1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36
37 #define pr_fmt(fmt) "Memory failure: " fmt
38
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66
67 static int sysctl_memory_failure_early_kill __read_mostly;
68
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70
71 static int sysctl_enable_soft_offline __read_mostly = 1;
72
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74
75 static bool hw_memory_failure __read_mostly = false;
76
77 static DEFINE_MUTEX(mf_mutex);
78
num_poisoned_pages_inc(unsigned long pfn)79 void num_poisoned_pages_inc(unsigned long pfn)
80 {
81 atomic_long_inc(&num_poisoned_pages);
82 memblk_nr_poison_inc(pfn);
83 }
84
num_poisoned_pages_sub(unsigned long pfn,long i)85 void num_poisoned_pages_sub(unsigned long pfn, long i)
86 {
87 atomic_long_sub(i, &num_poisoned_pages);
88 if (pfn != -1UL)
89 memblk_nr_poison_sub(pfn, i);
90 }
91
92 /**
93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94 * @_name: name of the file in the per NUMA sysfs directory.
95 */
96 #define MF_ATTR_RO(_name) \
97 static ssize_t _name##_show(struct device *dev, \
98 struct device_attribute *attr, \
99 char *buf) \
100 { \
101 struct memory_failure_stats *mf_stats = \
102 &NODE_DATA(dev->id)->mf_stats; \
103 return sysfs_emit(buf, "%lu\n", mf_stats->_name); \
104 } \
105 static DEVICE_ATTR_RO(_name)
106
107 MF_ATTR_RO(total);
108 MF_ATTR_RO(ignored);
109 MF_ATTR_RO(failed);
110 MF_ATTR_RO(delayed);
111 MF_ATTR_RO(recovered);
112
113 static struct attribute *memory_failure_attr[] = {
114 &dev_attr_total.attr,
115 &dev_attr_ignored.attr,
116 &dev_attr_failed.attr,
117 &dev_attr_delayed.attr,
118 &dev_attr_recovered.attr,
119 NULL,
120 };
121
122 const struct attribute_group memory_failure_attr_group = {
123 .name = "memory_failure",
124 .attrs = memory_failure_attr,
125 };
126
127 static const struct ctl_table memory_failure_table[] = {
128 {
129 .procname = "memory_failure_early_kill",
130 .data = &sysctl_memory_failure_early_kill,
131 .maxlen = sizeof(sysctl_memory_failure_early_kill),
132 .mode = 0644,
133 .proc_handler = proc_dointvec_minmax,
134 .extra1 = SYSCTL_ZERO,
135 .extra2 = SYSCTL_ONE,
136 },
137 {
138 .procname = "memory_failure_recovery",
139 .data = &sysctl_memory_failure_recovery,
140 .maxlen = sizeof(sysctl_memory_failure_recovery),
141 .mode = 0644,
142 .proc_handler = proc_dointvec_minmax,
143 .extra1 = SYSCTL_ZERO,
144 .extra2 = SYSCTL_ONE,
145 },
146 {
147 .procname = "enable_soft_offline",
148 .data = &sysctl_enable_soft_offline,
149 .maxlen = sizeof(sysctl_enable_soft_offline),
150 .mode = 0644,
151 .proc_handler = proc_dointvec_minmax,
152 .extra1 = SYSCTL_ZERO,
153 .extra2 = SYSCTL_ONE,
154 }
155 };
156
157 /*
158 * Return values:
159 * 1: the page is dissolved (if needed) and taken off from buddy,
160 * 0: the page is dissolved (if needed) and not taken off from buddy,
161 * < 0: failed to dissolve.
162 */
__page_handle_poison(struct page * page)163 static int __page_handle_poison(struct page *page)
164 {
165 int ret;
166
167 /*
168 * zone_pcp_disable() can't be used here. It will
169 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 * optimization is enabled. This will break current lock dependency
172 * chain and leads to deadlock.
173 * Disabling pcp before dissolving the page was a deterministic
174 * approach because we made sure that those pages cannot end up in any
175 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 * but nothing guarantees that those pages do not get back to a PCP
177 * queue if we need to refill those.
178 */
179 ret = dissolve_free_hugetlb_folio(page_folio(page));
180 if (!ret) {
181 drain_all_pages(page_zone(page));
182 ret = take_page_off_buddy(page);
183 }
184
185 return ret;
186 }
187
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
189 {
190 if (hugepage_or_freepage) {
191 /*
192 * Doing this check for free pages is also fine since
193 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
194 */
195 if (__page_handle_poison(page) <= 0)
196 /*
197 * We could fail to take off the target page from buddy
198 * for example due to racy page allocation, but that's
199 * acceptable because soft-offlined page is not broken
200 * and if someone really want to use it, they should
201 * take it.
202 */
203 return false;
204 }
205
206 SetPageHWPoison(page);
207 if (release)
208 put_page(page);
209 page_ref_inc(page);
210 num_poisoned_pages_inc(page_to_pfn(page));
211
212 return true;
213 }
214
215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
216
217 u32 hwpoison_filter_enable = 0;
218 u32 hwpoison_filter_dev_major = ~0U;
219 u32 hwpoison_filter_dev_minor = ~0U;
220 u64 hwpoison_filter_flags_mask;
221 u64 hwpoison_filter_flags_value;
222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
227
hwpoison_filter_dev(struct page * p)228 static int hwpoison_filter_dev(struct page *p)
229 {
230 struct folio *folio = page_folio(p);
231 struct address_space *mapping;
232 dev_t dev;
233
234 if (hwpoison_filter_dev_major == ~0U &&
235 hwpoison_filter_dev_minor == ~0U)
236 return 0;
237
238 mapping = folio_mapping(folio);
239 if (mapping == NULL || mapping->host == NULL)
240 return -EINVAL;
241
242 dev = mapping->host->i_sb->s_dev;
243 if (hwpoison_filter_dev_major != ~0U &&
244 hwpoison_filter_dev_major != MAJOR(dev))
245 return -EINVAL;
246 if (hwpoison_filter_dev_minor != ~0U &&
247 hwpoison_filter_dev_minor != MINOR(dev))
248 return -EINVAL;
249
250 return 0;
251 }
252
hwpoison_filter_flags(struct page * p)253 static int hwpoison_filter_flags(struct page *p)
254 {
255 if (!hwpoison_filter_flags_mask)
256 return 0;
257
258 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 hwpoison_filter_flags_value)
260 return 0;
261 else
262 return -EINVAL;
263 }
264
265 /*
266 * This allows stress tests to limit test scope to a collection of tasks
267 * by putting them under some memcg. This prevents killing unrelated/important
268 * processes such as /sbin/init. Note that the target task may share clean
269 * pages with init (eg. libc text), which is harmless. If the target task
270 * share _dirty_ pages with another task B, the test scheme must make sure B
271 * is also included in the memcg. At last, due to race conditions this filter
272 * can only guarantee that the page either belongs to the memcg tasks, or is
273 * a freed page.
274 */
275 #ifdef CONFIG_MEMCG
276 u64 hwpoison_filter_memcg;
277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)278 static int hwpoison_filter_task(struct page *p)
279 {
280 if (!hwpoison_filter_memcg)
281 return 0;
282
283 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
284 return -EINVAL;
285
286 return 0;
287 }
288 #else
hwpoison_filter_task(struct page * p)289 static int hwpoison_filter_task(struct page *p) { return 0; }
290 #endif
291
hwpoison_filter(struct page * p)292 int hwpoison_filter(struct page *p)
293 {
294 if (!hwpoison_filter_enable)
295 return 0;
296
297 if (hwpoison_filter_dev(p))
298 return -EINVAL;
299
300 if (hwpoison_filter_flags(p))
301 return -EINVAL;
302
303 if (hwpoison_filter_task(p))
304 return -EINVAL;
305
306 return 0;
307 }
308 EXPORT_SYMBOL_GPL(hwpoison_filter);
309 #else
hwpoison_filter(struct page * p)310 int hwpoison_filter(struct page *p)
311 {
312 return 0;
313 }
314 #endif
315
316 /*
317 * Kill all processes that have a poisoned page mapped and then isolate
318 * the page.
319 *
320 * General strategy:
321 * Find all processes having the page mapped and kill them.
322 * But we keep a page reference around so that the page is not
323 * actually freed yet.
324 * Then stash the page away
325 *
326 * There's no convenient way to get back to mapped processes
327 * from the VMAs. So do a brute-force search over all
328 * running processes.
329 *
330 * Remember that machine checks are not common (or rather
331 * if they are common you have other problems), so this shouldn't
332 * be a performance issue.
333 *
334 * Also there are some races possible while we get from the
335 * error detection to actually handle it.
336 */
337
338 struct to_kill {
339 struct list_head nd;
340 struct task_struct *tsk;
341 unsigned long addr;
342 short size_shift;
343 };
344
345 /*
346 * Send all the processes who have the page mapped a signal.
347 * ``action optional'' if they are not immediately affected by the error
348 * ``action required'' if error happened in current execution context
349 */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
351 {
352 struct task_struct *t = tk->tsk;
353 short addr_lsb = tk->size_shift;
354 int ret = 0;
355
356 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357 pfn, t->comm, task_pid_nr(t));
358
359 if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 ret = force_sig_mceerr(BUS_MCEERR_AR,
361 (void __user *)tk->addr, addr_lsb);
362 else
363 /*
364 * Signal other processes sharing the page if they have
365 * PF_MCE_EARLY set.
366 * Don't use force here, it's convenient if the signal
367 * can be temporarily blocked.
368 */
369 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
370 addr_lsb, t);
371 if (ret < 0)
372 pr_info("Error sending signal to %s:%d: %d\n",
373 t->comm, task_pid_nr(t), ret);
374 return ret;
375 }
376
377 /*
378 * Unknown page type encountered. Try to check whether it can turn PageLRU by
379 * lru_add_drain_all.
380 */
shake_folio(struct folio * folio)381 void shake_folio(struct folio *folio)
382 {
383 if (folio_test_hugetlb(folio))
384 return;
385 /*
386 * TODO: Could shrink slab caches here if a lightweight range-based
387 * shrinker will be available.
388 */
389 if (folio_test_slab(folio))
390 return;
391
392 lru_add_drain_all();
393 }
394 EXPORT_SYMBOL_GPL(shake_folio);
395
shake_page(struct page * page)396 static void shake_page(struct page *page)
397 {
398 shake_folio(page_folio(page));
399 }
400
dev_pagemap_mapping_shift(struct vm_area_struct * vma,unsigned long address)401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 unsigned long address)
403 {
404 unsigned long ret = 0;
405 pgd_t *pgd;
406 p4d_t *p4d;
407 pud_t *pud;
408 pmd_t *pmd;
409 pte_t *pte;
410 pte_t ptent;
411
412 VM_BUG_ON_VMA(address == -EFAULT, vma);
413 pgd = pgd_offset(vma->vm_mm, address);
414 if (!pgd_present(*pgd))
415 return 0;
416 p4d = p4d_offset(pgd, address);
417 if (!p4d_present(*p4d))
418 return 0;
419 pud = pud_offset(p4d, address);
420 if (!pud_present(*pud))
421 return 0;
422 if (pud_devmap(*pud))
423 return PUD_SHIFT;
424 pmd = pmd_offset(pud, address);
425 if (!pmd_present(*pmd))
426 return 0;
427 if (pmd_devmap(*pmd))
428 return PMD_SHIFT;
429 pte = pte_offset_map(pmd, address);
430 if (!pte)
431 return 0;
432 ptent = ptep_get(pte);
433 if (pte_present(ptent) && pte_devmap(ptent))
434 ret = PAGE_SHIFT;
435 pte_unmap(pte);
436 return ret;
437 }
438
439 /*
440 * Failure handling: if we can't find or can't kill a process there's
441 * not much we can do. We just print a message and ignore otherwise.
442 */
443
444 /*
445 * Schedule a process for later kill.
446 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
447 */
__add_to_kill(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)448 static void __add_to_kill(struct task_struct *tsk, const struct page *p,
449 struct vm_area_struct *vma, struct list_head *to_kill,
450 unsigned long addr)
451 {
452 struct to_kill *tk;
453
454 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455 if (!tk) {
456 pr_err("Out of memory while machine check handling\n");
457 return;
458 }
459
460 tk->addr = addr;
461 if (is_zone_device_page(p))
462 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
463 else
464 tk->size_shift = folio_shift(page_folio(p));
465
466 /*
467 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 * so "tk->size_shift == 0" effectively checks no mapping on
470 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 * to a process' address space, it's possible not all N VMAs
472 * contain mappings for the page, but at least one VMA does.
473 * Only deliver SIGBUS with payload derived from the VMA that
474 * has a mapping for the page.
475 */
476 if (tk->addr == -EFAULT) {
477 pr_info("Unable to find user space address %lx in %s\n",
478 page_to_pfn(p), tsk->comm);
479 } else if (tk->size_shift == 0) {
480 kfree(tk);
481 return;
482 }
483
484 get_task_struct(tsk);
485 tk->tsk = tsk;
486 list_add_tail(&tk->nd, to_kill);
487 }
488
add_to_kill_anon_file(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)489 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
490 struct vm_area_struct *vma, struct list_head *to_kill,
491 unsigned long addr)
492 {
493 if (addr == -EFAULT)
494 return;
495 __add_to_kill(tsk, p, vma, to_kill, addr);
496 }
497
498 #ifdef CONFIG_KSM
task_in_to_kill_list(struct list_head * to_kill,struct task_struct * tsk)499 static bool task_in_to_kill_list(struct list_head *to_kill,
500 struct task_struct *tsk)
501 {
502 struct to_kill *tk, *next;
503
504 list_for_each_entry_safe(tk, next, to_kill, nd) {
505 if (tk->tsk == tsk)
506 return true;
507 }
508
509 return false;
510 }
511
add_to_kill_ksm(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)512 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
513 struct vm_area_struct *vma, struct list_head *to_kill,
514 unsigned long addr)
515 {
516 if (!task_in_to_kill_list(to_kill, tsk))
517 __add_to_kill(tsk, p, vma, to_kill, addr);
518 }
519 #endif
520 /*
521 * Kill the processes that have been collected earlier.
522 *
523 * Only do anything when FORCEKILL is set, otherwise just free the
524 * list (this is used for clean pages which do not need killing)
525 */
kill_procs(struct list_head * to_kill,int forcekill,unsigned long pfn,int flags)526 static void kill_procs(struct list_head *to_kill, int forcekill,
527 unsigned long pfn, int flags)
528 {
529 struct to_kill *tk, *next;
530
531 list_for_each_entry_safe(tk, next, to_kill, nd) {
532 if (forcekill) {
533 if (tk->addr == -EFAULT) {
534 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 tk->tsk, PIDTYPE_PID);
538 }
539
540 /*
541 * In theory the process could have mapped
542 * something else on the address in-between. We could
543 * check for that, but we need to tell the
544 * process anyways.
545 */
546 else if (kill_proc(tk, pfn, flags) < 0)
547 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
549 }
550 list_del(&tk->nd);
551 put_task_struct(tk->tsk);
552 kfree(tk);
553 }
554 }
555
556 /*
557 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558 * on behalf of the thread group. Return task_struct of the (first found)
559 * dedicated thread if found, and return NULL otherwise.
560 *
561 * We already hold rcu lock in the caller, so we don't have to call
562 * rcu_read_lock/unlock() in this function.
563 */
find_early_kill_thread(struct task_struct * tsk)564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
565 {
566 struct task_struct *t;
567
568 for_each_thread(tsk, t) {
569 if (t->flags & PF_MCE_PROCESS) {
570 if (t->flags & PF_MCE_EARLY)
571 return t;
572 } else {
573 if (sysctl_memory_failure_early_kill)
574 return t;
575 }
576 }
577 return NULL;
578 }
579
580 /*
581 * Determine whether a given process is "early kill" process which expects
582 * to be signaled when some page under the process is hwpoisoned.
583 * Return task_struct of the dedicated thread (main thread unless explicitly
584 * specified) if the process is "early kill" and otherwise returns NULL.
585 *
586 * Note that the above is true for Action Optional case. For Action Required
587 * case, it's only meaningful to the current thread which need to be signaled
588 * with SIGBUS, this error is Action Optional for other non current
589 * processes sharing the same error page,if the process is "early kill", the
590 * task_struct of the dedicated thread will also be returned.
591 */
task_early_kill(struct task_struct * tsk,int force_early)592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
593 {
594 if (!tsk->mm)
595 return NULL;
596 /*
597 * Comparing ->mm here because current task might represent
598 * a subthread, while tsk always points to the main thread.
599 */
600 if (force_early && tsk->mm == current->mm)
601 return current;
602
603 return find_early_kill_thread(tsk);
604 }
605
606 /*
607 * Collect processes when the error hit an anonymous page.
608 */
collect_procs_anon(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)609 static void collect_procs_anon(const struct folio *folio,
610 const struct page *page, struct list_head *to_kill,
611 int force_early)
612 {
613 struct task_struct *tsk;
614 struct anon_vma *av;
615 pgoff_t pgoff;
616
617 av = folio_lock_anon_vma_read(folio, NULL);
618 if (av == NULL) /* Not actually mapped anymore */
619 return;
620
621 pgoff = page_pgoff(folio, page);
622 rcu_read_lock();
623 for_each_process(tsk) {
624 struct vm_area_struct *vma;
625 struct anon_vma_chain *vmac;
626 struct task_struct *t = task_early_kill(tsk, force_early);
627 unsigned long addr;
628
629 if (!t)
630 continue;
631 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
632 pgoff, pgoff) {
633 vma = vmac->vma;
634 if (vma->vm_mm != t->mm)
635 continue;
636 addr = page_mapped_in_vma(page, vma);
637 add_to_kill_anon_file(t, page, vma, to_kill, addr);
638 }
639 }
640 rcu_read_unlock();
641 anon_vma_unlock_read(av);
642 }
643
644 /*
645 * Collect processes when the error hit a file mapped page.
646 */
collect_procs_file(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)647 static void collect_procs_file(const struct folio *folio,
648 const struct page *page, struct list_head *to_kill,
649 int force_early)
650 {
651 struct vm_area_struct *vma;
652 struct task_struct *tsk;
653 struct address_space *mapping = folio->mapping;
654 pgoff_t pgoff;
655
656 i_mmap_lock_read(mapping);
657 rcu_read_lock();
658 pgoff = page_pgoff(folio, page);
659 for_each_process(tsk) {
660 struct task_struct *t = task_early_kill(tsk, force_early);
661 unsigned long addr;
662
663 if (!t)
664 continue;
665 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
666 pgoff) {
667 /*
668 * Send early kill signal to tasks where a vma covers
669 * the page but the corrupted page is not necessarily
670 * mapped in its pte.
671 * Assume applications who requested early kill want
672 * to be informed of all such data corruptions.
673 */
674 if (vma->vm_mm != t->mm)
675 continue;
676 addr = page_address_in_vma(folio, page, vma);
677 add_to_kill_anon_file(t, page, vma, to_kill, addr);
678 }
679 }
680 rcu_read_unlock();
681 i_mmap_unlock_read(mapping);
682 }
683
684 #ifdef CONFIG_FS_DAX
add_to_kill_fsdax(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,pgoff_t pgoff)685 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
686 struct vm_area_struct *vma,
687 struct list_head *to_kill, pgoff_t pgoff)
688 {
689 unsigned long addr = vma_address(vma, pgoff, 1);
690 __add_to_kill(tsk, p, vma, to_kill, addr);
691 }
692
693 /*
694 * Collect processes when the error hit a fsdax page.
695 */
collect_procs_fsdax(const struct page * page,struct address_space * mapping,pgoff_t pgoff,struct list_head * to_kill,bool pre_remove)696 static void collect_procs_fsdax(const struct page *page,
697 struct address_space *mapping, pgoff_t pgoff,
698 struct list_head *to_kill, bool pre_remove)
699 {
700 struct vm_area_struct *vma;
701 struct task_struct *tsk;
702
703 i_mmap_lock_read(mapping);
704 rcu_read_lock();
705 for_each_process(tsk) {
706 struct task_struct *t = tsk;
707
708 /*
709 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
710 * the current may not be the one accessing the fsdax page.
711 * Otherwise, search for the current task.
712 */
713 if (!pre_remove)
714 t = task_early_kill(tsk, true);
715 if (!t)
716 continue;
717 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
718 if (vma->vm_mm == t->mm)
719 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
720 }
721 }
722 rcu_read_unlock();
723 i_mmap_unlock_read(mapping);
724 }
725 #endif /* CONFIG_FS_DAX */
726
727 /*
728 * Collect the processes who have the corrupted page mapped to kill.
729 */
collect_procs(const struct folio * folio,const struct page * page,struct list_head * tokill,int force_early)730 static void collect_procs(const struct folio *folio, const struct page *page,
731 struct list_head *tokill, int force_early)
732 {
733 if (!folio->mapping)
734 return;
735 if (unlikely(folio_test_ksm(folio)))
736 collect_procs_ksm(folio, page, tokill, force_early);
737 else if (folio_test_anon(folio))
738 collect_procs_anon(folio, page, tokill, force_early);
739 else
740 collect_procs_file(folio, page, tokill, force_early);
741 }
742
743 struct hwpoison_walk {
744 struct to_kill tk;
745 unsigned long pfn;
746 int flags;
747 };
748
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)749 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
750 {
751 tk->addr = addr;
752 tk->size_shift = shift;
753 }
754
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)755 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
756 unsigned long poisoned_pfn, struct to_kill *tk)
757 {
758 unsigned long pfn = 0;
759
760 if (pte_present(pte)) {
761 pfn = pte_pfn(pte);
762 } else {
763 swp_entry_t swp = pte_to_swp_entry(pte);
764
765 if (is_hwpoison_entry(swp))
766 pfn = swp_offset_pfn(swp);
767 }
768
769 if (!pfn || pfn != poisoned_pfn)
770 return 0;
771
772 set_to_kill(tk, addr, shift);
773 return 1;
774 }
775
776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)777 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
778 struct hwpoison_walk *hwp)
779 {
780 pmd_t pmd = *pmdp;
781 unsigned long pfn;
782 unsigned long hwpoison_vaddr;
783
784 if (!pmd_present(pmd))
785 return 0;
786 pfn = pmd_pfn(pmd);
787 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
788 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
789 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
790 return 1;
791 }
792 return 0;
793 }
794 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)795 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
796 struct hwpoison_walk *hwp)
797 {
798 return 0;
799 }
800 #endif
801
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)802 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
803 unsigned long end, struct mm_walk *walk)
804 {
805 struct hwpoison_walk *hwp = walk->private;
806 int ret = 0;
807 pte_t *ptep, *mapped_pte;
808 spinlock_t *ptl;
809
810 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
811 if (ptl) {
812 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
813 spin_unlock(ptl);
814 goto out;
815 }
816
817 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
818 addr, &ptl);
819 if (!ptep)
820 goto out;
821
822 for (; addr != end; ptep++, addr += PAGE_SIZE) {
823 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
824 hwp->pfn, &hwp->tk);
825 if (ret == 1)
826 break;
827 }
828 pte_unmap_unlock(mapped_pte, ptl);
829 out:
830 cond_resched();
831 return ret;
832 }
833
834 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)835 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
836 unsigned long addr, unsigned long end,
837 struct mm_walk *walk)
838 {
839 struct hwpoison_walk *hwp = walk->private;
840 pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
841 struct hstate *h = hstate_vma(walk->vma);
842
843 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
844 hwp->pfn, &hwp->tk);
845 }
846 #else
847 #define hwpoison_hugetlb_range NULL
848 #endif
849
850 static const struct mm_walk_ops hwpoison_walk_ops = {
851 .pmd_entry = hwpoison_pte_range,
852 .hugetlb_entry = hwpoison_hugetlb_range,
853 .walk_lock = PGWALK_RDLOCK,
854 };
855
856 /*
857 * Sends SIGBUS to the current process with error info.
858 *
859 * This function is intended to handle "Action Required" MCEs on already
860 * hardware poisoned pages. They could happen, for example, when
861 * memory_failure() failed to unmap the error page at the first call, or
862 * when multiple local machine checks happened on different CPUs.
863 *
864 * MCE handler currently has no easy access to the error virtual address,
865 * so this function walks page table to find it. The returned virtual address
866 * is proper in most cases, but it could be wrong when the application
867 * process has multiple entries mapping the error page.
868 */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)869 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
870 int flags)
871 {
872 int ret;
873 struct hwpoison_walk priv = {
874 .pfn = pfn,
875 };
876 priv.tk.tsk = p;
877
878 if (!p->mm)
879 return -EFAULT;
880
881 mmap_read_lock(p->mm);
882 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
883 (void *)&priv);
884 /*
885 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
886 * succeeds or fails, then kill the process with SIGBUS.
887 * ret = 0 when poison page is a clean page and it's dropped, no
888 * SIGBUS is needed.
889 */
890 if (ret == 1 && priv.tk.addr)
891 kill_proc(&priv.tk, pfn, flags);
892 mmap_read_unlock(p->mm);
893
894 return ret > 0 ? -EHWPOISON : 0;
895 }
896
897 /*
898 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
899 * But it could not do more to isolate the page from being accessed again,
900 * nor does it kill the process. This is extremely rare and one of the
901 * potential causes is that the page state has been changed due to
902 * underlying race condition. This is the most severe outcomes.
903 *
904 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
905 * It should have killed the process, but it can't isolate the page,
906 * due to conditions such as extra pin, unmap failure, etc. Accessing
907 * the page again may trigger another MCE and the process will be killed
908 * by the m-f() handler immediately.
909 *
910 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
911 * The page is unmapped, and is removed from the LRU or file mapping.
912 * An attempt to access the page again will trigger page fault and the
913 * PF handler will kill the process.
914 *
915 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
916 * The page has been completely isolated, that is, unmapped, taken out of
917 * the buddy system, or hole-punnched out of the file mapping.
918 */
919 static const char *action_name[] = {
920 [MF_IGNORED] = "Ignored",
921 [MF_FAILED] = "Failed",
922 [MF_DELAYED] = "Delayed",
923 [MF_RECOVERED] = "Recovered",
924 };
925
926 static const char * const action_page_types[] = {
927 [MF_MSG_KERNEL] = "reserved kernel page",
928 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
929 [MF_MSG_HUGE] = "huge page",
930 [MF_MSG_FREE_HUGE] = "free huge page",
931 [MF_MSG_GET_HWPOISON] = "get hwpoison page",
932 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
933 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
934 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
935 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
936 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
937 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
938 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
939 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
940 [MF_MSG_CLEAN_LRU] = "clean LRU page",
941 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
942 [MF_MSG_BUDDY] = "free buddy page",
943 [MF_MSG_DAX] = "dax page",
944 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
945 [MF_MSG_ALREADY_POISONED] = "already poisoned",
946 [MF_MSG_UNKNOWN] = "unknown page",
947 };
948
949 /*
950 * XXX: It is possible that a page is isolated from LRU cache,
951 * and then kept in swap cache or failed to remove from page cache.
952 * The page count will stop it from being freed by unpoison.
953 * Stress tests should be aware of this memory leak problem.
954 */
delete_from_lru_cache(struct folio * folio)955 static int delete_from_lru_cache(struct folio *folio)
956 {
957 if (folio_isolate_lru(folio)) {
958 /*
959 * Clear sensible page flags, so that the buddy system won't
960 * complain when the folio is unpoison-and-freed.
961 */
962 folio_clear_active(folio);
963 folio_clear_unevictable(folio);
964
965 /*
966 * Poisoned page might never drop its ref count to 0 so we have
967 * to uncharge it manually from its memcg.
968 */
969 mem_cgroup_uncharge(folio);
970
971 /*
972 * drop the refcount elevated by folio_isolate_lru()
973 */
974 folio_put(folio);
975 return 0;
976 }
977 return -EIO;
978 }
979
truncate_error_folio(struct folio * folio,unsigned long pfn,struct address_space * mapping)980 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
981 struct address_space *mapping)
982 {
983 int ret = MF_FAILED;
984
985 if (mapping->a_ops->error_remove_folio) {
986 int err = mapping->a_ops->error_remove_folio(mapping, folio);
987
988 if (err != 0)
989 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
990 else if (!filemap_release_folio(folio, GFP_NOIO))
991 pr_info("%#lx: failed to release buffers\n", pfn);
992 else
993 ret = MF_RECOVERED;
994 } else {
995 /*
996 * If the file system doesn't support it just invalidate
997 * This fails on dirty or anything with private pages
998 */
999 if (mapping_evict_folio(mapping, folio))
1000 ret = MF_RECOVERED;
1001 else
1002 pr_info("%#lx: Failed to invalidate\n", pfn);
1003 }
1004
1005 return ret;
1006 }
1007
1008 struct page_state {
1009 unsigned long mask;
1010 unsigned long res;
1011 enum mf_action_page_type type;
1012
1013 /* Callback ->action() has to unlock the relevant page inside it. */
1014 int (*action)(struct page_state *ps, struct page *p);
1015 };
1016
1017 /*
1018 * Return true if page is still referenced by others, otherwise return
1019 * false.
1020 *
1021 * The extra_pins is true when one extra refcount is expected.
1022 */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)1023 static bool has_extra_refcount(struct page_state *ps, struct page *p,
1024 bool extra_pins)
1025 {
1026 int count = page_count(p) - 1;
1027
1028 if (extra_pins)
1029 count -= folio_nr_pages(page_folio(p));
1030
1031 if (count > 0) {
1032 pr_err("%#lx: %s still referenced by %d users\n",
1033 page_to_pfn(p), action_page_types[ps->type], count);
1034 return true;
1035 }
1036
1037 return false;
1038 }
1039
1040 /*
1041 * Error hit kernel page.
1042 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1043 * could be more sophisticated.
1044 */
me_kernel(struct page_state * ps,struct page * p)1045 static int me_kernel(struct page_state *ps, struct page *p)
1046 {
1047 unlock_page(p);
1048 return MF_IGNORED;
1049 }
1050
1051 /*
1052 * Page in unknown state. Do nothing.
1053 * This is a catch-all in case we fail to make sense of the page state.
1054 */
me_unknown(struct page_state * ps,struct page * p)1055 static int me_unknown(struct page_state *ps, struct page *p)
1056 {
1057 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1058 unlock_page(p);
1059 return MF_IGNORED;
1060 }
1061
1062 /*
1063 * Clean (or cleaned) page cache page.
1064 */
me_pagecache_clean(struct page_state * ps,struct page * p)1065 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1066 {
1067 struct folio *folio = page_folio(p);
1068 int ret;
1069 struct address_space *mapping;
1070 bool extra_pins;
1071
1072 delete_from_lru_cache(folio);
1073
1074 /*
1075 * For anonymous folios the only reference left
1076 * should be the one m_f() holds.
1077 */
1078 if (folio_test_anon(folio)) {
1079 ret = MF_RECOVERED;
1080 goto out;
1081 }
1082
1083 /*
1084 * Now truncate the page in the page cache. This is really
1085 * more like a "temporary hole punch"
1086 * Don't do this for block devices when someone else
1087 * has a reference, because it could be file system metadata
1088 * and that's not safe to truncate.
1089 */
1090 mapping = folio_mapping(folio);
1091 if (!mapping) {
1092 /* Folio has been torn down in the meantime */
1093 ret = MF_FAILED;
1094 goto out;
1095 }
1096
1097 /*
1098 * The shmem page is kept in page cache instead of truncating
1099 * so is expected to have an extra refcount after error-handling.
1100 */
1101 extra_pins = shmem_mapping(mapping);
1102
1103 /*
1104 * Truncation is a bit tricky. Enable it per file system for now.
1105 *
1106 * Open: to take i_rwsem or not for this? Right now we don't.
1107 */
1108 ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1109 if (has_extra_refcount(ps, p, extra_pins))
1110 ret = MF_FAILED;
1111
1112 out:
1113 folio_unlock(folio);
1114
1115 return ret;
1116 }
1117
1118 /*
1119 * Dirty pagecache page
1120 * Issues: when the error hit a hole page the error is not properly
1121 * propagated.
1122 */
me_pagecache_dirty(struct page_state * ps,struct page * p)1123 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1124 {
1125 struct folio *folio = page_folio(p);
1126 struct address_space *mapping = folio_mapping(folio);
1127
1128 /* TBD: print more information about the file. */
1129 if (mapping) {
1130 /*
1131 * IO error will be reported by write(), fsync(), etc.
1132 * who check the mapping.
1133 * This way the application knows that something went
1134 * wrong with its dirty file data.
1135 */
1136 mapping_set_error(mapping, -EIO);
1137 }
1138
1139 return me_pagecache_clean(ps, p);
1140 }
1141
1142 /*
1143 * Clean and dirty swap cache.
1144 *
1145 * Dirty swap cache page is tricky to handle. The page could live both in page
1146 * table and swap cache(ie. page is freshly swapped in). So it could be
1147 * referenced concurrently by 2 types of PTEs:
1148 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1149 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1150 * and then
1151 * - clear dirty bit to prevent IO
1152 * - remove from LRU
1153 * - but keep in the swap cache, so that when we return to it on
1154 * a later page fault, we know the application is accessing
1155 * corrupted data and shall be killed (we installed simple
1156 * interception code in do_swap_page to catch it).
1157 *
1158 * Clean swap cache pages can be directly isolated. A later page fault will
1159 * bring in the known good data from disk.
1160 */
me_swapcache_dirty(struct page_state * ps,struct page * p)1161 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1162 {
1163 struct folio *folio = page_folio(p);
1164 int ret;
1165 bool extra_pins = false;
1166
1167 folio_clear_dirty(folio);
1168 /* Trigger EIO in shmem: */
1169 folio_clear_uptodate(folio);
1170
1171 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1172 folio_unlock(folio);
1173
1174 if (ret == MF_DELAYED)
1175 extra_pins = true;
1176
1177 if (has_extra_refcount(ps, p, extra_pins))
1178 ret = MF_FAILED;
1179
1180 return ret;
1181 }
1182
me_swapcache_clean(struct page_state * ps,struct page * p)1183 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1184 {
1185 struct folio *folio = page_folio(p);
1186 int ret;
1187
1188 delete_from_swap_cache(folio);
1189
1190 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1191 folio_unlock(folio);
1192
1193 if (has_extra_refcount(ps, p, false))
1194 ret = MF_FAILED;
1195
1196 return ret;
1197 }
1198
1199 /*
1200 * Huge pages. Needs work.
1201 * Issues:
1202 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1203 * To narrow down kill region to one page, we need to break up pmd.
1204 */
me_huge_page(struct page_state * ps,struct page * p)1205 static int me_huge_page(struct page_state *ps, struct page *p)
1206 {
1207 struct folio *folio = page_folio(p);
1208 int res;
1209 struct address_space *mapping;
1210 bool extra_pins = false;
1211
1212 mapping = folio_mapping(folio);
1213 if (mapping) {
1214 res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1215 /* The page is kept in page cache. */
1216 extra_pins = true;
1217 folio_unlock(folio);
1218 } else {
1219 folio_unlock(folio);
1220 /*
1221 * migration entry prevents later access on error hugepage,
1222 * so we can free and dissolve it into buddy to save healthy
1223 * subpages.
1224 */
1225 folio_put(folio);
1226 if (__page_handle_poison(p) > 0) {
1227 page_ref_inc(p);
1228 res = MF_RECOVERED;
1229 } else {
1230 res = MF_FAILED;
1231 }
1232 }
1233
1234 if (has_extra_refcount(ps, p, extra_pins))
1235 res = MF_FAILED;
1236
1237 return res;
1238 }
1239
1240 /*
1241 * Various page states we can handle.
1242 *
1243 * A page state is defined by its current page->flags bits.
1244 * The table matches them in order and calls the right handler.
1245 *
1246 * This is quite tricky because we can access page at any time
1247 * in its live cycle, so all accesses have to be extremely careful.
1248 *
1249 * This is not complete. More states could be added.
1250 * For any missing state don't attempt recovery.
1251 */
1252
1253 #define dirty (1UL << PG_dirty)
1254 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1255 #define unevict (1UL << PG_unevictable)
1256 #define mlock (1UL << PG_mlocked)
1257 #define lru (1UL << PG_lru)
1258 #define head (1UL << PG_head)
1259 #define reserved (1UL << PG_reserved)
1260
1261 static struct page_state error_states[] = {
1262 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1263 /*
1264 * free pages are specially detected outside this table:
1265 * PG_buddy pages only make a small fraction of all free pages.
1266 */
1267
1268 { head, head, MF_MSG_HUGE, me_huge_page },
1269
1270 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1271 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1272
1273 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1274 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1275
1276 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1277 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1278
1279 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1280 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1281
1282 /*
1283 * Catchall entry: must be at end.
1284 */
1285 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1286 };
1287
1288 #undef dirty
1289 #undef sc
1290 #undef unevict
1291 #undef mlock
1292 #undef lru
1293 #undef head
1294 #undef reserved
1295
update_per_node_mf_stats(unsigned long pfn,enum mf_result result)1296 static void update_per_node_mf_stats(unsigned long pfn,
1297 enum mf_result result)
1298 {
1299 int nid = MAX_NUMNODES;
1300 struct memory_failure_stats *mf_stats = NULL;
1301
1302 nid = pfn_to_nid(pfn);
1303 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1304 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1305 return;
1306 }
1307
1308 mf_stats = &NODE_DATA(nid)->mf_stats;
1309 switch (result) {
1310 case MF_IGNORED:
1311 ++mf_stats->ignored;
1312 break;
1313 case MF_FAILED:
1314 ++mf_stats->failed;
1315 break;
1316 case MF_DELAYED:
1317 ++mf_stats->delayed;
1318 break;
1319 case MF_RECOVERED:
1320 ++mf_stats->recovered;
1321 break;
1322 default:
1323 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1324 break;
1325 }
1326 ++mf_stats->total;
1327 }
1328
1329 /*
1330 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1331 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1332 */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1333 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1334 enum mf_result result)
1335 {
1336 trace_memory_failure_event(pfn, type, result);
1337
1338 num_poisoned_pages_inc(pfn);
1339
1340 update_per_node_mf_stats(pfn, result);
1341
1342 pr_err("%#lx: recovery action for %s: %s\n",
1343 pfn, action_page_types[type], action_name[result]);
1344
1345 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1346 }
1347
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1348 static int page_action(struct page_state *ps, struct page *p,
1349 unsigned long pfn)
1350 {
1351 int result;
1352
1353 /* page p should be unlocked after returning from ps->action(). */
1354 result = ps->action(ps, p);
1355
1356 /* Could do more checks here if page looks ok */
1357 /*
1358 * Could adjust zone counters here to correct for the missing page.
1359 */
1360
1361 return action_result(pfn, ps->type, result);
1362 }
1363
PageHWPoisonTakenOff(struct page * page)1364 static inline bool PageHWPoisonTakenOff(struct page *page)
1365 {
1366 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1367 }
1368
SetPageHWPoisonTakenOff(struct page * page)1369 void SetPageHWPoisonTakenOff(struct page *page)
1370 {
1371 set_page_private(page, MAGIC_HWPOISON);
1372 }
1373
ClearPageHWPoisonTakenOff(struct page * page)1374 void ClearPageHWPoisonTakenOff(struct page *page)
1375 {
1376 if (PageHWPoison(page))
1377 set_page_private(page, 0);
1378 }
1379
1380 /*
1381 * Return true if a page type of a given page is supported by hwpoison
1382 * mechanism (while handling could fail), otherwise false. This function
1383 * does not return true for hugetlb or device memory pages, so it's assumed
1384 * to be called only in the context where we never have such pages.
1385 */
HWPoisonHandlable(struct page * page,unsigned long flags)1386 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1387 {
1388 if (PageSlab(page))
1389 return false;
1390
1391 /* Soft offline could migrate non-LRU movable pages */
1392 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1393 return true;
1394
1395 return PageLRU(page) || is_free_buddy_page(page);
1396 }
1397
__get_hwpoison_page(struct page * page,unsigned long flags)1398 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1399 {
1400 struct folio *folio = page_folio(page);
1401 int ret = 0;
1402 bool hugetlb = false;
1403
1404 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1405 if (hugetlb) {
1406 /* Make sure hugetlb demotion did not happen from under us. */
1407 if (folio == page_folio(page))
1408 return ret;
1409 if (ret > 0) {
1410 folio_put(folio);
1411 folio = page_folio(page);
1412 }
1413 }
1414
1415 /*
1416 * This check prevents from calling folio_try_get() for any
1417 * unsupported type of folio in order to reduce the risk of unexpected
1418 * races caused by taking a folio refcount.
1419 */
1420 if (!HWPoisonHandlable(&folio->page, flags))
1421 return -EBUSY;
1422
1423 if (folio_try_get(folio)) {
1424 if (folio == page_folio(page))
1425 return 1;
1426
1427 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1428 folio_put(folio);
1429 }
1430
1431 return 0;
1432 }
1433
1434 #define GET_PAGE_MAX_RETRY_NUM 3
1435
get_any_page(struct page * p,unsigned long flags)1436 static int get_any_page(struct page *p, unsigned long flags)
1437 {
1438 int ret = 0, pass = 0;
1439 bool count_increased = false;
1440
1441 if (flags & MF_COUNT_INCREASED)
1442 count_increased = true;
1443
1444 try_again:
1445 if (!count_increased) {
1446 ret = __get_hwpoison_page(p, flags);
1447 if (!ret) {
1448 if (page_count(p)) {
1449 /* We raced with an allocation, retry. */
1450 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1451 goto try_again;
1452 ret = -EBUSY;
1453 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1454 /* We raced with put_page, retry. */
1455 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1456 goto try_again;
1457 ret = -EIO;
1458 }
1459 goto out;
1460 } else if (ret == -EBUSY) {
1461 /*
1462 * We raced with (possibly temporary) unhandlable
1463 * page, retry.
1464 */
1465 if (pass++ < 3) {
1466 shake_page(p);
1467 goto try_again;
1468 }
1469 ret = -EIO;
1470 goto out;
1471 }
1472 }
1473
1474 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1475 ret = 1;
1476 } else {
1477 /*
1478 * A page we cannot handle. Check whether we can turn
1479 * it into something we can handle.
1480 */
1481 if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1482 put_page(p);
1483 shake_page(p);
1484 count_increased = false;
1485 goto try_again;
1486 }
1487 put_page(p);
1488 ret = -EIO;
1489 }
1490 out:
1491 if (ret == -EIO)
1492 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1493
1494 return ret;
1495 }
1496
__get_unpoison_page(struct page * page)1497 static int __get_unpoison_page(struct page *page)
1498 {
1499 struct folio *folio = page_folio(page);
1500 int ret = 0;
1501 bool hugetlb = false;
1502
1503 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1504 if (hugetlb) {
1505 /* Make sure hugetlb demotion did not happen from under us. */
1506 if (folio == page_folio(page))
1507 return ret;
1508 if (ret > 0)
1509 folio_put(folio);
1510 }
1511
1512 /*
1513 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1514 * but also isolated from buddy freelist, so need to identify the
1515 * state and have to cancel both operations to unpoison.
1516 */
1517 if (PageHWPoisonTakenOff(page))
1518 return -EHWPOISON;
1519
1520 return get_page_unless_zero(page) ? 1 : 0;
1521 }
1522
1523 /**
1524 * get_hwpoison_page() - Get refcount for memory error handling
1525 * @p: Raw error page (hit by memory error)
1526 * @flags: Flags controlling behavior of error handling
1527 *
1528 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1529 * error on it, after checking that the error page is in a well-defined state
1530 * (defined as a page-type we can successfully handle the memory error on it,
1531 * such as LRU page and hugetlb page).
1532 *
1533 * Memory error handling could be triggered at any time on any type of page,
1534 * so it's prone to race with typical memory management lifecycle (like
1535 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1536 * extra care for the error page's state (as done in __get_hwpoison_page()),
1537 * and has some retry logic in get_any_page().
1538 *
1539 * When called from unpoison_memory(), the caller should already ensure that
1540 * the given page has PG_hwpoison. So it's never reused for other page
1541 * allocations, and __get_unpoison_page() never races with them.
1542 *
1543 * Return: 0 on failure or free buddy (hugetlb) page,
1544 * 1 on success for in-use pages in a well-defined state,
1545 * -EIO for pages on which we can not handle memory errors,
1546 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1547 * operations like allocation and free,
1548 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1549 */
get_hwpoison_page(struct page * p,unsigned long flags)1550 static int get_hwpoison_page(struct page *p, unsigned long flags)
1551 {
1552 int ret;
1553
1554 zone_pcp_disable(page_zone(p));
1555 if (flags & MF_UNPOISON)
1556 ret = __get_unpoison_page(p);
1557 else
1558 ret = get_any_page(p, flags);
1559 zone_pcp_enable(page_zone(p));
1560
1561 return ret;
1562 }
1563
unmap_poisoned_folio(struct folio * folio,unsigned long pfn,bool must_kill)1564 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1565 {
1566 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1567 struct address_space *mapping;
1568
1569 if (folio_test_swapcache(folio)) {
1570 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1571 ttu &= ~TTU_HWPOISON;
1572 }
1573
1574 /*
1575 * Propagate the dirty bit from PTEs to struct page first, because we
1576 * need this to decide if we should kill or just drop the page.
1577 * XXX: the dirty test could be racy: set_page_dirty() may not always
1578 * be called inside page lock (it's recommended but not enforced).
1579 */
1580 mapping = folio_mapping(folio);
1581 if (!must_kill && !folio_test_dirty(folio) && mapping &&
1582 mapping_can_writeback(mapping)) {
1583 if (folio_mkclean(folio)) {
1584 folio_set_dirty(folio);
1585 } else {
1586 ttu &= ~TTU_HWPOISON;
1587 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1588 pfn);
1589 }
1590 }
1591
1592 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1593 /*
1594 * For hugetlb folios in shared mappings, try_to_unmap
1595 * could potentially call huge_pmd_unshare. Because of
1596 * this, take semaphore in write mode here and set
1597 * TTU_RMAP_LOCKED to indicate we have taken the lock
1598 * at this higher level.
1599 */
1600 mapping = hugetlb_folio_mapping_lock_write(folio);
1601 if (!mapping) {
1602 pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1603 folio_pfn(folio));
1604 return -EBUSY;
1605 }
1606
1607 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1608 i_mmap_unlock_write(mapping);
1609 } else {
1610 try_to_unmap(folio, ttu);
1611 }
1612
1613 return folio_mapped(folio) ? -EBUSY : 0;
1614 }
1615
1616 /*
1617 * Do all that is necessary to remove user space mappings. Unmap
1618 * the pages and send SIGBUS to the processes if the data was dirty.
1619 */
hwpoison_user_mappings(struct folio * folio,struct page * p,unsigned long pfn,int flags)1620 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1621 unsigned long pfn, int flags)
1622 {
1623 LIST_HEAD(tokill);
1624 bool unmap_success;
1625 int forcekill;
1626 bool mlocked = folio_test_mlocked(folio);
1627
1628 /*
1629 * Here we are interested only in user-mapped pages, so skip any
1630 * other types of pages.
1631 */
1632 if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1633 folio_test_pgtable(folio) || folio_test_offline(folio))
1634 return true;
1635 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1636 return true;
1637
1638 /*
1639 * This check implies we don't kill processes if their pages
1640 * are in the swap cache early. Those are always late kills.
1641 */
1642 if (!folio_mapped(folio))
1643 return true;
1644
1645 /*
1646 * First collect all the processes that have the page
1647 * mapped in dirty form. This has to be done before try_to_unmap,
1648 * because ttu takes the rmap data structures down.
1649 */
1650 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1651
1652 unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
1653 if (!unmap_success)
1654 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1655 pfn, folio_mapcount(folio));
1656
1657 /*
1658 * try_to_unmap() might put mlocked page in lru cache, so call
1659 * shake_page() again to ensure that it's flushed.
1660 */
1661 if (mlocked)
1662 shake_folio(folio);
1663
1664 /*
1665 * Now that the dirty bit has been propagated to the
1666 * struct page and all unmaps done we can decide if
1667 * killing is needed or not. Only kill when the page
1668 * was dirty or the process is not restartable,
1669 * otherwise the tokill list is merely
1670 * freed. When there was a problem unmapping earlier
1671 * use a more force-full uncatchable kill to prevent
1672 * any accesses to the poisoned memory.
1673 */
1674 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1675 !unmap_success;
1676 kill_procs(&tokill, forcekill, pfn, flags);
1677
1678 return unmap_success;
1679 }
1680
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1681 static int identify_page_state(unsigned long pfn, struct page *p,
1682 unsigned long page_flags)
1683 {
1684 struct page_state *ps;
1685
1686 /*
1687 * The first check uses the current page flags which may not have any
1688 * relevant information. The second check with the saved page flags is
1689 * carried out only if the first check can't determine the page status.
1690 */
1691 for (ps = error_states;; ps++)
1692 if ((p->flags & ps->mask) == ps->res)
1693 break;
1694
1695 page_flags |= (p->flags & (1UL << PG_dirty));
1696
1697 if (!ps->mask)
1698 for (ps = error_states;; ps++)
1699 if ((page_flags & ps->mask) == ps->res)
1700 break;
1701 return page_action(ps, p, pfn);
1702 }
1703
1704 /*
1705 * When 'release' is 'false', it means that if thp split has failed,
1706 * there is still more to do, hence the page refcount we took earlier
1707 * is still needed.
1708 */
try_to_split_thp_page(struct page * page,bool release)1709 static int try_to_split_thp_page(struct page *page, bool release)
1710 {
1711 int ret;
1712
1713 lock_page(page);
1714 ret = split_huge_page(page);
1715 unlock_page(page);
1716
1717 if (ret && release)
1718 put_page(page);
1719
1720 return ret;
1721 }
1722
unmap_and_kill(struct list_head * to_kill,unsigned long pfn,struct address_space * mapping,pgoff_t index,int flags)1723 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1724 struct address_space *mapping, pgoff_t index, int flags)
1725 {
1726 struct to_kill *tk;
1727 unsigned long size = 0;
1728
1729 list_for_each_entry(tk, to_kill, nd)
1730 if (tk->size_shift)
1731 size = max(size, 1UL << tk->size_shift);
1732
1733 if (size) {
1734 /*
1735 * Unmap the largest mapping to avoid breaking up device-dax
1736 * mappings which are constant size. The actual size of the
1737 * mapping being torn down is communicated in siginfo, see
1738 * kill_proc()
1739 */
1740 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1741
1742 unmap_mapping_range(mapping, start, size, 0);
1743 }
1744
1745 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1746 }
1747
1748 /*
1749 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1750 * either do not claim or fails to claim a hwpoison event, or devdax.
1751 * The fsdax pages are initialized per base page, and the devdax pages
1752 * could be initialized either as base pages, or as compound pages with
1753 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1754 * hwpoison, such that, if a subpage of a compound page is poisoned,
1755 * simply mark the compound head page is by far sufficient.
1756 */
mf_generic_kill_procs(unsigned long long pfn,int flags,struct dev_pagemap * pgmap)1757 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1758 struct dev_pagemap *pgmap)
1759 {
1760 struct folio *folio = pfn_folio(pfn);
1761 LIST_HEAD(to_kill);
1762 dax_entry_t cookie;
1763 int rc = 0;
1764
1765 /*
1766 * Prevent the inode from being freed while we are interrogating
1767 * the address_space, typically this would be handled by
1768 * lock_page(), but dax pages do not use the page lock. This
1769 * also prevents changes to the mapping of this pfn until
1770 * poison signaling is complete.
1771 */
1772 cookie = dax_lock_folio(folio);
1773 if (!cookie)
1774 return -EBUSY;
1775
1776 if (hwpoison_filter(&folio->page)) {
1777 rc = -EOPNOTSUPP;
1778 goto unlock;
1779 }
1780
1781 switch (pgmap->type) {
1782 case MEMORY_DEVICE_PRIVATE:
1783 case MEMORY_DEVICE_COHERENT:
1784 /*
1785 * TODO: Handle device pages which may need coordination
1786 * with device-side memory.
1787 */
1788 rc = -ENXIO;
1789 goto unlock;
1790 default:
1791 break;
1792 }
1793
1794 /*
1795 * Use this flag as an indication that the dax page has been
1796 * remapped UC to prevent speculative consumption of poison.
1797 */
1798 SetPageHWPoison(&folio->page);
1799
1800 /*
1801 * Unlike System-RAM there is no possibility to swap in a
1802 * different physical page at a given virtual address, so all
1803 * userspace consumption of ZONE_DEVICE memory necessitates
1804 * SIGBUS (i.e. MF_MUST_KILL)
1805 */
1806 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1807 collect_procs(folio, &folio->page, &to_kill, true);
1808
1809 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1810 unlock:
1811 dax_unlock_folio(folio, cookie);
1812 return rc;
1813 }
1814
1815 #ifdef CONFIG_FS_DAX
1816 /**
1817 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1818 * @mapping: address_space of the file in use
1819 * @index: start pgoff of the range within the file
1820 * @count: length of the range, in unit of PAGE_SIZE
1821 * @mf_flags: memory failure flags
1822 */
mf_dax_kill_procs(struct address_space * mapping,pgoff_t index,unsigned long count,int mf_flags)1823 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1824 unsigned long count, int mf_flags)
1825 {
1826 LIST_HEAD(to_kill);
1827 dax_entry_t cookie;
1828 struct page *page;
1829 size_t end = index + count;
1830 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1831
1832 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1833
1834 for (; index < end; index++) {
1835 page = NULL;
1836 cookie = dax_lock_mapping_entry(mapping, index, &page);
1837 if (!cookie)
1838 return -EBUSY;
1839 if (!page)
1840 goto unlock;
1841
1842 if (!pre_remove)
1843 SetPageHWPoison(page);
1844
1845 /*
1846 * The pre_remove case is revoking access, the memory is still
1847 * good and could theoretically be put back into service.
1848 */
1849 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1850 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1851 index, mf_flags);
1852 unlock:
1853 dax_unlock_mapping_entry(mapping, index, cookie);
1854 }
1855 return 0;
1856 }
1857 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1858 #endif /* CONFIG_FS_DAX */
1859
1860 #ifdef CONFIG_HUGETLB_PAGE
1861
1862 /*
1863 * Struct raw_hwp_page represents information about "raw error page",
1864 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1865 */
1866 struct raw_hwp_page {
1867 struct llist_node node;
1868 struct page *page;
1869 };
1870
raw_hwp_list_head(struct folio * folio)1871 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1872 {
1873 return (struct llist_head *)&folio->_hugetlb_hwpoison;
1874 }
1875
is_raw_hwpoison_page_in_hugepage(struct page * page)1876 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1877 {
1878 struct llist_head *raw_hwp_head;
1879 struct raw_hwp_page *p;
1880 struct folio *folio = page_folio(page);
1881 bool ret = false;
1882
1883 if (!folio_test_hwpoison(folio))
1884 return false;
1885
1886 if (!folio_test_hugetlb(folio))
1887 return PageHWPoison(page);
1888
1889 /*
1890 * When RawHwpUnreliable is set, kernel lost track of which subpages
1891 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1892 */
1893 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1894 return true;
1895
1896 mutex_lock(&mf_mutex);
1897
1898 raw_hwp_head = raw_hwp_list_head(folio);
1899 llist_for_each_entry(p, raw_hwp_head->first, node) {
1900 if (page == p->page) {
1901 ret = true;
1902 break;
1903 }
1904 }
1905
1906 mutex_unlock(&mf_mutex);
1907
1908 return ret;
1909 }
1910
__folio_free_raw_hwp(struct folio * folio,bool move_flag)1911 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1912 {
1913 struct llist_node *head;
1914 struct raw_hwp_page *p, *next;
1915 unsigned long count = 0;
1916
1917 head = llist_del_all(raw_hwp_list_head(folio));
1918 llist_for_each_entry_safe(p, next, head, node) {
1919 if (move_flag)
1920 SetPageHWPoison(p->page);
1921 else
1922 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1923 kfree(p);
1924 count++;
1925 }
1926 return count;
1927 }
1928
folio_set_hugetlb_hwpoison(struct folio * folio,struct page * page)1929 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1930 {
1931 struct llist_head *head;
1932 struct raw_hwp_page *raw_hwp;
1933 struct raw_hwp_page *p;
1934 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1935
1936 /*
1937 * Once the hwpoison hugepage has lost reliable raw error info,
1938 * there is little meaning to keep additional error info precisely,
1939 * so skip to add additional raw error info.
1940 */
1941 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1942 return -EHWPOISON;
1943 head = raw_hwp_list_head(folio);
1944 llist_for_each_entry(p, head->first, node) {
1945 if (p->page == page)
1946 return -EHWPOISON;
1947 }
1948
1949 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1950 if (raw_hwp) {
1951 raw_hwp->page = page;
1952 llist_add(&raw_hwp->node, head);
1953 /* the first error event will be counted in action_result(). */
1954 if (ret)
1955 num_poisoned_pages_inc(page_to_pfn(page));
1956 } else {
1957 /*
1958 * Failed to save raw error info. We no longer trace all
1959 * hwpoisoned subpages, and we need refuse to free/dissolve
1960 * this hwpoisoned hugepage.
1961 */
1962 folio_set_hugetlb_raw_hwp_unreliable(folio);
1963 /*
1964 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1965 * used any more, so free it.
1966 */
1967 __folio_free_raw_hwp(folio, false);
1968 }
1969 return ret;
1970 }
1971
folio_free_raw_hwp(struct folio * folio,bool move_flag)1972 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1973 {
1974 /*
1975 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1976 * pages for tail pages are required but they don't exist.
1977 */
1978 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1979 return 0;
1980
1981 /*
1982 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1983 * definition.
1984 */
1985 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1986 return 0;
1987
1988 return __folio_free_raw_hwp(folio, move_flag);
1989 }
1990
folio_clear_hugetlb_hwpoison(struct folio * folio)1991 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1992 {
1993 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1994 return;
1995 if (folio_test_hugetlb_vmemmap_optimized(folio))
1996 return;
1997 folio_clear_hwpoison(folio);
1998 folio_free_raw_hwp(folio, true);
1999 }
2000
2001 /*
2002 * Called from hugetlb code with hugetlb_lock held.
2003 *
2004 * Return values:
2005 * 0 - free hugepage
2006 * 1 - in-use hugepage
2007 * 2 - not a hugepage
2008 * -EBUSY - the hugepage is busy (try to retry)
2009 * -EHWPOISON - the hugepage is already hwpoisoned
2010 */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)2011 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2012 bool *migratable_cleared)
2013 {
2014 struct page *page = pfn_to_page(pfn);
2015 struct folio *folio = page_folio(page);
2016 int ret = 2; /* fallback to normal page handling */
2017 bool count_increased = false;
2018
2019 if (!folio_test_hugetlb(folio))
2020 goto out;
2021
2022 if (flags & MF_COUNT_INCREASED) {
2023 ret = 1;
2024 count_increased = true;
2025 } else if (folio_test_hugetlb_freed(folio)) {
2026 ret = 0;
2027 } else if (folio_test_hugetlb_migratable(folio)) {
2028 ret = folio_try_get(folio);
2029 if (ret)
2030 count_increased = true;
2031 } else {
2032 ret = -EBUSY;
2033 if (!(flags & MF_NO_RETRY))
2034 goto out;
2035 }
2036
2037 if (folio_set_hugetlb_hwpoison(folio, page)) {
2038 ret = -EHWPOISON;
2039 goto out;
2040 }
2041
2042 /*
2043 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2044 * from being migrated by memory hotremove.
2045 */
2046 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2047 folio_clear_hugetlb_migratable(folio);
2048 *migratable_cleared = true;
2049 }
2050
2051 return ret;
2052 out:
2053 if (count_increased)
2054 folio_put(folio);
2055 return ret;
2056 }
2057
2058 /*
2059 * Taking refcount of hugetlb pages needs extra care about race conditions
2060 * with basic operations like hugepage allocation/free/demotion.
2061 * So some of prechecks for hwpoison (pinning, and testing/setting
2062 * PageHWPoison) should be done in single hugetlb_lock range.
2063 */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2064 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2065 {
2066 int res;
2067 struct page *p = pfn_to_page(pfn);
2068 struct folio *folio;
2069 unsigned long page_flags;
2070 bool migratable_cleared = false;
2071
2072 *hugetlb = 1;
2073 retry:
2074 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2075 if (res == 2) { /* fallback to normal page handling */
2076 *hugetlb = 0;
2077 return 0;
2078 } else if (res == -EHWPOISON) {
2079 pr_err("%#lx: already hardware poisoned\n", pfn);
2080 if (flags & MF_ACTION_REQUIRED) {
2081 folio = page_folio(p);
2082 res = kill_accessing_process(current, folio_pfn(folio), flags);
2083 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2084 }
2085 return res;
2086 } else if (res == -EBUSY) {
2087 if (!(flags & MF_NO_RETRY)) {
2088 flags |= MF_NO_RETRY;
2089 goto retry;
2090 }
2091 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2092 }
2093
2094 folio = page_folio(p);
2095 folio_lock(folio);
2096
2097 if (hwpoison_filter(p)) {
2098 folio_clear_hugetlb_hwpoison(folio);
2099 if (migratable_cleared)
2100 folio_set_hugetlb_migratable(folio);
2101 folio_unlock(folio);
2102 if (res == 1)
2103 folio_put(folio);
2104 return -EOPNOTSUPP;
2105 }
2106
2107 /*
2108 * Handling free hugepage. The possible race with hugepage allocation
2109 * or demotion can be prevented by PageHWPoison flag.
2110 */
2111 if (res == 0) {
2112 folio_unlock(folio);
2113 if (__page_handle_poison(p) > 0) {
2114 page_ref_inc(p);
2115 res = MF_RECOVERED;
2116 } else {
2117 res = MF_FAILED;
2118 }
2119 return action_result(pfn, MF_MSG_FREE_HUGE, res);
2120 }
2121
2122 page_flags = folio->flags;
2123
2124 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2125 folio_unlock(folio);
2126 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2127 }
2128
2129 return identify_page_state(pfn, p, page_flags);
2130 }
2131
2132 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2133 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2134 {
2135 return 0;
2136 }
2137
folio_free_raw_hwp(struct folio * folio,bool flag)2138 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2139 {
2140 return 0;
2141 }
2142 #endif /* CONFIG_HUGETLB_PAGE */
2143
2144 /* Drop the extra refcount in case we come from madvise() */
put_ref_page(unsigned long pfn,int flags)2145 static void put_ref_page(unsigned long pfn, int flags)
2146 {
2147 if (!(flags & MF_COUNT_INCREASED))
2148 return;
2149
2150 put_page(pfn_to_page(pfn));
2151 }
2152
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)2153 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2154 struct dev_pagemap *pgmap)
2155 {
2156 int rc = -ENXIO;
2157
2158 /* device metadata space is not recoverable */
2159 if (!pgmap_pfn_valid(pgmap, pfn))
2160 goto out;
2161
2162 /*
2163 * Call driver's implementation to handle the memory failure, otherwise
2164 * fall back to generic handler.
2165 */
2166 if (pgmap_has_memory_failure(pgmap)) {
2167 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2168 /*
2169 * Fall back to generic handler too if operation is not
2170 * supported inside the driver/device/filesystem.
2171 */
2172 if (rc != -EOPNOTSUPP)
2173 goto out;
2174 }
2175
2176 rc = mf_generic_kill_procs(pfn, flags, pgmap);
2177 out:
2178 /* drop pgmap ref acquired in caller */
2179 put_dev_pagemap(pgmap);
2180 if (rc != -EOPNOTSUPP)
2181 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2182 return rc;
2183 }
2184
2185 /*
2186 * The calling condition is as such: thp split failed, page might have
2187 * been RDMA pinned, not much can be done for recovery.
2188 * But a SIGBUS should be delivered with vaddr provided so that the user
2189 * application has a chance to recover. Also, application processes'
2190 * election for MCE early killed will be honored.
2191 */
kill_procs_now(struct page * p,unsigned long pfn,int flags,struct folio * folio)2192 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2193 struct folio *folio)
2194 {
2195 LIST_HEAD(tokill);
2196
2197 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2198 kill_procs(&tokill, true, pfn, flags);
2199 }
2200
2201 /**
2202 * memory_failure - Handle memory failure of a page.
2203 * @pfn: Page Number of the corrupted page
2204 * @flags: fine tune action taken
2205 *
2206 * This function is called by the low level machine check code
2207 * of an architecture when it detects hardware memory corruption
2208 * of a page. It tries its best to recover, which includes
2209 * dropping pages, killing processes etc.
2210 *
2211 * The function is primarily of use for corruptions that
2212 * happen outside the current execution context (e.g. when
2213 * detected by a background scrubber)
2214 *
2215 * Must run in process context (e.g. a work queue) with interrupts
2216 * enabled and no spinlocks held.
2217 *
2218 * Return: 0 for successfully handled the memory error,
2219 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2220 * < 0(except -EOPNOTSUPP) on failure.
2221 */
memory_failure(unsigned long pfn,int flags)2222 int memory_failure(unsigned long pfn, int flags)
2223 {
2224 struct page *p;
2225 struct folio *folio;
2226 struct dev_pagemap *pgmap;
2227 int res = 0;
2228 unsigned long page_flags;
2229 bool retry = true;
2230 int hugetlb = 0;
2231
2232 if (!sysctl_memory_failure_recovery)
2233 panic("Memory failure on page %lx", pfn);
2234
2235 mutex_lock(&mf_mutex);
2236
2237 if (!(flags & MF_SW_SIMULATED))
2238 hw_memory_failure = true;
2239
2240 p = pfn_to_online_page(pfn);
2241 if (!p) {
2242 res = arch_memory_failure(pfn, flags);
2243 if (res == 0)
2244 goto unlock_mutex;
2245
2246 if (pfn_valid(pfn)) {
2247 pgmap = get_dev_pagemap(pfn, NULL);
2248 put_ref_page(pfn, flags);
2249 if (pgmap) {
2250 res = memory_failure_dev_pagemap(pfn, flags,
2251 pgmap);
2252 goto unlock_mutex;
2253 }
2254 }
2255 pr_err("%#lx: memory outside kernel control\n", pfn);
2256 res = -ENXIO;
2257 goto unlock_mutex;
2258 }
2259
2260 try_again:
2261 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2262 if (hugetlb)
2263 goto unlock_mutex;
2264
2265 if (TestSetPageHWPoison(p)) {
2266 pr_err("%#lx: already hardware poisoned\n", pfn);
2267 res = -EHWPOISON;
2268 if (flags & MF_ACTION_REQUIRED)
2269 res = kill_accessing_process(current, pfn, flags);
2270 if (flags & MF_COUNT_INCREASED)
2271 put_page(p);
2272 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2273 goto unlock_mutex;
2274 }
2275
2276 /*
2277 * We need/can do nothing about count=0 pages.
2278 * 1) it's a free page, and therefore in safe hand:
2279 * check_new_page() will be the gate keeper.
2280 * 2) it's part of a non-compound high order page.
2281 * Implies some kernel user: cannot stop them from
2282 * R/W the page; let's pray that the page has been
2283 * used and will be freed some time later.
2284 * In fact it's dangerous to directly bump up page count from 0,
2285 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2286 */
2287 if (!(flags & MF_COUNT_INCREASED)) {
2288 res = get_hwpoison_page(p, flags);
2289 if (!res) {
2290 if (is_free_buddy_page(p)) {
2291 if (take_page_off_buddy(p)) {
2292 page_ref_inc(p);
2293 res = MF_RECOVERED;
2294 } else {
2295 /* We lost the race, try again */
2296 if (retry) {
2297 ClearPageHWPoison(p);
2298 retry = false;
2299 goto try_again;
2300 }
2301 res = MF_FAILED;
2302 }
2303 res = action_result(pfn, MF_MSG_BUDDY, res);
2304 } else {
2305 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2306 }
2307 goto unlock_mutex;
2308 } else if (res < 0) {
2309 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2310 goto unlock_mutex;
2311 }
2312 }
2313
2314 folio = page_folio(p);
2315
2316 /* filter pages that are protected from hwpoison test by users */
2317 folio_lock(folio);
2318 if (hwpoison_filter(p)) {
2319 ClearPageHWPoison(p);
2320 folio_unlock(folio);
2321 folio_put(folio);
2322 res = -EOPNOTSUPP;
2323 goto unlock_mutex;
2324 }
2325 folio_unlock(folio);
2326
2327 if (folio_test_large(folio)) {
2328 /*
2329 * The flag must be set after the refcount is bumped
2330 * otherwise it may race with THP split.
2331 * And the flag can't be set in get_hwpoison_page() since
2332 * it is called by soft offline too and it is just called
2333 * for !MF_COUNT_INCREASED. So here seems to be the best
2334 * place.
2335 *
2336 * Don't need care about the above error handling paths for
2337 * get_hwpoison_page() since they handle either free page
2338 * or unhandlable page. The refcount is bumped iff the
2339 * page is a valid handlable page.
2340 */
2341 folio_set_has_hwpoisoned(folio);
2342 if (try_to_split_thp_page(p, false) < 0) {
2343 res = -EHWPOISON;
2344 kill_procs_now(p, pfn, flags, folio);
2345 put_page(p);
2346 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2347 goto unlock_mutex;
2348 }
2349 VM_BUG_ON_PAGE(!page_count(p), p);
2350 folio = page_folio(p);
2351 }
2352
2353 /*
2354 * We ignore non-LRU pages for good reasons.
2355 * - PG_locked is only well defined for LRU pages and a few others
2356 * - to avoid races with __SetPageLocked()
2357 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2358 * The check (unnecessarily) ignores LRU pages being isolated and
2359 * walked by the page reclaim code, however that's not a big loss.
2360 */
2361 shake_folio(folio);
2362
2363 folio_lock(folio);
2364
2365 /*
2366 * We're only intended to deal with the non-Compound page here.
2367 * The page cannot become compound pages again as folio has been
2368 * splited and extra refcnt is held.
2369 */
2370 WARN_ON(folio_test_large(folio));
2371
2372 /*
2373 * We use page flags to determine what action should be taken, but
2374 * the flags can be modified by the error containment action. One
2375 * example is an mlocked page, where PG_mlocked is cleared by
2376 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2377 * status correctly, we save a copy of the page flags at this time.
2378 */
2379 page_flags = folio->flags;
2380
2381 /*
2382 * __munlock_folio() may clear a writeback folio's LRU flag without
2383 * the folio lock. We need to wait for writeback completion for this
2384 * folio or it may trigger a vfs BUG while evicting inode.
2385 */
2386 if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2387 goto identify_page_state;
2388
2389 /*
2390 * It's very difficult to mess with pages currently under IO
2391 * and in many cases impossible, so we just avoid it here.
2392 */
2393 folio_wait_writeback(folio);
2394
2395 /*
2396 * Now take care of user space mappings.
2397 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2398 */
2399 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2400 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2401 goto unlock_page;
2402 }
2403
2404 /*
2405 * Torn down by someone else?
2406 */
2407 if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2408 folio->mapping == NULL) {
2409 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2410 goto unlock_page;
2411 }
2412
2413 identify_page_state:
2414 res = identify_page_state(pfn, p, page_flags);
2415 mutex_unlock(&mf_mutex);
2416 return res;
2417 unlock_page:
2418 folio_unlock(folio);
2419 unlock_mutex:
2420 mutex_unlock(&mf_mutex);
2421 return res;
2422 }
2423 EXPORT_SYMBOL_GPL(memory_failure);
2424
2425 #define MEMORY_FAILURE_FIFO_ORDER 4
2426 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2427
2428 struct memory_failure_entry {
2429 unsigned long pfn;
2430 int flags;
2431 };
2432
2433 struct memory_failure_cpu {
2434 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2435 MEMORY_FAILURE_FIFO_SIZE);
2436 raw_spinlock_t lock;
2437 struct work_struct work;
2438 };
2439
2440 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2441
2442 /**
2443 * memory_failure_queue - Schedule handling memory failure of a page.
2444 * @pfn: Page Number of the corrupted page
2445 * @flags: Flags for memory failure handling
2446 *
2447 * This function is called by the low level hardware error handler
2448 * when it detects hardware memory corruption of a page. It schedules
2449 * the recovering of error page, including dropping pages, killing
2450 * processes etc.
2451 *
2452 * The function is primarily of use for corruptions that
2453 * happen outside the current execution context (e.g. when
2454 * detected by a background scrubber)
2455 *
2456 * Can run in IRQ context.
2457 */
memory_failure_queue(unsigned long pfn,int flags)2458 void memory_failure_queue(unsigned long pfn, int flags)
2459 {
2460 struct memory_failure_cpu *mf_cpu;
2461 unsigned long proc_flags;
2462 bool buffer_overflow;
2463 struct memory_failure_entry entry = {
2464 .pfn = pfn,
2465 .flags = flags,
2466 };
2467
2468 mf_cpu = &get_cpu_var(memory_failure_cpu);
2469 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2470 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2471 if (!buffer_overflow)
2472 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2473 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2474 put_cpu_var(memory_failure_cpu);
2475 if (buffer_overflow)
2476 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2477 pfn);
2478 }
2479 EXPORT_SYMBOL_GPL(memory_failure_queue);
2480
memory_failure_work_func(struct work_struct * work)2481 static void memory_failure_work_func(struct work_struct *work)
2482 {
2483 struct memory_failure_cpu *mf_cpu;
2484 struct memory_failure_entry entry = { 0, };
2485 unsigned long proc_flags;
2486 int gotten;
2487
2488 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2489 for (;;) {
2490 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2491 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2492 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2493 if (!gotten)
2494 break;
2495 if (entry.flags & MF_SOFT_OFFLINE)
2496 soft_offline_page(entry.pfn, entry.flags);
2497 else
2498 memory_failure(entry.pfn, entry.flags);
2499 }
2500 }
2501
2502 /*
2503 * Process memory_failure work queued on the specified CPU.
2504 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2505 */
memory_failure_queue_kick(int cpu)2506 void memory_failure_queue_kick(int cpu)
2507 {
2508 struct memory_failure_cpu *mf_cpu;
2509
2510 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2511 cancel_work_sync(&mf_cpu->work);
2512 memory_failure_work_func(&mf_cpu->work);
2513 }
2514
memory_failure_init(void)2515 static int __init memory_failure_init(void)
2516 {
2517 struct memory_failure_cpu *mf_cpu;
2518 int cpu;
2519
2520 for_each_possible_cpu(cpu) {
2521 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2522 raw_spin_lock_init(&mf_cpu->lock);
2523 INIT_KFIFO(mf_cpu->fifo);
2524 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2525 }
2526
2527 register_sysctl_init("vm", memory_failure_table);
2528
2529 return 0;
2530 }
2531 core_initcall(memory_failure_init);
2532
2533 #undef pr_fmt
2534 #define pr_fmt(fmt) "Unpoison: " fmt
2535 #define unpoison_pr_info(fmt, pfn, rs) \
2536 ({ \
2537 if (__ratelimit(rs)) \
2538 pr_info(fmt, pfn); \
2539 })
2540
2541 /**
2542 * unpoison_memory - Unpoison a previously poisoned page
2543 * @pfn: Page number of the to be unpoisoned page
2544 *
2545 * Software-unpoison a page that has been poisoned by
2546 * memory_failure() earlier.
2547 *
2548 * This is only done on the software-level, so it only works
2549 * for linux injected failures, not real hardware failures
2550 *
2551 * Returns 0 for success, otherwise -errno.
2552 */
unpoison_memory(unsigned long pfn)2553 int unpoison_memory(unsigned long pfn)
2554 {
2555 struct folio *folio;
2556 struct page *p;
2557 int ret = -EBUSY, ghp;
2558 unsigned long count;
2559 bool huge = false;
2560 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2561 DEFAULT_RATELIMIT_BURST);
2562
2563 if (!pfn_valid(pfn))
2564 return -ENXIO;
2565
2566 p = pfn_to_page(pfn);
2567 folio = page_folio(p);
2568
2569 mutex_lock(&mf_mutex);
2570
2571 if (hw_memory_failure) {
2572 unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2573 pfn, &unpoison_rs);
2574 ret = -EOPNOTSUPP;
2575 goto unlock_mutex;
2576 }
2577
2578 if (is_huge_zero_folio(folio)) {
2579 unpoison_pr_info("%#lx: huge zero page is not supported\n",
2580 pfn, &unpoison_rs);
2581 ret = -EOPNOTSUPP;
2582 goto unlock_mutex;
2583 }
2584
2585 if (!PageHWPoison(p)) {
2586 unpoison_pr_info("%#lx: page was already unpoisoned\n",
2587 pfn, &unpoison_rs);
2588 goto unlock_mutex;
2589 }
2590
2591 if (folio_ref_count(folio) > 1) {
2592 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2593 pfn, &unpoison_rs);
2594 goto unlock_mutex;
2595 }
2596
2597 if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2598 folio_test_reserved(folio) || folio_test_offline(folio))
2599 goto unlock_mutex;
2600
2601 if (folio_mapped(folio)) {
2602 unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2603 pfn, &unpoison_rs);
2604 goto unlock_mutex;
2605 }
2606
2607 if (folio_mapping(folio)) {
2608 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2609 pfn, &unpoison_rs);
2610 goto unlock_mutex;
2611 }
2612
2613 ghp = get_hwpoison_page(p, MF_UNPOISON);
2614 if (!ghp) {
2615 if (folio_test_hugetlb(folio)) {
2616 huge = true;
2617 count = folio_free_raw_hwp(folio, false);
2618 if (count == 0)
2619 goto unlock_mutex;
2620 }
2621 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2622 } else if (ghp < 0) {
2623 if (ghp == -EHWPOISON) {
2624 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2625 } else {
2626 ret = ghp;
2627 unpoison_pr_info("%#lx: failed to grab page\n",
2628 pfn, &unpoison_rs);
2629 }
2630 } else {
2631 if (folio_test_hugetlb(folio)) {
2632 huge = true;
2633 count = folio_free_raw_hwp(folio, false);
2634 if (count == 0) {
2635 folio_put(folio);
2636 goto unlock_mutex;
2637 }
2638 }
2639
2640 folio_put(folio);
2641 if (TestClearPageHWPoison(p)) {
2642 folio_put(folio);
2643 ret = 0;
2644 }
2645 }
2646
2647 unlock_mutex:
2648 mutex_unlock(&mf_mutex);
2649 if (!ret) {
2650 if (!huge)
2651 num_poisoned_pages_sub(pfn, 1);
2652 unpoison_pr_info("%#lx: software-unpoisoned page\n",
2653 page_to_pfn(p), &unpoison_rs);
2654 }
2655 return ret;
2656 }
2657 EXPORT_SYMBOL(unpoison_memory);
2658
2659 #undef pr_fmt
2660 #define pr_fmt(fmt) "Soft offline: " fmt
2661
2662 /*
2663 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2664 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2665 * If the page is mapped, it migrates the contents over.
2666 */
soft_offline_in_use_page(struct page * page)2667 static int soft_offline_in_use_page(struct page *page)
2668 {
2669 long ret = 0;
2670 unsigned long pfn = page_to_pfn(page);
2671 struct folio *folio = page_folio(page);
2672 char const *msg_page[] = {"page", "hugepage"};
2673 bool huge = folio_test_hugetlb(folio);
2674 bool isolated;
2675 LIST_HEAD(pagelist);
2676 struct migration_target_control mtc = {
2677 .nid = NUMA_NO_NODE,
2678 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2679 .reason = MR_MEMORY_FAILURE,
2680 };
2681
2682 if (!huge && folio_test_large(folio)) {
2683 if (try_to_split_thp_page(page, true)) {
2684 pr_info("%#lx: thp split failed\n", pfn);
2685 return -EBUSY;
2686 }
2687 folio = page_folio(page);
2688 }
2689
2690 folio_lock(folio);
2691 if (!huge)
2692 folio_wait_writeback(folio);
2693 if (PageHWPoison(page)) {
2694 folio_unlock(folio);
2695 folio_put(folio);
2696 pr_info("%#lx: page already poisoned\n", pfn);
2697 return 0;
2698 }
2699
2700 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2701 /*
2702 * Try to invalidate first. This should work for
2703 * non dirty unmapped page cache pages.
2704 */
2705 ret = mapping_evict_folio(folio_mapping(folio), folio);
2706 folio_unlock(folio);
2707
2708 if (ret) {
2709 pr_info("%#lx: invalidated\n", pfn);
2710 page_handle_poison(page, false, true);
2711 return 0;
2712 }
2713
2714 isolated = isolate_folio_to_list(folio, &pagelist);
2715
2716 /*
2717 * If we succeed to isolate the folio, we grabbed another refcount on
2718 * the folio, so we can safely drop the one we got from get_any_page().
2719 * If we failed to isolate the folio, it means that we cannot go further
2720 * and we will return an error, so drop the reference we got from
2721 * get_any_page() as well.
2722 */
2723 folio_put(folio);
2724
2725 if (isolated) {
2726 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2727 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2728 if (!ret) {
2729 bool release = !huge;
2730
2731 if (!page_handle_poison(page, huge, release))
2732 ret = -EBUSY;
2733 } else {
2734 if (!list_empty(&pagelist))
2735 putback_movable_pages(&pagelist);
2736
2737 pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2738 pfn, msg_page[huge], ret, &page->flags);
2739 if (ret > 0)
2740 ret = -EBUSY;
2741 }
2742 } else {
2743 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2744 pfn, msg_page[huge], page_count(page), &page->flags);
2745 ret = -EBUSY;
2746 }
2747 return ret;
2748 }
2749
2750 /**
2751 * soft_offline_page - Soft offline a page.
2752 * @pfn: pfn to soft-offline
2753 * @flags: flags. Same as memory_failure().
2754 *
2755 * Returns 0 on success,
2756 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2757 * disabled by /proc/sys/vm/enable_soft_offline,
2758 * < 0 otherwise negated errno.
2759 *
2760 * Soft offline a page, by migration or invalidation,
2761 * without killing anything. This is for the case when
2762 * a page is not corrupted yet (so it's still valid to access),
2763 * but has had a number of corrected errors and is better taken
2764 * out.
2765 *
2766 * The actual policy on when to do that is maintained by
2767 * user space.
2768 *
2769 * This should never impact any application or cause data loss,
2770 * however it might take some time.
2771 *
2772 * This is not a 100% solution for all memory, but tries to be
2773 * ``good enough'' for the majority of memory.
2774 */
soft_offline_page(unsigned long pfn,int flags)2775 int soft_offline_page(unsigned long pfn, int flags)
2776 {
2777 int ret;
2778 bool try_again = true;
2779 struct page *page;
2780
2781 if (!pfn_valid(pfn)) {
2782 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2783 return -ENXIO;
2784 }
2785
2786 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2787 page = pfn_to_online_page(pfn);
2788 if (!page) {
2789 put_ref_page(pfn, flags);
2790 return -EIO;
2791 }
2792
2793 if (!sysctl_enable_soft_offline) {
2794 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2795 put_ref_page(pfn, flags);
2796 return -EOPNOTSUPP;
2797 }
2798
2799 mutex_lock(&mf_mutex);
2800
2801 if (PageHWPoison(page)) {
2802 pr_info("%#lx: page already poisoned\n", pfn);
2803 put_ref_page(pfn, flags);
2804 mutex_unlock(&mf_mutex);
2805 return 0;
2806 }
2807
2808 retry:
2809 get_online_mems();
2810 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2811 put_online_mems();
2812
2813 if (hwpoison_filter(page)) {
2814 if (ret > 0)
2815 put_page(page);
2816
2817 mutex_unlock(&mf_mutex);
2818 return -EOPNOTSUPP;
2819 }
2820
2821 if (ret > 0) {
2822 ret = soft_offline_in_use_page(page);
2823 } else if (ret == 0) {
2824 if (!page_handle_poison(page, true, false)) {
2825 if (try_again) {
2826 try_again = false;
2827 flags &= ~MF_COUNT_INCREASED;
2828 goto retry;
2829 }
2830 ret = -EBUSY;
2831 }
2832 }
2833
2834 mutex_unlock(&mf_mutex);
2835
2836 return ret;
2837 }
2838