1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66 
67 static int sysctl_memory_failure_early_kill __read_mostly;
68 
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70 
71 static int sysctl_enable_soft_offline __read_mostly = 1;
72 
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74 
75 static bool hw_memory_failure __read_mostly = false;
76 
77 static DEFINE_MUTEX(mf_mutex);
78 
num_poisoned_pages_inc(unsigned long pfn)79 void num_poisoned_pages_inc(unsigned long pfn)
80 {
81 	atomic_long_inc(&num_poisoned_pages);
82 	memblk_nr_poison_inc(pfn);
83 }
84 
num_poisoned_pages_sub(unsigned long pfn,long i)85 void num_poisoned_pages_sub(unsigned long pfn, long i)
86 {
87 	atomic_long_sub(i, &num_poisoned_pages);
88 	if (pfn != -1UL)
89 		memblk_nr_poison_sub(pfn, i);
90 }
91 
92 /**
93  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94  * @_name: name of the file in the per NUMA sysfs directory.
95  */
96 #define MF_ATTR_RO(_name)					\
97 static ssize_t _name##_show(struct device *dev,			\
98 			    struct device_attribute *attr,	\
99 			    char *buf)				\
100 {								\
101 	struct memory_failure_stats *mf_stats =			\
102 		&NODE_DATA(dev->id)->mf_stats;			\
103 	return sysfs_emit(buf, "%lu\n", mf_stats->_name);	\
104 }								\
105 static DEVICE_ATTR_RO(_name)
106 
107 MF_ATTR_RO(total);
108 MF_ATTR_RO(ignored);
109 MF_ATTR_RO(failed);
110 MF_ATTR_RO(delayed);
111 MF_ATTR_RO(recovered);
112 
113 static struct attribute *memory_failure_attr[] = {
114 	&dev_attr_total.attr,
115 	&dev_attr_ignored.attr,
116 	&dev_attr_failed.attr,
117 	&dev_attr_delayed.attr,
118 	&dev_attr_recovered.attr,
119 	NULL,
120 };
121 
122 const struct attribute_group memory_failure_attr_group = {
123 	.name = "memory_failure",
124 	.attrs = memory_failure_attr,
125 };
126 
127 static const struct ctl_table memory_failure_table[] = {
128 	{
129 		.procname	= "memory_failure_early_kill",
130 		.data		= &sysctl_memory_failure_early_kill,
131 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
132 		.mode		= 0644,
133 		.proc_handler	= proc_dointvec_minmax,
134 		.extra1		= SYSCTL_ZERO,
135 		.extra2		= SYSCTL_ONE,
136 	},
137 	{
138 		.procname	= "memory_failure_recovery",
139 		.data		= &sysctl_memory_failure_recovery,
140 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
141 		.mode		= 0644,
142 		.proc_handler	= proc_dointvec_minmax,
143 		.extra1		= SYSCTL_ZERO,
144 		.extra2		= SYSCTL_ONE,
145 	},
146 	{
147 		.procname	= "enable_soft_offline",
148 		.data		= &sysctl_enable_soft_offline,
149 		.maxlen		= sizeof(sysctl_enable_soft_offline),
150 		.mode		= 0644,
151 		.proc_handler	= proc_dointvec_minmax,
152 		.extra1		= SYSCTL_ZERO,
153 		.extra2		= SYSCTL_ONE,
154 	}
155 };
156 
157 /*
158  * Return values:
159  *   1:   the page is dissolved (if needed) and taken off from buddy,
160  *   0:   the page is dissolved (if needed) and not taken off from buddy,
161  *   < 0: failed to dissolve.
162  */
__page_handle_poison(struct page * page)163 static int __page_handle_poison(struct page *page)
164 {
165 	int ret;
166 
167 	/*
168 	 * zone_pcp_disable() can't be used here. It will
169 	 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 	 * optimization is enabled. This will break current lock dependency
172 	 * chain and leads to deadlock.
173 	 * Disabling pcp before dissolving the page was a deterministic
174 	 * approach because we made sure that those pages cannot end up in any
175 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 	 * but nothing guarantees that those pages do not get back to a PCP
177 	 * queue if we need to refill those.
178 	 */
179 	ret = dissolve_free_hugetlb_folio(page_folio(page));
180 	if (!ret) {
181 		drain_all_pages(page_zone(page));
182 		ret = take_page_off_buddy(page);
183 	}
184 
185 	return ret;
186 }
187 
page_handle_poison(struct page * page,bool hugepage_or_freepage,bool release)188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
189 {
190 	if (hugepage_or_freepage) {
191 		/*
192 		 * Doing this check for free pages is also fine since
193 		 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
194 		 */
195 		if (__page_handle_poison(page) <= 0)
196 			/*
197 			 * We could fail to take off the target page from buddy
198 			 * for example due to racy page allocation, but that's
199 			 * acceptable because soft-offlined page is not broken
200 			 * and if someone really want to use it, they should
201 			 * take it.
202 			 */
203 			return false;
204 	}
205 
206 	SetPageHWPoison(page);
207 	if (release)
208 		put_page(page);
209 	page_ref_inc(page);
210 	num_poisoned_pages_inc(page_to_pfn(page));
211 
212 	return true;
213 }
214 
215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
216 
217 u32 hwpoison_filter_enable = 0;
218 u32 hwpoison_filter_dev_major = ~0U;
219 u32 hwpoison_filter_dev_minor = ~0U;
220 u64 hwpoison_filter_flags_mask;
221 u64 hwpoison_filter_flags_value;
222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
227 
hwpoison_filter_dev(struct page * p)228 static int hwpoison_filter_dev(struct page *p)
229 {
230 	struct folio *folio = page_folio(p);
231 	struct address_space *mapping;
232 	dev_t dev;
233 
234 	if (hwpoison_filter_dev_major == ~0U &&
235 	    hwpoison_filter_dev_minor == ~0U)
236 		return 0;
237 
238 	mapping = folio_mapping(folio);
239 	if (mapping == NULL || mapping->host == NULL)
240 		return -EINVAL;
241 
242 	dev = mapping->host->i_sb->s_dev;
243 	if (hwpoison_filter_dev_major != ~0U &&
244 	    hwpoison_filter_dev_major != MAJOR(dev))
245 		return -EINVAL;
246 	if (hwpoison_filter_dev_minor != ~0U &&
247 	    hwpoison_filter_dev_minor != MINOR(dev))
248 		return -EINVAL;
249 
250 	return 0;
251 }
252 
hwpoison_filter_flags(struct page * p)253 static int hwpoison_filter_flags(struct page *p)
254 {
255 	if (!hwpoison_filter_flags_mask)
256 		return 0;
257 
258 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 				    hwpoison_filter_flags_value)
260 		return 0;
261 	else
262 		return -EINVAL;
263 }
264 
265 /*
266  * This allows stress tests to limit test scope to a collection of tasks
267  * by putting them under some memcg. This prevents killing unrelated/important
268  * processes such as /sbin/init. Note that the target task may share clean
269  * pages with init (eg. libc text), which is harmless. If the target task
270  * share _dirty_ pages with another task B, the test scheme must make sure B
271  * is also included in the memcg. At last, due to race conditions this filter
272  * can only guarantee that the page either belongs to the memcg tasks, or is
273  * a freed page.
274  */
275 #ifdef CONFIG_MEMCG
276 u64 hwpoison_filter_memcg;
277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
hwpoison_filter_task(struct page * p)278 static int hwpoison_filter_task(struct page *p)
279 {
280 	if (!hwpoison_filter_memcg)
281 		return 0;
282 
283 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
284 		return -EINVAL;
285 
286 	return 0;
287 }
288 #else
hwpoison_filter_task(struct page * p)289 static int hwpoison_filter_task(struct page *p) { return 0; }
290 #endif
291 
hwpoison_filter(struct page * p)292 int hwpoison_filter(struct page *p)
293 {
294 	if (!hwpoison_filter_enable)
295 		return 0;
296 
297 	if (hwpoison_filter_dev(p))
298 		return -EINVAL;
299 
300 	if (hwpoison_filter_flags(p))
301 		return -EINVAL;
302 
303 	if (hwpoison_filter_task(p))
304 		return -EINVAL;
305 
306 	return 0;
307 }
308 EXPORT_SYMBOL_GPL(hwpoison_filter);
309 #else
hwpoison_filter(struct page * p)310 int hwpoison_filter(struct page *p)
311 {
312 	return 0;
313 }
314 #endif
315 
316 /*
317  * Kill all processes that have a poisoned page mapped and then isolate
318  * the page.
319  *
320  * General strategy:
321  * Find all processes having the page mapped and kill them.
322  * But we keep a page reference around so that the page is not
323  * actually freed yet.
324  * Then stash the page away
325  *
326  * There's no convenient way to get back to mapped processes
327  * from the VMAs. So do a brute-force search over all
328  * running processes.
329  *
330  * Remember that machine checks are not common (or rather
331  * if they are common you have other problems), so this shouldn't
332  * be a performance issue.
333  *
334  * Also there are some races possible while we get from the
335  * error detection to actually handle it.
336  */
337 
338 struct to_kill {
339 	struct list_head nd;
340 	struct task_struct *tsk;
341 	unsigned long addr;
342 	short size_shift;
343 };
344 
345 /*
346  * Send all the processes who have the page mapped a signal.
347  * ``action optional'' if they are not immediately affected by the error
348  * ``action required'' if error happened in current execution context
349  */
kill_proc(struct to_kill * tk,unsigned long pfn,int flags)350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
351 {
352 	struct task_struct *t = tk->tsk;
353 	short addr_lsb = tk->size_shift;
354 	int ret = 0;
355 
356 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357 			pfn, t->comm, task_pid_nr(t));
358 
359 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 		ret = force_sig_mceerr(BUS_MCEERR_AR,
361 				 (void __user *)tk->addr, addr_lsb);
362 	else
363 		/*
364 		 * Signal other processes sharing the page if they have
365 		 * PF_MCE_EARLY set.
366 		 * Don't use force here, it's convenient if the signal
367 		 * can be temporarily blocked.
368 		 */
369 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
370 				      addr_lsb, t);
371 	if (ret < 0)
372 		pr_info("Error sending signal to %s:%d: %d\n",
373 			t->comm, task_pid_nr(t), ret);
374 	return ret;
375 }
376 
377 /*
378  * Unknown page type encountered. Try to check whether it can turn PageLRU by
379  * lru_add_drain_all.
380  */
shake_folio(struct folio * folio)381 void shake_folio(struct folio *folio)
382 {
383 	if (folio_test_hugetlb(folio))
384 		return;
385 	/*
386 	 * TODO: Could shrink slab caches here if a lightweight range-based
387 	 * shrinker will be available.
388 	 */
389 	if (folio_test_slab(folio))
390 		return;
391 
392 	lru_add_drain_all();
393 }
394 EXPORT_SYMBOL_GPL(shake_folio);
395 
shake_page(struct page * page)396 static void shake_page(struct page *page)
397 {
398 	shake_folio(page_folio(page));
399 }
400 
dev_pagemap_mapping_shift(struct vm_area_struct * vma,unsigned long address)401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 		unsigned long address)
403 {
404 	unsigned long ret = 0;
405 	pgd_t *pgd;
406 	p4d_t *p4d;
407 	pud_t *pud;
408 	pmd_t *pmd;
409 	pte_t *pte;
410 	pte_t ptent;
411 
412 	VM_BUG_ON_VMA(address == -EFAULT, vma);
413 	pgd = pgd_offset(vma->vm_mm, address);
414 	if (!pgd_present(*pgd))
415 		return 0;
416 	p4d = p4d_offset(pgd, address);
417 	if (!p4d_present(*p4d))
418 		return 0;
419 	pud = pud_offset(p4d, address);
420 	if (!pud_present(*pud))
421 		return 0;
422 	if (pud_devmap(*pud))
423 		return PUD_SHIFT;
424 	pmd = pmd_offset(pud, address);
425 	if (!pmd_present(*pmd))
426 		return 0;
427 	if (pmd_devmap(*pmd))
428 		return PMD_SHIFT;
429 	pte = pte_offset_map(pmd, address);
430 	if (!pte)
431 		return 0;
432 	ptent = ptep_get(pte);
433 	if (pte_present(ptent) && pte_devmap(ptent))
434 		ret = PAGE_SHIFT;
435 	pte_unmap(pte);
436 	return ret;
437 }
438 
439 /*
440  * Failure handling: if we can't find or can't kill a process there's
441  * not much we can do.	We just print a message and ignore otherwise.
442  */
443 
444 /*
445  * Schedule a process for later kill.
446  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
447  */
__add_to_kill(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)448 static void __add_to_kill(struct task_struct *tsk, const struct page *p,
449 			  struct vm_area_struct *vma, struct list_head *to_kill,
450 			  unsigned long addr)
451 {
452 	struct to_kill *tk;
453 
454 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455 	if (!tk) {
456 		pr_err("Out of memory while machine check handling\n");
457 		return;
458 	}
459 
460 	tk->addr = addr;
461 	if (is_zone_device_page(p))
462 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
463 	else
464 		tk->size_shift = folio_shift(page_folio(p));
465 
466 	/*
467 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 	 * so "tk->size_shift == 0" effectively checks no mapping on
470 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 	 * to a process' address space, it's possible not all N VMAs
472 	 * contain mappings for the page, but at least one VMA does.
473 	 * Only deliver SIGBUS with payload derived from the VMA that
474 	 * has a mapping for the page.
475 	 */
476 	if (tk->addr == -EFAULT) {
477 		pr_info("Unable to find user space address %lx in %s\n",
478 			page_to_pfn(p), tsk->comm);
479 	} else if (tk->size_shift == 0) {
480 		kfree(tk);
481 		return;
482 	}
483 
484 	get_task_struct(tsk);
485 	tk->tsk = tsk;
486 	list_add_tail(&tk->nd, to_kill);
487 }
488 
add_to_kill_anon_file(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)489 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
490 		struct vm_area_struct *vma, struct list_head *to_kill,
491 		unsigned long addr)
492 {
493 	if (addr == -EFAULT)
494 		return;
495 	__add_to_kill(tsk, p, vma, to_kill, addr);
496 }
497 
498 #ifdef CONFIG_KSM
task_in_to_kill_list(struct list_head * to_kill,struct task_struct * tsk)499 static bool task_in_to_kill_list(struct list_head *to_kill,
500 				 struct task_struct *tsk)
501 {
502 	struct to_kill *tk, *next;
503 
504 	list_for_each_entry_safe(tk, next, to_kill, nd) {
505 		if (tk->tsk == tsk)
506 			return true;
507 	}
508 
509 	return false;
510 }
511 
add_to_kill_ksm(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,unsigned long addr)512 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
513 		     struct vm_area_struct *vma, struct list_head *to_kill,
514 		     unsigned long addr)
515 {
516 	if (!task_in_to_kill_list(to_kill, tsk))
517 		__add_to_kill(tsk, p, vma, to_kill, addr);
518 }
519 #endif
520 /*
521  * Kill the processes that have been collected earlier.
522  *
523  * Only do anything when FORCEKILL is set, otherwise just free the
524  * list (this is used for clean pages which do not need killing)
525  */
kill_procs(struct list_head * to_kill,int forcekill,unsigned long pfn,int flags)526 static void kill_procs(struct list_head *to_kill, int forcekill,
527 		unsigned long pfn, int flags)
528 {
529 	struct to_kill *tk, *next;
530 
531 	list_for_each_entry_safe(tk, next, to_kill, nd) {
532 		if (forcekill) {
533 			if (tk->addr == -EFAULT) {
534 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 						 tk->tsk, PIDTYPE_PID);
538 			}
539 
540 			/*
541 			 * In theory the process could have mapped
542 			 * something else on the address in-between. We could
543 			 * check for that, but we need to tell the
544 			 * process anyways.
545 			 */
546 			else if (kill_proc(tk, pfn, flags) < 0)
547 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
549 		}
550 		list_del(&tk->nd);
551 		put_task_struct(tk->tsk);
552 		kfree(tk);
553 	}
554 }
555 
556 /*
557  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558  * on behalf of the thread group. Return task_struct of the (first found)
559  * dedicated thread if found, and return NULL otherwise.
560  *
561  * We already hold rcu lock in the caller, so we don't have to call
562  * rcu_read_lock/unlock() in this function.
563  */
find_early_kill_thread(struct task_struct * tsk)564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
565 {
566 	struct task_struct *t;
567 
568 	for_each_thread(tsk, t) {
569 		if (t->flags & PF_MCE_PROCESS) {
570 			if (t->flags & PF_MCE_EARLY)
571 				return t;
572 		} else {
573 			if (sysctl_memory_failure_early_kill)
574 				return t;
575 		}
576 	}
577 	return NULL;
578 }
579 
580 /*
581  * Determine whether a given process is "early kill" process which expects
582  * to be signaled when some page under the process is hwpoisoned.
583  * Return task_struct of the dedicated thread (main thread unless explicitly
584  * specified) if the process is "early kill" and otherwise returns NULL.
585  *
586  * Note that the above is true for Action Optional case. For Action Required
587  * case, it's only meaningful to the current thread which need to be signaled
588  * with SIGBUS, this error is Action Optional for other non current
589  * processes sharing the same error page,if the process is "early kill", the
590  * task_struct of the dedicated thread will also be returned.
591  */
task_early_kill(struct task_struct * tsk,int force_early)592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
593 {
594 	if (!tsk->mm)
595 		return NULL;
596 	/*
597 	 * Comparing ->mm here because current task might represent
598 	 * a subthread, while tsk always points to the main thread.
599 	 */
600 	if (force_early && tsk->mm == current->mm)
601 		return current;
602 
603 	return find_early_kill_thread(tsk);
604 }
605 
606 /*
607  * Collect processes when the error hit an anonymous page.
608  */
collect_procs_anon(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)609 static void collect_procs_anon(const struct folio *folio,
610 		const struct page *page, struct list_head *to_kill,
611 		int force_early)
612 {
613 	struct task_struct *tsk;
614 	struct anon_vma *av;
615 	pgoff_t pgoff;
616 
617 	av = folio_lock_anon_vma_read(folio, NULL);
618 	if (av == NULL)	/* Not actually mapped anymore */
619 		return;
620 
621 	pgoff = page_pgoff(folio, page);
622 	rcu_read_lock();
623 	for_each_process(tsk) {
624 		struct vm_area_struct *vma;
625 		struct anon_vma_chain *vmac;
626 		struct task_struct *t = task_early_kill(tsk, force_early);
627 		unsigned long addr;
628 
629 		if (!t)
630 			continue;
631 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
632 					       pgoff, pgoff) {
633 			vma = vmac->vma;
634 			if (vma->vm_mm != t->mm)
635 				continue;
636 			addr = page_mapped_in_vma(page, vma);
637 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
638 		}
639 	}
640 	rcu_read_unlock();
641 	anon_vma_unlock_read(av);
642 }
643 
644 /*
645  * Collect processes when the error hit a file mapped page.
646  */
collect_procs_file(const struct folio * folio,const struct page * page,struct list_head * to_kill,int force_early)647 static void collect_procs_file(const struct folio *folio,
648 		const struct page *page, struct list_head *to_kill,
649 		int force_early)
650 {
651 	struct vm_area_struct *vma;
652 	struct task_struct *tsk;
653 	struct address_space *mapping = folio->mapping;
654 	pgoff_t pgoff;
655 
656 	i_mmap_lock_read(mapping);
657 	rcu_read_lock();
658 	pgoff = page_pgoff(folio, page);
659 	for_each_process(tsk) {
660 		struct task_struct *t = task_early_kill(tsk, force_early);
661 		unsigned long addr;
662 
663 		if (!t)
664 			continue;
665 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
666 				      pgoff) {
667 			/*
668 			 * Send early kill signal to tasks where a vma covers
669 			 * the page but the corrupted page is not necessarily
670 			 * mapped in its pte.
671 			 * Assume applications who requested early kill want
672 			 * to be informed of all such data corruptions.
673 			 */
674 			if (vma->vm_mm != t->mm)
675 				continue;
676 			addr = page_address_in_vma(folio, page, vma);
677 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
678 		}
679 	}
680 	rcu_read_unlock();
681 	i_mmap_unlock_read(mapping);
682 }
683 
684 #ifdef CONFIG_FS_DAX
add_to_kill_fsdax(struct task_struct * tsk,const struct page * p,struct vm_area_struct * vma,struct list_head * to_kill,pgoff_t pgoff)685 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
686 			      struct vm_area_struct *vma,
687 			      struct list_head *to_kill, pgoff_t pgoff)
688 {
689 	unsigned long addr = vma_address(vma, pgoff, 1);
690 	__add_to_kill(tsk, p, vma, to_kill, addr);
691 }
692 
693 /*
694  * Collect processes when the error hit a fsdax page.
695  */
collect_procs_fsdax(const struct page * page,struct address_space * mapping,pgoff_t pgoff,struct list_head * to_kill,bool pre_remove)696 static void collect_procs_fsdax(const struct page *page,
697 		struct address_space *mapping, pgoff_t pgoff,
698 		struct list_head *to_kill, bool pre_remove)
699 {
700 	struct vm_area_struct *vma;
701 	struct task_struct *tsk;
702 
703 	i_mmap_lock_read(mapping);
704 	rcu_read_lock();
705 	for_each_process(tsk) {
706 		struct task_struct *t = tsk;
707 
708 		/*
709 		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
710 		 * the current may not be the one accessing the fsdax page.
711 		 * Otherwise, search for the current task.
712 		 */
713 		if (!pre_remove)
714 			t = task_early_kill(tsk, true);
715 		if (!t)
716 			continue;
717 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
718 			if (vma->vm_mm == t->mm)
719 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
720 		}
721 	}
722 	rcu_read_unlock();
723 	i_mmap_unlock_read(mapping);
724 }
725 #endif /* CONFIG_FS_DAX */
726 
727 /*
728  * Collect the processes who have the corrupted page mapped to kill.
729  */
collect_procs(const struct folio * folio,const struct page * page,struct list_head * tokill,int force_early)730 static void collect_procs(const struct folio *folio, const struct page *page,
731 		struct list_head *tokill, int force_early)
732 {
733 	if (!folio->mapping)
734 		return;
735 	if (unlikely(folio_test_ksm(folio)))
736 		collect_procs_ksm(folio, page, tokill, force_early);
737 	else if (folio_test_anon(folio))
738 		collect_procs_anon(folio, page, tokill, force_early);
739 	else
740 		collect_procs_file(folio, page, tokill, force_early);
741 }
742 
743 struct hwpoison_walk {
744 	struct to_kill tk;
745 	unsigned long pfn;
746 	int flags;
747 };
748 
set_to_kill(struct to_kill * tk,unsigned long addr,short shift)749 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
750 {
751 	tk->addr = addr;
752 	tk->size_shift = shift;
753 }
754 
check_hwpoisoned_entry(pte_t pte,unsigned long addr,short shift,unsigned long poisoned_pfn,struct to_kill * tk)755 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
756 				unsigned long poisoned_pfn, struct to_kill *tk)
757 {
758 	unsigned long pfn = 0;
759 
760 	if (pte_present(pte)) {
761 		pfn = pte_pfn(pte);
762 	} else {
763 		swp_entry_t swp = pte_to_swp_entry(pte);
764 
765 		if (is_hwpoison_entry(swp))
766 			pfn = swp_offset_pfn(swp);
767 	}
768 
769 	if (!pfn || pfn != poisoned_pfn)
770 		return 0;
771 
772 	set_to_kill(tk, addr, shift);
773 	return 1;
774 }
775 
776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)777 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
778 				      struct hwpoison_walk *hwp)
779 {
780 	pmd_t pmd = *pmdp;
781 	unsigned long pfn;
782 	unsigned long hwpoison_vaddr;
783 
784 	if (!pmd_present(pmd))
785 		return 0;
786 	pfn = pmd_pfn(pmd);
787 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
788 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
789 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
790 		return 1;
791 	}
792 	return 0;
793 }
794 #else
check_hwpoisoned_pmd_entry(pmd_t * pmdp,unsigned long addr,struct hwpoison_walk * hwp)795 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
796 				      struct hwpoison_walk *hwp)
797 {
798 	return 0;
799 }
800 #endif
801 
hwpoison_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)802 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
803 			      unsigned long end, struct mm_walk *walk)
804 {
805 	struct hwpoison_walk *hwp = walk->private;
806 	int ret = 0;
807 	pte_t *ptep, *mapped_pte;
808 	spinlock_t *ptl;
809 
810 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
811 	if (ptl) {
812 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
813 		spin_unlock(ptl);
814 		goto out;
815 	}
816 
817 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
818 						addr, &ptl);
819 	if (!ptep)
820 		goto out;
821 
822 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
823 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
824 					     hwp->pfn, &hwp->tk);
825 		if (ret == 1)
826 			break;
827 	}
828 	pte_unmap_unlock(mapped_pte, ptl);
829 out:
830 	cond_resched();
831 	return ret;
832 }
833 
834 #ifdef CONFIG_HUGETLB_PAGE
hwpoison_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)835 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
836 			    unsigned long addr, unsigned long end,
837 			    struct mm_walk *walk)
838 {
839 	struct hwpoison_walk *hwp = walk->private;
840 	pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
841 	struct hstate *h = hstate_vma(walk->vma);
842 
843 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
844 				      hwp->pfn, &hwp->tk);
845 }
846 #else
847 #define hwpoison_hugetlb_range	NULL
848 #endif
849 
850 static const struct mm_walk_ops hwpoison_walk_ops = {
851 	.pmd_entry = hwpoison_pte_range,
852 	.hugetlb_entry = hwpoison_hugetlb_range,
853 	.walk_lock = PGWALK_RDLOCK,
854 };
855 
856 /*
857  * Sends SIGBUS to the current process with error info.
858  *
859  * This function is intended to handle "Action Required" MCEs on already
860  * hardware poisoned pages. They could happen, for example, when
861  * memory_failure() failed to unmap the error page at the first call, or
862  * when multiple local machine checks happened on different CPUs.
863  *
864  * MCE handler currently has no easy access to the error virtual address,
865  * so this function walks page table to find it. The returned virtual address
866  * is proper in most cases, but it could be wrong when the application
867  * process has multiple entries mapping the error page.
868  */
kill_accessing_process(struct task_struct * p,unsigned long pfn,int flags)869 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
870 				  int flags)
871 {
872 	int ret;
873 	struct hwpoison_walk priv = {
874 		.pfn = pfn,
875 	};
876 	priv.tk.tsk = p;
877 
878 	if (!p->mm)
879 		return -EFAULT;
880 
881 	mmap_read_lock(p->mm);
882 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
883 			      (void *)&priv);
884 	/*
885 	 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
886 	 * succeeds or fails, then kill the process with SIGBUS.
887 	 * ret = 0 when poison page is a clean page and it's dropped, no
888 	 * SIGBUS is needed.
889 	 */
890 	if (ret == 1 && priv.tk.addr)
891 		kill_proc(&priv.tk, pfn, flags);
892 	mmap_read_unlock(p->mm);
893 
894 	return ret > 0 ? -EHWPOISON : 0;
895 }
896 
897 /*
898  * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
899  * But it could not do more to isolate the page from being accessed again,
900  * nor does it kill the process. This is extremely rare and one of the
901  * potential causes is that the page state has been changed due to
902  * underlying race condition. This is the most severe outcomes.
903  *
904  * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
905  * It should have killed the process, but it can't isolate the page,
906  * due to conditions such as extra pin, unmap failure, etc. Accessing
907  * the page again may trigger another MCE and the process will be killed
908  * by the m-f() handler immediately.
909  *
910  * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
911  * The page is unmapped, and is removed from the LRU or file mapping.
912  * An attempt to access the page again will trigger page fault and the
913  * PF handler will kill the process.
914  *
915  * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
916  * The page has been completely isolated, that is, unmapped, taken out of
917  * the buddy system, or hole-punnched out of the file mapping.
918  */
919 static const char *action_name[] = {
920 	[MF_IGNORED] = "Ignored",
921 	[MF_FAILED] = "Failed",
922 	[MF_DELAYED] = "Delayed",
923 	[MF_RECOVERED] = "Recovered",
924 };
925 
926 static const char * const action_page_types[] = {
927 	[MF_MSG_KERNEL]			= "reserved kernel page",
928 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
929 	[MF_MSG_HUGE]			= "huge page",
930 	[MF_MSG_FREE_HUGE]		= "free huge page",
931 	[MF_MSG_GET_HWPOISON]		= "get hwpoison page",
932 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
933 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
934 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
935 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
936 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
937 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
938 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
939 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
940 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
941 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
942 	[MF_MSG_BUDDY]			= "free buddy page",
943 	[MF_MSG_DAX]			= "dax page",
944 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
945 	[MF_MSG_ALREADY_POISONED]	= "already poisoned",
946 	[MF_MSG_UNKNOWN]		= "unknown page",
947 };
948 
949 /*
950  * XXX: It is possible that a page is isolated from LRU cache,
951  * and then kept in swap cache or failed to remove from page cache.
952  * The page count will stop it from being freed by unpoison.
953  * Stress tests should be aware of this memory leak problem.
954  */
delete_from_lru_cache(struct folio * folio)955 static int delete_from_lru_cache(struct folio *folio)
956 {
957 	if (folio_isolate_lru(folio)) {
958 		/*
959 		 * Clear sensible page flags, so that the buddy system won't
960 		 * complain when the folio is unpoison-and-freed.
961 		 */
962 		folio_clear_active(folio);
963 		folio_clear_unevictable(folio);
964 
965 		/*
966 		 * Poisoned page might never drop its ref count to 0 so we have
967 		 * to uncharge it manually from its memcg.
968 		 */
969 		mem_cgroup_uncharge(folio);
970 
971 		/*
972 		 * drop the refcount elevated by folio_isolate_lru()
973 		 */
974 		folio_put(folio);
975 		return 0;
976 	}
977 	return -EIO;
978 }
979 
truncate_error_folio(struct folio * folio,unsigned long pfn,struct address_space * mapping)980 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
981 				struct address_space *mapping)
982 {
983 	int ret = MF_FAILED;
984 
985 	if (mapping->a_ops->error_remove_folio) {
986 		int err = mapping->a_ops->error_remove_folio(mapping, folio);
987 
988 		if (err != 0)
989 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
990 		else if (!filemap_release_folio(folio, GFP_NOIO))
991 			pr_info("%#lx: failed to release buffers\n", pfn);
992 		else
993 			ret = MF_RECOVERED;
994 	} else {
995 		/*
996 		 * If the file system doesn't support it just invalidate
997 		 * This fails on dirty or anything with private pages
998 		 */
999 		if (mapping_evict_folio(mapping, folio))
1000 			ret = MF_RECOVERED;
1001 		else
1002 			pr_info("%#lx: Failed to invalidate\n",	pfn);
1003 	}
1004 
1005 	return ret;
1006 }
1007 
1008 struct page_state {
1009 	unsigned long mask;
1010 	unsigned long res;
1011 	enum mf_action_page_type type;
1012 
1013 	/* Callback ->action() has to unlock the relevant page inside it. */
1014 	int (*action)(struct page_state *ps, struct page *p);
1015 };
1016 
1017 /*
1018  * Return true if page is still referenced by others, otherwise return
1019  * false.
1020  *
1021  * The extra_pins is true when one extra refcount is expected.
1022  */
has_extra_refcount(struct page_state * ps,struct page * p,bool extra_pins)1023 static bool has_extra_refcount(struct page_state *ps, struct page *p,
1024 			       bool extra_pins)
1025 {
1026 	int count = page_count(p) - 1;
1027 
1028 	if (extra_pins)
1029 		count -= folio_nr_pages(page_folio(p));
1030 
1031 	if (count > 0) {
1032 		pr_err("%#lx: %s still referenced by %d users\n",
1033 		       page_to_pfn(p), action_page_types[ps->type], count);
1034 		return true;
1035 	}
1036 
1037 	return false;
1038 }
1039 
1040 /*
1041  * Error hit kernel page.
1042  * Do nothing, try to be lucky and not touch this instead. For a few cases we
1043  * could be more sophisticated.
1044  */
me_kernel(struct page_state * ps,struct page * p)1045 static int me_kernel(struct page_state *ps, struct page *p)
1046 {
1047 	unlock_page(p);
1048 	return MF_IGNORED;
1049 }
1050 
1051 /*
1052  * Page in unknown state. Do nothing.
1053  * This is a catch-all in case we fail to make sense of the page state.
1054  */
me_unknown(struct page_state * ps,struct page * p)1055 static int me_unknown(struct page_state *ps, struct page *p)
1056 {
1057 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1058 	unlock_page(p);
1059 	return MF_IGNORED;
1060 }
1061 
1062 /*
1063  * Clean (or cleaned) page cache page.
1064  */
me_pagecache_clean(struct page_state * ps,struct page * p)1065 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1066 {
1067 	struct folio *folio = page_folio(p);
1068 	int ret;
1069 	struct address_space *mapping;
1070 	bool extra_pins;
1071 
1072 	delete_from_lru_cache(folio);
1073 
1074 	/*
1075 	 * For anonymous folios the only reference left
1076 	 * should be the one m_f() holds.
1077 	 */
1078 	if (folio_test_anon(folio)) {
1079 		ret = MF_RECOVERED;
1080 		goto out;
1081 	}
1082 
1083 	/*
1084 	 * Now truncate the page in the page cache. This is really
1085 	 * more like a "temporary hole punch"
1086 	 * Don't do this for block devices when someone else
1087 	 * has a reference, because it could be file system metadata
1088 	 * and that's not safe to truncate.
1089 	 */
1090 	mapping = folio_mapping(folio);
1091 	if (!mapping) {
1092 		/* Folio has been torn down in the meantime */
1093 		ret = MF_FAILED;
1094 		goto out;
1095 	}
1096 
1097 	/*
1098 	 * The shmem page is kept in page cache instead of truncating
1099 	 * so is expected to have an extra refcount after error-handling.
1100 	 */
1101 	extra_pins = shmem_mapping(mapping);
1102 
1103 	/*
1104 	 * Truncation is a bit tricky. Enable it per file system for now.
1105 	 *
1106 	 * Open: to take i_rwsem or not for this? Right now we don't.
1107 	 */
1108 	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1109 	if (has_extra_refcount(ps, p, extra_pins))
1110 		ret = MF_FAILED;
1111 
1112 out:
1113 	folio_unlock(folio);
1114 
1115 	return ret;
1116 }
1117 
1118 /*
1119  * Dirty pagecache page
1120  * Issues: when the error hit a hole page the error is not properly
1121  * propagated.
1122  */
me_pagecache_dirty(struct page_state * ps,struct page * p)1123 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1124 {
1125 	struct folio *folio = page_folio(p);
1126 	struct address_space *mapping = folio_mapping(folio);
1127 
1128 	/* TBD: print more information about the file. */
1129 	if (mapping) {
1130 		/*
1131 		 * IO error will be reported by write(), fsync(), etc.
1132 		 * who check the mapping.
1133 		 * This way the application knows that something went
1134 		 * wrong with its dirty file data.
1135 		 */
1136 		mapping_set_error(mapping, -EIO);
1137 	}
1138 
1139 	return me_pagecache_clean(ps, p);
1140 }
1141 
1142 /*
1143  * Clean and dirty swap cache.
1144  *
1145  * Dirty swap cache page is tricky to handle. The page could live both in page
1146  * table and swap cache(ie. page is freshly swapped in). So it could be
1147  * referenced concurrently by 2 types of PTEs:
1148  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1149  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1150  * and then
1151  *      - clear dirty bit to prevent IO
1152  *      - remove from LRU
1153  *      - but keep in the swap cache, so that when we return to it on
1154  *        a later page fault, we know the application is accessing
1155  *        corrupted data and shall be killed (we installed simple
1156  *        interception code in do_swap_page to catch it).
1157  *
1158  * Clean swap cache pages can be directly isolated. A later page fault will
1159  * bring in the known good data from disk.
1160  */
me_swapcache_dirty(struct page_state * ps,struct page * p)1161 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1162 {
1163 	struct folio *folio = page_folio(p);
1164 	int ret;
1165 	bool extra_pins = false;
1166 
1167 	folio_clear_dirty(folio);
1168 	/* Trigger EIO in shmem: */
1169 	folio_clear_uptodate(folio);
1170 
1171 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1172 	folio_unlock(folio);
1173 
1174 	if (ret == MF_DELAYED)
1175 		extra_pins = true;
1176 
1177 	if (has_extra_refcount(ps, p, extra_pins))
1178 		ret = MF_FAILED;
1179 
1180 	return ret;
1181 }
1182 
me_swapcache_clean(struct page_state * ps,struct page * p)1183 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1184 {
1185 	struct folio *folio = page_folio(p);
1186 	int ret;
1187 
1188 	delete_from_swap_cache(folio);
1189 
1190 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1191 	folio_unlock(folio);
1192 
1193 	if (has_extra_refcount(ps, p, false))
1194 		ret = MF_FAILED;
1195 
1196 	return ret;
1197 }
1198 
1199 /*
1200  * Huge pages. Needs work.
1201  * Issues:
1202  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1203  *   To narrow down kill region to one page, we need to break up pmd.
1204  */
me_huge_page(struct page_state * ps,struct page * p)1205 static int me_huge_page(struct page_state *ps, struct page *p)
1206 {
1207 	struct folio *folio = page_folio(p);
1208 	int res;
1209 	struct address_space *mapping;
1210 	bool extra_pins = false;
1211 
1212 	mapping = folio_mapping(folio);
1213 	if (mapping) {
1214 		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1215 		/* The page is kept in page cache. */
1216 		extra_pins = true;
1217 		folio_unlock(folio);
1218 	} else {
1219 		folio_unlock(folio);
1220 		/*
1221 		 * migration entry prevents later access on error hugepage,
1222 		 * so we can free and dissolve it into buddy to save healthy
1223 		 * subpages.
1224 		 */
1225 		folio_put(folio);
1226 		if (__page_handle_poison(p) > 0) {
1227 			page_ref_inc(p);
1228 			res = MF_RECOVERED;
1229 		} else {
1230 			res = MF_FAILED;
1231 		}
1232 	}
1233 
1234 	if (has_extra_refcount(ps, p, extra_pins))
1235 		res = MF_FAILED;
1236 
1237 	return res;
1238 }
1239 
1240 /*
1241  * Various page states we can handle.
1242  *
1243  * A page state is defined by its current page->flags bits.
1244  * The table matches them in order and calls the right handler.
1245  *
1246  * This is quite tricky because we can access page at any time
1247  * in its live cycle, so all accesses have to be extremely careful.
1248  *
1249  * This is not complete. More states could be added.
1250  * For any missing state don't attempt recovery.
1251  */
1252 
1253 #define dirty		(1UL << PG_dirty)
1254 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1255 #define unevict		(1UL << PG_unevictable)
1256 #define mlock		(1UL << PG_mlocked)
1257 #define lru		(1UL << PG_lru)
1258 #define head		(1UL << PG_head)
1259 #define reserved	(1UL << PG_reserved)
1260 
1261 static struct page_state error_states[] = {
1262 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1263 	/*
1264 	 * free pages are specially detected outside this table:
1265 	 * PG_buddy pages only make a small fraction of all free pages.
1266 	 */
1267 
1268 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1269 
1270 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1271 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1272 
1273 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1274 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1275 
1276 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1277 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1278 
1279 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1280 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1281 
1282 	/*
1283 	 * Catchall entry: must be at end.
1284 	 */
1285 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1286 };
1287 
1288 #undef dirty
1289 #undef sc
1290 #undef unevict
1291 #undef mlock
1292 #undef lru
1293 #undef head
1294 #undef reserved
1295 
update_per_node_mf_stats(unsigned long pfn,enum mf_result result)1296 static void update_per_node_mf_stats(unsigned long pfn,
1297 				     enum mf_result result)
1298 {
1299 	int nid = MAX_NUMNODES;
1300 	struct memory_failure_stats *mf_stats = NULL;
1301 
1302 	nid = pfn_to_nid(pfn);
1303 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1304 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1305 		return;
1306 	}
1307 
1308 	mf_stats = &NODE_DATA(nid)->mf_stats;
1309 	switch (result) {
1310 	case MF_IGNORED:
1311 		++mf_stats->ignored;
1312 		break;
1313 	case MF_FAILED:
1314 		++mf_stats->failed;
1315 		break;
1316 	case MF_DELAYED:
1317 		++mf_stats->delayed;
1318 		break;
1319 	case MF_RECOVERED:
1320 		++mf_stats->recovered;
1321 		break;
1322 	default:
1323 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1324 		break;
1325 	}
1326 	++mf_stats->total;
1327 }
1328 
1329 /*
1330  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1331  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1332  */
action_result(unsigned long pfn,enum mf_action_page_type type,enum mf_result result)1333 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1334 			 enum mf_result result)
1335 {
1336 	trace_memory_failure_event(pfn, type, result);
1337 
1338 	num_poisoned_pages_inc(pfn);
1339 
1340 	update_per_node_mf_stats(pfn, result);
1341 
1342 	pr_err("%#lx: recovery action for %s: %s\n",
1343 		pfn, action_page_types[type], action_name[result]);
1344 
1345 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1346 }
1347 
page_action(struct page_state * ps,struct page * p,unsigned long pfn)1348 static int page_action(struct page_state *ps, struct page *p,
1349 			unsigned long pfn)
1350 {
1351 	int result;
1352 
1353 	/* page p should be unlocked after returning from ps->action().  */
1354 	result = ps->action(ps, p);
1355 
1356 	/* Could do more checks here if page looks ok */
1357 	/*
1358 	 * Could adjust zone counters here to correct for the missing page.
1359 	 */
1360 
1361 	return action_result(pfn, ps->type, result);
1362 }
1363 
PageHWPoisonTakenOff(struct page * page)1364 static inline bool PageHWPoisonTakenOff(struct page *page)
1365 {
1366 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1367 }
1368 
SetPageHWPoisonTakenOff(struct page * page)1369 void SetPageHWPoisonTakenOff(struct page *page)
1370 {
1371 	set_page_private(page, MAGIC_HWPOISON);
1372 }
1373 
ClearPageHWPoisonTakenOff(struct page * page)1374 void ClearPageHWPoisonTakenOff(struct page *page)
1375 {
1376 	if (PageHWPoison(page))
1377 		set_page_private(page, 0);
1378 }
1379 
1380 /*
1381  * Return true if a page type of a given page is supported by hwpoison
1382  * mechanism (while handling could fail), otherwise false.  This function
1383  * does not return true for hugetlb or device memory pages, so it's assumed
1384  * to be called only in the context where we never have such pages.
1385  */
HWPoisonHandlable(struct page * page,unsigned long flags)1386 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1387 {
1388 	if (PageSlab(page))
1389 		return false;
1390 
1391 	/* Soft offline could migrate non-LRU movable pages */
1392 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1393 		return true;
1394 
1395 	return PageLRU(page) || is_free_buddy_page(page);
1396 }
1397 
__get_hwpoison_page(struct page * page,unsigned long flags)1398 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1399 {
1400 	struct folio *folio = page_folio(page);
1401 	int ret = 0;
1402 	bool hugetlb = false;
1403 
1404 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1405 	if (hugetlb) {
1406 		/* Make sure hugetlb demotion did not happen from under us. */
1407 		if (folio == page_folio(page))
1408 			return ret;
1409 		if (ret > 0) {
1410 			folio_put(folio);
1411 			folio = page_folio(page);
1412 		}
1413 	}
1414 
1415 	/*
1416 	 * This check prevents from calling folio_try_get() for any
1417 	 * unsupported type of folio in order to reduce the risk of unexpected
1418 	 * races caused by taking a folio refcount.
1419 	 */
1420 	if (!HWPoisonHandlable(&folio->page, flags))
1421 		return -EBUSY;
1422 
1423 	if (folio_try_get(folio)) {
1424 		if (folio == page_folio(page))
1425 			return 1;
1426 
1427 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1428 		folio_put(folio);
1429 	}
1430 
1431 	return 0;
1432 }
1433 
1434 #define GET_PAGE_MAX_RETRY_NUM 3
1435 
get_any_page(struct page * p,unsigned long flags)1436 static int get_any_page(struct page *p, unsigned long flags)
1437 {
1438 	int ret = 0, pass = 0;
1439 	bool count_increased = false;
1440 
1441 	if (flags & MF_COUNT_INCREASED)
1442 		count_increased = true;
1443 
1444 try_again:
1445 	if (!count_increased) {
1446 		ret = __get_hwpoison_page(p, flags);
1447 		if (!ret) {
1448 			if (page_count(p)) {
1449 				/* We raced with an allocation, retry. */
1450 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1451 					goto try_again;
1452 				ret = -EBUSY;
1453 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1454 				/* We raced with put_page, retry. */
1455 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1456 					goto try_again;
1457 				ret = -EIO;
1458 			}
1459 			goto out;
1460 		} else if (ret == -EBUSY) {
1461 			/*
1462 			 * We raced with (possibly temporary) unhandlable
1463 			 * page, retry.
1464 			 */
1465 			if (pass++ < 3) {
1466 				shake_page(p);
1467 				goto try_again;
1468 			}
1469 			ret = -EIO;
1470 			goto out;
1471 		}
1472 	}
1473 
1474 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1475 		ret = 1;
1476 	} else {
1477 		/*
1478 		 * A page we cannot handle. Check whether we can turn
1479 		 * it into something we can handle.
1480 		 */
1481 		if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1482 			put_page(p);
1483 			shake_page(p);
1484 			count_increased = false;
1485 			goto try_again;
1486 		}
1487 		put_page(p);
1488 		ret = -EIO;
1489 	}
1490 out:
1491 	if (ret == -EIO)
1492 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1493 
1494 	return ret;
1495 }
1496 
__get_unpoison_page(struct page * page)1497 static int __get_unpoison_page(struct page *page)
1498 {
1499 	struct folio *folio = page_folio(page);
1500 	int ret = 0;
1501 	bool hugetlb = false;
1502 
1503 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1504 	if (hugetlb) {
1505 		/* Make sure hugetlb demotion did not happen from under us. */
1506 		if (folio == page_folio(page))
1507 			return ret;
1508 		if (ret > 0)
1509 			folio_put(folio);
1510 	}
1511 
1512 	/*
1513 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1514 	 * but also isolated from buddy freelist, so need to identify the
1515 	 * state and have to cancel both operations to unpoison.
1516 	 */
1517 	if (PageHWPoisonTakenOff(page))
1518 		return -EHWPOISON;
1519 
1520 	return get_page_unless_zero(page) ? 1 : 0;
1521 }
1522 
1523 /**
1524  * get_hwpoison_page() - Get refcount for memory error handling
1525  * @p:		Raw error page (hit by memory error)
1526  * @flags:	Flags controlling behavior of error handling
1527  *
1528  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1529  * error on it, after checking that the error page is in a well-defined state
1530  * (defined as a page-type we can successfully handle the memory error on it,
1531  * such as LRU page and hugetlb page).
1532  *
1533  * Memory error handling could be triggered at any time on any type of page,
1534  * so it's prone to race with typical memory management lifecycle (like
1535  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1536  * extra care for the error page's state (as done in __get_hwpoison_page()),
1537  * and has some retry logic in get_any_page().
1538  *
1539  * When called from unpoison_memory(), the caller should already ensure that
1540  * the given page has PG_hwpoison. So it's never reused for other page
1541  * allocations, and __get_unpoison_page() never races with them.
1542  *
1543  * Return: 0 on failure or free buddy (hugetlb) page,
1544  *         1 on success for in-use pages in a well-defined state,
1545  *         -EIO for pages on which we can not handle memory errors,
1546  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1547  *         operations like allocation and free,
1548  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1549  */
get_hwpoison_page(struct page * p,unsigned long flags)1550 static int get_hwpoison_page(struct page *p, unsigned long flags)
1551 {
1552 	int ret;
1553 
1554 	zone_pcp_disable(page_zone(p));
1555 	if (flags & MF_UNPOISON)
1556 		ret = __get_unpoison_page(p);
1557 	else
1558 		ret = get_any_page(p, flags);
1559 	zone_pcp_enable(page_zone(p));
1560 
1561 	return ret;
1562 }
1563 
unmap_poisoned_folio(struct folio * folio,unsigned long pfn,bool must_kill)1564 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1565 {
1566 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1567 	struct address_space *mapping;
1568 
1569 	if (folio_test_swapcache(folio)) {
1570 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1571 		ttu &= ~TTU_HWPOISON;
1572 	}
1573 
1574 	/*
1575 	 * Propagate the dirty bit from PTEs to struct page first, because we
1576 	 * need this to decide if we should kill or just drop the page.
1577 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1578 	 * be called inside page lock (it's recommended but not enforced).
1579 	 */
1580 	mapping = folio_mapping(folio);
1581 	if (!must_kill && !folio_test_dirty(folio) && mapping &&
1582 	    mapping_can_writeback(mapping)) {
1583 		if (folio_mkclean(folio)) {
1584 			folio_set_dirty(folio);
1585 		} else {
1586 			ttu &= ~TTU_HWPOISON;
1587 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1588 				pfn);
1589 		}
1590 	}
1591 
1592 	if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1593 		/*
1594 		 * For hugetlb folios in shared mappings, try_to_unmap
1595 		 * could potentially call huge_pmd_unshare.  Because of
1596 		 * this, take semaphore in write mode here and set
1597 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1598 		 * at this higher level.
1599 		 */
1600 		mapping = hugetlb_folio_mapping_lock_write(folio);
1601 		if (!mapping) {
1602 			pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1603 				folio_pfn(folio));
1604 			return -EBUSY;
1605 		}
1606 
1607 		try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1608 		i_mmap_unlock_write(mapping);
1609 	} else {
1610 		try_to_unmap(folio, ttu);
1611 	}
1612 
1613 	return folio_mapped(folio) ? -EBUSY : 0;
1614 }
1615 
1616 /*
1617  * Do all that is necessary to remove user space mappings. Unmap
1618  * the pages and send SIGBUS to the processes if the data was dirty.
1619  */
hwpoison_user_mappings(struct folio * folio,struct page * p,unsigned long pfn,int flags)1620 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1621 		unsigned long pfn, int flags)
1622 {
1623 	LIST_HEAD(tokill);
1624 	bool unmap_success;
1625 	int forcekill;
1626 	bool mlocked = folio_test_mlocked(folio);
1627 
1628 	/*
1629 	 * Here we are interested only in user-mapped pages, so skip any
1630 	 * other types of pages.
1631 	 */
1632 	if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1633 	    folio_test_pgtable(folio) || folio_test_offline(folio))
1634 		return true;
1635 	if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1636 		return true;
1637 
1638 	/*
1639 	 * This check implies we don't kill processes if their pages
1640 	 * are in the swap cache early. Those are always late kills.
1641 	 */
1642 	if (!folio_mapped(folio))
1643 		return true;
1644 
1645 	/*
1646 	 * First collect all the processes that have the page
1647 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1648 	 * because ttu takes the rmap data structures down.
1649 	 */
1650 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1651 
1652 	unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
1653 	if (!unmap_success)
1654 		pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1655 		       pfn, folio_mapcount(folio));
1656 
1657 	/*
1658 	 * try_to_unmap() might put mlocked page in lru cache, so call
1659 	 * shake_page() again to ensure that it's flushed.
1660 	 */
1661 	if (mlocked)
1662 		shake_folio(folio);
1663 
1664 	/*
1665 	 * Now that the dirty bit has been propagated to the
1666 	 * struct page and all unmaps done we can decide if
1667 	 * killing is needed or not.  Only kill when the page
1668 	 * was dirty or the process is not restartable,
1669 	 * otherwise the tokill list is merely
1670 	 * freed.  When there was a problem unmapping earlier
1671 	 * use a more force-full uncatchable kill to prevent
1672 	 * any accesses to the poisoned memory.
1673 	 */
1674 	forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1675 		    !unmap_success;
1676 	kill_procs(&tokill, forcekill, pfn, flags);
1677 
1678 	return unmap_success;
1679 }
1680 
identify_page_state(unsigned long pfn,struct page * p,unsigned long page_flags)1681 static int identify_page_state(unsigned long pfn, struct page *p,
1682 				unsigned long page_flags)
1683 {
1684 	struct page_state *ps;
1685 
1686 	/*
1687 	 * The first check uses the current page flags which may not have any
1688 	 * relevant information. The second check with the saved page flags is
1689 	 * carried out only if the first check can't determine the page status.
1690 	 */
1691 	for (ps = error_states;; ps++)
1692 		if ((p->flags & ps->mask) == ps->res)
1693 			break;
1694 
1695 	page_flags |= (p->flags & (1UL << PG_dirty));
1696 
1697 	if (!ps->mask)
1698 		for (ps = error_states;; ps++)
1699 			if ((page_flags & ps->mask) == ps->res)
1700 				break;
1701 	return page_action(ps, p, pfn);
1702 }
1703 
1704 /*
1705  * When 'release' is 'false', it means that if thp split has failed,
1706  * there is still more to do, hence the page refcount we took earlier
1707  * is still needed.
1708  */
try_to_split_thp_page(struct page * page,bool release)1709 static int try_to_split_thp_page(struct page *page, bool release)
1710 {
1711 	int ret;
1712 
1713 	lock_page(page);
1714 	ret = split_huge_page(page);
1715 	unlock_page(page);
1716 
1717 	if (ret && release)
1718 		put_page(page);
1719 
1720 	return ret;
1721 }
1722 
unmap_and_kill(struct list_head * to_kill,unsigned long pfn,struct address_space * mapping,pgoff_t index,int flags)1723 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1724 		struct address_space *mapping, pgoff_t index, int flags)
1725 {
1726 	struct to_kill *tk;
1727 	unsigned long size = 0;
1728 
1729 	list_for_each_entry(tk, to_kill, nd)
1730 		if (tk->size_shift)
1731 			size = max(size, 1UL << tk->size_shift);
1732 
1733 	if (size) {
1734 		/*
1735 		 * Unmap the largest mapping to avoid breaking up device-dax
1736 		 * mappings which are constant size. The actual size of the
1737 		 * mapping being torn down is communicated in siginfo, see
1738 		 * kill_proc()
1739 		 */
1740 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1741 
1742 		unmap_mapping_range(mapping, start, size, 0);
1743 	}
1744 
1745 	kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1746 }
1747 
1748 /*
1749  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1750  * either do not claim or fails to claim a hwpoison event, or devdax.
1751  * The fsdax pages are initialized per base page, and the devdax pages
1752  * could be initialized either as base pages, or as compound pages with
1753  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1754  * hwpoison, such that, if a subpage of a compound page is poisoned,
1755  * simply mark the compound head page is by far sufficient.
1756  */
mf_generic_kill_procs(unsigned long long pfn,int flags,struct dev_pagemap * pgmap)1757 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1758 		struct dev_pagemap *pgmap)
1759 {
1760 	struct folio *folio = pfn_folio(pfn);
1761 	LIST_HEAD(to_kill);
1762 	dax_entry_t cookie;
1763 	int rc = 0;
1764 
1765 	/*
1766 	 * Prevent the inode from being freed while we are interrogating
1767 	 * the address_space, typically this would be handled by
1768 	 * lock_page(), but dax pages do not use the page lock. This
1769 	 * also prevents changes to the mapping of this pfn until
1770 	 * poison signaling is complete.
1771 	 */
1772 	cookie = dax_lock_folio(folio);
1773 	if (!cookie)
1774 		return -EBUSY;
1775 
1776 	if (hwpoison_filter(&folio->page)) {
1777 		rc = -EOPNOTSUPP;
1778 		goto unlock;
1779 	}
1780 
1781 	switch (pgmap->type) {
1782 	case MEMORY_DEVICE_PRIVATE:
1783 	case MEMORY_DEVICE_COHERENT:
1784 		/*
1785 		 * TODO: Handle device pages which may need coordination
1786 		 * with device-side memory.
1787 		 */
1788 		rc = -ENXIO;
1789 		goto unlock;
1790 	default:
1791 		break;
1792 	}
1793 
1794 	/*
1795 	 * Use this flag as an indication that the dax page has been
1796 	 * remapped UC to prevent speculative consumption of poison.
1797 	 */
1798 	SetPageHWPoison(&folio->page);
1799 
1800 	/*
1801 	 * Unlike System-RAM there is no possibility to swap in a
1802 	 * different physical page at a given virtual address, so all
1803 	 * userspace consumption of ZONE_DEVICE memory necessitates
1804 	 * SIGBUS (i.e. MF_MUST_KILL)
1805 	 */
1806 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1807 	collect_procs(folio, &folio->page, &to_kill, true);
1808 
1809 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1810 unlock:
1811 	dax_unlock_folio(folio, cookie);
1812 	return rc;
1813 }
1814 
1815 #ifdef CONFIG_FS_DAX
1816 /**
1817  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1818  * @mapping:	address_space of the file in use
1819  * @index:	start pgoff of the range within the file
1820  * @count:	length of the range, in unit of PAGE_SIZE
1821  * @mf_flags:	memory failure flags
1822  */
mf_dax_kill_procs(struct address_space * mapping,pgoff_t index,unsigned long count,int mf_flags)1823 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1824 		unsigned long count, int mf_flags)
1825 {
1826 	LIST_HEAD(to_kill);
1827 	dax_entry_t cookie;
1828 	struct page *page;
1829 	size_t end = index + count;
1830 	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1831 
1832 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1833 
1834 	for (; index < end; index++) {
1835 		page = NULL;
1836 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1837 		if (!cookie)
1838 			return -EBUSY;
1839 		if (!page)
1840 			goto unlock;
1841 
1842 		if (!pre_remove)
1843 			SetPageHWPoison(page);
1844 
1845 		/*
1846 		 * The pre_remove case is revoking access, the memory is still
1847 		 * good and could theoretically be put back into service.
1848 		 */
1849 		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1850 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1851 				index, mf_flags);
1852 unlock:
1853 		dax_unlock_mapping_entry(mapping, index, cookie);
1854 	}
1855 	return 0;
1856 }
1857 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1858 #endif /* CONFIG_FS_DAX */
1859 
1860 #ifdef CONFIG_HUGETLB_PAGE
1861 
1862 /*
1863  * Struct raw_hwp_page represents information about "raw error page",
1864  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1865  */
1866 struct raw_hwp_page {
1867 	struct llist_node node;
1868 	struct page *page;
1869 };
1870 
raw_hwp_list_head(struct folio * folio)1871 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1872 {
1873 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1874 }
1875 
is_raw_hwpoison_page_in_hugepage(struct page * page)1876 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1877 {
1878 	struct llist_head *raw_hwp_head;
1879 	struct raw_hwp_page *p;
1880 	struct folio *folio = page_folio(page);
1881 	bool ret = false;
1882 
1883 	if (!folio_test_hwpoison(folio))
1884 		return false;
1885 
1886 	if (!folio_test_hugetlb(folio))
1887 		return PageHWPoison(page);
1888 
1889 	/*
1890 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1891 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1892 	 */
1893 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1894 		return true;
1895 
1896 	mutex_lock(&mf_mutex);
1897 
1898 	raw_hwp_head = raw_hwp_list_head(folio);
1899 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1900 		if (page == p->page) {
1901 			ret = true;
1902 			break;
1903 		}
1904 	}
1905 
1906 	mutex_unlock(&mf_mutex);
1907 
1908 	return ret;
1909 }
1910 
__folio_free_raw_hwp(struct folio * folio,bool move_flag)1911 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1912 {
1913 	struct llist_node *head;
1914 	struct raw_hwp_page *p, *next;
1915 	unsigned long count = 0;
1916 
1917 	head = llist_del_all(raw_hwp_list_head(folio));
1918 	llist_for_each_entry_safe(p, next, head, node) {
1919 		if (move_flag)
1920 			SetPageHWPoison(p->page);
1921 		else
1922 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1923 		kfree(p);
1924 		count++;
1925 	}
1926 	return count;
1927 }
1928 
folio_set_hugetlb_hwpoison(struct folio * folio,struct page * page)1929 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1930 {
1931 	struct llist_head *head;
1932 	struct raw_hwp_page *raw_hwp;
1933 	struct raw_hwp_page *p;
1934 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1935 
1936 	/*
1937 	 * Once the hwpoison hugepage has lost reliable raw error info,
1938 	 * there is little meaning to keep additional error info precisely,
1939 	 * so skip to add additional raw error info.
1940 	 */
1941 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1942 		return -EHWPOISON;
1943 	head = raw_hwp_list_head(folio);
1944 	llist_for_each_entry(p, head->first, node) {
1945 		if (p->page == page)
1946 			return -EHWPOISON;
1947 	}
1948 
1949 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1950 	if (raw_hwp) {
1951 		raw_hwp->page = page;
1952 		llist_add(&raw_hwp->node, head);
1953 		/* the first error event will be counted in action_result(). */
1954 		if (ret)
1955 			num_poisoned_pages_inc(page_to_pfn(page));
1956 	} else {
1957 		/*
1958 		 * Failed to save raw error info.  We no longer trace all
1959 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1960 		 * this hwpoisoned hugepage.
1961 		 */
1962 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1963 		/*
1964 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1965 		 * used any more, so free it.
1966 		 */
1967 		__folio_free_raw_hwp(folio, false);
1968 	}
1969 	return ret;
1970 }
1971 
folio_free_raw_hwp(struct folio * folio,bool move_flag)1972 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1973 {
1974 	/*
1975 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1976 	 * pages for tail pages are required but they don't exist.
1977 	 */
1978 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1979 		return 0;
1980 
1981 	/*
1982 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1983 	 * definition.
1984 	 */
1985 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1986 		return 0;
1987 
1988 	return __folio_free_raw_hwp(folio, move_flag);
1989 }
1990 
folio_clear_hugetlb_hwpoison(struct folio * folio)1991 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1992 {
1993 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1994 		return;
1995 	if (folio_test_hugetlb_vmemmap_optimized(folio))
1996 		return;
1997 	folio_clear_hwpoison(folio);
1998 	folio_free_raw_hwp(folio, true);
1999 }
2000 
2001 /*
2002  * Called from hugetlb code with hugetlb_lock held.
2003  *
2004  * Return values:
2005  *   0             - free hugepage
2006  *   1             - in-use hugepage
2007  *   2             - not a hugepage
2008  *   -EBUSY        - the hugepage is busy (try to retry)
2009  *   -EHWPOISON    - the hugepage is already hwpoisoned
2010  */
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)2011 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2012 				 bool *migratable_cleared)
2013 {
2014 	struct page *page = pfn_to_page(pfn);
2015 	struct folio *folio = page_folio(page);
2016 	int ret = 2;	/* fallback to normal page handling */
2017 	bool count_increased = false;
2018 
2019 	if (!folio_test_hugetlb(folio))
2020 		goto out;
2021 
2022 	if (flags & MF_COUNT_INCREASED) {
2023 		ret = 1;
2024 		count_increased = true;
2025 	} else if (folio_test_hugetlb_freed(folio)) {
2026 		ret = 0;
2027 	} else if (folio_test_hugetlb_migratable(folio)) {
2028 		ret = folio_try_get(folio);
2029 		if (ret)
2030 			count_increased = true;
2031 	} else {
2032 		ret = -EBUSY;
2033 		if (!(flags & MF_NO_RETRY))
2034 			goto out;
2035 	}
2036 
2037 	if (folio_set_hugetlb_hwpoison(folio, page)) {
2038 		ret = -EHWPOISON;
2039 		goto out;
2040 	}
2041 
2042 	/*
2043 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2044 	 * from being migrated by memory hotremove.
2045 	 */
2046 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2047 		folio_clear_hugetlb_migratable(folio);
2048 		*migratable_cleared = true;
2049 	}
2050 
2051 	return ret;
2052 out:
2053 	if (count_increased)
2054 		folio_put(folio);
2055 	return ret;
2056 }
2057 
2058 /*
2059  * Taking refcount of hugetlb pages needs extra care about race conditions
2060  * with basic operations like hugepage allocation/free/demotion.
2061  * So some of prechecks for hwpoison (pinning, and testing/setting
2062  * PageHWPoison) should be done in single hugetlb_lock range.
2063  */
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2064 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2065 {
2066 	int res;
2067 	struct page *p = pfn_to_page(pfn);
2068 	struct folio *folio;
2069 	unsigned long page_flags;
2070 	bool migratable_cleared = false;
2071 
2072 	*hugetlb = 1;
2073 retry:
2074 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2075 	if (res == 2) { /* fallback to normal page handling */
2076 		*hugetlb = 0;
2077 		return 0;
2078 	} else if (res == -EHWPOISON) {
2079 		pr_err("%#lx: already hardware poisoned\n", pfn);
2080 		if (flags & MF_ACTION_REQUIRED) {
2081 			folio = page_folio(p);
2082 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2083 			action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2084 		}
2085 		return res;
2086 	} else if (res == -EBUSY) {
2087 		if (!(flags & MF_NO_RETRY)) {
2088 			flags |= MF_NO_RETRY;
2089 			goto retry;
2090 		}
2091 		return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2092 	}
2093 
2094 	folio = page_folio(p);
2095 	folio_lock(folio);
2096 
2097 	if (hwpoison_filter(p)) {
2098 		folio_clear_hugetlb_hwpoison(folio);
2099 		if (migratable_cleared)
2100 			folio_set_hugetlb_migratable(folio);
2101 		folio_unlock(folio);
2102 		if (res == 1)
2103 			folio_put(folio);
2104 		return -EOPNOTSUPP;
2105 	}
2106 
2107 	/*
2108 	 * Handling free hugepage.  The possible race with hugepage allocation
2109 	 * or demotion can be prevented by PageHWPoison flag.
2110 	 */
2111 	if (res == 0) {
2112 		folio_unlock(folio);
2113 		if (__page_handle_poison(p) > 0) {
2114 			page_ref_inc(p);
2115 			res = MF_RECOVERED;
2116 		} else {
2117 			res = MF_FAILED;
2118 		}
2119 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2120 	}
2121 
2122 	page_flags = folio->flags;
2123 
2124 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2125 		folio_unlock(folio);
2126 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2127 	}
2128 
2129 	return identify_page_state(pfn, p, page_flags);
2130 }
2131 
2132 #else
try_memory_failure_hugetlb(unsigned long pfn,int flags,int * hugetlb)2133 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2134 {
2135 	return 0;
2136 }
2137 
folio_free_raw_hwp(struct folio * folio,bool flag)2138 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2139 {
2140 	return 0;
2141 }
2142 #endif	/* CONFIG_HUGETLB_PAGE */
2143 
2144 /* Drop the extra refcount in case we come from madvise() */
put_ref_page(unsigned long pfn,int flags)2145 static void put_ref_page(unsigned long pfn, int flags)
2146 {
2147 	if (!(flags & MF_COUNT_INCREASED))
2148 		return;
2149 
2150 	put_page(pfn_to_page(pfn));
2151 }
2152 
memory_failure_dev_pagemap(unsigned long pfn,int flags,struct dev_pagemap * pgmap)2153 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2154 		struct dev_pagemap *pgmap)
2155 {
2156 	int rc = -ENXIO;
2157 
2158 	/* device metadata space is not recoverable */
2159 	if (!pgmap_pfn_valid(pgmap, pfn))
2160 		goto out;
2161 
2162 	/*
2163 	 * Call driver's implementation to handle the memory failure, otherwise
2164 	 * fall back to generic handler.
2165 	 */
2166 	if (pgmap_has_memory_failure(pgmap)) {
2167 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2168 		/*
2169 		 * Fall back to generic handler too if operation is not
2170 		 * supported inside the driver/device/filesystem.
2171 		 */
2172 		if (rc != -EOPNOTSUPP)
2173 			goto out;
2174 	}
2175 
2176 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2177 out:
2178 	/* drop pgmap ref acquired in caller */
2179 	put_dev_pagemap(pgmap);
2180 	if (rc != -EOPNOTSUPP)
2181 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2182 	return rc;
2183 }
2184 
2185 /*
2186  * The calling condition is as such: thp split failed, page might have
2187  * been RDMA pinned, not much can be done for recovery.
2188  * But a SIGBUS should be delivered with vaddr provided so that the user
2189  * application has a chance to recover. Also, application processes'
2190  * election for MCE early killed will be honored.
2191  */
kill_procs_now(struct page * p,unsigned long pfn,int flags,struct folio * folio)2192 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2193 				struct folio *folio)
2194 {
2195 	LIST_HEAD(tokill);
2196 
2197 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2198 	kill_procs(&tokill, true, pfn, flags);
2199 }
2200 
2201 /**
2202  * memory_failure - Handle memory failure of a page.
2203  * @pfn: Page Number of the corrupted page
2204  * @flags: fine tune action taken
2205  *
2206  * This function is called by the low level machine check code
2207  * of an architecture when it detects hardware memory corruption
2208  * of a page. It tries its best to recover, which includes
2209  * dropping pages, killing processes etc.
2210  *
2211  * The function is primarily of use for corruptions that
2212  * happen outside the current execution context (e.g. when
2213  * detected by a background scrubber)
2214  *
2215  * Must run in process context (e.g. a work queue) with interrupts
2216  * enabled and no spinlocks held.
2217  *
2218  * Return: 0 for successfully handled the memory error,
2219  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2220  *         < 0(except -EOPNOTSUPP) on failure.
2221  */
memory_failure(unsigned long pfn,int flags)2222 int memory_failure(unsigned long pfn, int flags)
2223 {
2224 	struct page *p;
2225 	struct folio *folio;
2226 	struct dev_pagemap *pgmap;
2227 	int res = 0;
2228 	unsigned long page_flags;
2229 	bool retry = true;
2230 	int hugetlb = 0;
2231 
2232 	if (!sysctl_memory_failure_recovery)
2233 		panic("Memory failure on page %lx", pfn);
2234 
2235 	mutex_lock(&mf_mutex);
2236 
2237 	if (!(flags & MF_SW_SIMULATED))
2238 		hw_memory_failure = true;
2239 
2240 	p = pfn_to_online_page(pfn);
2241 	if (!p) {
2242 		res = arch_memory_failure(pfn, flags);
2243 		if (res == 0)
2244 			goto unlock_mutex;
2245 
2246 		if (pfn_valid(pfn)) {
2247 			pgmap = get_dev_pagemap(pfn, NULL);
2248 			put_ref_page(pfn, flags);
2249 			if (pgmap) {
2250 				res = memory_failure_dev_pagemap(pfn, flags,
2251 								 pgmap);
2252 				goto unlock_mutex;
2253 			}
2254 		}
2255 		pr_err("%#lx: memory outside kernel control\n", pfn);
2256 		res = -ENXIO;
2257 		goto unlock_mutex;
2258 	}
2259 
2260 try_again:
2261 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2262 	if (hugetlb)
2263 		goto unlock_mutex;
2264 
2265 	if (TestSetPageHWPoison(p)) {
2266 		pr_err("%#lx: already hardware poisoned\n", pfn);
2267 		res = -EHWPOISON;
2268 		if (flags & MF_ACTION_REQUIRED)
2269 			res = kill_accessing_process(current, pfn, flags);
2270 		if (flags & MF_COUNT_INCREASED)
2271 			put_page(p);
2272 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2273 		goto unlock_mutex;
2274 	}
2275 
2276 	/*
2277 	 * We need/can do nothing about count=0 pages.
2278 	 * 1) it's a free page, and therefore in safe hand:
2279 	 *    check_new_page() will be the gate keeper.
2280 	 * 2) it's part of a non-compound high order page.
2281 	 *    Implies some kernel user: cannot stop them from
2282 	 *    R/W the page; let's pray that the page has been
2283 	 *    used and will be freed some time later.
2284 	 * In fact it's dangerous to directly bump up page count from 0,
2285 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2286 	 */
2287 	if (!(flags & MF_COUNT_INCREASED)) {
2288 		res = get_hwpoison_page(p, flags);
2289 		if (!res) {
2290 			if (is_free_buddy_page(p)) {
2291 				if (take_page_off_buddy(p)) {
2292 					page_ref_inc(p);
2293 					res = MF_RECOVERED;
2294 				} else {
2295 					/* We lost the race, try again */
2296 					if (retry) {
2297 						ClearPageHWPoison(p);
2298 						retry = false;
2299 						goto try_again;
2300 					}
2301 					res = MF_FAILED;
2302 				}
2303 				res = action_result(pfn, MF_MSG_BUDDY, res);
2304 			} else {
2305 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2306 			}
2307 			goto unlock_mutex;
2308 		} else if (res < 0) {
2309 			res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2310 			goto unlock_mutex;
2311 		}
2312 	}
2313 
2314 	folio = page_folio(p);
2315 
2316 	/* filter pages that are protected from hwpoison test by users */
2317 	folio_lock(folio);
2318 	if (hwpoison_filter(p)) {
2319 		ClearPageHWPoison(p);
2320 		folio_unlock(folio);
2321 		folio_put(folio);
2322 		res = -EOPNOTSUPP;
2323 		goto unlock_mutex;
2324 	}
2325 	folio_unlock(folio);
2326 
2327 	if (folio_test_large(folio)) {
2328 		/*
2329 		 * The flag must be set after the refcount is bumped
2330 		 * otherwise it may race with THP split.
2331 		 * And the flag can't be set in get_hwpoison_page() since
2332 		 * it is called by soft offline too and it is just called
2333 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2334 		 * place.
2335 		 *
2336 		 * Don't need care about the above error handling paths for
2337 		 * get_hwpoison_page() since they handle either free page
2338 		 * or unhandlable page.  The refcount is bumped iff the
2339 		 * page is a valid handlable page.
2340 		 */
2341 		folio_set_has_hwpoisoned(folio);
2342 		if (try_to_split_thp_page(p, false) < 0) {
2343 			res = -EHWPOISON;
2344 			kill_procs_now(p, pfn, flags, folio);
2345 			put_page(p);
2346 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2347 			goto unlock_mutex;
2348 		}
2349 		VM_BUG_ON_PAGE(!page_count(p), p);
2350 		folio = page_folio(p);
2351 	}
2352 
2353 	/*
2354 	 * We ignore non-LRU pages for good reasons.
2355 	 * - PG_locked is only well defined for LRU pages and a few others
2356 	 * - to avoid races with __SetPageLocked()
2357 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2358 	 * The check (unnecessarily) ignores LRU pages being isolated and
2359 	 * walked by the page reclaim code, however that's not a big loss.
2360 	 */
2361 	shake_folio(folio);
2362 
2363 	folio_lock(folio);
2364 
2365 	/*
2366 	 * We're only intended to deal with the non-Compound page here.
2367 	 * The page cannot become compound pages again as folio has been
2368 	 * splited and extra refcnt is held.
2369 	 */
2370 	WARN_ON(folio_test_large(folio));
2371 
2372 	/*
2373 	 * We use page flags to determine what action should be taken, but
2374 	 * the flags can be modified by the error containment action.  One
2375 	 * example is an mlocked page, where PG_mlocked is cleared by
2376 	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2377 	 * status correctly, we save a copy of the page flags at this time.
2378 	 */
2379 	page_flags = folio->flags;
2380 
2381 	/*
2382 	 * __munlock_folio() may clear a writeback folio's LRU flag without
2383 	 * the folio lock. We need to wait for writeback completion for this
2384 	 * folio or it may trigger a vfs BUG while evicting inode.
2385 	 */
2386 	if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2387 		goto identify_page_state;
2388 
2389 	/*
2390 	 * It's very difficult to mess with pages currently under IO
2391 	 * and in many cases impossible, so we just avoid it here.
2392 	 */
2393 	folio_wait_writeback(folio);
2394 
2395 	/*
2396 	 * Now take care of user space mappings.
2397 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2398 	 */
2399 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2400 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2401 		goto unlock_page;
2402 	}
2403 
2404 	/*
2405 	 * Torn down by someone else?
2406 	 */
2407 	if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2408 	    folio->mapping == NULL) {
2409 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2410 		goto unlock_page;
2411 	}
2412 
2413 identify_page_state:
2414 	res = identify_page_state(pfn, p, page_flags);
2415 	mutex_unlock(&mf_mutex);
2416 	return res;
2417 unlock_page:
2418 	folio_unlock(folio);
2419 unlock_mutex:
2420 	mutex_unlock(&mf_mutex);
2421 	return res;
2422 }
2423 EXPORT_SYMBOL_GPL(memory_failure);
2424 
2425 #define MEMORY_FAILURE_FIFO_ORDER	4
2426 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2427 
2428 struct memory_failure_entry {
2429 	unsigned long pfn;
2430 	int flags;
2431 };
2432 
2433 struct memory_failure_cpu {
2434 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2435 		      MEMORY_FAILURE_FIFO_SIZE);
2436 	raw_spinlock_t lock;
2437 	struct work_struct work;
2438 };
2439 
2440 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2441 
2442 /**
2443  * memory_failure_queue - Schedule handling memory failure of a page.
2444  * @pfn: Page Number of the corrupted page
2445  * @flags: Flags for memory failure handling
2446  *
2447  * This function is called by the low level hardware error handler
2448  * when it detects hardware memory corruption of a page. It schedules
2449  * the recovering of error page, including dropping pages, killing
2450  * processes etc.
2451  *
2452  * The function is primarily of use for corruptions that
2453  * happen outside the current execution context (e.g. when
2454  * detected by a background scrubber)
2455  *
2456  * Can run in IRQ context.
2457  */
memory_failure_queue(unsigned long pfn,int flags)2458 void memory_failure_queue(unsigned long pfn, int flags)
2459 {
2460 	struct memory_failure_cpu *mf_cpu;
2461 	unsigned long proc_flags;
2462 	bool buffer_overflow;
2463 	struct memory_failure_entry entry = {
2464 		.pfn =		pfn,
2465 		.flags =	flags,
2466 	};
2467 
2468 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2469 	raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2470 	buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2471 	if (!buffer_overflow)
2472 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2473 	raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2474 	put_cpu_var(memory_failure_cpu);
2475 	if (buffer_overflow)
2476 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2477 		       pfn);
2478 }
2479 EXPORT_SYMBOL_GPL(memory_failure_queue);
2480 
memory_failure_work_func(struct work_struct * work)2481 static void memory_failure_work_func(struct work_struct *work)
2482 {
2483 	struct memory_failure_cpu *mf_cpu;
2484 	struct memory_failure_entry entry = { 0, };
2485 	unsigned long proc_flags;
2486 	int gotten;
2487 
2488 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2489 	for (;;) {
2490 		raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2491 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2492 		raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2493 		if (!gotten)
2494 			break;
2495 		if (entry.flags & MF_SOFT_OFFLINE)
2496 			soft_offline_page(entry.pfn, entry.flags);
2497 		else
2498 			memory_failure(entry.pfn, entry.flags);
2499 	}
2500 }
2501 
2502 /*
2503  * Process memory_failure work queued on the specified CPU.
2504  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2505  */
memory_failure_queue_kick(int cpu)2506 void memory_failure_queue_kick(int cpu)
2507 {
2508 	struct memory_failure_cpu *mf_cpu;
2509 
2510 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2511 	cancel_work_sync(&mf_cpu->work);
2512 	memory_failure_work_func(&mf_cpu->work);
2513 }
2514 
memory_failure_init(void)2515 static int __init memory_failure_init(void)
2516 {
2517 	struct memory_failure_cpu *mf_cpu;
2518 	int cpu;
2519 
2520 	for_each_possible_cpu(cpu) {
2521 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2522 		raw_spin_lock_init(&mf_cpu->lock);
2523 		INIT_KFIFO(mf_cpu->fifo);
2524 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2525 	}
2526 
2527 	register_sysctl_init("vm", memory_failure_table);
2528 
2529 	return 0;
2530 }
2531 core_initcall(memory_failure_init);
2532 
2533 #undef pr_fmt
2534 #define pr_fmt(fmt)	"Unpoison: " fmt
2535 #define unpoison_pr_info(fmt, pfn, rs)			\
2536 ({							\
2537 	if (__ratelimit(rs))				\
2538 		pr_info(fmt, pfn);			\
2539 })
2540 
2541 /**
2542  * unpoison_memory - Unpoison a previously poisoned page
2543  * @pfn: Page number of the to be unpoisoned page
2544  *
2545  * Software-unpoison a page that has been poisoned by
2546  * memory_failure() earlier.
2547  *
2548  * This is only done on the software-level, so it only works
2549  * for linux injected failures, not real hardware failures
2550  *
2551  * Returns 0 for success, otherwise -errno.
2552  */
unpoison_memory(unsigned long pfn)2553 int unpoison_memory(unsigned long pfn)
2554 {
2555 	struct folio *folio;
2556 	struct page *p;
2557 	int ret = -EBUSY, ghp;
2558 	unsigned long count;
2559 	bool huge = false;
2560 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2561 					DEFAULT_RATELIMIT_BURST);
2562 
2563 	if (!pfn_valid(pfn))
2564 		return -ENXIO;
2565 
2566 	p = pfn_to_page(pfn);
2567 	folio = page_folio(p);
2568 
2569 	mutex_lock(&mf_mutex);
2570 
2571 	if (hw_memory_failure) {
2572 		unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2573 				 pfn, &unpoison_rs);
2574 		ret = -EOPNOTSUPP;
2575 		goto unlock_mutex;
2576 	}
2577 
2578 	if (is_huge_zero_folio(folio)) {
2579 		unpoison_pr_info("%#lx: huge zero page is not supported\n",
2580 				 pfn, &unpoison_rs);
2581 		ret = -EOPNOTSUPP;
2582 		goto unlock_mutex;
2583 	}
2584 
2585 	if (!PageHWPoison(p)) {
2586 		unpoison_pr_info("%#lx: page was already unpoisoned\n",
2587 				 pfn, &unpoison_rs);
2588 		goto unlock_mutex;
2589 	}
2590 
2591 	if (folio_ref_count(folio) > 1) {
2592 		unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2593 				 pfn, &unpoison_rs);
2594 		goto unlock_mutex;
2595 	}
2596 
2597 	if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2598 	    folio_test_reserved(folio) || folio_test_offline(folio))
2599 		goto unlock_mutex;
2600 
2601 	if (folio_mapped(folio)) {
2602 		unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2603 				 pfn, &unpoison_rs);
2604 		goto unlock_mutex;
2605 	}
2606 
2607 	if (folio_mapping(folio)) {
2608 		unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2609 				 pfn, &unpoison_rs);
2610 		goto unlock_mutex;
2611 	}
2612 
2613 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2614 	if (!ghp) {
2615 		if (folio_test_hugetlb(folio)) {
2616 			huge = true;
2617 			count = folio_free_raw_hwp(folio, false);
2618 			if (count == 0)
2619 				goto unlock_mutex;
2620 		}
2621 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2622 	} else if (ghp < 0) {
2623 		if (ghp == -EHWPOISON) {
2624 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2625 		} else {
2626 			ret = ghp;
2627 			unpoison_pr_info("%#lx: failed to grab page\n",
2628 					 pfn, &unpoison_rs);
2629 		}
2630 	} else {
2631 		if (folio_test_hugetlb(folio)) {
2632 			huge = true;
2633 			count = folio_free_raw_hwp(folio, false);
2634 			if (count == 0) {
2635 				folio_put(folio);
2636 				goto unlock_mutex;
2637 			}
2638 		}
2639 
2640 		folio_put(folio);
2641 		if (TestClearPageHWPoison(p)) {
2642 			folio_put(folio);
2643 			ret = 0;
2644 		}
2645 	}
2646 
2647 unlock_mutex:
2648 	mutex_unlock(&mf_mutex);
2649 	if (!ret) {
2650 		if (!huge)
2651 			num_poisoned_pages_sub(pfn, 1);
2652 		unpoison_pr_info("%#lx: software-unpoisoned page\n",
2653 				 page_to_pfn(p), &unpoison_rs);
2654 	}
2655 	return ret;
2656 }
2657 EXPORT_SYMBOL(unpoison_memory);
2658 
2659 #undef pr_fmt
2660 #define pr_fmt(fmt) "Soft offline: " fmt
2661 
2662 /*
2663  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2664  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2665  * If the page is mapped, it migrates the contents over.
2666  */
soft_offline_in_use_page(struct page * page)2667 static int soft_offline_in_use_page(struct page *page)
2668 {
2669 	long ret = 0;
2670 	unsigned long pfn = page_to_pfn(page);
2671 	struct folio *folio = page_folio(page);
2672 	char const *msg_page[] = {"page", "hugepage"};
2673 	bool huge = folio_test_hugetlb(folio);
2674 	bool isolated;
2675 	LIST_HEAD(pagelist);
2676 	struct migration_target_control mtc = {
2677 		.nid = NUMA_NO_NODE,
2678 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2679 		.reason = MR_MEMORY_FAILURE,
2680 	};
2681 
2682 	if (!huge && folio_test_large(folio)) {
2683 		if (try_to_split_thp_page(page, true)) {
2684 			pr_info("%#lx: thp split failed\n", pfn);
2685 			return -EBUSY;
2686 		}
2687 		folio = page_folio(page);
2688 	}
2689 
2690 	folio_lock(folio);
2691 	if (!huge)
2692 		folio_wait_writeback(folio);
2693 	if (PageHWPoison(page)) {
2694 		folio_unlock(folio);
2695 		folio_put(folio);
2696 		pr_info("%#lx: page already poisoned\n", pfn);
2697 		return 0;
2698 	}
2699 
2700 	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2701 		/*
2702 		 * Try to invalidate first. This should work for
2703 		 * non dirty unmapped page cache pages.
2704 		 */
2705 		ret = mapping_evict_folio(folio_mapping(folio), folio);
2706 	folio_unlock(folio);
2707 
2708 	if (ret) {
2709 		pr_info("%#lx: invalidated\n", pfn);
2710 		page_handle_poison(page, false, true);
2711 		return 0;
2712 	}
2713 
2714 	isolated = isolate_folio_to_list(folio, &pagelist);
2715 
2716 	/*
2717 	 * If we succeed to isolate the folio, we grabbed another refcount on
2718 	 * the folio, so we can safely drop the one we got from get_any_page().
2719 	 * If we failed to isolate the folio, it means that we cannot go further
2720 	 * and we will return an error, so drop the reference we got from
2721 	 * get_any_page() as well.
2722 	 */
2723 	folio_put(folio);
2724 
2725 	if (isolated) {
2726 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2727 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2728 		if (!ret) {
2729 			bool release = !huge;
2730 
2731 			if (!page_handle_poison(page, huge, release))
2732 				ret = -EBUSY;
2733 		} else {
2734 			if (!list_empty(&pagelist))
2735 				putback_movable_pages(&pagelist);
2736 
2737 			pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2738 				pfn, msg_page[huge], ret, &page->flags);
2739 			if (ret > 0)
2740 				ret = -EBUSY;
2741 		}
2742 	} else {
2743 		pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2744 			pfn, msg_page[huge], page_count(page), &page->flags);
2745 		ret = -EBUSY;
2746 	}
2747 	return ret;
2748 }
2749 
2750 /**
2751  * soft_offline_page - Soft offline a page.
2752  * @pfn: pfn to soft-offline
2753  * @flags: flags. Same as memory_failure().
2754  *
2755  * Returns 0 on success,
2756  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2757  *         disabled by /proc/sys/vm/enable_soft_offline,
2758  *         < 0 otherwise negated errno.
2759  *
2760  * Soft offline a page, by migration or invalidation,
2761  * without killing anything. This is for the case when
2762  * a page is not corrupted yet (so it's still valid to access),
2763  * but has had a number of corrected errors and is better taken
2764  * out.
2765  *
2766  * The actual policy on when to do that is maintained by
2767  * user space.
2768  *
2769  * This should never impact any application or cause data loss,
2770  * however it might take some time.
2771  *
2772  * This is not a 100% solution for all memory, but tries to be
2773  * ``good enough'' for the majority of memory.
2774  */
soft_offline_page(unsigned long pfn,int flags)2775 int soft_offline_page(unsigned long pfn, int flags)
2776 {
2777 	int ret;
2778 	bool try_again = true;
2779 	struct page *page;
2780 
2781 	if (!pfn_valid(pfn)) {
2782 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2783 		return -ENXIO;
2784 	}
2785 
2786 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2787 	page = pfn_to_online_page(pfn);
2788 	if (!page) {
2789 		put_ref_page(pfn, flags);
2790 		return -EIO;
2791 	}
2792 
2793 	if (!sysctl_enable_soft_offline) {
2794 		pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2795 		put_ref_page(pfn, flags);
2796 		return -EOPNOTSUPP;
2797 	}
2798 
2799 	mutex_lock(&mf_mutex);
2800 
2801 	if (PageHWPoison(page)) {
2802 		pr_info("%#lx: page already poisoned\n", pfn);
2803 		put_ref_page(pfn, flags);
2804 		mutex_unlock(&mf_mutex);
2805 		return 0;
2806 	}
2807 
2808 retry:
2809 	get_online_mems();
2810 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2811 	put_online_mems();
2812 
2813 	if (hwpoison_filter(page)) {
2814 		if (ret > 0)
2815 			put_page(page);
2816 
2817 		mutex_unlock(&mf_mutex);
2818 		return -EOPNOTSUPP;
2819 	}
2820 
2821 	if (ret > 0) {
2822 		ret = soft_offline_in_use_page(page);
2823 	} else if (ret == 0) {
2824 		if (!page_handle_poison(page, true, false)) {
2825 			if (try_again) {
2826 				try_again = false;
2827 				flags &= ~MF_COUNT_INCREASED;
2828 				goto retry;
2829 			}
2830 			ret = -EBUSY;
2831 		}
2832 	}
2833 
2834 	mutex_unlock(&mf_mutex);
2835 
2836 	return ret;
2837 }
2838