1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * XArray implementation
4 * Copyright (c) 2017-2018 Microsoft Corporation
5 * Copyright (c) 2018-2020 Oracle
6 * Author: Matthew Wilcox <[email protected]>
7 */
8
9 #include <linux/bitmap.h>
10 #include <linux/export.h>
11 #include <linux/list.h>
12 #include <linux/slab.h>
13 #include <linux/xarray.h>
14
15 #include "radix-tree.h"
16
17 /*
18 * Coding conventions in this file:
19 *
20 * @xa is used to refer to the entire xarray.
21 * @xas is the 'xarray operation state'. It may be either a pointer to
22 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
23 * ambiguity.
24 * @index is the index of the entry being operated on
25 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
26 * @node refers to an xa_node; usually the primary one being operated on by
27 * this function.
28 * @offset is the index into the slots array inside an xa_node.
29 * @parent refers to the @xa_node closer to the head than @node.
30 * @entry refers to something stored in a slot in the xarray
31 */
32
xa_lock_type(const struct xarray * xa)33 static inline unsigned int xa_lock_type(const struct xarray *xa)
34 {
35 return (__force unsigned int)xa->xa_flags & 3;
36 }
37
xas_lock_type(struct xa_state * xas,unsigned int lock_type)38 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
39 {
40 if (lock_type == XA_LOCK_IRQ)
41 xas_lock_irq(xas);
42 else if (lock_type == XA_LOCK_BH)
43 xas_lock_bh(xas);
44 else
45 xas_lock(xas);
46 }
47
xas_unlock_type(struct xa_state * xas,unsigned int lock_type)48 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
49 {
50 if (lock_type == XA_LOCK_IRQ)
51 xas_unlock_irq(xas);
52 else if (lock_type == XA_LOCK_BH)
53 xas_unlock_bh(xas);
54 else
55 xas_unlock(xas);
56 }
57
xa_track_free(const struct xarray * xa)58 static inline bool xa_track_free(const struct xarray *xa)
59 {
60 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
61 }
62
xa_zero_busy(const struct xarray * xa)63 static inline bool xa_zero_busy(const struct xarray *xa)
64 {
65 return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
66 }
67
xa_mark_set(struct xarray * xa,xa_mark_t mark)68 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
69 {
70 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
71 xa->xa_flags |= XA_FLAGS_MARK(mark);
72 }
73
xa_mark_clear(struct xarray * xa,xa_mark_t mark)74 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
75 {
76 if (xa->xa_flags & XA_FLAGS_MARK(mark))
77 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
78 }
79
node_marks(struct xa_node * node,xa_mark_t mark)80 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
81 {
82 return node->marks[(__force unsigned)mark];
83 }
84
node_get_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)85 static inline bool node_get_mark(struct xa_node *node,
86 unsigned int offset, xa_mark_t mark)
87 {
88 return test_bit(offset, node_marks(node, mark));
89 }
90
91 /* returns true if the bit was set */
node_set_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)92 static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
93 xa_mark_t mark)
94 {
95 return __test_and_set_bit(offset, node_marks(node, mark));
96 }
97
98 /* returns true if the bit was set */
node_clear_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)99 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
100 xa_mark_t mark)
101 {
102 return __test_and_clear_bit(offset, node_marks(node, mark));
103 }
104
node_any_mark(struct xa_node * node,xa_mark_t mark)105 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
106 {
107 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
108 }
109
node_mark_all(struct xa_node * node,xa_mark_t mark)110 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
111 {
112 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
113 }
114
115 #define mark_inc(mark) do { \
116 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
117 } while (0)
118
119 /*
120 * xas_squash_marks() - Merge all marks to the first entry
121 * @xas: Array operation state.
122 *
123 * Set a mark on the first entry if any entry has it set. Clear marks on
124 * all sibling entries.
125 */
xas_squash_marks(const struct xa_state * xas)126 static void xas_squash_marks(const struct xa_state *xas)
127 {
128 xa_mark_t mark = 0;
129 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
130
131 for (;;) {
132 unsigned long *marks = node_marks(xas->xa_node, mark);
133
134 if (find_next_bit(marks, limit, xas->xa_offset + 1) != limit) {
135 __set_bit(xas->xa_offset, marks);
136 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
137 }
138 if (mark == XA_MARK_MAX)
139 break;
140 mark_inc(mark);
141 }
142 }
143
144 /* extracts the offset within this node from the index */
get_offset(unsigned long index,struct xa_node * node)145 static unsigned int get_offset(unsigned long index, struct xa_node *node)
146 {
147 return (index >> node->shift) & XA_CHUNK_MASK;
148 }
149
xas_set_offset(struct xa_state * xas)150 static void xas_set_offset(struct xa_state *xas)
151 {
152 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
153 }
154
155 /* move the index either forwards (find) or backwards (sibling slot) */
xas_move_index(struct xa_state * xas,unsigned long offset)156 static void xas_move_index(struct xa_state *xas, unsigned long offset)
157 {
158 unsigned int shift = xas->xa_node->shift;
159 xas->xa_index &= ~XA_CHUNK_MASK << shift;
160 xas->xa_index += offset << shift;
161 }
162
xas_next_offset(struct xa_state * xas)163 static void xas_next_offset(struct xa_state *xas)
164 {
165 xas->xa_offset++;
166 xas_move_index(xas, xas->xa_offset);
167 }
168
set_bounds(struct xa_state * xas)169 static void *set_bounds(struct xa_state *xas)
170 {
171 xas->xa_node = XAS_BOUNDS;
172 return NULL;
173 }
174
175 /*
176 * Starts a walk. If the @xas is already valid, we assume that it's on
177 * the right path and just return where we've got to. If we're in an
178 * error state, return NULL. If the index is outside the current scope
179 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
180 * set @xas->xa_node to NULL and return the current head of the array.
181 */
xas_start(struct xa_state * xas)182 static void *xas_start(struct xa_state *xas)
183 {
184 void *entry;
185
186 if (xas_valid(xas))
187 return xas_reload(xas);
188 if (xas_error(xas))
189 return NULL;
190
191 entry = xa_head(xas->xa);
192 if (!xa_is_node(entry)) {
193 if (xas->xa_index)
194 return set_bounds(xas);
195 } else {
196 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
197 return set_bounds(xas);
198 }
199
200 xas->xa_node = NULL;
201 return entry;
202 }
203
xas_descend(struct xa_state * xas,struct xa_node * node)204 static __always_inline void *xas_descend(struct xa_state *xas,
205 struct xa_node *node)
206 {
207 unsigned int offset = get_offset(xas->xa_index, node);
208 void *entry = xa_entry(xas->xa, node, offset);
209
210 xas->xa_node = node;
211 while (xa_is_sibling(entry)) {
212 offset = xa_to_sibling(entry);
213 entry = xa_entry(xas->xa, node, offset);
214 if (node->shift && xa_is_node(entry))
215 entry = XA_RETRY_ENTRY;
216 }
217
218 xas->xa_offset = offset;
219 return entry;
220 }
221
222 /**
223 * xas_load() - Load an entry from the XArray (advanced).
224 * @xas: XArray operation state.
225 *
226 * Usually walks the @xas to the appropriate state to load the entry
227 * stored at xa_index. However, it will do nothing and return %NULL if
228 * @xas is in an error state. xas_load() will never expand the tree.
229 *
230 * If the xa_state is set up to operate on a multi-index entry, xas_load()
231 * may return %NULL or an internal entry, even if there are entries
232 * present within the range specified by @xas.
233 *
234 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
235 * Return: Usually an entry in the XArray, but see description for exceptions.
236 */
xas_load(struct xa_state * xas)237 void *xas_load(struct xa_state *xas)
238 {
239 void *entry = xas_start(xas);
240
241 while (xa_is_node(entry)) {
242 struct xa_node *node = xa_to_node(entry);
243
244 if (xas->xa_shift > node->shift)
245 break;
246 entry = xas_descend(xas, node);
247 if (node->shift == 0)
248 break;
249 }
250 return entry;
251 }
252 EXPORT_SYMBOL_GPL(xas_load);
253
254 #define XA_RCU_FREE ((struct xarray *)1)
255
xa_node_free(struct xa_node * node)256 static void xa_node_free(struct xa_node *node)
257 {
258 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
259 node->array = XA_RCU_FREE;
260 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
261 }
262
263 /*
264 * xas_destroy() - Free any resources allocated during the XArray operation.
265 * @xas: XArray operation state.
266 *
267 * Most users will not need to call this function; it is called for you
268 * by xas_nomem().
269 */
xas_destroy(struct xa_state * xas)270 void xas_destroy(struct xa_state *xas)
271 {
272 struct xa_node *next, *node = xas->xa_alloc;
273
274 while (node) {
275 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
276 next = rcu_dereference_raw(node->parent);
277 radix_tree_node_rcu_free(&node->rcu_head);
278 xas->xa_alloc = node = next;
279 }
280 }
281
282 /**
283 * xas_nomem() - Allocate memory if needed.
284 * @xas: XArray operation state.
285 * @gfp: Memory allocation flags.
286 *
287 * If we need to add new nodes to the XArray, we try to allocate memory
288 * with GFP_NOWAIT while holding the lock, which will usually succeed.
289 * If it fails, @xas is flagged as needing memory to continue. The caller
290 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
291 * the caller should retry the operation.
292 *
293 * Forward progress is guaranteed as one node is allocated here and
294 * stored in the xa_state where it will be found by xas_alloc(). More
295 * nodes will likely be found in the slab allocator, but we do not tie
296 * them up here.
297 *
298 * Return: true if memory was needed, and was successfully allocated.
299 */
xas_nomem(struct xa_state * xas,gfp_t gfp)300 bool xas_nomem(struct xa_state *xas, gfp_t gfp)
301 {
302 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
303 xas_destroy(xas);
304 return false;
305 }
306 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
307 gfp |= __GFP_ACCOUNT;
308 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
309 if (!xas->xa_alloc)
310 return false;
311 xas->xa_alloc->parent = NULL;
312 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
313 xas->xa_node = XAS_RESTART;
314 return true;
315 }
316 EXPORT_SYMBOL_GPL(xas_nomem);
317
318 /*
319 * __xas_nomem() - Drop locks and allocate memory if needed.
320 * @xas: XArray operation state.
321 * @gfp: Memory allocation flags.
322 *
323 * Internal variant of xas_nomem().
324 *
325 * Return: true if memory was needed, and was successfully allocated.
326 */
__xas_nomem(struct xa_state * xas,gfp_t gfp)327 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
328 __must_hold(xas->xa->xa_lock)
329 {
330 unsigned int lock_type = xa_lock_type(xas->xa);
331
332 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
333 xas_destroy(xas);
334 return false;
335 }
336 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
337 gfp |= __GFP_ACCOUNT;
338 if (gfpflags_allow_blocking(gfp)) {
339 xas_unlock_type(xas, lock_type);
340 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
341 xas_lock_type(xas, lock_type);
342 } else {
343 xas->xa_alloc = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
344 }
345 if (!xas->xa_alloc)
346 return false;
347 xas->xa_alloc->parent = NULL;
348 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
349 xas->xa_node = XAS_RESTART;
350 return true;
351 }
352
xas_update(struct xa_state * xas,struct xa_node * node)353 static void xas_update(struct xa_state *xas, struct xa_node *node)
354 {
355 if (xas->xa_update)
356 xas->xa_update(node);
357 else
358 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
359 }
360
xas_alloc(struct xa_state * xas,unsigned int shift)361 static void *xas_alloc(struct xa_state *xas, unsigned int shift)
362 {
363 struct xa_node *parent = xas->xa_node;
364 struct xa_node *node = xas->xa_alloc;
365
366 if (xas_invalid(xas))
367 return NULL;
368
369 if (node) {
370 xas->xa_alloc = NULL;
371 } else {
372 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
373
374 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
375 gfp |= __GFP_ACCOUNT;
376
377 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
378 if (!node) {
379 xas_set_err(xas, -ENOMEM);
380 return NULL;
381 }
382 }
383
384 if (parent) {
385 node->offset = xas->xa_offset;
386 parent->count++;
387 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
388 xas_update(xas, parent);
389 }
390 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
391 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
392 node->shift = shift;
393 node->count = 0;
394 node->nr_values = 0;
395 RCU_INIT_POINTER(node->parent, xas->xa_node);
396 node->array = xas->xa;
397
398 return node;
399 }
400
401 #ifdef CONFIG_XARRAY_MULTI
402 /* Returns the number of indices covered by a given xa_state */
xas_size(const struct xa_state * xas)403 static unsigned long xas_size(const struct xa_state *xas)
404 {
405 return (xas->xa_sibs + 1UL) << xas->xa_shift;
406 }
407 #endif
408
409 /*
410 * Use this to calculate the maximum index that will need to be created
411 * in order to add the entry described by @xas. Because we cannot store a
412 * multi-index entry at index 0, the calculation is a little more complex
413 * than you might expect.
414 */
xas_max(struct xa_state * xas)415 static unsigned long xas_max(struct xa_state *xas)
416 {
417 unsigned long max = xas->xa_index;
418
419 #ifdef CONFIG_XARRAY_MULTI
420 if (xas->xa_shift || xas->xa_sibs) {
421 unsigned long mask = xas_size(xas) - 1;
422 max |= mask;
423 if (mask == max)
424 max++;
425 }
426 #endif
427
428 return max;
429 }
430
431 /* The maximum index that can be contained in the array without expanding it */
max_index(void * entry)432 static unsigned long max_index(void *entry)
433 {
434 if (!xa_is_node(entry))
435 return 0;
436 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
437 }
438
xa_zero_to_null(void * entry)439 static inline void *xa_zero_to_null(void *entry)
440 {
441 return xa_is_zero(entry) ? NULL : entry;
442 }
443
xas_shrink(struct xa_state * xas)444 static void xas_shrink(struct xa_state *xas)
445 {
446 struct xarray *xa = xas->xa;
447 struct xa_node *node = xas->xa_node;
448
449 for (;;) {
450 void *entry;
451
452 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
453 if (node->count != 1)
454 break;
455 entry = xa_entry_locked(xa, node, 0);
456 if (!entry)
457 break;
458 if (!xa_is_node(entry) && node->shift)
459 break;
460 if (xa_zero_busy(xa))
461 entry = xa_zero_to_null(entry);
462 xas->xa_node = XAS_BOUNDS;
463
464 RCU_INIT_POINTER(xa->xa_head, entry);
465 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
466 xa_mark_clear(xa, XA_FREE_MARK);
467
468 node->count = 0;
469 node->nr_values = 0;
470 if (!xa_is_node(entry))
471 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
472 xas_update(xas, node);
473 xa_node_free(node);
474 if (!xa_is_node(entry))
475 break;
476 node = xa_to_node(entry);
477 node->parent = NULL;
478 }
479 }
480
481 /*
482 * xas_delete_node() - Attempt to delete an xa_node
483 * @xas: Array operation state.
484 *
485 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
486 * a non-zero reference count.
487 */
xas_delete_node(struct xa_state * xas)488 static void xas_delete_node(struct xa_state *xas)
489 {
490 struct xa_node *node = xas->xa_node;
491
492 for (;;) {
493 struct xa_node *parent;
494
495 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
496 if (node->count)
497 break;
498
499 parent = xa_parent_locked(xas->xa, node);
500 xas->xa_node = parent;
501 xas->xa_offset = node->offset;
502 xa_node_free(node);
503
504 if (!parent) {
505 xas->xa->xa_head = NULL;
506 xas->xa_node = XAS_BOUNDS;
507 return;
508 }
509
510 parent->slots[xas->xa_offset] = NULL;
511 parent->count--;
512 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
513 node = parent;
514 xas_update(xas, node);
515 }
516
517 if (!node->parent)
518 xas_shrink(xas);
519 }
520
521 /**
522 * xas_free_nodes() - Free this node and all nodes that it references
523 * @xas: Array operation state.
524 * @top: Node to free
525 *
526 * This node has been removed from the tree. We must now free it and all
527 * of its subnodes. There may be RCU walkers with references into the tree,
528 * so we must replace all entries with retry markers.
529 */
xas_free_nodes(struct xa_state * xas,struct xa_node * top)530 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
531 {
532 unsigned int offset = 0;
533 struct xa_node *node = top;
534
535 for (;;) {
536 void *entry = xa_entry_locked(xas->xa, node, offset);
537
538 if (node->shift && xa_is_node(entry)) {
539 node = xa_to_node(entry);
540 offset = 0;
541 continue;
542 }
543 if (entry)
544 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
545 offset++;
546 while (offset == XA_CHUNK_SIZE) {
547 struct xa_node *parent;
548
549 parent = xa_parent_locked(xas->xa, node);
550 offset = node->offset + 1;
551 node->count = 0;
552 node->nr_values = 0;
553 xas_update(xas, node);
554 xa_node_free(node);
555 if (node == top)
556 return;
557 node = parent;
558 }
559 }
560 }
561
562 /*
563 * xas_expand adds nodes to the head of the tree until it has reached
564 * sufficient height to be able to contain @xas->xa_index
565 */
xas_expand(struct xa_state * xas,void * head)566 static int xas_expand(struct xa_state *xas, void *head)
567 {
568 struct xarray *xa = xas->xa;
569 struct xa_node *node = NULL;
570 unsigned int shift = 0;
571 unsigned long max = xas_max(xas);
572
573 if (!head) {
574 if (max == 0)
575 return 0;
576 while ((max >> shift) >= XA_CHUNK_SIZE)
577 shift += XA_CHUNK_SHIFT;
578 return shift + XA_CHUNK_SHIFT;
579 } else if (xa_is_node(head)) {
580 node = xa_to_node(head);
581 shift = node->shift + XA_CHUNK_SHIFT;
582 }
583 xas->xa_node = NULL;
584
585 while (max > max_index(head)) {
586 xa_mark_t mark = 0;
587
588 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
589 node = xas_alloc(xas, shift);
590 if (!node)
591 return -ENOMEM;
592
593 node->count = 1;
594 if (xa_is_value(head))
595 node->nr_values = 1;
596 RCU_INIT_POINTER(node->slots[0], head);
597
598 /* Propagate the aggregated mark info to the new child */
599 for (;;) {
600 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
601 node_mark_all(node, XA_FREE_MARK);
602 if (!xa_marked(xa, XA_FREE_MARK)) {
603 node_clear_mark(node, 0, XA_FREE_MARK);
604 xa_mark_set(xa, XA_FREE_MARK);
605 }
606 } else if (xa_marked(xa, mark)) {
607 node_set_mark(node, 0, mark);
608 }
609 if (mark == XA_MARK_MAX)
610 break;
611 mark_inc(mark);
612 }
613
614 /*
615 * Now that the new node is fully initialised, we can add
616 * it to the tree
617 */
618 if (xa_is_node(head)) {
619 xa_to_node(head)->offset = 0;
620 rcu_assign_pointer(xa_to_node(head)->parent, node);
621 }
622 head = xa_mk_node(node);
623 rcu_assign_pointer(xa->xa_head, head);
624 xas_update(xas, node);
625
626 shift += XA_CHUNK_SHIFT;
627 }
628
629 xas->xa_node = node;
630 return shift;
631 }
632
633 /*
634 * xas_create() - Create a slot to store an entry in.
635 * @xas: XArray operation state.
636 * @allow_root: %true if we can store the entry in the root directly
637 *
638 * Most users will not need to call this function directly, as it is called
639 * by xas_store(). It is useful for doing conditional store operations
640 * (see the xa_cmpxchg() implementation for an example).
641 *
642 * Return: If the slot already existed, returns the contents of this slot.
643 * If the slot was newly created, returns %NULL. If it failed to create the
644 * slot, returns %NULL and indicates the error in @xas.
645 */
xas_create(struct xa_state * xas,bool allow_root)646 static void *xas_create(struct xa_state *xas, bool allow_root)
647 {
648 struct xarray *xa = xas->xa;
649 void *entry;
650 void __rcu **slot;
651 struct xa_node *node = xas->xa_node;
652 int shift;
653 unsigned int order = xas->xa_shift;
654
655 if (xas_top(node)) {
656 entry = xa_head_locked(xa);
657 xas->xa_node = NULL;
658 if (!entry && xa_zero_busy(xa))
659 entry = XA_ZERO_ENTRY;
660 shift = xas_expand(xas, entry);
661 if (shift < 0)
662 return NULL;
663 if (!shift && !allow_root)
664 shift = XA_CHUNK_SHIFT;
665 entry = xa_head_locked(xa);
666 slot = &xa->xa_head;
667 } else if (xas_error(xas)) {
668 return NULL;
669 } else if (node) {
670 unsigned int offset = xas->xa_offset;
671
672 shift = node->shift;
673 entry = xa_entry_locked(xa, node, offset);
674 slot = &node->slots[offset];
675 } else {
676 shift = 0;
677 entry = xa_head_locked(xa);
678 slot = &xa->xa_head;
679 }
680
681 while (shift > order) {
682 shift -= XA_CHUNK_SHIFT;
683 if (!entry) {
684 node = xas_alloc(xas, shift);
685 if (!node)
686 break;
687 if (xa_track_free(xa))
688 node_mark_all(node, XA_FREE_MARK);
689 rcu_assign_pointer(*slot, xa_mk_node(node));
690 } else if (xa_is_node(entry)) {
691 node = xa_to_node(entry);
692 } else {
693 break;
694 }
695 entry = xas_descend(xas, node);
696 slot = &node->slots[xas->xa_offset];
697 }
698
699 return entry;
700 }
701
702 /**
703 * xas_create_range() - Ensure that stores to this range will succeed
704 * @xas: XArray operation state.
705 *
706 * Creates all of the slots in the range covered by @xas. Sets @xas to
707 * create single-index entries and positions it at the beginning of the
708 * range. This is for the benefit of users which have not yet been
709 * converted to use multi-index entries.
710 */
xas_create_range(struct xa_state * xas)711 void xas_create_range(struct xa_state *xas)
712 {
713 unsigned long index = xas->xa_index;
714 unsigned char shift = xas->xa_shift;
715 unsigned char sibs = xas->xa_sibs;
716
717 xas->xa_index |= ((sibs + 1UL) << shift) - 1;
718 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
719 xas->xa_offset |= sibs;
720 xas->xa_shift = 0;
721 xas->xa_sibs = 0;
722
723 for (;;) {
724 xas_create(xas, true);
725 if (xas_error(xas))
726 goto restore;
727 if (xas->xa_index <= (index | XA_CHUNK_MASK))
728 goto success;
729 xas->xa_index -= XA_CHUNK_SIZE;
730
731 for (;;) {
732 struct xa_node *node = xas->xa_node;
733 if (node->shift >= shift)
734 break;
735 xas->xa_node = xa_parent_locked(xas->xa, node);
736 xas->xa_offset = node->offset - 1;
737 if (node->offset != 0)
738 break;
739 }
740 }
741
742 restore:
743 xas->xa_shift = shift;
744 xas->xa_sibs = sibs;
745 xas->xa_index = index;
746 return;
747 success:
748 xas->xa_index = index;
749 if (xas->xa_node)
750 xas_set_offset(xas);
751 }
752 EXPORT_SYMBOL_GPL(xas_create_range);
753
update_node(struct xa_state * xas,struct xa_node * node,int count,int values)754 static void update_node(struct xa_state *xas, struct xa_node *node,
755 int count, int values)
756 {
757 if (!node || (!count && !values))
758 return;
759
760 node->count += count;
761 node->nr_values += values;
762 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
763 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
764 xas_update(xas, node);
765 if (count < 0)
766 xas_delete_node(xas);
767 }
768
769 /**
770 * xas_store() - Store this entry in the XArray.
771 * @xas: XArray operation state.
772 * @entry: New entry.
773 *
774 * If @xas is operating on a multi-index entry, the entry returned by this
775 * function is essentially meaningless (it may be an internal entry or it
776 * may be %NULL, even if there are non-NULL entries at some of the indices
777 * covered by the range). This is not a problem for any current users,
778 * and can be changed if needed.
779 *
780 * Return: The old entry at this index.
781 */
xas_store(struct xa_state * xas,void * entry)782 void *xas_store(struct xa_state *xas, void *entry)
783 {
784 struct xa_node *node;
785 void __rcu **slot = &xas->xa->xa_head;
786 unsigned int offset, max;
787 int count = 0;
788 int values = 0;
789 void *first, *next;
790 bool value = xa_is_value(entry);
791
792 if (entry) {
793 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
794 first = xas_create(xas, allow_root);
795 } else {
796 first = xas_load(xas);
797 }
798
799 if (xas_invalid(xas))
800 return first;
801 node = xas->xa_node;
802 if (node && (xas->xa_shift < node->shift))
803 xas->xa_sibs = 0;
804 if ((first == entry) && !xas->xa_sibs)
805 return first;
806
807 next = first;
808 offset = xas->xa_offset;
809 max = xas->xa_offset + xas->xa_sibs;
810 if (node) {
811 slot = &node->slots[offset];
812 if (xas->xa_sibs)
813 xas_squash_marks(xas);
814 }
815 if (!entry)
816 xas_init_marks(xas);
817
818 for (;;) {
819 /*
820 * Must clear the marks before setting the entry to NULL,
821 * otherwise xas_for_each_marked may find a NULL entry and
822 * stop early. rcu_assign_pointer contains a release barrier
823 * so the mark clearing will appear to happen before the
824 * entry is set to NULL.
825 */
826 rcu_assign_pointer(*slot, entry);
827 if (xa_is_node(next) && (!node || node->shift))
828 xas_free_nodes(xas, xa_to_node(next));
829 if (!node)
830 break;
831 count += !next - !entry;
832 values += !xa_is_value(first) - !value;
833 if (entry) {
834 if (offset == max)
835 break;
836 if (!xa_is_sibling(entry))
837 entry = xa_mk_sibling(xas->xa_offset);
838 } else {
839 if (offset == XA_CHUNK_MASK)
840 break;
841 }
842 next = xa_entry_locked(xas->xa, node, ++offset);
843 if (!xa_is_sibling(next)) {
844 if (!entry && (offset > max))
845 break;
846 first = next;
847 }
848 slot++;
849 }
850
851 update_node(xas, node, count, values);
852 return first;
853 }
854 EXPORT_SYMBOL_GPL(xas_store);
855
856 /**
857 * xas_get_mark() - Returns the state of this mark.
858 * @xas: XArray operation state.
859 * @mark: Mark number.
860 *
861 * Return: true if the mark is set, false if the mark is clear or @xas
862 * is in an error state.
863 */
xas_get_mark(const struct xa_state * xas,xa_mark_t mark)864 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
865 {
866 if (xas_invalid(xas))
867 return false;
868 if (!xas->xa_node)
869 return xa_marked(xas->xa, mark);
870 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
871 }
872 EXPORT_SYMBOL_GPL(xas_get_mark);
873
874 /**
875 * xas_set_mark() - Sets the mark on this entry and its parents.
876 * @xas: XArray operation state.
877 * @mark: Mark number.
878 *
879 * Sets the specified mark on this entry, and walks up the tree setting it
880 * on all the ancestor entries. Does nothing if @xas has not been walked to
881 * an entry, or is in an error state.
882 */
xas_set_mark(const struct xa_state * xas,xa_mark_t mark)883 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
884 {
885 struct xa_node *node = xas->xa_node;
886 unsigned int offset = xas->xa_offset;
887
888 if (xas_invalid(xas))
889 return;
890
891 while (node) {
892 if (node_set_mark(node, offset, mark))
893 return;
894 offset = node->offset;
895 node = xa_parent_locked(xas->xa, node);
896 }
897
898 if (!xa_marked(xas->xa, mark))
899 xa_mark_set(xas->xa, mark);
900 }
901 EXPORT_SYMBOL_GPL(xas_set_mark);
902
903 /**
904 * xas_clear_mark() - Clears the mark on this entry and its parents.
905 * @xas: XArray operation state.
906 * @mark: Mark number.
907 *
908 * Clears the specified mark on this entry, and walks back to the head
909 * attempting to clear it on all the ancestor entries. Does nothing if
910 * @xas has not been walked to an entry, or is in an error state.
911 */
xas_clear_mark(const struct xa_state * xas,xa_mark_t mark)912 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
913 {
914 struct xa_node *node = xas->xa_node;
915 unsigned int offset = xas->xa_offset;
916
917 if (xas_invalid(xas))
918 return;
919
920 while (node) {
921 if (!node_clear_mark(node, offset, mark))
922 return;
923 if (node_any_mark(node, mark))
924 return;
925
926 offset = node->offset;
927 node = xa_parent_locked(xas->xa, node);
928 }
929
930 if (xa_marked(xas->xa, mark))
931 xa_mark_clear(xas->xa, mark);
932 }
933 EXPORT_SYMBOL_GPL(xas_clear_mark);
934
935 /**
936 * xas_init_marks() - Initialise all marks for the entry
937 * @xas: Array operations state.
938 *
939 * Initialise all marks for the entry specified by @xas. If we're tracking
940 * free entries with a mark, we need to set it on all entries. All other
941 * marks are cleared.
942 *
943 * This implementation is not as efficient as it could be; we may walk
944 * up the tree multiple times.
945 */
xas_init_marks(const struct xa_state * xas)946 void xas_init_marks(const struct xa_state *xas)
947 {
948 xa_mark_t mark = 0;
949
950 for (;;) {
951 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
952 xas_set_mark(xas, mark);
953 else
954 xas_clear_mark(xas, mark);
955 if (mark == XA_MARK_MAX)
956 break;
957 mark_inc(mark);
958 }
959 }
960 EXPORT_SYMBOL_GPL(xas_init_marks);
961
962 #ifdef CONFIG_XARRAY_MULTI
node_get_marks(struct xa_node * node,unsigned int offset)963 static unsigned int node_get_marks(struct xa_node *node, unsigned int offset)
964 {
965 unsigned int marks = 0;
966 xa_mark_t mark = XA_MARK_0;
967
968 for (;;) {
969 if (node_get_mark(node, offset, mark))
970 marks |= 1 << (__force unsigned int)mark;
971 if (mark == XA_MARK_MAX)
972 break;
973 mark_inc(mark);
974 }
975
976 return marks;
977 }
978
node_mark_slots(struct xa_node * node,unsigned int sibs,xa_mark_t mark)979 static inline void node_mark_slots(struct xa_node *node, unsigned int sibs,
980 xa_mark_t mark)
981 {
982 int i;
983
984 if (sibs == 0)
985 node_mark_all(node, mark);
986 else {
987 for (i = 0; i < XA_CHUNK_SIZE; i += sibs + 1)
988 node_set_mark(node, i, mark);
989 }
990 }
991
node_set_marks(struct xa_node * node,unsigned int offset,struct xa_node * child,unsigned int sibs,unsigned int marks)992 static void node_set_marks(struct xa_node *node, unsigned int offset,
993 struct xa_node *child, unsigned int sibs,
994 unsigned int marks)
995 {
996 xa_mark_t mark = XA_MARK_0;
997
998 for (;;) {
999 if (marks & (1 << (__force unsigned int)mark)) {
1000 node_set_mark(node, offset, mark);
1001 if (child)
1002 node_mark_slots(child, sibs, mark);
1003 }
1004 if (mark == XA_MARK_MAX)
1005 break;
1006 mark_inc(mark);
1007 }
1008 }
1009
1010 /**
1011 * xas_split_alloc() - Allocate memory for splitting an entry.
1012 * @xas: XArray operation state.
1013 * @entry: New entry which will be stored in the array.
1014 * @order: Current entry order.
1015 * @gfp: Memory allocation flags.
1016 *
1017 * This function should be called before calling xas_split().
1018 * If necessary, it will allocate new nodes (and fill them with @entry)
1019 * to prepare for the upcoming split of an entry of @order size into
1020 * entries of the order stored in the @xas.
1021 *
1022 * Context: May sleep if @gfp flags permit.
1023 */
xas_split_alloc(struct xa_state * xas,void * entry,unsigned int order,gfp_t gfp)1024 void xas_split_alloc(struct xa_state *xas, void *entry, unsigned int order,
1025 gfp_t gfp)
1026 {
1027 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1028 unsigned int mask = xas->xa_sibs;
1029
1030 /* XXX: no support for splitting really large entries yet */
1031 if (WARN_ON(xas->xa_shift + 2 * XA_CHUNK_SHIFT <= order))
1032 goto nomem;
1033 if (xas->xa_shift + XA_CHUNK_SHIFT > order)
1034 return;
1035
1036 do {
1037 unsigned int i;
1038 void *sibling = NULL;
1039 struct xa_node *node;
1040
1041 node = kmem_cache_alloc_lru(radix_tree_node_cachep, xas->xa_lru, gfp);
1042 if (!node)
1043 goto nomem;
1044 node->array = xas->xa;
1045 for (i = 0; i < XA_CHUNK_SIZE; i++) {
1046 if ((i & mask) == 0) {
1047 RCU_INIT_POINTER(node->slots[i], entry);
1048 sibling = xa_mk_sibling(i);
1049 } else {
1050 RCU_INIT_POINTER(node->slots[i], sibling);
1051 }
1052 }
1053 RCU_INIT_POINTER(node->parent, xas->xa_alloc);
1054 xas->xa_alloc = node;
1055 } while (sibs-- > 0);
1056
1057 return;
1058 nomem:
1059 xas_destroy(xas);
1060 xas_set_err(xas, -ENOMEM);
1061 }
1062 EXPORT_SYMBOL_GPL(xas_split_alloc);
1063
1064 /**
1065 * xas_split() - Split a multi-index entry into smaller entries.
1066 * @xas: XArray operation state.
1067 * @entry: New entry to store in the array.
1068 * @order: Current entry order.
1069 *
1070 * The size of the new entries is set in @xas. The value in @entry is
1071 * copied to all the replacement entries.
1072 *
1073 * Context: Any context. The caller should hold the xa_lock.
1074 */
xas_split(struct xa_state * xas,void * entry,unsigned int order)1075 void xas_split(struct xa_state *xas, void *entry, unsigned int order)
1076 {
1077 unsigned int sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1078 unsigned int offset, marks;
1079 struct xa_node *node;
1080 void *curr = xas_load(xas);
1081 int values = 0;
1082
1083 node = xas->xa_node;
1084 if (xas_top(node))
1085 return;
1086
1087 marks = node_get_marks(node, xas->xa_offset);
1088
1089 offset = xas->xa_offset + sibs;
1090 do {
1091 if (xas->xa_shift < node->shift) {
1092 struct xa_node *child = xas->xa_alloc;
1093
1094 xas->xa_alloc = rcu_dereference_raw(child->parent);
1095 child->shift = node->shift - XA_CHUNK_SHIFT;
1096 child->offset = offset;
1097 child->count = XA_CHUNK_SIZE;
1098 child->nr_values = xa_is_value(entry) ?
1099 XA_CHUNK_SIZE : 0;
1100 RCU_INIT_POINTER(child->parent, node);
1101 node_set_marks(node, offset, child, xas->xa_sibs,
1102 marks);
1103 rcu_assign_pointer(node->slots[offset],
1104 xa_mk_node(child));
1105 if (xa_is_value(curr))
1106 values--;
1107 xas_update(xas, child);
1108 } else {
1109 unsigned int canon = offset - xas->xa_sibs;
1110
1111 node_set_marks(node, canon, NULL, 0, marks);
1112 rcu_assign_pointer(node->slots[canon], entry);
1113 while (offset > canon)
1114 rcu_assign_pointer(node->slots[offset--],
1115 xa_mk_sibling(canon));
1116 values += (xa_is_value(entry) - xa_is_value(curr)) *
1117 (xas->xa_sibs + 1);
1118 }
1119 } while (offset-- > xas->xa_offset);
1120
1121 node->nr_values += values;
1122 xas_update(xas, node);
1123 }
1124 EXPORT_SYMBOL_GPL(xas_split);
1125 #endif
1126
1127 /**
1128 * xas_pause() - Pause a walk to drop a lock.
1129 * @xas: XArray operation state.
1130 *
1131 * Some users need to pause a walk and drop the lock they're holding in
1132 * order to yield to a higher priority thread or carry out an operation
1133 * on an entry. Those users should call this function before they drop
1134 * the lock. It resets the @xas to be suitable for the next iteration
1135 * of the loop after the user has reacquired the lock. If most entries
1136 * found during a walk require you to call xas_pause(), the xa_for_each()
1137 * iterator may be more appropriate.
1138 *
1139 * Note that xas_pause() only works for forward iteration. If a user needs
1140 * to pause a reverse iteration, we will need a xas_pause_rev().
1141 */
xas_pause(struct xa_state * xas)1142 void xas_pause(struct xa_state *xas)
1143 {
1144 struct xa_node *node = xas->xa_node;
1145
1146 if (xas_invalid(xas))
1147 return;
1148
1149 xas->xa_node = XAS_RESTART;
1150 if (node) {
1151 unsigned long offset = xas->xa_offset;
1152 while (++offset < XA_CHUNK_SIZE) {
1153 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
1154 break;
1155 }
1156 xas->xa_index &= ~0UL << node->shift;
1157 xas->xa_index += (offset - xas->xa_offset) << node->shift;
1158 if (xas->xa_index == 0)
1159 xas->xa_node = XAS_BOUNDS;
1160 } else {
1161 xas->xa_index++;
1162 }
1163 }
1164 EXPORT_SYMBOL_GPL(xas_pause);
1165
1166 /*
1167 * __xas_prev() - Find the previous entry in the XArray.
1168 * @xas: XArray operation state.
1169 *
1170 * Helper function for xas_prev() which handles all the complex cases
1171 * out of line.
1172 */
__xas_prev(struct xa_state * xas)1173 void *__xas_prev(struct xa_state *xas)
1174 {
1175 void *entry;
1176
1177 if (!xas_frozen(xas->xa_node))
1178 xas->xa_index--;
1179 if (!xas->xa_node)
1180 return set_bounds(xas);
1181 if (xas_not_node(xas->xa_node))
1182 return xas_load(xas);
1183
1184 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1185 xas->xa_offset--;
1186
1187 while (xas->xa_offset == 255) {
1188 xas->xa_offset = xas->xa_node->offset - 1;
1189 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1190 if (!xas->xa_node)
1191 return set_bounds(xas);
1192 }
1193
1194 for (;;) {
1195 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1196 if (!xa_is_node(entry))
1197 return entry;
1198
1199 xas->xa_node = xa_to_node(entry);
1200 xas_set_offset(xas);
1201 }
1202 }
1203 EXPORT_SYMBOL_GPL(__xas_prev);
1204
1205 /*
1206 * __xas_next() - Find the next entry in the XArray.
1207 * @xas: XArray operation state.
1208 *
1209 * Helper function for xas_next() which handles all the complex cases
1210 * out of line.
1211 */
__xas_next(struct xa_state * xas)1212 void *__xas_next(struct xa_state *xas)
1213 {
1214 void *entry;
1215
1216 if (!xas_frozen(xas->xa_node))
1217 xas->xa_index++;
1218 if (!xas->xa_node)
1219 return set_bounds(xas);
1220 if (xas_not_node(xas->xa_node))
1221 return xas_load(xas);
1222
1223 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1224 xas->xa_offset++;
1225
1226 while (xas->xa_offset == XA_CHUNK_SIZE) {
1227 xas->xa_offset = xas->xa_node->offset + 1;
1228 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1229 if (!xas->xa_node)
1230 return set_bounds(xas);
1231 }
1232
1233 for (;;) {
1234 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1235 if (!xa_is_node(entry))
1236 return entry;
1237
1238 xas->xa_node = xa_to_node(entry);
1239 xas_set_offset(xas);
1240 }
1241 }
1242 EXPORT_SYMBOL_GPL(__xas_next);
1243
1244 /**
1245 * xas_find() - Find the next present entry in the XArray.
1246 * @xas: XArray operation state.
1247 * @max: Highest index to return.
1248 *
1249 * If the @xas has not yet been walked to an entry, return the entry
1250 * which has an index >= xas.xa_index. If it has been walked, the entry
1251 * currently being pointed at has been processed, and so we move to the
1252 * next entry.
1253 *
1254 * If no entry is found and the array is smaller than @max, the iterator
1255 * is set to the smallest index not yet in the array. This allows @xas
1256 * to be immediately passed to xas_store().
1257 *
1258 * Return: The entry, if found, otherwise %NULL.
1259 */
xas_find(struct xa_state * xas,unsigned long max)1260 void *xas_find(struct xa_state *xas, unsigned long max)
1261 {
1262 void *entry;
1263
1264 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
1265 return NULL;
1266 if (xas->xa_index > max)
1267 return set_bounds(xas);
1268
1269 if (!xas->xa_node) {
1270 xas->xa_index = 1;
1271 return set_bounds(xas);
1272 } else if (xas->xa_node == XAS_RESTART) {
1273 entry = xas_load(xas);
1274 if (entry || xas_not_node(xas->xa_node))
1275 return entry;
1276 } else if (!xas->xa_node->shift &&
1277 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1278 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1279 }
1280
1281 xas_next_offset(xas);
1282
1283 while (xas->xa_node && (xas->xa_index <= max)) {
1284 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1285 xas->xa_offset = xas->xa_node->offset + 1;
1286 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1287 continue;
1288 }
1289
1290 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1291 if (xa_is_node(entry)) {
1292 xas->xa_node = xa_to_node(entry);
1293 xas->xa_offset = 0;
1294 continue;
1295 }
1296 if (entry && !xa_is_sibling(entry))
1297 return entry;
1298
1299 xas_next_offset(xas);
1300 }
1301
1302 if (!xas->xa_node)
1303 xas->xa_node = XAS_BOUNDS;
1304 return NULL;
1305 }
1306 EXPORT_SYMBOL_GPL(xas_find);
1307
1308 /**
1309 * xas_find_marked() - Find the next marked entry in the XArray.
1310 * @xas: XArray operation state.
1311 * @max: Highest index to return.
1312 * @mark: Mark number to search for.
1313 *
1314 * If the @xas has not yet been walked to an entry, return the marked entry
1315 * which has an index >= xas.xa_index. If it has been walked, the entry
1316 * currently being pointed at has been processed, and so we return the
1317 * first marked entry with an index > xas.xa_index.
1318 *
1319 * If no marked entry is found and the array is smaller than @max, @xas is
1320 * set to the bounds state and xas->xa_index is set to the smallest index
1321 * not yet in the array. This allows @xas to be immediately passed to
1322 * xas_store().
1323 *
1324 * If no entry is found before @max is reached, @xas is set to the restart
1325 * state.
1326 *
1327 * Return: The entry, if found, otherwise %NULL.
1328 */
xas_find_marked(struct xa_state * xas,unsigned long max,xa_mark_t mark)1329 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1330 {
1331 bool advance = true;
1332 unsigned int offset;
1333 void *entry;
1334
1335 if (xas_error(xas))
1336 return NULL;
1337 if (xas->xa_index > max)
1338 goto max;
1339
1340 if (!xas->xa_node) {
1341 xas->xa_index = 1;
1342 goto out;
1343 } else if (xas_top(xas->xa_node)) {
1344 advance = false;
1345 entry = xa_head(xas->xa);
1346 xas->xa_node = NULL;
1347 if (xas->xa_index > max_index(entry))
1348 goto out;
1349 if (!xa_is_node(entry)) {
1350 if (xa_marked(xas->xa, mark))
1351 return entry;
1352 xas->xa_index = 1;
1353 goto out;
1354 }
1355 xas->xa_node = xa_to_node(entry);
1356 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1357 }
1358
1359 while (xas->xa_index <= max) {
1360 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1361 xas->xa_offset = xas->xa_node->offset + 1;
1362 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1363 if (!xas->xa_node)
1364 break;
1365 advance = false;
1366 continue;
1367 }
1368
1369 if (!advance) {
1370 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1371 if (xa_is_sibling(entry)) {
1372 xas->xa_offset = xa_to_sibling(entry);
1373 xas_move_index(xas, xas->xa_offset);
1374 }
1375 }
1376
1377 offset = xas_find_chunk(xas, advance, mark);
1378 if (offset > xas->xa_offset) {
1379 advance = false;
1380 xas_move_index(xas, offset);
1381 /* Mind the wrap */
1382 if ((xas->xa_index - 1) >= max)
1383 goto max;
1384 xas->xa_offset = offset;
1385 if (offset == XA_CHUNK_SIZE)
1386 continue;
1387 }
1388
1389 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1390 if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
1391 continue;
1392 if (xa_is_sibling(entry))
1393 continue;
1394 if (!xa_is_node(entry))
1395 return entry;
1396 xas->xa_node = xa_to_node(entry);
1397 xas_set_offset(xas);
1398 }
1399
1400 out:
1401 if (xas->xa_index > max)
1402 goto max;
1403 return set_bounds(xas);
1404 max:
1405 xas->xa_node = XAS_RESTART;
1406 return NULL;
1407 }
1408 EXPORT_SYMBOL_GPL(xas_find_marked);
1409
1410 /**
1411 * xas_find_conflict() - Find the next present entry in a range.
1412 * @xas: XArray operation state.
1413 *
1414 * The @xas describes both a range and a position within that range.
1415 *
1416 * Context: Any context. Expects xa_lock to be held.
1417 * Return: The next entry in the range covered by @xas or %NULL.
1418 */
xas_find_conflict(struct xa_state * xas)1419 void *xas_find_conflict(struct xa_state *xas)
1420 {
1421 void *curr;
1422
1423 if (xas_error(xas))
1424 return NULL;
1425
1426 if (!xas->xa_node)
1427 return NULL;
1428
1429 if (xas_top(xas->xa_node)) {
1430 curr = xas_start(xas);
1431 if (!curr)
1432 return NULL;
1433 while (xa_is_node(curr)) {
1434 struct xa_node *node = xa_to_node(curr);
1435 curr = xas_descend(xas, node);
1436 }
1437 if (curr)
1438 return curr;
1439 }
1440
1441 if (xas->xa_node->shift > xas->xa_shift)
1442 return NULL;
1443
1444 for (;;) {
1445 if (xas->xa_node->shift == xas->xa_shift) {
1446 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1447 break;
1448 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1449 xas->xa_offset = xas->xa_node->offset;
1450 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1451 if (!xas->xa_node)
1452 break;
1453 continue;
1454 }
1455 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1456 if (xa_is_sibling(curr))
1457 continue;
1458 while (xa_is_node(curr)) {
1459 xas->xa_node = xa_to_node(curr);
1460 xas->xa_offset = 0;
1461 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1462 }
1463 if (curr)
1464 return curr;
1465 }
1466 xas->xa_offset -= xas->xa_sibs;
1467 return NULL;
1468 }
1469 EXPORT_SYMBOL_GPL(xas_find_conflict);
1470
1471 /**
1472 * xa_load() - Load an entry from an XArray.
1473 * @xa: XArray.
1474 * @index: index into array.
1475 *
1476 * Context: Any context. Takes and releases the RCU lock.
1477 * Return: The entry at @index in @xa.
1478 */
xa_load(struct xarray * xa,unsigned long index)1479 void *xa_load(struct xarray *xa, unsigned long index)
1480 {
1481 XA_STATE(xas, xa, index);
1482 void *entry;
1483
1484 rcu_read_lock();
1485 do {
1486 entry = xa_zero_to_null(xas_load(&xas));
1487 } while (xas_retry(&xas, entry));
1488 rcu_read_unlock();
1489
1490 return entry;
1491 }
1492 EXPORT_SYMBOL(xa_load);
1493
xas_result(struct xa_state * xas,void * curr)1494 static void *xas_result(struct xa_state *xas, void *curr)
1495 {
1496 if (xas_error(xas))
1497 curr = xas->xa_node;
1498 return curr;
1499 }
1500
1501 /**
1502 * __xa_erase() - Erase this entry from the XArray while locked.
1503 * @xa: XArray.
1504 * @index: Index into array.
1505 *
1506 * After this function returns, loading from @index will return %NULL.
1507 * If the index is part of a multi-index entry, all indices will be erased
1508 * and none of the entries will be part of a multi-index entry.
1509 *
1510 * Context: Any context. Expects xa_lock to be held on entry.
1511 * Return: The entry which used to be at this index.
1512 */
__xa_erase(struct xarray * xa,unsigned long index)1513 void *__xa_erase(struct xarray *xa, unsigned long index)
1514 {
1515 XA_STATE(xas, xa, index);
1516 return xas_result(&xas, xa_zero_to_null(xas_store(&xas, NULL)));
1517 }
1518 EXPORT_SYMBOL(__xa_erase);
1519
1520 /**
1521 * xa_erase() - Erase this entry from the XArray.
1522 * @xa: XArray.
1523 * @index: Index of entry.
1524 *
1525 * After this function returns, loading from @index will return %NULL.
1526 * If the index is part of a multi-index entry, all indices will be erased
1527 * and none of the entries will be part of a multi-index entry.
1528 *
1529 * Context: Any context. Takes and releases the xa_lock.
1530 * Return: The entry which used to be at this index.
1531 */
xa_erase(struct xarray * xa,unsigned long index)1532 void *xa_erase(struct xarray *xa, unsigned long index)
1533 {
1534 void *entry;
1535
1536 xa_lock(xa);
1537 entry = __xa_erase(xa, index);
1538 xa_unlock(xa);
1539
1540 return entry;
1541 }
1542 EXPORT_SYMBOL(xa_erase);
1543
1544 /**
1545 * __xa_store() - Store this entry in the XArray.
1546 * @xa: XArray.
1547 * @index: Index into array.
1548 * @entry: New entry.
1549 * @gfp: Memory allocation flags.
1550 *
1551 * You must already be holding the xa_lock when calling this function.
1552 * It will drop the lock if needed to allocate memory, and then reacquire
1553 * it afterwards.
1554 *
1555 * Context: Any context. Expects xa_lock to be held on entry. May
1556 * release and reacquire xa_lock if @gfp flags permit.
1557 * Return: The old entry at this index or xa_err() if an error happened.
1558 */
__xa_store(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1559 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1560 {
1561 XA_STATE(xas, xa, index);
1562 void *curr;
1563
1564 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1565 return XA_ERROR(-EINVAL);
1566 if (xa_track_free(xa) && !entry)
1567 entry = XA_ZERO_ENTRY;
1568
1569 do {
1570 curr = xas_store(&xas, entry);
1571 if (xa_track_free(xa))
1572 xas_clear_mark(&xas, XA_FREE_MARK);
1573 } while (__xas_nomem(&xas, gfp));
1574
1575 return xas_result(&xas, xa_zero_to_null(curr));
1576 }
1577 EXPORT_SYMBOL(__xa_store);
1578
1579 /**
1580 * xa_store() - Store this entry in the XArray.
1581 * @xa: XArray.
1582 * @index: Index into array.
1583 * @entry: New entry.
1584 * @gfp: Memory allocation flags.
1585 *
1586 * After this function returns, loads from this index will return @entry.
1587 * Storing into an existing multi-index entry updates the entry of every index.
1588 * The marks associated with @index are unaffected unless @entry is %NULL.
1589 *
1590 * Context: Any context. Takes and releases the xa_lock.
1591 * May sleep if the @gfp flags permit.
1592 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1593 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1594 * failed.
1595 */
xa_store(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1596 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1597 {
1598 void *curr;
1599
1600 xa_lock(xa);
1601 curr = __xa_store(xa, index, entry, gfp);
1602 xa_unlock(xa);
1603
1604 return curr;
1605 }
1606 EXPORT_SYMBOL(xa_store);
1607
1608 static inline void *__xa_cmpxchg_raw(struct xarray *xa, unsigned long index,
1609 void *old, void *entry, gfp_t gfp);
1610
1611 /**
1612 * __xa_cmpxchg() - Store this entry in the XArray.
1613 * @xa: XArray.
1614 * @index: Index into array.
1615 * @old: Old value to test against.
1616 * @entry: New entry.
1617 * @gfp: Memory allocation flags.
1618 *
1619 * You must already be holding the xa_lock when calling this function.
1620 * It will drop the lock if needed to allocate memory, and then reacquire
1621 * it afterwards.
1622 *
1623 * Context: Any context. Expects xa_lock to be held on entry. May
1624 * release and reacquire xa_lock if @gfp flags permit.
1625 * Return: The old entry at this index or xa_err() if an error happened.
1626 */
__xa_cmpxchg(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)1627 void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1628 void *old, void *entry, gfp_t gfp)
1629 {
1630 return xa_zero_to_null(__xa_cmpxchg_raw(xa, index, old, entry, gfp));
1631 }
1632 EXPORT_SYMBOL(__xa_cmpxchg);
1633
__xa_cmpxchg_raw(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)1634 static inline void *__xa_cmpxchg_raw(struct xarray *xa, unsigned long index,
1635 void *old, void *entry, gfp_t gfp)
1636 {
1637 XA_STATE(xas, xa, index);
1638 void *curr;
1639
1640 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1641 return XA_ERROR(-EINVAL);
1642
1643 do {
1644 curr = xas_load(&xas);
1645 if (curr == old) {
1646 xas_store(&xas, entry);
1647 if (xa_track_free(xa) && entry && !curr)
1648 xas_clear_mark(&xas, XA_FREE_MARK);
1649 }
1650 } while (__xas_nomem(&xas, gfp));
1651
1652 return xas_result(&xas, curr);
1653 }
1654
1655 /**
1656 * __xa_insert() - Store this entry in the XArray if no entry is present.
1657 * @xa: XArray.
1658 * @index: Index into array.
1659 * @entry: New entry.
1660 * @gfp: Memory allocation flags.
1661 *
1662 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1663 * if no entry is present. Inserting will fail if a reserved entry is
1664 * present, even though loading from this index will return NULL.
1665 *
1666 * Context: Any context. Expects xa_lock to be held on entry. May
1667 * release and reacquire xa_lock if @gfp flags permit.
1668 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
1669 * -ENOMEM if memory could not be allocated.
1670 */
__xa_insert(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1671 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1672 {
1673 void *curr;
1674 int errno;
1675
1676 if (!entry)
1677 entry = XA_ZERO_ENTRY;
1678 curr = __xa_cmpxchg_raw(xa, index, NULL, entry, gfp);
1679 errno = xa_err(curr);
1680 if (errno)
1681 return errno;
1682 return (curr != NULL) ? -EBUSY : 0;
1683 }
1684 EXPORT_SYMBOL(__xa_insert);
1685
1686 #ifdef CONFIG_XARRAY_MULTI
xas_set_range(struct xa_state * xas,unsigned long first,unsigned long last)1687 static void xas_set_range(struct xa_state *xas, unsigned long first,
1688 unsigned long last)
1689 {
1690 unsigned int shift = 0;
1691 unsigned long sibs = last - first;
1692 unsigned int offset = XA_CHUNK_MASK;
1693
1694 xas_set(xas, first);
1695
1696 while ((first & XA_CHUNK_MASK) == 0) {
1697 if (sibs < XA_CHUNK_MASK)
1698 break;
1699 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1700 break;
1701 shift += XA_CHUNK_SHIFT;
1702 if (offset == XA_CHUNK_MASK)
1703 offset = sibs & XA_CHUNK_MASK;
1704 sibs >>= XA_CHUNK_SHIFT;
1705 first >>= XA_CHUNK_SHIFT;
1706 }
1707
1708 offset = first & XA_CHUNK_MASK;
1709 if (offset + sibs > XA_CHUNK_MASK)
1710 sibs = XA_CHUNK_MASK - offset;
1711 if ((((first + sibs + 1) << shift) - 1) > last)
1712 sibs -= 1;
1713
1714 xas->xa_shift = shift;
1715 xas->xa_sibs = sibs;
1716 }
1717
1718 /**
1719 * xa_store_range() - Store this entry at a range of indices in the XArray.
1720 * @xa: XArray.
1721 * @first: First index to affect.
1722 * @last: Last index to affect.
1723 * @entry: New entry.
1724 * @gfp: Memory allocation flags.
1725 *
1726 * After this function returns, loads from any index between @first and @last,
1727 * inclusive will return @entry.
1728 * Storing into an existing multi-index entry updates the entry of every index.
1729 * The marks associated with @index are unaffected unless @entry is %NULL.
1730 *
1731 * Context: Process context. Takes and releases the xa_lock. May sleep
1732 * if the @gfp flags permit.
1733 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1734 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1735 */
xa_store_range(struct xarray * xa,unsigned long first,unsigned long last,void * entry,gfp_t gfp)1736 void *xa_store_range(struct xarray *xa, unsigned long first,
1737 unsigned long last, void *entry, gfp_t gfp)
1738 {
1739 XA_STATE(xas, xa, 0);
1740
1741 if (WARN_ON_ONCE(xa_is_internal(entry)))
1742 return XA_ERROR(-EINVAL);
1743 if (last < first)
1744 return XA_ERROR(-EINVAL);
1745
1746 do {
1747 xas_lock(&xas);
1748 if (entry) {
1749 unsigned int order = BITS_PER_LONG;
1750 if (last + 1)
1751 order = __ffs(last + 1);
1752 xas_set_order(&xas, last, order);
1753 xas_create(&xas, true);
1754 if (xas_error(&xas))
1755 goto unlock;
1756 }
1757 do {
1758 xas_set_range(&xas, first, last);
1759 xas_store(&xas, entry);
1760 if (xas_error(&xas))
1761 goto unlock;
1762 first += xas_size(&xas);
1763 } while (first <= last);
1764 unlock:
1765 xas_unlock(&xas);
1766 } while (xas_nomem(&xas, gfp));
1767
1768 return xas_result(&xas, NULL);
1769 }
1770 EXPORT_SYMBOL(xa_store_range);
1771
1772 /**
1773 * xas_get_order() - Get the order of an entry.
1774 * @xas: XArray operation state.
1775 *
1776 * Called after xas_load, the xas should not be in an error state.
1777 *
1778 * Return: A number between 0 and 63 indicating the order of the entry.
1779 */
xas_get_order(struct xa_state * xas)1780 int xas_get_order(struct xa_state *xas)
1781 {
1782 int order = 0;
1783
1784 if (!xas->xa_node)
1785 return 0;
1786
1787 for (;;) {
1788 unsigned int slot = xas->xa_offset + (1 << order);
1789
1790 if (slot >= XA_CHUNK_SIZE)
1791 break;
1792 if (!xa_is_sibling(xa_entry(xas->xa, xas->xa_node, slot)))
1793 break;
1794 order++;
1795 }
1796
1797 order += xas->xa_node->shift;
1798 return order;
1799 }
1800 EXPORT_SYMBOL_GPL(xas_get_order);
1801
1802 /**
1803 * xa_get_order() - Get the order of an entry.
1804 * @xa: XArray.
1805 * @index: Index of the entry.
1806 *
1807 * Return: A number between 0 and 63 indicating the order of the entry.
1808 */
xa_get_order(struct xarray * xa,unsigned long index)1809 int xa_get_order(struct xarray *xa, unsigned long index)
1810 {
1811 XA_STATE(xas, xa, index);
1812 int order = 0;
1813 void *entry;
1814
1815 rcu_read_lock();
1816 entry = xas_load(&xas);
1817 if (entry)
1818 order = xas_get_order(&xas);
1819 rcu_read_unlock();
1820
1821 return order;
1822 }
1823 EXPORT_SYMBOL(xa_get_order);
1824 #endif /* CONFIG_XARRAY_MULTI */
1825
1826 /**
1827 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1828 * @xa: XArray.
1829 * @id: Pointer to ID.
1830 * @limit: Range for allocated ID.
1831 * @entry: New entry.
1832 * @gfp: Memory allocation flags.
1833 *
1834 * Finds an empty entry in @xa between @limit.min and @limit.max,
1835 * stores the index into the @id pointer, then stores the entry at
1836 * that index. A concurrent lookup will not see an uninitialised @id.
1837 *
1838 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1839 * in xa_init_flags().
1840 *
1841 * Context: Any context. Expects xa_lock to be held on entry. May
1842 * release and reacquire xa_lock if @gfp flags permit.
1843 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1844 * -EBUSY if there are no free entries in @limit.
1845 */
__xa_alloc(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)1846 int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1847 struct xa_limit limit, gfp_t gfp)
1848 {
1849 XA_STATE(xas, xa, 0);
1850
1851 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1852 return -EINVAL;
1853 if (WARN_ON_ONCE(!xa_track_free(xa)))
1854 return -EINVAL;
1855
1856 if (!entry)
1857 entry = XA_ZERO_ENTRY;
1858
1859 do {
1860 xas.xa_index = limit.min;
1861 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1862 if (xas.xa_node == XAS_RESTART)
1863 xas_set_err(&xas, -EBUSY);
1864 else
1865 *id = xas.xa_index;
1866 xas_store(&xas, entry);
1867 xas_clear_mark(&xas, XA_FREE_MARK);
1868 } while (__xas_nomem(&xas, gfp));
1869
1870 return xas_error(&xas);
1871 }
1872 EXPORT_SYMBOL(__xa_alloc);
1873
1874 /**
1875 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1876 * @xa: XArray.
1877 * @id: Pointer to ID.
1878 * @entry: New entry.
1879 * @limit: Range of allocated ID.
1880 * @next: Pointer to next ID to allocate.
1881 * @gfp: Memory allocation flags.
1882 *
1883 * Finds an empty entry in @xa between @limit.min and @limit.max,
1884 * stores the index into the @id pointer, then stores the entry at
1885 * that index. A concurrent lookup will not see an uninitialised @id.
1886 * The search for an empty entry will start at @next and will wrap
1887 * around if necessary.
1888 *
1889 * Must only be operated on an xarray initialized with flag XA_FLAGS_ALLOC set
1890 * in xa_init_flags().
1891 *
1892 * Context: Any context. Expects xa_lock to be held on entry. May
1893 * release and reacquire xa_lock if @gfp flags permit.
1894 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1895 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1896 * allocated or -EBUSY if there are no free entries in @limit.
1897 */
__xa_alloc_cyclic(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)1898 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1899 struct xa_limit limit, u32 *next, gfp_t gfp)
1900 {
1901 u32 min = limit.min;
1902 int ret;
1903
1904 limit.min = max(min, *next);
1905 ret = __xa_alloc(xa, id, entry, limit, gfp);
1906 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1907 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1908 ret = 1;
1909 }
1910
1911 if (ret < 0 && limit.min > min) {
1912 limit.min = min;
1913 ret = __xa_alloc(xa, id, entry, limit, gfp);
1914 if (ret == 0)
1915 ret = 1;
1916 }
1917
1918 if (ret >= 0) {
1919 *next = *id + 1;
1920 if (*next == 0)
1921 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1922 }
1923 return ret;
1924 }
1925 EXPORT_SYMBOL(__xa_alloc_cyclic);
1926
1927 /**
1928 * __xa_set_mark() - Set this mark on this entry while locked.
1929 * @xa: XArray.
1930 * @index: Index of entry.
1931 * @mark: Mark number.
1932 *
1933 * Attempting to set a mark on a %NULL entry does not succeed.
1934 *
1935 * Context: Any context. Expects xa_lock to be held on entry.
1936 */
__xa_set_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1937 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1938 {
1939 XA_STATE(xas, xa, index);
1940 void *entry = xas_load(&xas);
1941
1942 if (entry)
1943 xas_set_mark(&xas, mark);
1944 }
1945 EXPORT_SYMBOL(__xa_set_mark);
1946
1947 /**
1948 * __xa_clear_mark() - Clear this mark on this entry while locked.
1949 * @xa: XArray.
1950 * @index: Index of entry.
1951 * @mark: Mark number.
1952 *
1953 * Context: Any context. Expects xa_lock to be held on entry.
1954 */
__xa_clear_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1955 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1956 {
1957 XA_STATE(xas, xa, index);
1958 void *entry = xas_load(&xas);
1959
1960 if (entry)
1961 xas_clear_mark(&xas, mark);
1962 }
1963 EXPORT_SYMBOL(__xa_clear_mark);
1964
1965 /**
1966 * xa_get_mark() - Inquire whether this mark is set on this entry.
1967 * @xa: XArray.
1968 * @index: Index of entry.
1969 * @mark: Mark number.
1970 *
1971 * This function uses the RCU read lock, so the result may be out of date
1972 * by the time it returns. If you need the result to be stable, use a lock.
1973 *
1974 * Context: Any context. Takes and releases the RCU lock.
1975 * Return: True if the entry at @index has this mark set, false if it doesn't.
1976 */
xa_get_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1977 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1978 {
1979 XA_STATE(xas, xa, index);
1980 void *entry;
1981
1982 rcu_read_lock();
1983 entry = xas_start(&xas);
1984 while (xas_get_mark(&xas, mark)) {
1985 if (!xa_is_node(entry))
1986 goto found;
1987 entry = xas_descend(&xas, xa_to_node(entry));
1988 }
1989 rcu_read_unlock();
1990 return false;
1991 found:
1992 rcu_read_unlock();
1993 return true;
1994 }
1995 EXPORT_SYMBOL(xa_get_mark);
1996
1997 /**
1998 * xa_set_mark() - Set this mark on this entry.
1999 * @xa: XArray.
2000 * @index: Index of entry.
2001 * @mark: Mark number.
2002 *
2003 * Attempting to set a mark on a %NULL entry does not succeed.
2004 *
2005 * Context: Process context. Takes and releases the xa_lock.
2006 */
xa_set_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)2007 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
2008 {
2009 xa_lock(xa);
2010 __xa_set_mark(xa, index, mark);
2011 xa_unlock(xa);
2012 }
2013 EXPORT_SYMBOL(xa_set_mark);
2014
2015 /**
2016 * xa_clear_mark() - Clear this mark on this entry.
2017 * @xa: XArray.
2018 * @index: Index of entry.
2019 * @mark: Mark number.
2020 *
2021 * Clearing a mark always succeeds.
2022 *
2023 * Context: Process context. Takes and releases the xa_lock.
2024 */
xa_clear_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)2025 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
2026 {
2027 xa_lock(xa);
2028 __xa_clear_mark(xa, index, mark);
2029 xa_unlock(xa);
2030 }
2031 EXPORT_SYMBOL(xa_clear_mark);
2032
2033 /**
2034 * xa_find() - Search the XArray for an entry.
2035 * @xa: XArray.
2036 * @indexp: Pointer to an index.
2037 * @max: Maximum index to search to.
2038 * @filter: Selection criterion.
2039 *
2040 * Finds the entry in @xa which matches the @filter, and has the lowest
2041 * index that is at least @indexp and no more than @max.
2042 * If an entry is found, @indexp is updated to be the index of the entry.
2043 * This function is protected by the RCU read lock, so it may not find
2044 * entries which are being simultaneously added. It will not return an
2045 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2046 *
2047 * Context: Any context. Takes and releases the RCU lock.
2048 * Return: The entry, if found, otherwise %NULL.
2049 */
xa_find(struct xarray * xa,unsigned long * indexp,unsigned long max,xa_mark_t filter)2050 void *xa_find(struct xarray *xa, unsigned long *indexp,
2051 unsigned long max, xa_mark_t filter)
2052 {
2053 XA_STATE(xas, xa, *indexp);
2054 void *entry;
2055
2056 rcu_read_lock();
2057 do {
2058 if ((__force unsigned int)filter < XA_MAX_MARKS)
2059 entry = xas_find_marked(&xas, max, filter);
2060 else
2061 entry = xas_find(&xas, max);
2062 } while (xas_retry(&xas, entry));
2063 rcu_read_unlock();
2064
2065 if (entry)
2066 *indexp = xas.xa_index;
2067 return entry;
2068 }
2069 EXPORT_SYMBOL(xa_find);
2070
xas_sibling(struct xa_state * xas)2071 static bool xas_sibling(struct xa_state *xas)
2072 {
2073 struct xa_node *node = xas->xa_node;
2074 unsigned long mask;
2075
2076 if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
2077 return false;
2078 mask = (XA_CHUNK_SIZE << node->shift) - 1;
2079 return (xas->xa_index & mask) >
2080 ((unsigned long)xas->xa_offset << node->shift);
2081 }
2082
2083 /**
2084 * xa_find_after() - Search the XArray for a present entry.
2085 * @xa: XArray.
2086 * @indexp: Pointer to an index.
2087 * @max: Maximum index to search to.
2088 * @filter: Selection criterion.
2089 *
2090 * Finds the entry in @xa which matches the @filter and has the lowest
2091 * index that is above @indexp and no more than @max.
2092 * If an entry is found, @indexp is updated to be the index of the entry.
2093 * This function is protected by the RCU read lock, so it may miss entries
2094 * which are being simultaneously added. It will not return an
2095 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
2096 *
2097 * Context: Any context. Takes and releases the RCU lock.
2098 * Return: The pointer, if found, otherwise %NULL.
2099 */
xa_find_after(struct xarray * xa,unsigned long * indexp,unsigned long max,xa_mark_t filter)2100 void *xa_find_after(struct xarray *xa, unsigned long *indexp,
2101 unsigned long max, xa_mark_t filter)
2102 {
2103 XA_STATE(xas, xa, *indexp + 1);
2104 void *entry;
2105
2106 if (xas.xa_index == 0)
2107 return NULL;
2108
2109 rcu_read_lock();
2110 for (;;) {
2111 if ((__force unsigned int)filter < XA_MAX_MARKS)
2112 entry = xas_find_marked(&xas, max, filter);
2113 else
2114 entry = xas_find(&xas, max);
2115
2116 if (xas_invalid(&xas))
2117 break;
2118 if (xas_sibling(&xas))
2119 continue;
2120 if (!xas_retry(&xas, entry))
2121 break;
2122 }
2123 rcu_read_unlock();
2124
2125 if (entry)
2126 *indexp = xas.xa_index;
2127 return entry;
2128 }
2129 EXPORT_SYMBOL(xa_find_after);
2130
xas_extract_present(struct xa_state * xas,void ** dst,unsigned long max,unsigned int n)2131 static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
2132 unsigned long max, unsigned int n)
2133 {
2134 void *entry;
2135 unsigned int i = 0;
2136
2137 rcu_read_lock();
2138 xas_for_each(xas, entry, max) {
2139 if (xas_retry(xas, entry))
2140 continue;
2141 dst[i++] = entry;
2142 if (i == n)
2143 break;
2144 }
2145 rcu_read_unlock();
2146
2147 return i;
2148 }
2149
xas_extract_marked(struct xa_state * xas,void ** dst,unsigned long max,unsigned int n,xa_mark_t mark)2150 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
2151 unsigned long max, unsigned int n, xa_mark_t mark)
2152 {
2153 void *entry;
2154 unsigned int i = 0;
2155
2156 rcu_read_lock();
2157 xas_for_each_marked(xas, entry, max, mark) {
2158 if (xas_retry(xas, entry))
2159 continue;
2160 dst[i++] = entry;
2161 if (i == n)
2162 break;
2163 }
2164 rcu_read_unlock();
2165
2166 return i;
2167 }
2168
2169 /**
2170 * xa_extract() - Copy selected entries from the XArray into a normal array.
2171 * @xa: The source XArray to copy from.
2172 * @dst: The buffer to copy entries into.
2173 * @start: The first index in the XArray eligible to be selected.
2174 * @max: The last index in the XArray eligible to be selected.
2175 * @n: The maximum number of entries to copy.
2176 * @filter: Selection criterion.
2177 *
2178 * Copies up to @n entries that match @filter from the XArray. The
2179 * copied entries will have indices between @start and @max, inclusive.
2180 *
2181 * The @filter may be an XArray mark value, in which case entries which are
2182 * marked with that mark will be copied. It may also be %XA_PRESENT, in
2183 * which case all entries which are not %NULL will be copied.
2184 *
2185 * The entries returned may not represent a snapshot of the XArray at a
2186 * moment in time. For example, if another thread stores to index 5, then
2187 * index 10, calling xa_extract() may return the old contents of index 5
2188 * and the new contents of index 10. Indices not modified while this
2189 * function is running will not be skipped.
2190 *
2191 * If you need stronger guarantees, holding the xa_lock across calls to this
2192 * function will prevent concurrent modification.
2193 *
2194 * Context: Any context. Takes and releases the RCU lock.
2195 * Return: The number of entries copied.
2196 */
xa_extract(struct xarray * xa,void ** dst,unsigned long start,unsigned long max,unsigned int n,xa_mark_t filter)2197 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
2198 unsigned long max, unsigned int n, xa_mark_t filter)
2199 {
2200 XA_STATE(xas, xa, start);
2201
2202 if (!n)
2203 return 0;
2204
2205 if ((__force unsigned int)filter < XA_MAX_MARKS)
2206 return xas_extract_marked(&xas, dst, max, n, filter);
2207 return xas_extract_present(&xas, dst, max, n);
2208 }
2209 EXPORT_SYMBOL(xa_extract);
2210
2211 /**
2212 * xa_delete_node() - Private interface for workingset code.
2213 * @node: Node to be removed from the tree.
2214 * @update: Function to call to update ancestor nodes.
2215 *
2216 * Context: xa_lock must be held on entry and will not be released.
2217 */
xa_delete_node(struct xa_node * node,xa_update_node_t update)2218 void xa_delete_node(struct xa_node *node, xa_update_node_t update)
2219 {
2220 struct xa_state xas = {
2221 .xa = node->array,
2222 .xa_index = (unsigned long)node->offset <<
2223 (node->shift + XA_CHUNK_SHIFT),
2224 .xa_shift = node->shift + XA_CHUNK_SHIFT,
2225 .xa_offset = node->offset,
2226 .xa_node = xa_parent_locked(node->array, node),
2227 .xa_update = update,
2228 };
2229
2230 xas_store(&xas, NULL);
2231 }
2232 EXPORT_SYMBOL_GPL(xa_delete_node); /* For the benefit of the test suite */
2233
2234 /**
2235 * xa_destroy() - Free all internal data structures.
2236 * @xa: XArray.
2237 *
2238 * After calling this function, the XArray is empty and has freed all memory
2239 * allocated for its internal data structures. You are responsible for
2240 * freeing the objects referenced by the XArray.
2241 *
2242 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
2243 */
xa_destroy(struct xarray * xa)2244 void xa_destroy(struct xarray *xa)
2245 {
2246 XA_STATE(xas, xa, 0);
2247 unsigned long flags;
2248 void *entry;
2249
2250 xas.xa_node = NULL;
2251 xas_lock_irqsave(&xas, flags);
2252 entry = xa_head_locked(xa);
2253 RCU_INIT_POINTER(xa->xa_head, NULL);
2254 xas_init_marks(&xas);
2255 if (xa_zero_busy(xa))
2256 xa_mark_clear(xa, XA_FREE_MARK);
2257 /* lockdep checks we're still holding the lock in xas_free_nodes() */
2258 if (xa_is_node(entry))
2259 xas_free_nodes(&xas, xa_to_node(entry));
2260 xas_unlock_irqrestore(&xas, flags);
2261 }
2262 EXPORT_SYMBOL(xa_destroy);
2263
2264 #ifdef XA_DEBUG
xa_dump_node(const struct xa_node * node)2265 void xa_dump_node(const struct xa_node *node)
2266 {
2267 unsigned i, j;
2268
2269 if (!node)
2270 return;
2271 if ((unsigned long)node & 3) {
2272 pr_cont("node %px\n", node);
2273 return;
2274 }
2275
2276 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2277 "array %px list %px %px marks",
2278 node, node->parent ? "offset" : "max", node->offset,
2279 node->parent, node->shift, node->count, node->nr_values,
2280 node->array, node->private_list.prev, node->private_list.next);
2281 for (i = 0; i < XA_MAX_MARKS; i++)
2282 for (j = 0; j < XA_MARK_LONGS; j++)
2283 pr_cont(" %lx", node->marks[i][j]);
2284 pr_cont("\n");
2285 }
2286
xa_dump_index(unsigned long index,unsigned int shift)2287 void xa_dump_index(unsigned long index, unsigned int shift)
2288 {
2289 if (!shift)
2290 pr_info("%lu: ", index);
2291 else if (shift >= BITS_PER_LONG)
2292 pr_info("0-%lu: ", ~0UL);
2293 else
2294 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2295 }
2296
xa_dump_entry(const void * entry,unsigned long index,unsigned long shift)2297 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2298 {
2299 if (!entry)
2300 return;
2301
2302 xa_dump_index(index, shift);
2303
2304 if (xa_is_node(entry)) {
2305 if (shift == 0) {
2306 pr_cont("%px\n", entry);
2307 } else {
2308 unsigned long i;
2309 struct xa_node *node = xa_to_node(entry);
2310 xa_dump_node(node);
2311 for (i = 0; i < XA_CHUNK_SIZE; i++)
2312 xa_dump_entry(node->slots[i],
2313 index + (i << node->shift), node->shift);
2314 }
2315 } else if (xa_is_value(entry))
2316 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2317 xa_to_value(entry), entry);
2318 else if (!xa_is_internal(entry))
2319 pr_cont("%px\n", entry);
2320 else if (xa_is_retry(entry))
2321 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2322 else if (xa_is_sibling(entry))
2323 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2324 else if (xa_is_zero(entry))
2325 pr_cont("zero (%ld)\n", xa_to_internal(entry));
2326 else
2327 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2328 }
2329
xa_dump(const struct xarray * xa)2330 void xa_dump(const struct xarray *xa)
2331 {
2332 void *entry = xa->xa_head;
2333 unsigned int shift = 0;
2334
2335 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2336 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2337 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2338 if (xa_is_node(entry))
2339 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2340 xa_dump_entry(entry, 0, shift);
2341 }
2342 #endif
2343