this folio from any userspace process which still has it mmaped.
3872  * Typically, for efficiency, the range of nearby pages has already been
3873  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3874  * truncation or invalidation holds the lock on a folio, it may find that
3875  * the page has been remapped again: and then uses unmap_mapping_folio()
3876  * to unmap it finally.
3877  */
unmap_mapping_folio(struct folio * folio)3878 void unmap_mapping_folio(struct folio *folio)
3879 {
3880 	struct address_space *mapping = folio->mapping;
3881 	struct zap_details details = { };
3882 	pgoff_t	first_index;
3883 	pgoff_t	last_index;
3884 
3885 	VM_BUG_ON(!folio_test_locked(folio));
3886 
3887 	first_index = folio->index;
3888 	last_index = folio_next_index(folio) - 1;
3889 
3890 	details.even_cows = false;
3891 	details.single_folio = folio;
3892 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3893 
3894 	i_mmap_lock_read(mapping);
3895 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3896 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3897 					 last_index, &details);
3898 	i_mmap_unlock_read(mapping);
3899 }
3900 
3901 /**
3902  * unmap_mapping_pages() - Unmap pages from processes.
3903  * @mapping: The address space containing pages to be unmapped.
3904  * @start: Index of first page to be unmapped.
3905  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3906  * @even_cows: Whether to unmap even private COWed pages.
3907  *
3908  * Unmap the pages in this address space from any userspace process which
3909  * has them mmaped.  Generally, you want to remove COWed pages as well when
3910  * a file is being truncated, but not when invalidating pages from the page
3911  * cache.
3912  */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3913 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3914 		pgoff_t nr, bool even_cows)
3915 {
3916 	struct zap_details details = { };
3917 	pgoff_t	first_index = start;
3918 	pgoff_t	last_index = start + nr - 1;
3919 
3920 	details.even_cows = even_cows;
3921 	if (last_index < first_index)
3922 		last_index = ULONG_MAX;
3923 
3924 	i_mmap_lock_read(mapping);
3925 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3926 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3927 					 last_index, &details);
3928 	i_mmap_unlock_read(mapping);
3929 }
3930 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3931 
3932 /**
3933  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3934  * address_space corresponding to the specified byte range in the underlying
3935  * file.
3936  *
3937  * @mapping: the address space containing mmaps to be unmapped.
3938  * @holebegin: byte in first page to unmap, relative to the start of
3939  * the underlying file.  This will be rounded down to a PAGE_SIZE
3940  * boundary.  Note that this is different from truncate_pagecache(), which
3941  * must keep the partial page.  In contrast, we must get rid of
3942  * partial pages.
3943  * @holelen: size of prospective hole in bytes.  This will be rounded
3944  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3945  * end of the file.
3946  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3947  * but 0 when invalidating pagecache, don't throw away private data.
3948  */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3949 void unmap_mapping_range(struct address_space *mapping,
3950 		loff_t const holebegin, loff_t const holelen, int even_cows)
3951 {
3952 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3953 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3954 
3955 	/* Check for overflow. */
3956 	if (sizeof(holelen) > sizeof(hlen)) {
3957 		long long holeend =
3958 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3959 		if (holeend & ~(long long)ULONG_MAX)
3960 			hlen = ULONG_MAX - hba + 1;
3961 	}
3962 
3963 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3964 }
3965 EXPORT_SYMBOL(unmap_mapping_range);
3966 
3967 /*
3968  * Restore a potential device exclusive pte to a working pte entry
3969  */
remove_device_exclusive_entry(struct vm_fault * vmf)3970 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3971 {
3972 	struct folio *folio = page_folio(vmf->page);
3973 	struct vm_area_struct *vma = vmf->vma;
3974 	struct mmu_notifier_range range;
3975 	vm_fault_t ret;
3976 
3977 	/*
3978 	 * We need a reference to lock the folio because we don't hold
3979 	 * the PTL so a racing thread can remove the device-exclusive
3980 	 * entry and unmap it. If the folio is free the entry must
3981 	 * have been removed already. If it happens to have already
3982 	 * been re-allocated after being freed all we do is lock and
3983 	 * unlock it.
3984 	 */
3985 	if (!folio_try_get(folio))
3986 		return 0;
3987 
3988 	ret = folio_lock_or_retry(folio, vmf);
3989 	if (ret) {
3990 		folio_put(folio);
3991 		return ret;
3992 	}
3993 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3994 				vma->vm_mm, vmf->address & PAGE_MASK,
3995 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3996 	mmu_notifier_invalidate_range_start(&range);
3997 
3998 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3999 				&vmf->ptl);
4000 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4001 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
4002 
4003 	if (vmf->pte)
4004 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4005 	folio_unlock(folio);
4006 	folio_put(folio);
4007 
4008 	mmu_notifier_invalidate_range_end(&range);
4009 	return 0;
4010 }
4011 
should_try_to_free_swap(struct folio * folio,struct vm_area_struct * vma,unsigned int fault_flags)4012 static inline bool should_try_to_free_swap(struct folio *folio,
4013 					   struct vm_area_struct *vma,
4014 					   unsigned int fault_flags)
4015 {
4016 	if (!folio_test_swapcache(folio))
4017 		return false;
4018 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
4019 	    folio_test_mlocked(folio))
4020 		return true;
4021 	/*
4022 	 * If we want to map a page that's in the swapcache writable, we
4023 	 * have to detect via the refcount if we're really the exclusive
4024 	 * user. Try freeing the swapcache to get rid of the swapcache
4025 	 * reference only in case it's likely that we'll be the exlusive user.
4026 	 */
4027 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
4028 		folio_ref_count(folio) == (1 + folio_nr_pages(folio));
4029 }
4030 
pte_marker_clear(struct vm_fault * vmf)4031 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
4032 {
4033 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4034 				       vmf->address, &vmf->ptl);
4035 	if (!vmf->pte)
4036 		return 0;
4037 	/*
4038 	 * Be careful so that we will only recover a special uffd-wp pte into a
4039 	 * none pte.  Otherwise it means the pte could have changed, so retry.
4040 	 *
4041 	 * This should also cover the case where e.g. the pte changed
4042 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
4043 	 * So is_pte_marker() check is not enough to safely drop the pte.
4044 	 */
4045 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
4046 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
4047 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4048 	return 0;
4049 }
4050 
do_pte_missing(struct vm_fault * vmf)4051 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
4052 {
4053 	if (vma_is_anonymous(vmf->vma))
4054 		return do_anonymous_page(vmf);
4055 	else
4056 		return do_fault(vmf);
4057 }
4058 
4059 /*
4060  * This is actually a page-missing access, but with uffd-wp special pte
4061  * installed.  It means this pte was wr-protected before being unmapped.
4062  */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)4063 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
4064 {
4065 	/*
4066 	 * Just in case there're leftover special ptes even after the region
4067 	 * got unregistered - we can simply clear them.
4068 	 */
4069 	if (unlikely(!userfaultfd_wp(vmf->vma)))
4070 		return pte_marker_clear(vmf);
4071 
4072 	return do_pte_missing(vmf);
4073 }
4074 
handle_pte_marker(struct vm_fault * vmf)4075 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4076 {
4077 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
4078 	unsigned long marker = pte_marker_get(entry);
4079 
4080 	/*
4081 	 * PTE markers should never be empty.  If anything weird happened,
4082 	 * the best thing to do is to kill the process along with its mm.
4083 	 */
4084 	if (WARN_ON_ONCE(!marker))
4085 		return VM_FAULT_SIGBUS;
4086 
4087 	/* Higher priority than uffd-wp when data corrupted */
4088 	if (marker & PTE_MARKER_POISONED)
4089 		return VM_FAULT_HWPOISON;
4090 
4091 	/* Hitting a guard page is always a fatal condition. */
4092 	if (marker & PTE_MARKER_GUARD)
4093 		return VM_FAULT_SIGSEGV;
4094 
4095 	if (pte_marker_entry_uffd_wp(entry))
4096 		return pte_marker_handle_uffd_wp(vmf);
4097 
4098 	/* This is an unknown pte marker */
4099 	return VM_FAULT_SIGBUS;
4100 }
4101 
__alloc_swap_folio(struct vm_fault * vmf)4102 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4103 {
4104 	struct vm_area_struct *vma = vmf->vma;
4105 	struct folio *folio;
4106 	swp_entry_t entry;
4107 
4108 	folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4109 	if (!folio)
4110 		return NULL;
4111 
4112 	entry = pte_to_swp_entry(vmf->orig_pte);
4113 	if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4114 					   GFP_KERNEL, entry)) {
4115 		folio_put(folio);
4116 		return NULL;
4117 	}
4118 
4119 	return folio;
4120 }
4121 
4122 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
non_swapcache_batch(swp_entry_t entry,int max_nr)4123 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
4124 {
4125 	struct swap_info_struct *si = swp_swap_info(entry);
4126 	pgoff_t offset = swp_offset(entry);
4127 	int i;
4128 
4129 	/*
4130 	 * While allocating a large folio and doing swap_read_folio, which is
4131 	 * the case the being faulted pte doesn't have swapcache. We need to
4132 	 * ensure all PTEs have no cache as well, otherwise, we might go to
4133 	 * swap devices while the content is in swapcache.
4134 	 */
4135 	for (i = 0; i < max_nr; i++) {
4136 		if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
4137 			return i;
4138 	}
4139 
4140 	return i;
4141 }
4142 
4143 /*
4144  * Check if the PTEs within a range are contiguous swap entries
4145  * and have consistent swapcache, zeromap.
4146  */
can_swapin_thp(struct vm_fault * vmf,pte_t * ptep,int nr_pages)4147 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4148 {
4149 	unsigned long addr;
4150 	swp_entry_t entry;
4151 	int idx;
4152 	pte_t pte;
4153 
4154 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4155 	idx = (vmf->address - addr) / PAGE_SIZE;
4156 	pte = ptep_get(ptep);
4157 
4158 	if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4159 		return false;
4160 	entry = pte_to_swp_entry(pte);
4161 	if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4162 		return false;
4163 
4164 	/*
4165 	 * swap_read_folio() can't handle the case a large folio is hybridly
4166 	 * from different backends. And they are likely corner cases. Similar
4167 	 * things might be added once zswap support large folios.
4168 	 */
4169 	if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4170 		return false;
4171 	if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4172 		return false;
4173 
4174 	return true;
4175 }
4176 
thp_swap_suitable_orders(pgoff_t swp_offset,unsigned long addr,unsigned long orders)4177 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4178 						     unsigned long addr,
4179 						     unsigned long orders)
4180 {
4181 	int order, nr;
4182 
4183 	order = highest_order(orders);
4184 
4185 	/*
4186 	 * To swap in a THP with nr pages, we require that its first swap_offset
4187 	 * is aligned with that number, as it was when the THP was swapped out.
4188 	 * This helps filter out most invalid entries.
4189 	 */
4190 	while (orders) {
4191 		nr = 1 << order;
4192 		if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4193 			break;
4194 		order = next_order(&orders, order);
4195 	}
4196 
4197 	return orders;
4198 }
4199 
alloc_swap_folio(struct vm_fault * vmf)4200 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4201 {
4202 	struct vm_area_struct *vma = vmf->vma;
4203 	unsigned long orders;
4204 	struct folio *folio;
4205 	unsigned long addr;
4206 	swp_entry_t entry;
4207 	spinlock_t *ptl;
4208 	pte_t *pte;
4209 	gfp_t gfp;
4210 	int order;
4211 
4212 	/*
4213 	 * If uffd is active for the vma we need per-page fault fidelity to
4214 	 * maintain the uffd semantics.
4215 	 */
4216 	if (unlikely(userfaultfd_armed(vma)))
4217 		goto fallback;
4218 
4219 	/*
4220 	 * A large swapped out folio could be partially or fully in zswap. We
4221 	 * lack handling for such cases, so fallback to swapping in order-0
4222 	 * folio.
4223 	 */
4224 	if (!zswap_never_enabled())
4225 		goto fallback;
4226 
4227 	entry = pte_to_swp_entry(vmf->orig_pte);
4228 	/*
4229 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4230 	 * and suitable for swapping THP.
4231 	 */
4232 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4233 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4234 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4235 	orders = thp_swap_suitable_orders(swp_offset(entry),
4236 					  vmf->address, orders);
4237 
4238 	if (!orders)
4239 		goto fallback;
4240 
4241 	pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4242 				  vmf->address & PMD_MASK, &ptl);
4243 	if (unlikely(!pte))
4244 		goto fallback;
4245 
4246 	/*
4247 	 * For do_swap_page, find the highest order where the aligned range is
4248 	 * completely swap entries with contiguous swap offsets.
4249 	 */
4250 	order = highest_order(orders);
4251 	while (orders) {
4252 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4253 		if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4254 			break;
4255 		order = next_order(&orders, order);
4256 	}
4257 
4258 	pte_unmap_unlock(pte, ptl);
4259 
4260 	/* Try allocating the highest of the remaining orders. */
4261 	gfp = vma_thp_gfp_mask(vma);
4262 	while (orders) {
4263 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4264 		folio = vma_alloc_folio(gfp, order, vma, addr);
4265 		if (folio) {
4266 			if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4267 							    gfp, entry))
4268 				return folio;
4269 			count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
4270 			folio_put(folio);
4271 		}
4272 		count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK);
4273 		order = next_order(&orders, order);
4274 	}
4275 
4276 fallback:
4277 	return __alloc_swap_folio(vmf);
4278 }
4279 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
alloc_swap_folio(struct vm_fault * vmf)4280 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4281 {
4282 	return __alloc_swap_folio(vmf);
4283 }
4284 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4285 
4286 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4287 
4288 /*
4289  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4290  * but allow concurrent faults), and pte mapped but not yet locked.
4291  * We return with pte unmapped and unlocked.
4292  *
4293  * We return with the mmap_lock locked or unlocked in the same cases
4294  * as does filemap_fault().
4295  */
do_swap_page(struct vm_fault * vmf)4296 vm_fault_t do_swap_page(struct vm_fault *vmf)
4297 {
4298 	struct vm_area_struct *vma = vmf->vma;
4299 	struct folio *swapcache, *folio = NULL;
4300 	DECLARE_WAITQUEUE(wait, current);
4301 	struct page *page;
4302 	struct swap_info_struct *si = NULL;
4303 	rmap_t rmap_flags = RMAP_NONE;
4304 	bool need_clear_cache = false;
4305 	bool exclusive = false;
4306 	swp_entry_t entry;
4307 	pte_t pte;
4308 	vm_fault_t ret = 0;
4309 	void *shadow = NULL;
4310 	int nr_pages;
4311 	unsigned long page_idx;
4312 	unsigned long address;
4313 	pte_t *ptep;
4314 
4315 	if (!pte_unmap_same(vmf))
4316 		goto out;
4317 
4318 	entry = pte_to_swp_entry(vmf->orig_pte);
4319 	if (unlikely(non_swap_entry(entry))) {
4320 		if (is_migration_entry(entry)) {
4321 			migration_entry_wait(vma->vm_mm, vmf->pmd,
4322 					     vmf->address);
4323 		} else if (is_device_exclusive_entry(entry)) {
4324 			vmf->page = pfn_swap_entry_to_page(entry);
4325 			ret = remove_device_exclusive_entry(vmf);
4326 		} else if (is_device_private_entry(entry)) {
4327 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4328 				/*
4329 				 * migrate_to_ram is not yet ready to operate
4330 				 * under VMA lock.
4331 				 */
4332 				vma_end_read(vma);
4333 				ret = VM_FAULT_RETRY;
4334 				goto out;
4335 			}
4336 
4337 			vmf->page = pfn_swap_entry_to_page(entry);
4338 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4339 					vmf->address, &vmf->ptl);
4340 			if (unlikely(!vmf->pte ||
4341 				     !pte_same(ptep_get(vmf->pte),
4342 							vmf->orig_pte)))
4343 				goto unlock;
4344 
4345 			/*
4346 			 * Get a page reference while we know the page can't be
4347 			 * freed.
4348 			 */
4349 			get_page(vmf->page);
4350 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4351 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4352 			put_page(vmf->page);
4353 		} else if (is_hwpoison_entry(entry)) {
4354 			ret = VM_FAULT_HWPOISON;
4355 		} else if (is_pte_marker_entry(entry)) {
4356 			ret = handle_pte_marker(vmf);
4357 		} else {
4358 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4359 			ret = VM_FAULT_SIGBUS;
4360 		}
4361 		goto out;
4362 	}
4363 
4364 	/* Prevent swapoff from happening to us. */
4365 	si = get_swap_device(entry);
4366 	if (unlikely(!si))
4367 		goto out;
4368 
4369 	folio = swap_cache_get_folio(entry, vma, vmf->address);
4370 	if (folio)
4371 		page = folio_file_page(folio, swp_offset(entry));
4372 	swapcache = folio;
4373 
4374 	if (!folio) {
4375 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4376 		    __swap_count(entry) == 1) {
4377 			/* skip swapcache */
4378 			folio = alloc_swap_folio(vmf);
4379 			if (folio) {
4380 				__folio_set_locked(folio);
4381 				__folio_set_swapbacked(folio);
4382 
4383 				nr_pages = folio_nr_pages(folio);
4384 				if (folio_test_large(folio))
4385 					entry.val = ALIGN_DOWN(entry.val, nr_pages);
4386 				/*
4387 				 * Prevent parallel swapin from proceeding with
4388 				 * the cache flag. Otherwise, another thread
4389 				 * may finish swapin first, free the entry, and
4390 				 * swapout reusing the same entry. It's
4391 				 * undetectable as pte_same() returns true due
4392 				 * to entry reuse.
4393 				 */
4394 				if (swapcache_prepare(entry, nr_pages)) {
4395 					/*
4396 					 * Relax a bit to prevent rapid
4397 					 * repeated page faults.
4398 					 */
4399 					add_wait_queue(&swapcache_wq, &wait);
4400 					schedule_timeout_uninterruptible(1);
4401 					remove_wait_queue(&swapcache_wq, &wait);
4402 					goto out_page;
4403 				}
4404 				need_clear_cache = true;
4405 
4406 				mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
4407 
4408 				shadow = get_shadow_from_swap_cache(entry);
4409 				if (shadow)
4410 					workingset_refault(folio, shadow);
4411 
4412 				folio_add_lru(folio);
4413 
4414 				/* To provide entry to swap_read_folio() */
4415 				folio->swap = entry;
4416 				swap_read_folio(folio, NULL);
4417 				folio->private = NULL;
4418 			}
4419 		} else {
4420 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4421 						vmf);
4422 			swapcache = folio;
4423 		}
4424 
4425 		if (!folio) {
4426 			/*
4427 			 * Back out if somebody else faulted in this pte
4428 			 * while we released the pte lock.
4429 			 */
4430 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4431 					vmf->address, &vmf->ptl);
4432 			if (likely(vmf->pte &&
4433 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4434 				ret = VM_FAULT_OOM;
4435 			goto unlock;
4436 		}
4437 
4438 		/* Had to read the page from swap area: Major fault */
4439 		ret = VM_FAULT_MAJOR;
4440 		count_vm_event(PGMAJFAULT);
4441 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4442 		page = folio_file_page(folio, swp_offset(entry));
4443 	} else if (PageHWPoison(page)) {
4444 		/*
4445 		 * hwpoisoned dirty swapcache pages are kept for killing
4446 		 * owner processes (which may be unknown at hwpoison time)
4447 		 */
4448 		ret = VM_FAULT_HWPOISON;
4449 		goto out_release;
4450 	}
4451 
4452 	ret |= folio_lock_or_retry(folio, vmf);
4453 	if (ret & VM_FAULT_RETRY)
4454 		goto out_release;
4455 
4456 	if (swapcache) {
4457 		/*
4458 		 * Make sure folio_free_swap() or swapoff did not release the
4459 		 * swapcache from under us.  The page pin, and pte_same test
4460 		 * below, are not enough to exclude that.  Even if it is still
4461 		 * swapcache, we need to check that the page's swap has not
4462 		 * changed.
4463 		 */
4464 		if (unlikely(!folio_test_swapcache(folio) ||
4465 			     page_swap_entry(page).val != entry.val))
4466 			goto out_page;
4467 
4468 		/*
4469 		 * KSM sometimes has to copy on read faults, for example, if
4470 		 * page->index of !PageKSM() pages would be nonlinear inside the
4471 		 * anon VMA -- PageKSM() is lost on actual swapout.
4472 		 */
4473 		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4474 		if (unlikely(!folio)) {
4475 			ret = VM_FAULT_OOM;
4476 			folio = swapcache;
4477 			goto out_page;
4478 		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4479 			ret = VM_FAULT_HWPOISON;
4480 			folio = swapcache;
4481 			goto out_page;
4482 		}
4483 		if (folio != swapcache)
4484 			page = folio_page(folio, 0);
4485 
4486 		/*
4487 		 * If we want to map a page that's in the swapcache writable, we
4488 		 * have to detect via the refcount if we're really the exclusive
4489 		 * owner. Try removing the extra reference from the local LRU
4490 		 * caches if required.
4491 		 */
4492 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4493 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
4494 			lru_add_drain();
4495 	}
4496 
4497 	folio_throttle_swaprate(folio, GFP_KERNEL);
4498 
4499 	/*
4500 	 * Back out if somebody else already faulted in this pte.
4501 	 */
4502 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4503 			&vmf->ptl);
4504 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4505 		goto out_nomap;
4506 
4507 	if (unlikely(!folio_test_uptodate(folio))) {
4508 		ret = VM_FAULT_SIGBUS;
4509 		goto out_nomap;
4510 	}
4511 
4512 	/* allocated large folios for SWP_SYNCHRONOUS_IO */
4513 	if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4514 		unsigned long nr = folio_nr_pages(folio);
4515 		unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4516 		unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4517 		pte_t *folio_ptep = vmf->pte - idx;
4518 		pte_t folio_pte = ptep_get(folio_ptep);
4519 
4520 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4521 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4522 			goto out_nomap;
4523 
4524 		page_idx = idx;
4525 		address = folio_start;
4526 		ptep = folio_ptep;
4527 		goto check_folio;
4528 	}
4529 
4530 	nr_pages = 1;
4531 	page_idx = 0;
4532 	address = vmf->address;
4533 	ptep = vmf->pte;
4534 	if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4535 		int nr = folio_nr_pages(folio);
4536 		unsigned long idx = folio_page_idx(folio, page);
4537 		unsigned long folio_start = address - idx * PAGE_SIZE;
4538 		unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4539 		pte_t *folio_ptep;
4540 		pte_t folio_pte;
4541 
4542 		if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4543 			goto check_folio;
4544 		if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4545 			goto check_folio;
4546 
4547 		folio_ptep = vmf->pte - idx;
4548 		folio_pte = ptep_get(folio_ptep);
4549 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4550 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4551 			goto check_folio;
4552 
4553 		page_idx = idx;
4554 		address = folio_start;
4555 		ptep = folio_ptep;
4556 		nr_pages = nr;
4557 		entry = folio->swap;
4558 		page = &folio->page;
4559 	}
4560 
4561 check_folio:
4562 	/*
4563 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4564 	 * must never point at an anonymous page in the swapcache that is
4565 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4566 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4567 	 * check after taking the PT lock and making sure that nobody
4568 	 * concurrently faulted in this page and set PG_anon_exclusive.
4569 	 */
4570 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4571 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4572 
4573 	/*
4574 	 * Check under PT lock (to protect against concurrent fork() sharing
4575 	 * the swap entry concurrently) for certainly exclusive pages.
4576 	 */
4577 	if (!folio_test_ksm(folio)) {
4578 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4579 		if (folio != swapcache) {
4580 			/*
4581 			 * We have a fresh page that is not exposed to the
4582 			 * swapcache -> certainly exclusive.
4583 			 */
4584 			exclusive = true;
4585 		} else if (exclusive && folio_test_writeback(folio) &&
4586 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4587 			/*
4588 			 * This is tricky: not all swap backends support
4589 			 * concurrent page modifications while under writeback.
4590 			 *
4591 			 * So if we stumble over such a page in the swapcache
4592 			 * we must not set the page exclusive, otherwise we can
4593 			 * map it writable without further checks and modify it
4594 			 * while still under writeback.
4595 			 *
4596 			 * For these problematic swap backends, simply drop the
4597 			 * exclusive marker: this is perfectly fine as we start
4598 			 * writeback only if we fully unmapped the page and
4599 			 * there are no unexpected references on the page after
4600 			 * unmapping succeeded. After fully unmapped, no
4601 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4602 			 * appear, so dropping the exclusive marker and mapping
4603 			 * it only R/O is fine.
4604 			 */
4605 			exclusive = false;
4606 		}
4607 	}
4608 
4609 	/*
4610 	 * Some architectures may have to restore extra metadata to the page
4611 	 * when reading from swap. This metadata may be indexed by swap entry
4612 	 * so this must be called before swap_free().
4613 	 */
4614 	arch_swap_restore(folio_swap(entry, folio), folio);
4615 
4616 	/*
4617 	 * Remove the swap entry and conditionally try to free up the swapcache.
4618 	 * We're already holding a reference on the page but haven't mapped it
4619 	 * yet.
4620 	 */
4621 	swap_free_nr(entry, nr_pages);
4622 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4623 		folio_free_swap(folio);
4624 
4625 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4626 	add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4627 	pte = mk_pte(page, vma->vm_page_prot);
4628 	if (pte_swp_soft_dirty(vmf->orig_pte))
4629 		pte = pte_mksoft_dirty(pte);
4630 	if (pte_swp_uffd_wp(vmf->orig_pte))
4631 		pte = pte_mkuffd_wp(pte);
4632 
4633 	/*
4634 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4635 	 * certainly not shared either because we just allocated them without
4636 	 * exposing them to the swapcache or because the swap entry indicates
4637 	 * exclusivity.
4638 	 */
4639 	if (!folio_test_ksm(folio) &&
4640 	    (exclusive || folio_ref_count(folio) == 1)) {
4641 		if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4642 		    !pte_needs_soft_dirty_wp(vma, pte)) {
4643 			pte = pte_mkwrite(pte, vma);
4644 			if (vmf->flags & FAULT_FLAG_WRITE) {
4645 				pte = pte_mkdirty(pte);
4646 				vmf->flags &= ~FAULT_FLAG_WRITE;
4647 			}
4648 		}
4649 		rmap_flags |= RMAP_EXCLUSIVE;
4650 	}
4651 	folio_ref_add(folio, nr_pages - 1);
4652 	flush_icache_pages(vma, page, nr_pages);
4653 	vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4654 
4655 	/* ksm created a completely new copy */
4656 	if (unlikely(folio != swapcache && swapcache)) {
4657 		folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4658 		folio_add_lru_vma(folio, vma);
4659 	} else if (!folio_test_anon(folio)) {
4660 		/*
4661 		 * We currently only expect small !anon folios which are either
4662 		 * fully exclusive or fully shared, or new allocated large
4663 		 * folios which are fully exclusive. If we ever get large
4664 		 * folios within swapcache here, we have to be careful.
4665 		 */
4666 		VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4667 		VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4668 		folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4669 	} else {
4670 		folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4671 					rmap_flags);
4672 	}
4673 
4674 	VM_BUG_ON(!folio_test_anon(folio) ||
4675 			(pte_write(pte) && !PageAnonExclusive(page)));
4676 	set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4677 	arch_do_swap_page_nr(vma->vm_mm, vma, address,
4678 			pte, pte, nr_pages);
4679 
4680 	folio_unlock(folio);
4681 	if (folio != swapcache && swapcache) {
4682 		/*
4683 		 * Hold the lock to avoid the swap entry to be reused
4684 		 * until we take the PT lock for the pte_same() check
4685 		 * (to avoid false positives from pte_same). For
4686 		 * further safety release the lock after the swap_free
4687 		 * so that the swap count won't change under a
4688 		 * parallel locked swapcache.
4689 		 */
4690 		folio_unlock(swapcache);
4691 		folio_put(swapcache);
4692 	}
4693 
4694 	if (vmf->flags & FAULT_FLAG_WRITE) {
4695 		ret |= do_wp_page(vmf);
4696 		if (ret & VM_FAULT_ERROR)
4697 			ret &= VM_FAULT_ERROR;
4698 		goto out;
4699 	}
4700 
4701 	/* No need to invalidate - it was non-present before */
4702 	update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4703 unlock:
4704 	if (vmf->pte)
4705 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4706 out:
4707 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4708 	if (need_clear_cache) {
4709 		swapcache_clear(si, entry, nr_pages);
4710 		if (waitqueue_active(&swapcache_wq))
4711 			wake_up(&swapcache_wq);
4712 	}
4713 	if (si)
4714 		put_swap_device(si);
4715 	return ret;
4716 out_nomap:
4717 	if (vmf->pte)
4718 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4719 out_page:
4720 	folio_unlock(folio);
4721 out_release:
4722 	folio_put(folio);
4723 	if (folio != swapcache && swapcache) {
4724 		folio_unlock(swapcache);
4725 		folio_put(swapcache);
4726 	}
4727 	if (need_clear_cache) {
4728 		swapcache_clear(si, entry, nr_pages);
4729 		if (waitqueue_active(&swapcache_wq))
4730 			wake_up(&swapcache_wq);
4731 	}
4732 	if (si)
4733 		put_swap_device(si);
4734 	return ret;
4735 }
4736 
pte_range_none(pte_t * pte,int nr_pages)4737 static bool pte_range_none(pte_t *pte, int nr_pages)
4738 {
4739 	int i;
4740 
4741 	for (i = 0; i < nr_pages; i++) {
4742 		if (!pte_none(ptep_get_lockless(pte + i)))
4743 			return false;
4744 	}
4745 
4746 	return true;
4747 }
4748 
alloc_anon_folio(struct vm_fault * vmf)4749 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4750 {
4751 	struct vm_area_struct *vma = vmf->vma;
4752 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4753 	unsigned long orders;
4754 	struct folio *folio;
4755 	unsigned long addr;
4756 	pte_t *pte;
4757 	gfp_t gfp;
4758 	int order;
4759 
4760 	/*
4761 	 * If uffd is active for the vma we need per-page fault fidelity to
4762 	 * maintain the uffd semantics.
4763 	 */
4764 	if (unlikely(userfaultfd_armed(vma)))
4765 		goto fallback;
4766 
4767 	/*
4768 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4769 	 * for this vma. Then filter out the orders that can't be allocated over
4770 	 * the faulting address and still be fully contained in the vma.
4771 	 */
4772 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4773 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4774 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4775 
4776 	if (!orders)
4777 		goto fallback;
4778 
4779 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4780 	if (!pte)
4781 		return ERR_PTR(-EAGAIN);
4782 
4783 	/*
4784 	 * Find the highest order where the aligned range is completely
4785 	 * pte_none(). Note that all remaining orders will be completely
4786 	 * pte_none().
4787 	 */
4788 	order = highest_order(orders);
4789 	while (orders) {
4790 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4791 		if (pte_range_none(pte + pte_index(addr), 1 << order))
4792 			break;
4793 		order = next_order(&orders, order);
4794 	}
4795 
4796 	pte_unmap(pte);
4797 
4798 	if (!orders)
4799 		goto fallback;
4800 
4801 	/* Try allocating the highest of the remaining orders. */
4802 	gfp = vma_thp_gfp_mask(vma);
4803 	while (orders) {
4804 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4805 		folio = vma_alloc_folio(gfp, order, vma, addr);
4806 		if (folio) {
4807 			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4808 				count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4809 				folio_put(folio);
4810 				goto next;
4811 			}
4812 			folio_throttle_swaprate(folio, gfp);
4813 			/*
4814 			 * When a folio is not zeroed during allocation
4815 			 * (__GFP_ZERO not used) or user folios require special
4816 			 * handling, folio_zero_user() is used to make sure
4817 			 * that the page corresponding to the faulting address
4818 			 * will be hot in the cache after zeroing.
4819 			 */
4820 			if (user_alloc_needs_zeroing())
4821 				folio_zero_user(folio, vmf->address);
4822 			return folio;
4823 		}
4824 next:
4825 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4826 		order = next_order(&orders, order);
4827 	}
4828 
4829 fallback:
4830 #endif
4831 	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4832 }
4833 
4834 /*
4835  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4836  * but allow concurrent faults), and pte mapped but not yet locked.
4837  * We return with mmap_lock still held, but pte unmapped and unlocked.
4838  */
do_anonymous_page(struct vm_fault * vmf)4839 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4840 {
4841 	struct vm_area_struct *vma = vmf->vma;
4842 	unsigned long addr = vmf->address;
4843 	struct folio *folio;
4844 	vm_fault_t ret = 0;
4845 	int nr_pages = 1;
4846 	pte_t entry;
4847 
4848 	/* File mapping without ->vm_ops ? */
4849 	if (vma->vm_flags & VM_SHARED)
4850 		return VM_FAULT_SIGBUS;
4851 
4852 	/*
4853 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4854 	 * be distinguished from a transient failure of pte_offset_map().
4855 	 */
4856 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4857 		return VM_FAULT_OOM;
4858 
4859 	/* Use the zero-page for reads */
4860 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4861 			!mm_forbids_zeropage(vma->vm_mm)) {
4862 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4863 						vma->vm_page_prot));
4864 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4865 				vmf->address, &vmf->ptl);
4866 		if (!vmf->pte)
4867 			goto unlock;
4868 		if (vmf_pte_changed(vmf)) {
4869 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4870 			goto unlock;
4871 		}
4872 		ret = check_stable_address_space(vma->vm_mm);
4873 		if (ret)
4874 			goto unlock;
4875 		/* Deliver the page fault to userland, check inside PT lock */
4876 		if (userfaultfd_missing(vma)) {
4877 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4878 			return handle_userfault(vmf, VM_UFFD_MISSING);
4879 		}
4880 		goto setpte;
4881 	}
4882 
4883 	/* Allocate our own private page. */
4884 	ret = vmf_anon_prepare(vmf);
4885 	if (ret)
4886 		return ret;
4887 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4888 	folio = alloc_anon_folio(vmf);
4889 	if (IS_ERR(folio))
4890 		return 0;
4891 	if (!folio)
4892 		goto oom;
4893 
4894 	nr_pages = folio_nr_pages(folio);
4895 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4896 
4897 	/*
4898 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4899 	 * preceding stores to the page contents become visible before
4900 	 * the set_pte_at() write.
4901 	 */
4902 	__folio_mark_uptodate(folio);
4903 
4904 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4905 	entry = pte_sw_mkyoung(entry);
4906 	if (vma->vm_flags & VM_WRITE)
4907 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4908 
4909 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4910 	if (!vmf->pte)
4911 		goto release;
4912 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4913 		update_mmu_tlb(vma, addr, vmf->pte);
4914 		goto release;
4915 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4916 		update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4917 		goto release;
4918 	}
4919 
4920 	ret = check_stable_address_space(vma->vm_mm);
4921 	if (ret)
4922 		goto release;
4923 
4924 	/* Deliver the page fault to userland, check inside PT lock */
4925 	if (userfaultfd_missing(vma)) {
4926 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4927 		folio_put(folio);
4928 		return handle_userfault(vmf, VM_UFFD_MISSING);
4929 	}
4930 
4931 	folio_ref_add(folio, nr_pages - 1);
4932 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4933 	count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4934 	folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4935 	folio_add_lru_vma(folio, vma);
4936 setpte:
4937 	if (vmf_orig_pte_uffd_wp(vmf))
4938 		entry = pte_mkuffd_wp(entry);
4939 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4940 
4941 	/* No need to invalidate - it was non-present before */
4942 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4943 unlock:
4944 	if (vmf->pte)
4945 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4946 	return ret;
4947 release:
4948 	folio_put(folio);
4949 	goto unlock;
4950 oom:
4951 	return VM_FAULT_OOM;
4952 }
4953 
4954 /*
4955  * The mmap_lock must have been held on entry, and may have been
4956  * released depending on flags and vma->vm_ops->fault() return value.
4957  * See filemap_fault() and __lock_page_retry().
4958  */
__do_fault(struct vm_fault * vmf)4959 static vm_fault_t __do_fault(struct vm_fault *vmf)
4960 {
4961 	struct vm_area_struct *vma = vmf->vma;
4962 	struct folio *folio;
4963 	vm_fault_t ret;
4964 
4965 	/*
4966 	 * Preallocate pte before we take page_lock because this might lead to
4967 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4968 	 *				lock_page(A)
4969 	 *				SetPageWriteback(A)
4970 	 *				unlock_page(A)
4971 	 * lock_page(B)
4972 	 *				lock_page(B)
4973 	 * pte_alloc_one
4974 	 *   shrink_folio_list
4975 	 *     wait_on_page_writeback(A)
4976 	 *				SetPageWriteback(B)
4977 	 *				unlock_page(B)
4978 	 *				# flush A, B to clear the writeback
4979 	 */
4980 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4981 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4982 		if (!vmf->prealloc_pte)
4983 			return VM_FAULT_OOM;
4984 	}
4985 
4986 	ret = vma->vm_ops->fault(vmf);
4987 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4988 			    VM_FAULT_DONE_COW)))
4989 		return ret;
4990 
4991 	folio = page_folio(vmf->page);
4992 	if (unlikely(PageHWPoison(vmf->page))) {
4993 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4994 		if (ret & VM_FAULT_LOCKED) {
4995 			if (page_mapped(vmf->page))
4996 				unmap_mapping_folio(folio);
4997 			/* Retry if a clean folio was removed from the cache. */
4998 			if (mapping_evict_folio(folio->mapping, folio))
4999 				poisonret = VM_FAULT_NOPAGE;
5000 			folio_unlock(folio);
5001 		}
5002 		folio_put(folio);
5003 		vmf->page = NULL;
5004 		return poisonret;
5005 	}
5006 
5007 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
5008 		folio_lock(folio);
5009 	else
5010 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
5011 
5012 	return ret;
5013 }
5014 
5015 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)5016 static void deposit_prealloc_pte(struct vm_fault *vmf)
5017 {
5018 	struct vm_area_struct *vma = vmf->vma;
5019 
5020 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
5021 	/*
5022 	 * We are going to consume the prealloc table,
5023 	 * count that as nr_ptes.
5024 	 */
5025 	mm_inc_nr_ptes(vma->vm_mm);
5026 	vmf->prealloc_pte = NULL;
5027 }
5028 
do_set_pmd(struct vm_fault * vmf,struct page * page)5029 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5030 {
5031 	struct folio *folio = page_folio(page);
5032 	struct vm_area_struct *vma = vmf->vma;
5033 	bool write = vmf->flags & FAULT_FLAG_WRITE;
5034 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
5035 	pmd_t entry;
5036 	vm_fault_t ret = VM_FAULT_FALLBACK;
5037 
5038 	/*
5039 	 * It is too late to allocate a small folio, we already have a large
5040 	 * folio in the pagecache: especially s390 KVM cannot tolerate any
5041 	 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
5042 	 * PMD mappings if THPs are disabled.
5043 	 */
5044 	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
5045 		return ret;
5046 
5047 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
5048 		return ret;
5049 
5050 	if (folio_order(folio) != HPAGE_PMD_ORDER)
5051 		return ret;
5052 	page = &folio->page;
5053 
5054 	/*
5055 	 * Just backoff if any subpage of a THP is corrupted otherwise
5056 	 * the corrupted page may mapped by PMD silently to escape the
5057 	 * check.  This kind of THP just can be PTE mapped.  Access to
5058 	 * the corrupted subpage should trigger SIGBUS as expected.
5059 	 */
5060 	if (unlikely(folio_test_has_hwpoisoned(folio)))
5061 		return ret;
5062 
5063 	/*
5064 	 * Archs like ppc64 need additional space to store information
5065 	 * related to pte entry. Use the preallocated table for that.
5066 	 */
5067 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
5068 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5069 		if (!vmf->prealloc_pte)
5070 			return VM_FAULT_OOM;
5071 	}
5072 
5073 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
5074 	if (unlikely(!pmd_none(*vmf->pmd)))
5075 		goto out;
5076 
5077 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
5078 
5079 	entry = mk_huge_pmd(page, vma->vm_page_prot);
5080 	if (write)
5081 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5082 
5083 	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5084 	folio_add_file_rmap_pmd(folio, page, vma);
5085 
5086 	/*
5087 	 * deposit and withdraw with pmd lock held
5088 	 */
5089 	if (arch_needs_pgtable_deposit())
5090 		deposit_prealloc_pte(vmf);
5091 
5092 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5093 
5094 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5095 
5096 	/* fault is handled */
5097 	ret = 0;
5098 	count_vm_event(THP_FILE_MAPPED);
5099 out:
5100 	spin_unlock(vmf->ptl);
5101 	return ret;
5102 }
5103 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)5104 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5105 {
5106 	return VM_FAULT_FALLBACK;
5107 }
5108 #endif
5109 
5110 /**
5111  * set_pte_range - Set a range of PTEs to point to pages in a folio.
5112  * @vmf: Fault decription.
5113  * @folio: The folio that contains @page.
5114  * @page: The first page to create a PTE for.
5115  * @nr: The number of PTEs to create.
5116  * @addr: The first address to create a PTE for.
5117  */
set_pte_range(struct vm_fault * vmf,struct folio * folio,struct page * page,unsigned int nr,unsigned long addr)5118 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5119 		struct page *page, unsigned int nr, unsigned long addr)
5120 {
5121 	struct vm_area_struct *vma = vmf->vma;
5122 	bool write = vmf->flags & FAULT_FLAG_WRITE;
5123 	bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5124 	pte_t entry;
5125 
5126 	flush_icache_pages(vma, page, nr);
5127 	entry = mk_pte(page, vma->vm_page_prot);
5128 
5129 	if (prefault && arch_wants_old_prefaulted_pte())
5130 		entry = pte_mkold(entry);
5131 	else
5132 		entry = pte_sw_mkyoung(entry);
5133 
5134 	if (write)
5135 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5136 	if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5137 		entry = pte_mkuffd_wp(entry);
5138 	/* copy-on-write page */
5139 	if (write && !(vma->vm_flags & VM_SHARED)) {
5140 		VM_BUG_ON_FOLIO(nr != 1, folio);
5141 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5142 		folio_add_lru_vma(folio, vma);
5143 	} else {
5144 		folio_add_file_rmap_ptes(folio, page, nr, vma);
5145 	}
5146 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5147 
5148 	/* no need to invalidate: a not-present page won't be cached */
5149 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5150 }
5151 
vmf_pte_changed(struct vm_fault * vmf)5152 static bool vmf_pte_changed(struct vm_fault *vmf)
5153 {
5154 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5155 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5156 
5157 	return !pte_none(ptep_get(vmf->pte));
5158 }
5159 
5160 /**
5161  * finish_fault - finish page fault once we have prepared the page to fault
5162  *
5163  * @vmf: structure describing the fault
5164  *
5165  * This function handles all that is needed to finish a page fault once the
5166  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5167  * given page, adds reverse page mapping, handles memcg charges and LRU
5168  * addition.
5169  *
5170  * The function expects the page to be locked and on success it consumes a
5171  * reference of a page being mapped (for the PTE which maps it).
5172  *
5173  * Return: %0 on success, %VM_FAULT_ code in case of error.
5174  */
finish_fault(struct vm_fault * vmf)5175 vm_fault_t finish_fault(struct vm_fault *vmf)
5176 {
5177 	struct vm_area_struct *vma = vmf->vma;
5178 	struct page *page;
5179 	struct folio *folio;
5180 	vm_fault_t ret;
5181 	bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5182 		      !(vma->vm_flags & VM_SHARED);
5183 	int type, nr_pages;
5184 	unsigned long addr;
5185 	bool needs_fallback = false;
5186 
5187 fallback:
5188 	addr = vmf->address;
5189 
5190 	/* Did we COW the page? */
5191 	if (is_cow)
5192 		page = vmf->cow_page;
5193 	else
5194 		page = vmf->page;
5195 
5196 	/*
5197 	 * check even for read faults because we might have lost our CoWed
5198 	 * page
5199 	 */
5200 	if (!(vma->vm_flags & VM_SHARED)) {
5201 		ret = check_stable_address_space(vma->vm_mm);
5202 		if (ret)
5203 			return ret;
5204 	}
5205 
5206 	if (pmd_none(*vmf->pmd)) {
5207 		if (PageTransCompound(page)) {
5208 			ret = do_set_pmd(vmf, page);
5209 			if (ret != VM_FAULT_FALLBACK)
5210 				return ret;
5211 		}
5212 
5213 		if (vmf->prealloc_pte)
5214 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5215 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5216 			return VM_FAULT_OOM;
5217 	}
5218 
5219 	folio = page_folio(page);
5220 	nr_pages = folio_nr_pages(folio);
5221 
5222 	/*
5223 	 * Using per-page fault to maintain the uffd semantics, and same
5224 	 * approach also applies to non-anonymous-shmem faults to avoid
5225 	 * inflating the RSS of the process.
5226 	 */
5227 	if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) ||
5228 	    unlikely(needs_fallback)) {
5229 		nr_pages = 1;
5230 	} else if (nr_pages > 1) {
5231 		pgoff_t idx = folio_page_idx(folio, page);
5232 		/* The page offset of vmf->address within the VMA. */
5233 		pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5234 		/* The index of the entry in the pagetable for fault page. */
5235 		pgoff_t pte_off = pte_index(vmf->address);
5236 
5237 		/*
5238 		 * Fallback to per-page fault in case the folio size in page
5239 		 * cache beyond the VMA limits and PMD pagetable limits.
5240 		 */
5241 		if (unlikely(vma_off < idx ||
5242 			    vma_off + (nr_pages - idx) > vma_pages(vma) ||
5243 			    pte_off < idx ||
5244 			    pte_off + (nr_pages - idx)  > PTRS_PER_PTE)) {
5245 			nr_pages = 1;
5246 		} else {
5247 			/* Now we can set mappings for the whole large folio. */
5248 			addr = vmf->address - idx * PAGE_SIZE;
5249 			page = &folio->page;
5250 		}
5251 	}
5252 
5253 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5254 				       addr, &vmf->ptl);
5255 	if (!vmf->pte)
5256 		return VM_FAULT_NOPAGE;
5257 
5258 	/* Re-check under ptl */
5259 	if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5260 		update_mmu_tlb(vma, addr, vmf->pte);
5261 		ret = VM_FAULT_NOPAGE;
5262 		goto unlock;
5263 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5264 		needs_fallback = true;
5265 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5266 		goto fallback;
5267 	}
5268 
5269 	folio_ref_add(folio, nr_pages - 1);
5270 	set_pte_range(vmf, folio, page, nr_pages, addr);
5271 	type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5272 	add_mm_counter(vma->vm_mm, type, nr_pages);
5273 	ret = 0;
5274 
5275 unlock:
5276 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5277 	return ret;
5278 }
5279 
5280 static unsigned long fault_around_pages __read_mostly =
5281 	65536 >> PAGE_SHIFT;
5282 
5283 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)5284 static int fault_around_bytes_get(void *data, u64 *val)
5285 {
5286 	*val = fault_around_pages << PAGE_SHIFT;
5287 	return 0;
5288 }
5289 
5290 /*
5291  * fault_around_bytes must be rounded down to the nearest page order as it's
5292  * what do_fault_around() expects to see.
5293  */
fault_around_bytes_set(void * data,u64 val)5294 static int fault_around_bytes_set(void *data, u64 val)
5295 {
5296 	if (val / PAGE_SIZE > PTRS_PER_PTE)
5297 		return -EINVAL;
5298 
5299 	/*
5300 	 * The minimum value is 1 page, however this results in no fault-around
5301 	 * at all. See should_fault_around().
5302 	 */
5303 	val = max(val, PAGE_SIZE);
5304 	fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5305 
5306 	return 0;
5307 }
5308 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5309 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5310 
fault_around_debugfs(void)5311 static int __init fault_around_debugfs(void)
5312 {
5313 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5314 				   &fault_around_bytes_fops);
5315 	return 0;
5316 }
5317 late_initcall(fault_around_debugfs);
5318 #endif
5319 
5320 /*
5321  * do_fault_around() tries to map few pages around the fault address. The hope
5322  * is that the pages will be needed soon and this will lower the number of
5323  * faults to handle.
5324  *
5325  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5326  * not ready to be mapped: not up-to-date, locked, etc.
5327  *
5328  * This function doesn't cross VMA or page table boundaries, in order to call
5329  * map_pages() and acquire a PTE lock only once.
5330  *
5331  * fault_around_pages defines how many pages we'll try to map.
5332  * do_fault_around() expects it to be set to a power of two less than or equal
5333  * to PTRS_PER_PTE.
5334  *
5335  * The virtual address of the area that we map is naturally aligned to
5336  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5337  * (and therefore to page order).  This way it's easier to guarantee
5338  * that we don't cross page table boundaries.
5339  */
do_fault_around(struct vm_fault * vmf)5340 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5341 {
5342 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5343 	pgoff_t pte_off = pte_index(vmf->address);
5344 	/* The page offset of vmf->address within the VMA. */
5345 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5346 	pgoff_t from_pte, to_pte;
5347 	vm_fault_t ret;
5348 
5349 	/* The PTE offset of the start address, clamped to the VMA. */
5350 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5351 		       pte_off - min(pte_off, vma_off));
5352 
5353 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
5354 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5355 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5356 
5357 	if (pmd_none(*vmf->pmd)) {
5358 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5359 		if (!vmf->prealloc_pte)
5360 			return VM_FAULT_OOM;
5361 	}
5362 
5363 	rcu_read_lock();
5364 	ret = vmf->vma->vm_ops->map_pages(vmf,
5365 			vmf->pgoff + from_pte - pte_off,
5366 			vmf->pgoff + to_pte - pte_off);
5367 	rcu_read_unlock();
5368 
5369 	return ret;
5370 }
5371 
5372 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)5373 static inline bool should_fault_around(struct vm_fault *vmf)
5374 {
5375 	/* No ->map_pages?  No way to fault around... */
5376 	if (!vmf->vma->vm_ops->map_pages)
5377 		return false;
5378 
5379 	if (uffd_disable_fault_around(vmf->vma))
5380 		return false;
5381 
5382 	/* A single page implies no faulting 'around' at all. */
5383 	return fault_around_pages > 1;
5384 }
5385 
do_read_fault(struct vm_fault * vmf)5386 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5387 {
5388 	vm_fault_t ret = 0;
5389 	struct folio *folio;
5390 
5391 	/*
5392 	 * Let's call ->map_pages() first and use ->fault() as fallback
5393 	 * if page by the offset is not ready to be mapped (cold cache or
5394 	 * something).
5395 	 */
5396 	if (should_fault_around(vmf)) {
5397 		ret = do_fault_around(vmf);
5398 		if (ret)
5399 			return ret;
5400 	}
5401 
5402 	ret = vmf_can_call_fault(vmf);
5403 	if (ret)
5404 		return ret;
5405 
5406 	ret = __do_fault(vmf);
5407 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5408 		return ret;
5409 
5410 	ret |= finish_fault(vmf);
5411 	folio = page_folio(vmf->page);
5412 	folio_unlock(folio);
5413 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5414 		folio_put(folio);
5415 	return ret;
5416 }
5417 
do_cow_fault(struct vm_fault * vmf)5418 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5419 {
5420 	struct vm_area_struct *vma = vmf->vma;
5421 	struct folio *folio;
5422 	vm_fault_t ret;
5423 
5424 	ret = vmf_can_call_fault(vmf);
5425 	if (!ret)
5426 		ret = vmf_anon_prepare(vmf);
5427 	if (ret)
5428 		return ret;
5429 
5430 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5431 	if (!folio)
5432 		return VM_FAULT_OOM;
5433 
5434 	vmf->cow_page = &folio->page;
5435 
5436 	ret = __do_fault(vmf);
5437 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5438 		goto uncharge_out;
5439 	if (ret & VM_FAULT_DONE_COW)
5440 		return ret;
5441 
5442 	if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5443 		ret = VM_FAULT_HWPOISON;
5444 		goto unlock;
5445 	}
5446 	__folio_mark_uptodate(folio);
5447 
5448 	ret |= finish_fault(vmf);
5449 unlock:
5450 	unlock_page(vmf->page);
5451 	put_page(vmf->page);
5452 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5453 		goto uncharge_out;
5454 	return ret;
5455 uncharge_out:
5456 	folio_put(folio);
5457 	return ret;
5458 }
5459 
do_shared_fault(struct vm_fault * vmf)5460 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5461 {
5462 	struct vm_area_struct *vma = vmf->vma;
5463 	vm_fault_t ret, tmp;
5464 	struct folio *folio;
5465 
5466 	ret = vmf_can_call_fault(vmf);
5467 	if (ret)
5468 		return ret;
5469 
5470 	ret = __do_fault(vmf);
5471 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5472 		return ret;
5473 
5474 	folio = page_folio(vmf->page);
5475 
5476 	/*
5477 	 * Check if the backing address space wants to know that the page is
5478 	 * about to become writable
5479 	 */
5480 	if (vma->vm_ops->page_mkwrite) {
5481 		folio_unlock(folio);
5482 		tmp = do_page_mkwrite(vmf, folio);
5483 		if (unlikely(!tmp ||
5484 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5485 			folio_put(folio);
5486 			return tmp;
5487 		}
5488 	}
5489 
5490 	ret |= finish_fault(vmf);
5491 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5492 					VM_FAULT_RETRY))) {
5493 		folio_unlock(folio);
5494 		folio_put(folio);
5495 		return ret;
5496 	}
5497 
5498 	ret |= fault_dirty_shared_page(vmf);
5499 	return ret;
5500 }
5501 
5502 /*
5503  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5504  * but allow concurrent faults).
5505  * The mmap_lock may have been released depending on flags and our
5506  * return value.  See filemap_fault() and __folio_lock_or_retry().
5507  * If mmap_lock is released, vma may become invalid (for example
5508  * by other thread calling munmap()).
5509  */
do_fault(struct vm_fault * vmf)5510 static vm_fault_t do_fault(struct vm_fault *vmf)
5511 {
5512 	struct vm_area_struct *vma = vmf->vma;
5513 	struct mm_struct *vm_mm = vma->vm_mm;
5514 	vm_fault_t ret;
5515 
5516 	/*
5517 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5518 	 */
5519 	if (!vma->vm_ops->fault) {
5520 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5521 					       vmf->address, &vmf->ptl);
5522 		if (unlikely(!vmf->pte))
5523 			ret = VM_FAULT_SIGBUS;
5524 		else {
5525 			/*
5526 			 * Make sure this is not a temporary clearing of pte
5527 			 * by holding ptl and checking again. A R/M/W update
5528 			 * of pte involves: take ptl, clearing the pte so that
5529 			 * we don't have concurrent modification by hardware
5530 			 * followed by an update.
5531 			 */
5532 			if (unlikely(pte_none(ptep_get(vmf->pte))))
5533 				ret = VM_FAULT_SIGBUS;
5534 			else
5535 				ret = VM_FAULT_NOPAGE;
5536 
5537 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5538 		}
5539 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
5540 		ret = do_read_fault(vmf);
5541 	else if (!(vma->vm_flags & VM_SHARED))
5542 		ret = do_cow_fault(vmf);
5543 	else
5544 		ret = do_shared_fault(vmf);
5545 
5546 	/* preallocated pagetable is unused: free it */
5547 	if (vmf->prealloc_pte) {
5548 		pte_free(vm_mm, vmf->prealloc_pte);
5549 		vmf->prealloc_pte = NULL;
5550 	}
5551 	return ret;
5552 }
5553 
numa_migrate_check(struct folio * folio,struct vm_fault * vmf,unsigned long addr,int * flags,bool writable,int * last_cpupid)5554 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5555 		      unsigned long addr, int *flags,
5556 		      bool writable, int *last_cpupid)
5557 {
5558 	struct vm_area_struct *vma = vmf->vma;
5559 
5560 	/*
5561 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5562 	 * much anyway since they can be in shared cache state. This misses
5563 	 * the case where a mapping is writable but the process never writes
5564 	 * to it but pte_write gets cleared during protection updates and
5565 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
5566 	 * background writeback, dirty balancing and application behaviour.
5567 	 */
5568 	if (!writable)
5569 		*flags |= TNF_NO_GROUP;
5570 
5571 	/*
5572 	 * Flag if the folio is shared between multiple address spaces. This
5573 	 * is later used when determining whether to group tasks together
5574 	 */
5575 	if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5576 		*flags |= TNF_SHARED;
5577 	/*
5578 	 * For memory tiering mode, cpupid of slow memory page is used
5579 	 * to record page access time.  So use default value.
5580 	 */
5581 	if (folio_use_access_time(folio))
5582 		*last_cpupid = (-1 & LAST_CPUPID_MASK);
5583 	else
5584 		*last_cpupid = folio_last_cpupid(folio);
5585 
5586 	/* Record the current PID acceesing VMA */
5587 	vma_set_access_pid_bit(vma);
5588 
5589 	count_vm_numa_event(NUMA_HINT_FAULTS);
5590 #ifdef CONFIG_NUMA_BALANCING
5591 	count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5592 #endif
5593 	if (folio_nid(folio) == numa_node_id()) {
5594 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5595 		*flags |= TNF_FAULT_LOCAL;
5596 	}
5597 
5598 	return mpol_misplaced(folio, vmf, addr);
5599 }
5600 
numa_rebuild_single_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long fault_addr,pte_t * fault_pte,bool writable)5601 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5602 					unsigned long fault_addr, pte_t *fault_pte,
5603 					bool writable)
5604 {
5605 	pte_t pte, old_pte;
5606 
5607 	old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5608 	pte = pte_modify(old_pte, vma->vm_page_prot);
5609 	pte = pte_mkyoung(pte);
5610 	if (writable)
5611 		pte = pte_mkwrite(pte, vma);
5612 	ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5613 	update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5614 }
5615 
numa_rebuild_large_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,struct folio * folio,pte_t fault_pte,bool ignore_writable,bool pte_write_upgrade)5616 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5617 				       struct folio *folio, pte_t fault_pte,
5618 				       bool ignore_writable, bool pte_write_upgrade)
5619 {
5620 	int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5621 	unsigned long start, end, addr = vmf->address;
5622 	unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5623 	unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5624 	pte_t *start_ptep;
5625 
5626 	/* Stay within the VMA and within the page table. */
5627 	start = max3(addr_start, pt_start, vma->vm_start);
5628 	end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5629 		   vma->vm_end);
5630 	start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5631 
5632 	/* Restore all PTEs' mapping of the large folio */
5633 	for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5634 		pte_t ptent = ptep_get(start_ptep);
5635 		bool writable = false;
5636 
5637 		if (!pte_present(ptent) || !pte_protnone(ptent))
5638 			continue;
5639 
5640 		if (pfn_folio(pte_pfn(ptent)) != folio)
5641 			continue;
5642 
5643 		if (!ignore_writable) {
5644 			ptent = pte_modify(ptent, vma->vm_page_prot);
5645 			writable = pte_write(ptent);
5646 			if (!writable && pte_write_upgrade &&
5647 			    can_change_pte_writable(vma, addr, ptent))
5648 				writable = true;
5649 		}
5650 
5651 		numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5652 	}
5653 }
5654 
do_numa_page(struct vm_fault * vmf)5655 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5656 {
5657 	struct vm_area_struct *vma = vmf->vma;
5658 	struct folio *folio = NULL;
5659 	int nid = NUMA_NO_NODE;
5660 	bool writable = false, ignore_writable = false;
5661 	bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5662 	int last_cpupid;
5663 	int target_nid;
5664 	pte_t pte, old_pte;
5665 	int flags = 0, nr_pages;
5666 
5667 	/*
5668 	 * The pte cannot be used safely until we verify, while holding the page
5669 	 * table lock, that its contents have not changed during fault handling.
5670 	 */
5671 	spin_lock(vmf->ptl);
5672 	/* Read the live PTE from the page tables: */
5673 	old_pte = ptep_get(vmf->pte);
5674 
5675 	if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5676 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5677 		return 0;
5678 	}
5679 
5680 	pte = pte_modify(old_pte, vma->vm_page_prot);
5681 
5682 	/*
5683 	 * Detect now whether the PTE could be writable; this information
5684 	 * is only valid while holding the PT lock.
5685 	 */
5686 	writable = pte_write(pte);
5687 	if (!writable && pte_write_upgrade &&
5688 	    can_change_pte_writable(vma, vmf->address, pte))
5689 		writable = true;
5690 
5691 	folio = vm_normal_folio(vma, vmf->address, pte);
5692 	if (!folio || folio_is_zone_device(folio))
5693 		goto out_map;
5694 
5695 	nid = folio_nid(folio);
5696 	nr_pages = folio_nr_pages(folio);
5697 
5698 	target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5699 					writable, &last_cpupid);
5700 	if (target_nid == NUMA_NO_NODE)
5701 		goto out_map;
5702 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5703 		flags |= TNF_MIGRATE_FAIL;
5704 		goto out_map;
5705 	}
5706 	/* The folio is isolated and isolation code holds a folio reference. */
5707 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5708 	writable = false;
5709 	ignore_writable = true;
5710 
5711 	/* Migrate to the requested node */
5712 	if (!migrate_misplaced_folio(folio, target_nid)) {
5713 		nid = target_nid;
5714 		flags |= TNF_MIGRATED;
5715 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5716 		return 0;
5717 	}
5718 
5719 	flags |= TNF_MIGRATE_FAIL;
5720 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5721 				       vmf->address, &vmf->ptl);
5722 	if (unlikely(!vmf->pte))
5723 		return 0;
5724 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5725 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5726 		return 0;
5727 	}
5728 out_map:
5729 	/*
5730 	 * Make it present again, depending on how arch implements
5731 	 * non-accessible ptes, some can allow access by kernel mode.
5732 	 */
5733 	if (folio && folio_test_large(folio))
5734 		numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5735 					   pte_write_upgrade);
5736 	else
5737 		numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5738 					    writable);
5739 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5740 
5741 	if (nid != NUMA_NO_NODE)
5742 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5743 	return 0;
5744 }
5745 
create_huge_pmd(struct vm_fault * vmf)5746 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5747 {
5748 	struct vm_area_struct *vma = vmf->vma;
5749 	if (vma_is_anonymous(vma))
5750 		return do_huge_pmd_anonymous_page(vmf);
5751 	if (vma->vm_ops->huge_fault)
5752 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5753 	return VM_FAULT_FALLBACK;
5754 }
5755 
5756 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)5757 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5758 {
5759 	struct vm_area_struct *vma = vmf->vma;
5760 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5761 	vm_fault_t ret;
5762 
5763 	if (vma_is_anonymous(vma)) {
5764 		if (likely(!unshare) &&
5765 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5766 			if (userfaultfd_wp_async(vmf->vma))
5767 				goto split;
5768 			return handle_userfault(vmf, VM_UFFD_WP);
5769 		}
5770 		return do_huge_pmd_wp_page(vmf);
5771 	}
5772 
5773 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5774 		if (vma->vm_ops->huge_fault) {
5775 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5776 			if (!(ret & VM_FAULT_FALLBACK))
5777 				return ret;
5778 		}
5779 	}
5780 
5781 split:
5782 	/* COW or write-notify handled on pte level: split pmd. */
5783 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5784 
5785 	return VM_FAULT_FALLBACK;
5786 }
5787 
create_huge_pud(struct vm_fault * vmf)5788 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5789 {
5790 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5791 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5792 	struct vm_area_struct *vma = vmf->vma;
5793 	/* No support for anonymous transparent PUD pages yet */
5794 	if (vma_is_anonymous(vma))
5795 		return VM_FAULT_FALLBACK;
5796 	if (vma->vm_ops->huge_fault)
5797 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5798 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5799 	return VM_FAULT_FALLBACK;
5800 }
5801 
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)5802 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5803 {
5804 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5805 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5806 	struct vm_area_struct *vma = vmf->vma;
5807 	vm_fault_t ret;
5808 
5809 	/* No support for anonymous transparent PUD pages yet */
5810 	if (vma_is_anonymous(vma))
5811 		goto split;
5812 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5813 		if (vma->vm_ops->huge_fault) {
5814 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5815 			if (!(ret & VM_FAULT_FALLBACK))
5816 				return ret;
5817 		}
5818 	}
5819 split:
5820 	/* COW or write-notify not handled on PUD level: split pud.*/
5821 	__split_huge_pud(vma, vmf->pud, vmf->address);
5822 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5823 	return VM_FAULT_FALLBACK;
5824 }
5825 
5826 /*
5827  * These routines also need to handle stuff like marking pages dirty
5828  * and/or accessed for architectures that don't do it in hardware (most
5829  * RISC architectures).  The early dirtying is also good on the i386.
5830  *
5831  * There is also a hook called "update_mmu_cache()" that architectures
5832  * with external mmu caches can use to update those (ie the Sparc or
5833  * PowerPC hashed page tables that act as extended TLBs).
5834  *
5835  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5836  * concurrent faults).
5837  *
5838  * The mmap_lock may have been released depending on flags and our return value.
5839  * See filemap_fault() and __folio_lock_or_retry().
5840  */
handle_pte_fault(struct vm_fault * vmf)5841 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5842 {
5843 	pte_t entry;
5844 
5845 	if (unlikely(pmd_none(*vmf->pmd))) {
5846 		/*
5847 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5848 		 * want to allocate huge page, and if we expose page table
5849 		 * for an instant, it will be difficult to retract from
5850 		 * concurrent faults and from rmap lookups.
5851 		 */
5852 		vmf->pte = NULL;
5853 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5854 	} else {
5855 		pmd_t dummy_pmdval;
5856 
5857 		/*
5858 		 * A regular pmd is established and it can't morph into a huge
5859 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5860 		 * mode; but shmem or file collapse to THP could still morph
5861 		 * it into a huge pmd: just retry later if so.
5862 		 *
5863 		 * Use the maywrite version to indicate that vmf->pte may be
5864 		 * modified, but since we will use pte_same() to detect the
5865 		 * change of the !pte_none() entry, there is no need to recheck
5866 		 * the pmdval. Here we chooes to pass a dummy variable instead
5867 		 * of NULL, which helps new user think about why this place is
5868 		 * special.
5869 		 */
5870 		vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
5871 						    vmf->address, &dummy_pmdval,
5872 						    &vmf->ptl);
5873 		if (unlikely(!vmf->pte))
5874 			return 0;
5875 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5876 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5877 
5878 		if (pte_none(vmf->orig_pte)) {
5879 			pte_unmap(vmf->pte);
5880 			vmf->pte = NULL;
5881 		}
5882 	}
5883 
5884 	if (!vmf->pte)
5885 		return do_pte_missing(vmf);
5886 
5887 	if (!pte_present(vmf->orig_pte))
5888 		return do_swap_page(vmf);
5889 
5890 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5891 		return do_numa_page(vmf);
5892 
5893 	spin_lock(vmf->ptl);
5894 	entry = vmf->orig_pte;
5895 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5896 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5897 		goto unlock;
5898 	}
5899 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5900 		if (!pte_write(entry))
5901 			return do_wp_page(vmf);
5902 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5903 			entry = pte_mkdirty(entry);
5904 	}
5905 	entry = pte_mkyoung(entry);
5906 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5907 				vmf->flags & FAULT_FLAG_WRITE)) {
5908 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5909 				vmf->pte, 1);
5910 	} else {
5911 		/* Skip spurious TLB flush for retried page fault */
5912 		if (vmf->flags & FAULT_FLAG_TRIED)
5913 			goto unlock;
5914 		/*
5915 		 * This is needed only for protection faults but the arch code
5916 		 * is not yet telling us if this is a protection fault or not.
5917 		 * This still avoids useless tlb flushes for .text page faults
5918 		 * with threads.
5919 		 */
5920 		if (vmf->flags & FAULT_FLAG_WRITE)
5921 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5922 						     vmf->pte);
5923 	}
5924 unlock:
5925 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5926 	return 0;
5927 }
5928 
5929 /*
5930  * On entry, we hold either the VMA lock or the mmap_lock
5931  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5932  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5933  * and __folio_lock_or_retry().
5934  */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)5935 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5936 		unsigned long address, unsigned int flags)
5937 {
5938 	struct vm_fault vmf = {
5939 		.vma = vma,
5940 		.address = address & PAGE_MASK,
5941 		.real_address = address,
5942 		.flags = flags,
5943 		.pgoff = linear_page_index(vma, address),
5944 		.gfp_mask = __get_fault_gfp_mask(vma),
5945 	};
5946 	struct mm_struct *mm = vma->vm_mm;
5947 	unsigned long vm_flags = vma->vm_flags;
5948 	pgd_t *pgd;
5949 	p4d_t *p4d;
5950 	vm_fault_t ret;
5951 
5952 	pgd = pgd_offset(mm, address);
5953 	p4d = p4d_alloc(mm, pgd, address);
5954 	if (!p4d)
5955 		return VM_FAULT_OOM;
5956 
5957 	vmf.pud = pud_alloc(mm, p4d, address);
5958 	if (!vmf.pud)
5959 		return VM_FAULT_OOM;
5960 retry_pud:
5961 	if (pud_none(*vmf.pud) &&
5962 	    thp_vma_allowable_order(vma, vm_flags,
5963 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5964 		ret = create_huge_pud(&vmf);
5965 		if (!(ret & VM_FAULT_FALLBACK))
5966 			return ret;
5967 	} else {
5968 		pud_t orig_pud = *vmf.pud;
5969 
5970 		barrier();
5971 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5972 
5973 			/*
5974 			 * TODO once we support anonymous PUDs: NUMA case and
5975 			 * FAULT_FLAG_UNSHARE handling.
5976 			 */
5977 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5978 				ret = wp_huge_pud(&vmf, orig_pud);
5979 				if (!(ret & VM_FAULT_FALLBACK))
5980 					return ret;
5981 			} else {
5982 				huge_pud_set_accessed(&vmf, orig_pud);
5983 				return 0;
5984 			}
5985 		}
5986 	}
5987 
5988 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5989 	if (!vmf.pmd)
5990 		return VM_FAULT_OOM;
5991 
5992 	/* Huge pud page fault raced with pmd_alloc? */
5993 	if (pud_trans_unstable(vmf.pud))
5994 		goto retry_pud;
5995 
5996 	if (pmd_none(*vmf.pmd) &&
5997 	    thp_vma_allowable_order(vma, vm_flags,
5998 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5999 		ret = create_huge_pmd(&vmf);
6000 		if (!(ret & VM_FAULT_FALLBACK))
6001 			return ret;
6002 	} else {
6003 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
6004 
6005 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
6006 			VM_BUG_ON(thp_migration_supported() &&
6007 					  !is_pmd_migration_entry(vmf.orig_pmd));
6008 			if (is_pmd_migration_entry(vmf.orig_pmd))
6009 				pmd_migration_entry_wait(mm, vmf.pmd);
6010 			return 0;
6011 		}
6012 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
6013 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
6014 				return do_huge_pmd_numa_page(&vmf);
6015 
6016 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6017 			    !pmd_write(vmf.orig_pmd)) {
6018 				ret = wp_huge_pmd(&vmf);
6019 				if (!(ret & VM_FAULT_FALLBACK))
6020 					return ret;
6021 			} else {
6022 				huge_pmd_set_accessed(&vmf);
6023 				return 0;
6024 			}
6025 		}
6026 	}
6027 
6028 	return handle_pte_fault(&vmf);
6029 }
6030 
6031 /**
6032  * mm_account_fault - Do page fault accounting
6033  * @mm: mm from which memcg should be extracted. It can be NULL.
6034  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
6035  *        of perf event counters, but we'll still do the per-task accounting to
6036  *        the task who triggered this page fault.
6037  * @address: the faulted address.
6038  * @flags: the fault flags.
6039  * @ret: the fault retcode.
6040  *
6041  * This will take care of most of the page fault accounting.  Meanwhile, it
6042  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
6043  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
6044  * still be in per-arch page fault handlers at the entry of page fault.
6045  */
mm_account_fault(struct mm_struct * mm,struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)6046 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
6047 				    unsigned long address, unsigned int flags,
6048 				    vm_fault_t ret)
6049 {
6050 	bool major;
6051 
6052 	/* Incomplete faults will be accounted upon completion. */
6053 	if (ret & VM_FAULT_RETRY)
6054 		return;
6055 
6056 	/*
6057 	 * To preserve the behavior of older kernels, PGFAULT counters record
6058 	 * both successful and failed faults, as opposed to perf counters,
6059 	 * which ignore failed cases.
6060 	 */
6061 	count_vm_event(PGFAULT);
6062 	count_memcg_event_mm(mm, PGFAULT);
6063 
6064 	/*
6065 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
6066 	 * valid).  That includes arch_vma_access_permitted() failing before
6067 	 * reaching here. So this is not a "this many hardware page faults"
6068 	 * counter.  We should use the hw profiling for that.
6069 	 */
6070 	if (ret & VM_FAULT_ERROR)
6071 		return;
6072 
6073 	/*
6074 	 * We define the fault as a major fault when the final successful fault
6075 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6076 	 * handle it immediately previously).
6077 	 */
6078 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6079 
6080 	if (major)
6081 		current->maj_flt++;
6082 	else
6083 		current->min_flt++;
6084 
6085 	/*
6086 	 * If the fault is done for GUP, regs will be NULL.  We only do the
6087 	 * accounting for the per thread fault counters who triggered the
6088 	 * fault, and we skip the perf event updates.
6089 	 */
6090 	if (!regs)
6091 		return;
6092 
6093 	if (major)
6094 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6095 	else
6096 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6097 }
6098 
6099 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)6100 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6101 {
6102 	/* the LRU algorithm only applies to accesses with recency */
6103 	current->in_lru_fault = vma_has_recency(vma);
6104 }
6105 
lru_gen_exit_fault(void)6106 static void lru_gen_exit_fault(void)
6107 {
6108 	current->in_lru_fault = false;
6109 }
6110 #else
lru_gen_enter_fault(struct vm_area_struct * vma)6111 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6112 {
6113 }
6114 
lru_gen_exit_fault(void)6115 static void lru_gen_exit_fault(void)
6116 {
6117 }
6118 #endif /* CONFIG_LRU_GEN */
6119 
sanitize_fault_flags(struct vm_area_struct * vma,unsigned int * flags)6120 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6121 				       unsigned int *flags)
6122 {
6123 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6124 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6125 			return VM_FAULT_SIGSEGV;
6126 		/*
6127 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6128 		 * just treat it like an ordinary read-fault otherwise.
6129 		 */
6130 		if (!is_cow_mapping(vma->vm_flags))
6131 			*flags &= ~FAULT_FLAG_UNSHARE;
6132 	} else if (*flags & FAULT_FLAG_WRITE) {
6133 		/* Write faults on read-only mappings are impossible ... */
6134 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6135 			return VM_FAULT_SIGSEGV;
6136 		/* ... and FOLL_FORCE only applies to COW mappings. */
6137 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6138 				 !is_cow_mapping(vma->vm_flags)))
6139 			return VM_FAULT_SIGSEGV;
6140 	}
6141 #ifdef CONFIG_PER_VMA_LOCK
6142 	/*
6143 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6144 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
6145 	 */
6146 	if (WARN_ON_ONCE((*flags &
6147 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6148 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6149 		return VM_FAULT_SIGSEGV;
6150 #endif
6151 
6152 	return 0;
6153 }
6154 
6155 /*
6156  * By the time we get here, we already hold either the VMA lock or the
6157  * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
6158  *
6159  * The mmap_lock may have been released depending on flags and our
6160  * return value.  See filemap_fault() and __folio_lock_or_retry().
6161  */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)6162 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6163 			   unsigned int flags, struct pt_regs *regs)
6164 {
6165 	/* If the fault handler drops the mmap_lock, vma may be freed */
6166 	struct mm_struct *mm = vma->vm_mm;
6167 	vm_fault_t ret;
6168 	bool is_droppable;
6169 
6170 	__set_current_state(TASK_RUNNING);
6171 
6172 	ret = sanitize_fault_flags(vma, &flags);
6173 	if (ret)
6174 		goto out;
6175 
6176 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6177 					    flags & FAULT_FLAG_INSTRUCTION,
6178 					    flags & FAULT_FLAG_REMOTE)) {
6179 		ret = VM_FAULT_SIGSEGV;
6180 		goto out;
6181 	}
6182 
6183 	is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6184 
6185 	/*
6186 	 * Enable the memcg OOM handling for faults triggered in user
6187 	 * space.  Kernel faults are handled more gracefully.
6188 	 */
6189 	if (flags & FAULT_FLAG_USER)
6190 		mem_cgroup_enter_user_fault();
6191 
6192 	lru_gen_enter_fault(vma);
6193 
6194 	if (unlikely(is_vm_hugetlb_page(vma)))
6195 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6196 	else
6197 		ret = __handle_mm_fault(vma, address, flags);
6198 
6199 	/*
6200 	 * Warning: It is no longer safe to dereference vma-> after this point,
6201 	 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6202 	 * vma might be destroyed from underneath us.
6203 	 */
6204 
6205 	lru_gen_exit_fault();
6206 
6207 	/* If the mapping is droppable, then errors due to OOM aren't fatal. */
6208 	if (is_droppable)
6209 		ret &= ~VM_FAULT_OOM;
6210 
6211 	if (flags & FAULT_FLAG_USER) {
6212 		mem_cgroup_exit_user_fault();
6213 		/*
6214 		 * The task may have entered a memcg OOM situation but
6215 		 * if the allocation error was handled gracefully (no
6216 		 * VM_FAULT_OOM), there is no need to kill anything.
6217 		 * Just clean up the OOM state peacefully.
6218 		 */
6219 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6220 			mem_cgroup_oom_synchronize(false);
6221 	}
6222 out:
6223 	mm_account_fault(mm, regs, address, flags, ret);
6224 
6225 	return ret;
6226 }
6227 EXPORT_SYMBOL_GPL(handle_mm_fault);
6228 
6229 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6230 #include <linux/extable.h>
6231 
get_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)6232 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6233 {
6234 	if (likely(mmap_read_trylock(mm)))
6235 		return true;
6236 
6237 	if (regs && !user_mode(regs)) {
6238 		unsigned long ip = exception_ip(regs);
6239 		if (!search_exception_tables(ip))
6240 			return false;
6241 	}
6242 
6243 	return !mmap_read_lock_killable(mm);
6244 }
6245 
mmap_upgrade_trylock(struct mm_struct * mm)6246 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
6247 {
6248 	/*
6249 	 * We don't have this operation yet.
6250 	 *
6251 	 * It should be easy enough to do: it's basically a
6252 	 *    atomic_long_try_cmpxchg_acquire()
6253 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6254 	 * it also needs the proper lockdep magic etc.
6255 	 */
6256 	return false;
6257 }
6258 
upgrade_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)6259 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6260 {
6261 	mmap_read_unlock(mm);
6262 	if (regs && !user_mode(regs)) {
6263 		unsigned long ip = exception_ip(regs);
6264 		if (!search_exception_tables(ip))
6265 			return false;
6266 	}
6267 	return !mmap_write_lock_killable(mm);
6268 }
6269 
6270 /*
6271  * Helper for page fault handling.
6272  *
6273  * This is kind of equivalent to "mmap_read_lock()" followed
6274  * by "find_extend_vma()", except it's a lot more careful about
6275  * the locking (and will drop the lock on failure).
6276  *
6277  * For example, if we have a kernel bug that causes a page
6278  * fault, we don't want to just use mmap_read_lock() to get
6279  * the mm lock, because that would deadlock if the bug were
6280  * to happen while we're holding the mm lock for writing.
6281  *
6282  * So this checks the exception tables on kernel faults in
6283  * order to only do this all for instructions that are actually
6284  * expected to fault.
6285  *
6286  * We can also actually take the mm lock for writing if we
6287  * need to extend the vma, which helps the VM layer a lot.
6288  */
lock_mm_and_find_vma(struct mm_struct * mm,unsigned long addr,struct pt_regs * regs)6289 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
6290 			unsigned long addr, struct pt_regs *regs)
6291 {
6292 	struct vm_area_struct *vma;
6293 
6294 	if (!get_mmap_lock_carefully(mm, regs))
6295 		return NULL;
6296 
6297 	vma = find_vma(mm, addr);
6298 	if (likely(vma && (vma->vm_start <= addr)))
6299 		return vma;
6300 
6301 	/*
6302 	 * Well, dang. We might still be successful, but only
6303 	 * if we can extend a vma to do so.
6304 	 */
6305 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
6306 		mmap_read_unlock(mm);
6307 		return NULL;
6308 	}
6309 
6310 	/*
6311 	 * We can try to upgrade the mmap lock atomically,
6312 	 * in which case we can continue to use the vma
6313 	 * we already looked up.
6314 	 *
6315 	 * Otherwise we'll have to drop the mmap lock and
6316 	 * re-take it, and also look up the vma again,
6317 	 * re-checking it.
6318 	 */
6319 	if (!mmap_upgrade_trylock(mm)) {
6320 		if (!upgrade_mmap_lock_carefully(mm, regs))
6321 			return NULL;
6322 
6323 		vma = find_vma(mm, addr);
6324 		if (!vma)
6325 			goto fail;
6326 		if (vma->vm_start <= addr)
6327 			goto success;
6328 		if (!(vma->vm_flags & VM_GROWSDOWN))
6329 			goto fail;
6330 	}
6331 
6332 	if (expand_stack_locked(vma, addr))
6333 		goto fail;
6334 
6335 success:
6336 	mmap_write_downgrade(mm);
6337 	return vma;
6338 
6339 fail:
6340 	mmap_write_unlock(mm);
6341 	return NULL;
6342 }
6343 #endif
6344 
6345 #ifdef CONFIG_PER_VMA_LOCK
6346 /*
6347  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6348  * stable and not isolated. If the VMA is not found or is being modified the
6349  * function returns NULL.
6350  */
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)6351 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6352 					  unsigned long address)
6353 {
6354 	MA_STATE(mas, &mm->mm_mt, address, address);
6355 	struct vm_area_struct *vma;
6356 
6357 	rcu_read_lock();
6358 retry:
6359 	vma = mas_walk(&mas);
6360 	if (!vma)
6361 		goto inval;
6362 
6363 	if (!vma_start_read(vma))
6364 		goto inval;
6365 
6366 	/* Check if the VMA got isolated after we found it */
6367 	if (vma->detached) {
6368 		vma_end_read(vma);
6369 		count_vm_vma_lock_event(VMA_LOCK_MISS);
6370 		/* The area was replaced with another one */
6371 		goto retry;
6372 	}
6373 	/*
6374 	 * At this point, we have a stable reference to a VMA: The VMA is
6375 	 * locked and we know it hasn't already been isolated.
6376 	 * From here on, we can access the VMA without worrying about which
6377 	 * fields are accessible for RCU readers.
6378 	 */
6379 
6380 	/* Check since vm_start/vm_end might change before we lock the VMA */
6381 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6382 		goto inval_end_read;
6383 
6384 	rcu_read_unlock();
6385 	return vma;
6386 
6387 inval_end_read:
6388 	vma_end_read(vma);
6389 inval:
6390 	rcu_read_unlock();
6391 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
6392 	return NULL;
6393 }
6394 #endif /* CONFIG_PER_VMA_LOCK */
6395 
6396 #ifndef __PAGETABLE_P4D_FOLDED
6397 /*
6398  * Allocate p4d page table.
6399  * We've already handled the fast-path in-line.
6400  */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)6401 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6402 {
6403 	p4d_t *new = p4d_alloc_one(mm, address);
6404 	if (!new)
6405 		return -ENOMEM;
6406 
6407 	spin_lock(&mm->page_table_lock);
6408 	if (pgd_present(*pgd)) {	/* Another has populated it */
6409 		p4d_free(mm, new);
6410 	} else {
6411 		smp_wmb(); /* See comment in pmd_install() */
6412 		pgd_populate(mm, pgd, new);
6413 	}
6414 	spin_unlock(&mm->page_table_lock);
6415 	return 0;
6416 }
6417 #endif /* __PAGETABLE_P4D_FOLDED */
6418 
6419 #ifndef __PAGETABLE_PUD_FOLDED
6420 /*
6421  * Allocate page upper directory.
6422  * We've already handled the fast-path in-line.
6423  */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)6424 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6425 {
6426 	pud_t *new = pud_alloc_one(mm, address);
6427 	if (!new)
6428 		return -ENOMEM;
6429 
6430 	spin_lock(&mm->page_table_lock);
6431 	if (!p4d_present(*p4d)) {
6432 		mm_inc_nr_puds(mm);
6433 		smp_wmb(); /* See comment in pmd_install() */
6434 		p4d_populate(mm, p4d, new);
6435 	} else	/* Another has populated it */
6436 		pud_free(mm, new);
6437 	spin_unlock(&mm->page_table_lock);
6438 	return 0;
6439 }
6440 #endif /* __PAGETABLE_PUD_FOLDED */
6441 
6442 #ifndef __PAGETABLE_PMD_FOLDED
6443 /*
6444  * Allocate page middle directory.
6445  * We've already handled the fast-path in-line.
6446  */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)6447 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6448 {
6449 	spinlock_t *ptl;
6450 	pmd_t *new = pmd_alloc_one(mm, address);
6451 	if (!new)
6452 		return -ENOMEM;
6453 
6454 	ptl = pud_lock(mm, pud);
6455 	if (!pud_present(*pud)) {
6456 		mm_inc_nr_pmds(mm);
6457 		smp_wmb(); /* See comment in pmd_install() */
6458 		pud_populate(mm, pud, new);
6459 	} else {	/* Another has populated it */
6460 		pmd_free(mm, new);
6461 	}
6462 	spin_unlock(ptl);
6463 	return 0;
6464 }
6465 #endif /* __PAGETABLE_PMD_FOLDED */
6466 
pfnmap_args_setup(struct follow_pfnmap_args * args,spinlock_t * lock,pte_t * ptep,pgprot_t pgprot,unsigned long pfn_base,unsigned long addr_mask,bool writable,bool special)6467 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6468 				     spinlock_t *lock, pte_t *ptep,
6469 				     pgprot_t pgprot, unsigned long pfn_base,
6470 				     unsigned long addr_mask, bool writable,
6471 				     bool special)
6472 {
6473 	args->lock = lock;
6474 	args->ptep = ptep;
6475 	args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6476 	args->pgprot = pgprot;
6477 	args->writable = writable;
6478 	args->special = special;
6479 }
6480 
pfnmap_lockdep_assert(struct vm_area_struct * vma)6481 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6482 {
6483 #ifdef CONFIG_LOCKDEP
6484 	struct file *file = vma->vm_file;
6485 	struct address_space *mapping = file ? file->f_mapping : NULL;
6486 
6487 	if (mapping)
6488 		lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6489 			       lockdep_is_held(&vma->vm_mm->mmap_lock));
6490 	else
6491 		lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6492 #endif
6493 }
6494 
6495 /**
6496  * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6497  * @args: Pointer to struct @follow_pfnmap_args
6498  *
6499  * The caller needs to setup args->vma and args->address to point to the
6500  * virtual address as the target of such lookup.  On a successful return,
6501  * the results will be put into other output fields.
6502  *
6503  * After the caller finished using the fields, the caller must invoke
6504  * another follow_pfnmap_end() to proper releases the locks and resources
6505  * of such look up request.
6506  *
6507  * During the start() and end() calls, the results in @args will be valid
6508  * as proper locks will be held.  After the end() is called, all the fields
6509  * in @follow_pfnmap_args will be invalid to be further accessed.  Further
6510  * use of such information after end() may require proper synchronizations
6511  * by the caller with page table updates, otherwise it can create a
6512  * security bug.
6513  *
6514  * If the PTE maps a refcounted page, callers are responsible to protect
6515  * against invalidation with MMU notifiers; otherwise access to the PFN at
6516  * a later point in time can trigger use-after-free.
6517  *
6518  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
6519  * should be taken for read, and the mmap semaphore cannot be released
6520  * before the end() is invoked.
6521  *
6522  * This function must not be used to modify PTE content.
6523  *
6524  * Return: zero on success, negative otherwise.
6525  */
follow_pfnmap_start(struct follow_pfnmap_args * args)6526 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6527 {
6528 	struct vm_area_struct *vma = args->vma;
6529 	unsigned long address = args->address;
6530 	struct mm_struct *mm = vma->vm_mm;
6531 	spinlock_t *lock;
6532 	pgd_t *pgdp;
6533 	p4d_t *p4dp, p4d;
6534 	pud_t *pudp, pud;
6535 	pmd_t *pmdp, pmd;
6536 	pte_t *ptep, pte;
6537 
6538 	pfnmap_lockdep_assert(vma);
6539 
6540 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6541 		goto out;
6542 
6543 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6544 		goto out;
6545 retry:
6546 	pgdp = pgd_offset(mm, address);
6547 	if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6548 		goto out;
6549 
6550 	p4dp = p4d_offset(pgdp, address);
6551 	p4d = READ_ONCE(*p4dp);
6552 	if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6553 		goto out;
6554 
6555 	pudp = pud_offset(p4dp, address);
6556 	pud = READ_ONCE(*pudp);
6557 	if (pud_none(pud))
6558 		goto out;
6559 	if (pud_leaf(pud)) {
6560 		lock = pud_lock(mm, pudp);
6561 		if (!unlikely(pud_leaf(pud))) {
6562 			spin_unlock(lock);
6563 			goto retry;
6564 		}
6565 		pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6566 				  pud_pfn(pud), PUD_MASK, pud_write(pud),
6567 				  pud_special(pud));
6568 		return 0;
6569 	}
6570 
6571 	pmdp = pmd_offset(pudp, address);
6572 	pmd = pmdp_get_lockless(pmdp);
6573 	if (pmd_leaf(pmd)) {
6574 		lock = pmd_lock(mm, pmdp);
6575 		if (!unlikely(pmd_leaf(pmd))) {
6576 			spin_unlock(lock);
6577 			goto retry;
6578 		}
6579 		pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6580 				  pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6581 				  pmd_special(pmd));
6582 		return 0;
6583 	}
6584 
6585 	ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6586 	if (!ptep)
6587 		goto out;
6588 	pte = ptep_get(ptep);
6589 	if (!pte_present(pte))
6590 		goto unlock;
6591 	pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6592 			  pte_pfn(pte), PAGE_MASK, pte_write(pte),
6593 			  pte_special(pte));
6594 	return 0;
6595 unlock:
6596 	pte_unmap_unlock(ptep, lock);
6597 out:
6598 	return -EINVAL;
6599 }
6600 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6601 
6602 /**
6603  * follow_pfnmap_end(): End a follow_pfnmap_start() process
6604  * @args: Pointer to struct @follow_pfnmap_args
6605  *
6606  * Must be used in pair of follow_pfnmap_start().  See the start() function
6607  * above for more information.
6608  */
follow_pfnmap_end(struct follow_pfnmap_args * args)6609 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6610 {
6611 	if (args->lock)
6612 		spin_unlock(args->lock);
6613 	if (args->ptep)
6614 		pte_unmap(args->ptep);
6615 }
6616 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6617 
6618 #ifdef CONFIG_HAVE_IOREMAP_PROT
6619 /**
6620  * generic_access_phys - generic implementation for iomem mmap access
6621  * @vma: the vma to access
6622  * @addr: userspace address, not relative offset within @vma
6623  * @buf: buffer to read/write
6624  * @len: length of transfer
6625  * @write: set to FOLL_WRITE when writing, otherwise reading
6626  *
6627  * This is a generic implementation for &vm_operations_struct.access for an
6628  * iomem mapping. This callback is used by access_process_vm() when the @vma is
6629  * not page based.
6630  */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)6631 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6632 			void *buf, int len, int write)
6633 {
6634 	resource_size_t phys_addr;
6635 	unsigned long prot = 0;
6636 	void __iomem *maddr;
6637 	int offset = offset_in_page(addr);
6638 	int ret = -EINVAL;
6639 	bool writable;
6640 	struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6641 
6642 retry:
6643 	if (follow_pfnmap_start(&args))
6644 		return -EINVAL;
6645 	prot = pgprot_val(args.pgprot);
6646 	phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6647 	writable = args.writable;
6648 	follow_pfnmap_end(&args);
6649 
6650 	if ((write & FOLL_WRITE) && !writable)
6651 		return -EINVAL;
6652 
6653 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6654 	if (!maddr)
6655 		return -ENOMEM;
6656 
6657 	if (follow_pfnmap_start(&args))
6658 		goto out_unmap;
6659 
6660 	if ((prot != pgprot_val(args.pgprot)) ||
6661 	    (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6662 	    (writable != args.writable)) {
6663 		follow_pfnmap_end(&args);
6664 		iounmap(maddr);
6665 		goto retry;
6666 	}
6667 
6668 	if (write)
6669 		memcpy_toio(maddr + offset, buf, len);
6670 	else
6671 		memcpy_fromio(buf, maddr + offset, len);
6672 	ret = len;
6673 	follow_pfnmap_end(&args);
6674 out_unmap:
6675 	iounmap(maddr);
6676 
6677 	return ret;
6678 }
6679 EXPORT_SYMBOL_GPL(generic_access_phys);
6680 #endif
6681 
6682 /*
6683  * Access another process' address space as given in mm.
6684  */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6685 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6686 			      void *buf, int len, unsigned int gup_flags)
6687 {
6688 	void *old_buf = buf;
6689 	int write = gup_flags & FOLL_WRITE;
6690 
6691 	if (mmap_read_lock_killable(mm))
6692 		return 0;
6693 
6694 	/* Untag the address before looking up the VMA */
6695 	addr = untagged_addr_remote(mm, addr);
6696 
6697 	/* Avoid triggering the temporary warning in __get_user_pages */
6698 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6699 		return 0;
6700 
6701 	/* ignore errors, just check how much was successfully transferred */
6702 	while (len) {
6703 		int bytes, offset;
6704 		void *maddr;
6705 		struct vm_area_struct *vma = NULL;
6706 		struct page *page = get_user_page_vma_remote(mm, addr,
6707 							     gup_flags, &vma);
6708 
6709 		if (IS_ERR(page)) {
6710 			/* We might need to expand the stack to access it */
6711 			vma = vma_lookup(mm, addr);
6712 			if (!vma) {
6713 				vma = expand_stack(mm, addr);
6714 
6715 				/* mmap_lock was dropped on failure */
6716 				if (!vma)
6717 					return buf - old_buf;
6718 
6719 				/* Try again if stack expansion worked */
6720 				continue;
6721 			}
6722 
6723 			/*
6724 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6725 			 * we can access using slightly different code.
6726 			 */
6727 			bytes = 0;
6728 #ifdef CONFIG_HAVE_IOREMAP_PROT
6729 			if (vma->vm_ops && vma->vm_ops->access)
6730 				bytes = vma->vm_ops->access(vma, addr, buf,
6731 							    len, write);
6732 #endif
6733 			if (bytes <= 0)
6734 				break;
6735 		} else {
6736 			bytes = len;
6737 			offset = addr & (PAGE_SIZE-1);
6738 			if (bytes > PAGE_SIZE-offset)
6739 				bytes = PAGE_SIZE-offset;
6740 
6741 			maddr = kmap_local_page(page);
6742 			if (write) {
6743 				copy_to_user_page(vma, page, addr,
6744 						  maddr + offset, buf, bytes);
6745 				set_page_dirty_lock(page);
6746 			} else {
6747 				copy_from_user_page(vma, page, addr,
6748 						    buf, maddr + offset, bytes);
6749 			}
6750 			unmap_and_put_page(page, maddr);
6751 		}
6752 		len -= bytes;
6753 		buf += bytes;
6754 		addr += bytes;
6755 	}
6756 	mmap_read_unlock(mm);
6757 
6758 	return buf - old_buf;
6759 }
6760 
6761 /**
6762  * access_remote_vm - access another process' address space
6763  * @mm:		the mm_struct of the target address space
6764  * @addr:	start address to access
6765  * @buf:	source or destination buffer
6766  * @len:	number of bytes to transfer
6767  * @gup_flags:	flags modifying lookup behaviour
6768  *
6769  * The caller must hold a reference on @mm.
6770  *
6771  * Return: number of bytes copied from source to destination.
6772  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6773 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6774 		void *buf, int len, unsigned int gup_flags)
6775 {
6776 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6777 }
6778 
6779 /*
6780  * Access another process' address space.
6781  * Source/target buffer must be kernel space,
6782  * Do not walk the page table directly, use get_user_pages
6783  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)6784 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6785 		void *buf, int len, unsigned int gup_flags)
6786 {
6787 	struct mm_struct *mm;
6788 	int ret;
6789 
6790 	mm = get_task_mm(tsk);
6791 	if (!mm)
6792 		return 0;
6793 
6794 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6795 
6796 	mmput(mm);
6797 
6798 	return ret;
6799 }
6800 EXPORT_SYMBOL_GPL(access_process_vm);
6801 
6802 /*
6803  * Print the name of a VMA.
6804  */
print_vma_addr(char * prefix,unsigned long ip)6805 void print_vma_addr(char *prefix, unsigned long ip)
6806 {
6807 	struct mm_struct *mm = current->mm;
6808 	struct vm_area_struct *vma;
6809 
6810 	/*
6811 	 * we might be running from an atomic context so we cannot sleep
6812 	 */
6813 	if (!mmap_read_trylock(mm))
6814 		return;
6815 
6816 	vma = vma_lookup(mm, ip);
6817 	if (vma && vma->vm_file) {
6818 		struct file *f = vma->vm_file;
6819 		ip -= vma->vm_start;
6820 		ip += vma->vm_pgoff << PAGE_SHIFT;
6821 		printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6822 				vma->vm_start,
6823 				vma->vm_end - vma->vm_start);
6824 	}
6825 	mmap_read_unlock(mm);
6826 }
6827 
6828 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)6829 void __might_fault(const char *file, int line)
6830 {
6831 	if (pagefault_disabled())
6832 		return;
6833 	__might_sleep(file, line);
6834 	if (current->mm)
6835 		might_lock_read(&current->mm->mmap_lock);
6836 }
6837 EXPORT_SYMBOL(__might_fault);
6838 #endif
6839 
6840 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6841 /*
6842  * Process all subpages of the specified huge page with the specified
6843  * operation.  The target subpage will be processed last to keep its
6844  * cache lines hot.
6845  */
process_huge_page(unsigned long addr_hint,unsigned int nr_pages,int (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)6846 static inline int process_huge_page(
6847 	unsigned long addr_hint, unsigned int nr_pages,
6848 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
6849 	void *arg)
6850 {
6851 	int i, n, base, l, ret;
6852 	unsigned long addr = addr_hint &
6853 		~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6854 
6855 	/* Process target subpage last to keep its cache lines hot */
6856 	might_sleep();
6857 	n = (addr_hint - addr) / PAGE_SIZE;
6858 	if (2 * n <= nr_pages) {
6859 		/* If target subpage in first half of huge page */
6860 		base = 0;
6861 		l = n;
6862 		/* Process subpages at the end of huge page */
6863 		for (i = nr_pages - 1; i >= 2 * n; i--) {
6864 			cond_resched();
6865 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6866 			if (ret)
6867 				return ret;
6868 		}
6869 	} else {
6870 		/* If target subpage in second half of huge page */
6871 		base = nr_pages - 2 * (nr_pages - n);
6872 		l = nr_pages - n;
6873 		/* Process subpages at the begin of huge page */
6874 		for (i = 0; i < base; i++) {
6875 			cond_resched();
6876 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6877 			if (ret)
6878 				return ret;
6879 		}
6880 	}
6881 	/*
6882 	 * Process remaining subpages in left-right-left-right pattern
6883 	 * towards the target subpage
6884 	 */
6885 	for (i = 0; i < l; i++) {
6886 		int left_idx = base + i;
6887 		int right_idx = base + 2 * l - 1 - i;
6888 
6889 		cond_resched();
6890 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6891 		if (ret)
6892 			return ret;
6893 		cond_resched();
6894 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6895 		if (ret)
6896 			return ret;
6897 	}
6898 	return 0;
6899 }
6900 
clear_gigantic_page(struct folio * folio,unsigned long addr_hint,unsigned int nr_pages)6901 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
6902 				unsigned int nr_pages)
6903 {
6904 	unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
6905 	int i;
6906 
6907 	might_sleep();
6908 	for (i = 0; i < nr_pages; i++) {
6909 		cond_resched();
6910 		clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6911 	}
6912 }
6913 
clear_subpage(unsigned long addr,int idx,void * arg)6914 static int clear_subpage(unsigned long addr, int idx, void *arg)
6915 {
6916 	struct folio *folio = arg;
6917 
6918 	clear_user_highpage(folio_page(folio, idx), addr);
6919 	return 0;
6920 }
6921 
6922 /**
6923  * folio_zero_user - Zero a folio which will be mapped to userspace.
6924  * @folio: The folio to zero.
6925  * @addr_hint: The address will be accessed or the base address if uncelar.
6926  */
folio_zero_user(struct folio * folio,unsigned long addr_hint)6927 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6928 {
6929 	unsigned int nr_pages = folio_nr_pages(folio);
6930 
6931 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6932 		clear_gigantic_page(folio, addr_hint, nr_pages);
6933 	else
6934 		process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6935 }
6936 
copy_user_gigantic_page(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int nr_pages)6937 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6938 				   unsigned long addr_hint,
6939 				   struct vm_area_struct *vma,
6940 				   unsigned int nr_pages)
6941 {
6942 	unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
6943 	struct page *dst_page;
6944 	struct page *src_page;
6945 	int i;
6946 
6947 	for (i = 0; i < nr_pages; i++) {
6948 		dst_page = folio_page(dst, i);
6949 		src_page = folio_page(src, i);
6950 
6951 		cond_resched();
6952 		if (copy_mc_user_highpage(dst_page, src_page,
6953 					  addr + i*PAGE_SIZE, vma))
6954 			return -EHWPOISON;
6955 	}
6956 	return 0;
6957 }
6958 
6959 struct copy_subpage_arg {
6960 	struct folio *dst;
6961 	struct folio *src;
6962 	struct vm_area_struct *vma;
6963 };
6964 
copy_subpage(unsigned long addr,int idx,void * arg)6965 static int copy_subpage(unsigned long addr, int idx, void *arg)
6966 {
6967 	struct copy_subpage_arg *copy_arg = arg;
6968 	struct page *dst = folio_page(copy_arg->dst, idx);
6969 	struct page *src = folio_page(copy_arg->src, idx);
6970 
6971 	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6972 		return -EHWPOISON;
6973 	return 0;
6974 }
6975 
copy_user_large_folio(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma)6976 int copy_user_large_folio(struct folio *dst, struct folio *src,
6977 			  unsigned long addr_hint, struct vm_area_struct *vma)
6978 {
6979 	unsigned int nr_pages = folio_nr_pages(dst);
6980 	struct copy_subpage_arg arg = {
6981 		.dst = dst,
6982 		.src = src,
6983 		.vma = vma,
6984 	};
6985 
6986 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6987 		return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6988 
6989 	return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6990 }
6991 
copy_folio_from_user(struct folio * dst_folio,const void __user * usr_src,bool allow_pagefault)6992 long copy_folio_from_user(struct folio *dst_folio,
6993 			   const void __user *usr_src,
6994 			   bool allow_pagefault)
6995 {
6996 	void *kaddr;
6997 	unsigned long i, rc = 0;
6998 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6999 	unsigned long ret_val = nr_pages * PAGE_SIZE;
7000 	struct page *subpage;
7001 
7002 	for (i = 0; i < nr_pages; i++) {
7003 		subpage = folio_page(dst_folio, i);
7004 		kaddr = kmap_local_page(subpage);
7005 		if (!allow_pagefault)
7006 			pagefault_disable();
7007 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
7008 		if (!allow_pagefault)
7009 			pagefault_enable();
7010 		kunmap_local(kaddr);
7011 
7012 		ret_val -= (PAGE_SIZE - rc);
7013 		if (rc)
7014 			break;
7015 
7016 		flush_dcache_page(subpage);
7017 
7018 		cond_resched();
7019 	}
7020 	return ret_val;
7021 }
7022 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7023 
7024 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7025 
7026 static struct kmem_cache *page_ptl_cachep;
7027 
ptlock_cache_init(void)7028 void __init ptlock_cache_init(void)
7029 {
7030 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
7031 			SLAB_PANIC, NULL);
7032 }
7033 
ptlock_alloc(struct ptdesc * ptdesc)7034 bool ptlock_alloc(struct ptdesc *ptdesc)
7035 {
7036 	spinlock_t *ptl;
7037 
7038 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
7039 	if (!ptl)
7040 		return false;
7041 	ptdesc->ptl = ptl;
7042 	return true;
7043 }
7044 
ptlock_free(struct ptdesc * ptdesc)7045 void ptlock_free(struct ptdesc *ptdesc)
7046 {
7047 	if (ptdesc->ptl)
7048 		kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
7049 }
7050 #endif
7051 
vma_pgtable_walk_begin(struct vm_area_struct * vma)7052 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
7053 {
7054 	if (is_vm_hugetlb_page(vma))
7055 		hugetlb_vma_lock_read(vma);
7056 }
7057 
vma_pgtable_walk_end(struct vm_area_struct * vma)7058 void vma_pgtable_walk_end(struct vm_area_struct *vma)
7059 {
7060 	if (is_vm_hugetlb_page(vma))
7061 		hugetlb_vma_unlock_read(vma);
7062 }
7063