1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Scheduler topology setup/handling methods
4 */
5
6 #include <linux/bsearch.h>
7
8 DEFINE_MUTEX(sched_domains_mutex);
sched_domains_mutex_lock(void)9 void sched_domains_mutex_lock(void)
10 {
11 mutex_lock(&sched_domains_mutex);
12 }
sched_domains_mutex_unlock(void)13 void sched_domains_mutex_unlock(void)
14 {
15 mutex_unlock(&sched_domains_mutex);
16 }
17
18 /* Protected by sched_domains_mutex: */
19 static cpumask_var_t sched_domains_tmpmask;
20 static cpumask_var_t sched_domains_tmpmask2;
21
22 #ifdef CONFIG_SCHED_DEBUG
23
sched_debug_setup(char * str)24 static int __init sched_debug_setup(char *str)
25 {
26 sched_debug_verbose = true;
27
28 return 0;
29 }
30 early_param("sched_verbose", sched_debug_setup);
31
sched_debug(void)32 static inline bool sched_debug(void)
33 {
34 return sched_debug_verbose;
35 }
36
37 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
38 const struct sd_flag_debug sd_flag_debug[] = {
39 #include <linux/sched/sd_flags.h>
40 };
41 #undef SD_FLAG
42
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)43 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
44 struct cpumask *groupmask)
45 {
46 struct sched_group *group = sd->groups;
47 unsigned long flags = sd->flags;
48 unsigned int idx;
49
50 cpumask_clear(groupmask);
51
52 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
53 printk(KERN_CONT "span=%*pbl level=%s\n",
54 cpumask_pr_args(sched_domain_span(sd)), sd->name);
55
56 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
57 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
58 }
59 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
60 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
61 }
62
63 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
64 unsigned int flag = BIT(idx);
65 unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
66
67 if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
68 !(sd->child->flags & flag))
69 printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
70 sd_flag_debug[idx].name);
71
72 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
73 !(sd->parent->flags & flag))
74 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
75 sd_flag_debug[idx].name);
76 }
77
78 printk(KERN_DEBUG "%*s groups:", level + 1, "");
79 do {
80 if (!group) {
81 printk("\n");
82 printk(KERN_ERR "ERROR: group is NULL\n");
83 break;
84 }
85
86 if (cpumask_empty(sched_group_span(group))) {
87 printk(KERN_CONT "\n");
88 printk(KERN_ERR "ERROR: empty group\n");
89 break;
90 }
91
92 if (!(sd->flags & SD_OVERLAP) &&
93 cpumask_intersects(groupmask, sched_group_span(group))) {
94 printk(KERN_CONT "\n");
95 printk(KERN_ERR "ERROR: repeated CPUs\n");
96 break;
97 }
98
99 cpumask_or(groupmask, groupmask, sched_group_span(group));
100
101 printk(KERN_CONT " %d:{ span=%*pbl",
102 group->sgc->id,
103 cpumask_pr_args(sched_group_span(group)));
104
105 if ((sd->flags & SD_OVERLAP) &&
106 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
107 printk(KERN_CONT " mask=%*pbl",
108 cpumask_pr_args(group_balance_mask(group)));
109 }
110
111 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
112 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
113
114 if (group == sd->groups && sd->child &&
115 !cpumask_equal(sched_domain_span(sd->child),
116 sched_group_span(group))) {
117 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
118 }
119
120 printk(KERN_CONT " }");
121
122 group = group->next;
123
124 if (group != sd->groups)
125 printk(KERN_CONT ",");
126
127 } while (group != sd->groups);
128 printk(KERN_CONT "\n");
129
130 if (!cpumask_equal(sched_domain_span(sd), groupmask))
131 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
132
133 if (sd->parent &&
134 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
135 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
136 return 0;
137 }
138
sched_domain_debug(struct sched_domain * sd,int cpu)139 static void sched_domain_debug(struct sched_domain *sd, int cpu)
140 {
141 int level = 0;
142
143 if (!sched_debug_verbose)
144 return;
145
146 if (!sd) {
147 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
148 return;
149 }
150
151 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
152
153 for (;;) {
154 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
155 break;
156 level++;
157 sd = sd->parent;
158 if (!sd)
159 break;
160 }
161 }
162 #else /* !CONFIG_SCHED_DEBUG */
163
164 # define sched_debug_verbose 0
165 # define sched_domain_debug(sd, cpu) do { } while (0)
sched_debug(void)166 static inline bool sched_debug(void)
167 {
168 return false;
169 }
170 #endif /* CONFIG_SCHED_DEBUG */
171
172 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
173 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
174 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
175 #include <linux/sched/sd_flags.h>
176 0;
177 #undef SD_FLAG
178
sd_degenerate(struct sched_domain * sd)179 static int sd_degenerate(struct sched_domain *sd)
180 {
181 if (cpumask_weight(sched_domain_span(sd)) == 1)
182 return 1;
183
184 /* Following flags need at least 2 groups */
185 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
186 (sd->groups != sd->groups->next))
187 return 0;
188
189 /* Following flags don't use groups */
190 if (sd->flags & (SD_WAKE_AFFINE))
191 return 0;
192
193 return 1;
194 }
195
196 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)197 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
198 {
199 unsigned long cflags = sd->flags, pflags = parent->flags;
200
201 if (sd_degenerate(parent))
202 return 1;
203
204 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
205 return 0;
206
207 /* Flags needing groups don't count if only 1 group in parent */
208 if (parent->groups == parent->groups->next)
209 pflags &= ~SD_DEGENERATE_GROUPS_MASK;
210
211 if (~cflags & pflags)
212 return 0;
213
214 return 1;
215 }
216
217 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
218 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
219 static unsigned int sysctl_sched_energy_aware = 1;
220 static DEFINE_MUTEX(sched_energy_mutex);
221 static bool sched_energy_update;
222
sched_is_eas_possible(const struct cpumask * cpu_mask)223 static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
224 {
225 bool any_asym_capacity = false;
226 struct cpufreq_policy *policy;
227 struct cpufreq_governor *gov;
228 int i;
229
230 /* EAS is enabled for asymmetric CPU capacity topologies. */
231 for_each_cpu(i, cpu_mask) {
232 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
233 any_asym_capacity = true;
234 break;
235 }
236 }
237 if (!any_asym_capacity) {
238 if (sched_debug()) {
239 pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
240 cpumask_pr_args(cpu_mask));
241 }
242 return false;
243 }
244
245 /* EAS definitely does *not* handle SMT */
246 if (sched_smt_active()) {
247 if (sched_debug()) {
248 pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
249 cpumask_pr_args(cpu_mask));
250 }
251 return false;
252 }
253
254 if (!arch_scale_freq_invariant()) {
255 if (sched_debug()) {
256 pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
257 cpumask_pr_args(cpu_mask));
258 }
259 return false;
260 }
261
262 /* Do not attempt EAS if schedutil is not being used. */
263 for_each_cpu(i, cpu_mask) {
264 policy = cpufreq_cpu_get(i);
265 if (!policy) {
266 if (sched_debug()) {
267 pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d",
268 cpumask_pr_args(cpu_mask), i);
269 }
270 return false;
271 }
272 gov = policy->governor;
273 cpufreq_cpu_put(policy);
274 if (gov != &schedutil_gov) {
275 if (sched_debug()) {
276 pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n",
277 cpumask_pr_args(cpu_mask));
278 }
279 return false;
280 }
281 }
282
283 return true;
284 }
285
rebuild_sched_domains_energy(void)286 void rebuild_sched_domains_energy(void)
287 {
288 mutex_lock(&sched_energy_mutex);
289 sched_energy_update = true;
290 rebuild_sched_domains();
291 sched_energy_update = false;
292 mutex_unlock(&sched_energy_mutex);
293 }
294
295 #ifdef CONFIG_PROC_SYSCTL
sched_energy_aware_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)296 static int sched_energy_aware_handler(const struct ctl_table *table, int write,
297 void *buffer, size_t *lenp, loff_t *ppos)
298 {
299 int ret, state;
300
301 if (write && !capable(CAP_SYS_ADMIN))
302 return -EPERM;
303
304 if (!sched_is_eas_possible(cpu_active_mask)) {
305 if (write) {
306 return -EOPNOTSUPP;
307 } else {
308 *lenp = 0;
309 return 0;
310 }
311 }
312
313 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
314 if (!ret && write) {
315 state = static_branch_unlikely(&sched_energy_present);
316 if (state != sysctl_sched_energy_aware)
317 rebuild_sched_domains_energy();
318 }
319
320 return ret;
321 }
322
323 static const struct ctl_table sched_energy_aware_sysctls[] = {
324 {
325 .procname = "sched_energy_aware",
326 .data = &sysctl_sched_energy_aware,
327 .maxlen = sizeof(unsigned int),
328 .mode = 0644,
329 .proc_handler = sched_energy_aware_handler,
330 .extra1 = SYSCTL_ZERO,
331 .extra2 = SYSCTL_ONE,
332 },
333 };
334
sched_energy_aware_sysctl_init(void)335 static int __init sched_energy_aware_sysctl_init(void)
336 {
337 register_sysctl_init("kernel", sched_energy_aware_sysctls);
338 return 0;
339 }
340
341 late_initcall(sched_energy_aware_sysctl_init);
342 #endif
343
free_pd(struct perf_domain * pd)344 static void free_pd(struct perf_domain *pd)
345 {
346 struct perf_domain *tmp;
347
348 while (pd) {
349 tmp = pd->next;
350 kfree(pd);
351 pd = tmp;
352 }
353 }
354
find_pd(struct perf_domain * pd,int cpu)355 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
356 {
357 while (pd) {
358 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
359 return pd;
360 pd = pd->next;
361 }
362
363 return NULL;
364 }
365
pd_init(int cpu)366 static struct perf_domain *pd_init(int cpu)
367 {
368 struct em_perf_domain *obj = em_cpu_get(cpu);
369 struct perf_domain *pd;
370
371 if (!obj) {
372 if (sched_debug())
373 pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
374 return NULL;
375 }
376
377 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
378 if (!pd)
379 return NULL;
380 pd->em_pd = obj;
381
382 return pd;
383 }
384
perf_domain_debug(const struct cpumask * cpu_map,struct perf_domain * pd)385 static void perf_domain_debug(const struct cpumask *cpu_map,
386 struct perf_domain *pd)
387 {
388 if (!sched_debug() || !pd)
389 return;
390
391 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
392
393 while (pd) {
394 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
395 cpumask_first(perf_domain_span(pd)),
396 cpumask_pr_args(perf_domain_span(pd)),
397 em_pd_nr_perf_states(pd->em_pd));
398 pd = pd->next;
399 }
400
401 printk(KERN_CONT "\n");
402 }
403
destroy_perf_domain_rcu(struct rcu_head * rp)404 static void destroy_perf_domain_rcu(struct rcu_head *rp)
405 {
406 struct perf_domain *pd;
407
408 pd = container_of(rp, struct perf_domain, rcu);
409 free_pd(pd);
410 }
411
sched_energy_set(bool has_eas)412 static void sched_energy_set(bool has_eas)
413 {
414 if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
415 if (sched_debug())
416 pr_info("%s: stopping EAS\n", __func__);
417 static_branch_disable_cpuslocked(&sched_energy_present);
418 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
419 if (sched_debug())
420 pr_info("%s: starting EAS\n", __func__);
421 static_branch_enable_cpuslocked(&sched_energy_present);
422 }
423 }
424
425 /*
426 * EAS can be used on a root domain if it meets all the following conditions:
427 * 1. an Energy Model (EM) is available;
428 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
429 * 3. no SMT is detected.
430 * 4. schedutil is driving the frequency of all CPUs of the rd;
431 * 5. frequency invariance support is present;
432 */
build_perf_domains(const struct cpumask * cpu_map)433 static bool build_perf_domains(const struct cpumask *cpu_map)
434 {
435 int i;
436 struct perf_domain *pd = NULL, *tmp;
437 int cpu = cpumask_first(cpu_map);
438 struct root_domain *rd = cpu_rq(cpu)->rd;
439
440 if (!sysctl_sched_energy_aware)
441 goto free;
442
443 if (!sched_is_eas_possible(cpu_map))
444 goto free;
445
446 for_each_cpu(i, cpu_map) {
447 /* Skip already covered CPUs. */
448 if (find_pd(pd, i))
449 continue;
450
451 /* Create the new pd and add it to the local list. */
452 tmp = pd_init(i);
453 if (!tmp)
454 goto free;
455 tmp->next = pd;
456 pd = tmp;
457 }
458
459 perf_domain_debug(cpu_map, pd);
460
461 /* Attach the new list of performance domains to the root domain. */
462 tmp = rd->pd;
463 rcu_assign_pointer(rd->pd, pd);
464 if (tmp)
465 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
466
467 return !!pd;
468
469 free:
470 free_pd(pd);
471 tmp = rd->pd;
472 rcu_assign_pointer(rd->pd, NULL);
473 if (tmp)
474 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
475
476 return false;
477 }
478 #else
free_pd(struct perf_domain * pd)479 static void free_pd(struct perf_domain *pd) { }
480 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
481
free_rootdomain(struct rcu_head * rcu)482 static void free_rootdomain(struct rcu_head *rcu)
483 {
484 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
485
486 cpupri_cleanup(&rd->cpupri);
487 cpudl_cleanup(&rd->cpudl);
488 free_cpumask_var(rd->dlo_mask);
489 free_cpumask_var(rd->rto_mask);
490 free_cpumask_var(rd->online);
491 free_cpumask_var(rd->span);
492 free_pd(rd->pd);
493 kfree(rd);
494 }
495
rq_attach_root(struct rq * rq,struct root_domain * rd)496 void rq_attach_root(struct rq *rq, struct root_domain *rd)
497 {
498 struct root_domain *old_rd = NULL;
499 struct rq_flags rf;
500
501 rq_lock_irqsave(rq, &rf);
502
503 if (rq->rd) {
504 old_rd = rq->rd;
505
506 if (cpumask_test_cpu(rq->cpu, old_rd->online))
507 set_rq_offline(rq);
508
509 cpumask_clear_cpu(rq->cpu, old_rd->span);
510
511 /*
512 * If we don't want to free the old_rd yet then
513 * set old_rd to NULL to skip the freeing later
514 * in this function:
515 */
516 if (!atomic_dec_and_test(&old_rd->refcount))
517 old_rd = NULL;
518 }
519
520 atomic_inc(&rd->refcount);
521 rq->rd = rd;
522
523 cpumask_set_cpu(rq->cpu, rd->span);
524 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
525 set_rq_online(rq);
526
527 /*
528 * Because the rq is not a task, dl_add_task_root_domain() did not
529 * move the fair server bw to the rd if it already started.
530 * Add it now.
531 */
532 if (rq->fair_server.dl_server)
533 __dl_server_attach_root(&rq->fair_server, rq);
534
535 rq_unlock_irqrestore(rq, &rf);
536
537 if (old_rd)
538 call_rcu(&old_rd->rcu, free_rootdomain);
539 }
540
sched_get_rd(struct root_domain * rd)541 void sched_get_rd(struct root_domain *rd)
542 {
543 atomic_inc(&rd->refcount);
544 }
545
sched_put_rd(struct root_domain * rd)546 void sched_put_rd(struct root_domain *rd)
547 {
548 if (!atomic_dec_and_test(&rd->refcount))
549 return;
550
551 call_rcu(&rd->rcu, free_rootdomain);
552 }
553
init_rootdomain(struct root_domain * rd)554 static int init_rootdomain(struct root_domain *rd)
555 {
556 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
557 goto out;
558 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
559 goto free_span;
560 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
561 goto free_online;
562 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
563 goto free_dlo_mask;
564
565 #ifdef HAVE_RT_PUSH_IPI
566 rd->rto_cpu = -1;
567 raw_spin_lock_init(&rd->rto_lock);
568 rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
569 #endif
570
571 rd->visit_cookie = 0;
572 init_dl_bw(&rd->dl_bw);
573 if (cpudl_init(&rd->cpudl) != 0)
574 goto free_rto_mask;
575
576 if (cpupri_init(&rd->cpupri) != 0)
577 goto free_cpudl;
578 return 0;
579
580 free_cpudl:
581 cpudl_cleanup(&rd->cpudl);
582 free_rto_mask:
583 free_cpumask_var(rd->rto_mask);
584 free_dlo_mask:
585 free_cpumask_var(rd->dlo_mask);
586 free_online:
587 free_cpumask_var(rd->online);
588 free_span:
589 free_cpumask_var(rd->span);
590 out:
591 return -ENOMEM;
592 }
593
594 /*
595 * By default the system creates a single root-domain with all CPUs as
596 * members (mimicking the global state we have today).
597 */
598 struct root_domain def_root_domain;
599
init_defrootdomain(void)600 void __init init_defrootdomain(void)
601 {
602 init_rootdomain(&def_root_domain);
603
604 atomic_set(&def_root_domain.refcount, 1);
605 }
606
alloc_rootdomain(void)607 static struct root_domain *alloc_rootdomain(void)
608 {
609 struct root_domain *rd;
610
611 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
612 if (!rd)
613 return NULL;
614
615 if (init_rootdomain(rd) != 0) {
616 kfree(rd);
617 return NULL;
618 }
619
620 return rd;
621 }
622
free_sched_groups(struct sched_group * sg,int free_sgc)623 static void free_sched_groups(struct sched_group *sg, int free_sgc)
624 {
625 struct sched_group *tmp, *first;
626
627 if (!sg)
628 return;
629
630 first = sg;
631 do {
632 tmp = sg->next;
633
634 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
635 kfree(sg->sgc);
636
637 if (atomic_dec_and_test(&sg->ref))
638 kfree(sg);
639 sg = tmp;
640 } while (sg != first);
641 }
642
destroy_sched_domain(struct sched_domain * sd)643 static void destroy_sched_domain(struct sched_domain *sd)
644 {
645 /*
646 * A normal sched domain may have multiple group references, an
647 * overlapping domain, having private groups, only one. Iterate,
648 * dropping group/capacity references, freeing where none remain.
649 */
650 free_sched_groups(sd->groups, 1);
651
652 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
653 kfree(sd->shared);
654 kfree(sd);
655 }
656
destroy_sched_domains_rcu(struct rcu_head * rcu)657 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
658 {
659 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
660
661 while (sd) {
662 struct sched_domain *parent = sd->parent;
663 destroy_sched_domain(sd);
664 sd = parent;
665 }
666 }
667
destroy_sched_domains(struct sched_domain * sd)668 static void destroy_sched_domains(struct sched_domain *sd)
669 {
670 if (sd)
671 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
672 }
673
674 /*
675 * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set
676 * (Last Level Cache Domain) for this allows us to avoid some pointer chasing
677 * select_idle_sibling().
678 *
679 * Also keep a unique ID per domain (we use the first CPU number in the cpumask
680 * of the domain), this allows us to quickly tell if two CPUs are in the same
681 * cache domain, see cpus_share_cache().
682 */
683 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
684 DEFINE_PER_CPU(int, sd_llc_size);
685 DEFINE_PER_CPU(int, sd_llc_id);
686 DEFINE_PER_CPU(int, sd_share_id);
687 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
688 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
689 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
690 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
691
692 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
693 DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
694
update_top_cache_domain(int cpu)695 static void update_top_cache_domain(int cpu)
696 {
697 struct sched_domain_shared *sds = NULL;
698 struct sched_domain *sd;
699 int id = cpu;
700 int size = 1;
701
702 sd = highest_flag_domain(cpu, SD_SHARE_LLC);
703 if (sd) {
704 id = cpumask_first(sched_domain_span(sd));
705 size = cpumask_weight(sched_domain_span(sd));
706 sds = sd->shared;
707 }
708
709 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
710 per_cpu(sd_llc_size, cpu) = size;
711 per_cpu(sd_llc_id, cpu) = id;
712 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
713
714 sd = lowest_flag_domain(cpu, SD_CLUSTER);
715 if (sd)
716 id = cpumask_first(sched_domain_span(sd));
717
718 /*
719 * This assignment should be placed after the sd_llc_id as
720 * we want this id equals to cluster id on cluster machines
721 * but equals to LLC id on non-Cluster machines.
722 */
723 per_cpu(sd_share_id, cpu) = id;
724
725 sd = lowest_flag_domain(cpu, SD_NUMA);
726 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
727
728 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
729 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
730
731 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
732 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
733 }
734
735 /*
736 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
737 * hold the hotplug lock.
738 */
739 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)740 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
741 {
742 struct rq *rq = cpu_rq(cpu);
743 struct sched_domain *tmp;
744
745 /* Remove the sched domains which do not contribute to scheduling. */
746 for (tmp = sd; tmp; ) {
747 struct sched_domain *parent = tmp->parent;
748 if (!parent)
749 break;
750
751 if (sd_parent_degenerate(tmp, parent)) {
752 tmp->parent = parent->parent;
753
754 if (parent->parent) {
755 parent->parent->child = tmp;
756 parent->parent->groups->flags = tmp->flags;
757 }
758
759 /*
760 * Transfer SD_PREFER_SIBLING down in case of a
761 * degenerate parent; the spans match for this
762 * so the property transfers.
763 */
764 if (parent->flags & SD_PREFER_SIBLING)
765 tmp->flags |= SD_PREFER_SIBLING;
766 destroy_sched_domain(parent);
767 } else
768 tmp = tmp->parent;
769 }
770
771 if (sd && sd_degenerate(sd)) {
772 tmp = sd;
773 sd = sd->parent;
774 destroy_sched_domain(tmp);
775 if (sd) {
776 struct sched_group *sg = sd->groups;
777
778 /*
779 * sched groups hold the flags of the child sched
780 * domain for convenience. Clear such flags since
781 * the child is being destroyed.
782 */
783 do {
784 sg->flags = 0;
785 } while (sg != sd->groups);
786
787 sd->child = NULL;
788 }
789 }
790
791 sched_domain_debug(sd, cpu);
792
793 rq_attach_root(rq, rd);
794 tmp = rq->sd;
795 rcu_assign_pointer(rq->sd, sd);
796 dirty_sched_domain_sysctl(cpu);
797 destroy_sched_domains(tmp);
798
799 update_top_cache_domain(cpu);
800 }
801
802 struct s_data {
803 struct sched_domain * __percpu *sd;
804 struct root_domain *rd;
805 };
806
807 enum s_alloc {
808 sa_rootdomain,
809 sa_sd,
810 sa_sd_storage,
811 sa_none,
812 };
813
814 /*
815 * Return the canonical balance CPU for this group, this is the first CPU
816 * of this group that's also in the balance mask.
817 *
818 * The balance mask are all those CPUs that could actually end up at this
819 * group. See build_balance_mask().
820 *
821 * Also see should_we_balance().
822 */
group_balance_cpu(struct sched_group * sg)823 int group_balance_cpu(struct sched_group *sg)
824 {
825 return cpumask_first(group_balance_mask(sg));
826 }
827
828
829 /*
830 * NUMA topology (first read the regular topology blurb below)
831 *
832 * Given a node-distance table, for example:
833 *
834 * node 0 1 2 3
835 * 0: 10 20 30 20
836 * 1: 20 10 20 30
837 * 2: 30 20 10 20
838 * 3: 20 30 20 10
839 *
840 * which represents a 4 node ring topology like:
841 *
842 * 0 ----- 1
843 * | |
844 * | |
845 * | |
846 * 3 ----- 2
847 *
848 * We want to construct domains and groups to represent this. The way we go
849 * about doing this is to build the domains on 'hops'. For each NUMA level we
850 * construct the mask of all nodes reachable in @level hops.
851 *
852 * For the above NUMA topology that gives 3 levels:
853 *
854 * NUMA-2 0-3 0-3 0-3 0-3
855 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
856 *
857 * NUMA-1 0-1,3 0-2 1-3 0,2-3
858 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
859 *
860 * NUMA-0 0 1 2 3
861 *
862 *
863 * As can be seen; things don't nicely line up as with the regular topology.
864 * When we iterate a domain in child domain chunks some nodes can be
865 * represented multiple times -- hence the "overlap" naming for this part of
866 * the topology.
867 *
868 * In order to minimize this overlap, we only build enough groups to cover the
869 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
870 *
871 * Because:
872 *
873 * - the first group of each domain is its child domain; this
874 * gets us the first 0-1,3
875 * - the only uncovered node is 2, who's child domain is 1-3.
876 *
877 * However, because of the overlap, computing a unique CPU for each group is
878 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
879 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
880 * end up at those groups (they would end up in group: 0-1,3).
881 *
882 * To correct this we have to introduce the group balance mask. This mask
883 * will contain those CPUs in the group that can reach this group given the
884 * (child) domain tree.
885 *
886 * With this we can once again compute balance_cpu and sched_group_capacity
887 * relations.
888 *
889 * XXX include words on how balance_cpu is unique and therefore can be
890 * used for sched_group_capacity links.
891 *
892 *
893 * Another 'interesting' topology is:
894 *
895 * node 0 1 2 3
896 * 0: 10 20 20 30
897 * 1: 20 10 20 20
898 * 2: 20 20 10 20
899 * 3: 30 20 20 10
900 *
901 * Which looks a little like:
902 *
903 * 0 ----- 1
904 * | / |
905 * | / |
906 * | / |
907 * 2 ----- 3
908 *
909 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
910 * are not.
911 *
912 * This leads to a few particularly weird cases where the sched_domain's are
913 * not of the same number for each CPU. Consider:
914 *
915 * NUMA-2 0-3 0-3
916 * groups: {0-2},{1-3} {1-3},{0-2}
917 *
918 * NUMA-1 0-2 0-3 0-3 1-3
919 *
920 * NUMA-0 0 1 2 3
921 *
922 */
923
924
925 /*
926 * Build the balance mask; it contains only those CPUs that can arrive at this
927 * group and should be considered to continue balancing.
928 *
929 * We do this during the group creation pass, therefore the group information
930 * isn't complete yet, however since each group represents a (child) domain we
931 * can fully construct this using the sched_domain bits (which are already
932 * complete).
933 */
934 static void
build_balance_mask(struct sched_domain * sd,struct sched_group * sg,struct cpumask * mask)935 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
936 {
937 const struct cpumask *sg_span = sched_group_span(sg);
938 struct sd_data *sdd = sd->private;
939 struct sched_domain *sibling;
940 int i;
941
942 cpumask_clear(mask);
943
944 for_each_cpu(i, sg_span) {
945 sibling = *per_cpu_ptr(sdd->sd, i);
946
947 /*
948 * Can happen in the asymmetric case, where these siblings are
949 * unused. The mask will not be empty because those CPUs that
950 * do have the top domain _should_ span the domain.
951 */
952 if (!sibling->child)
953 continue;
954
955 /* If we would not end up here, we can't continue from here */
956 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
957 continue;
958
959 cpumask_set_cpu(i, mask);
960 }
961
962 /* We must not have empty masks here */
963 WARN_ON_ONCE(cpumask_empty(mask));
964 }
965
966 /*
967 * XXX: This creates per-node group entries; since the load-balancer will
968 * immediately access remote memory to construct this group's load-balance
969 * statistics having the groups node local is of dubious benefit.
970 */
971 static struct sched_group *
build_group_from_child_sched_domain(struct sched_domain * sd,int cpu)972 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
973 {
974 struct sched_group *sg;
975 struct cpumask *sg_span;
976
977 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
978 GFP_KERNEL, cpu_to_node(cpu));
979
980 if (!sg)
981 return NULL;
982
983 sg_span = sched_group_span(sg);
984 if (sd->child) {
985 cpumask_copy(sg_span, sched_domain_span(sd->child));
986 sg->flags = sd->child->flags;
987 } else {
988 cpumask_copy(sg_span, sched_domain_span(sd));
989 }
990
991 atomic_inc(&sg->ref);
992 return sg;
993 }
994
init_overlap_sched_group(struct sched_domain * sd,struct sched_group * sg)995 static void init_overlap_sched_group(struct sched_domain *sd,
996 struct sched_group *sg)
997 {
998 struct cpumask *mask = sched_domains_tmpmask2;
999 struct sd_data *sdd = sd->private;
1000 struct cpumask *sg_span;
1001 int cpu;
1002
1003 build_balance_mask(sd, sg, mask);
1004 cpu = cpumask_first(mask);
1005
1006 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1007 if (atomic_inc_return(&sg->sgc->ref) == 1)
1008 cpumask_copy(group_balance_mask(sg), mask);
1009 else
1010 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
1011
1012 /*
1013 * Initialize sgc->capacity such that even if we mess up the
1014 * domains and no possible iteration will get us here, we won't
1015 * die on a /0 trap.
1016 */
1017 sg_span = sched_group_span(sg);
1018 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
1019 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1020 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1021 }
1022
1023 static struct sched_domain *
find_descended_sibling(struct sched_domain * sd,struct sched_domain * sibling)1024 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1025 {
1026 /*
1027 * The proper descendant would be the one whose child won't span out
1028 * of sd
1029 */
1030 while (sibling->child &&
1031 !cpumask_subset(sched_domain_span(sibling->child),
1032 sched_domain_span(sd)))
1033 sibling = sibling->child;
1034
1035 /*
1036 * As we are referencing sgc across different topology level, we need
1037 * to go down to skip those sched_domains which don't contribute to
1038 * scheduling because they will be degenerated in cpu_attach_domain
1039 */
1040 while (sibling->child &&
1041 cpumask_equal(sched_domain_span(sibling->child),
1042 sched_domain_span(sibling)))
1043 sibling = sibling->child;
1044
1045 return sibling;
1046 }
1047
1048 static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)1049 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1050 {
1051 struct sched_group *first = NULL, *last = NULL, *sg;
1052 const struct cpumask *span = sched_domain_span(sd);
1053 struct cpumask *covered = sched_domains_tmpmask;
1054 struct sd_data *sdd = sd->private;
1055 struct sched_domain *sibling;
1056 int i;
1057
1058 cpumask_clear(covered);
1059
1060 for_each_cpu_wrap(i, span, cpu) {
1061 struct cpumask *sg_span;
1062
1063 if (cpumask_test_cpu(i, covered))
1064 continue;
1065
1066 sibling = *per_cpu_ptr(sdd->sd, i);
1067
1068 /*
1069 * Asymmetric node setups can result in situations where the
1070 * domain tree is of unequal depth, make sure to skip domains
1071 * that already cover the entire range.
1072 *
1073 * In that case build_sched_domains() will have terminated the
1074 * iteration early and our sibling sd spans will be empty.
1075 * Domains should always include the CPU they're built on, so
1076 * check that.
1077 */
1078 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1079 continue;
1080
1081 /*
1082 * Usually we build sched_group by sibling's child sched_domain
1083 * But for machines whose NUMA diameter are 3 or above, we move
1084 * to build sched_group by sibling's proper descendant's child
1085 * domain because sibling's child sched_domain will span out of
1086 * the sched_domain being built as below.
1087 *
1088 * Smallest diameter=3 topology is:
1089 *
1090 * node 0 1 2 3
1091 * 0: 10 20 30 40
1092 * 1: 20 10 20 30
1093 * 2: 30 20 10 20
1094 * 3: 40 30 20 10
1095 *
1096 * 0 --- 1 --- 2 --- 3
1097 *
1098 * NUMA-3 0-3 N/A N/A 0-3
1099 * groups: {0-2},{1-3} {1-3},{0-2}
1100 *
1101 * NUMA-2 0-2 0-3 0-3 1-3
1102 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2}
1103 *
1104 * NUMA-1 0-1 0-2 1-3 2-3
1105 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2}
1106 *
1107 * NUMA-0 0 1 2 3
1108 *
1109 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1110 * group span isn't a subset of the domain span.
1111 */
1112 if (sibling->child &&
1113 !cpumask_subset(sched_domain_span(sibling->child), span))
1114 sibling = find_descended_sibling(sd, sibling);
1115
1116 sg = build_group_from_child_sched_domain(sibling, cpu);
1117 if (!sg)
1118 goto fail;
1119
1120 sg_span = sched_group_span(sg);
1121 cpumask_or(covered, covered, sg_span);
1122
1123 init_overlap_sched_group(sibling, sg);
1124
1125 if (!first)
1126 first = sg;
1127 if (last)
1128 last->next = sg;
1129 last = sg;
1130 last->next = first;
1131 }
1132 sd->groups = first;
1133
1134 return 0;
1135
1136 fail:
1137 free_sched_groups(first, 0);
1138
1139 return -ENOMEM;
1140 }
1141
1142
1143 /*
1144 * Package topology (also see the load-balance blurb in fair.c)
1145 *
1146 * The scheduler builds a tree structure to represent a number of important
1147 * topology features. By default (default_topology[]) these include:
1148 *
1149 * - Simultaneous multithreading (SMT)
1150 * - Multi-Core Cache (MC)
1151 * - Package (PKG)
1152 *
1153 * Where the last one more or less denotes everything up to a NUMA node.
1154 *
1155 * The tree consists of 3 primary data structures:
1156 *
1157 * sched_domain -> sched_group -> sched_group_capacity
1158 * ^ ^ ^ ^
1159 * `-' `-'
1160 *
1161 * The sched_domains are per-CPU and have a two way link (parent & child) and
1162 * denote the ever growing mask of CPUs belonging to that level of topology.
1163 *
1164 * Each sched_domain has a circular (double) linked list of sched_group's, each
1165 * denoting the domains of the level below (or individual CPUs in case of the
1166 * first domain level). The sched_group linked by a sched_domain includes the
1167 * CPU of that sched_domain [*].
1168 *
1169 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1170 *
1171 * CPU 0 1 2 3 4 5 6 7
1172 *
1173 * PKG [ ]
1174 * MC [ ] [ ]
1175 * SMT [ ] [ ] [ ] [ ]
1176 *
1177 * - or -
1178 *
1179 * PKG 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1180 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1181 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1182 *
1183 * CPU 0 1 2 3 4 5 6 7
1184 *
1185 * One way to think about it is: sched_domain moves you up and down among these
1186 * topology levels, while sched_group moves you sideways through it, at child
1187 * domain granularity.
1188 *
1189 * sched_group_capacity ensures each unique sched_group has shared storage.
1190 *
1191 * There are two related construction problems, both require a CPU that
1192 * uniquely identify each group (for a given domain):
1193 *
1194 * - The first is the balance_cpu (see should_we_balance() and the
1195 * load-balance blurb in fair.c); for each group we only want 1 CPU to
1196 * continue balancing at a higher domain.
1197 *
1198 * - The second is the sched_group_capacity; we want all identical groups
1199 * to share a single sched_group_capacity.
1200 *
1201 * Since these topologies are exclusive by construction. That is, its
1202 * impossible for an SMT thread to belong to multiple cores, and cores to
1203 * be part of multiple caches. There is a very clear and unique location
1204 * for each CPU in the hierarchy.
1205 *
1206 * Therefore computing a unique CPU for each group is trivial (the iteration
1207 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1208 * group), we can simply pick the first CPU in each group.
1209 *
1210 *
1211 * [*] in other words, the first group of each domain is its child domain.
1212 */
1213
get_group(int cpu,struct sd_data * sdd)1214 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1215 {
1216 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1217 struct sched_domain *child = sd->child;
1218 struct sched_group *sg;
1219 bool already_visited;
1220
1221 if (child)
1222 cpu = cpumask_first(sched_domain_span(child));
1223
1224 sg = *per_cpu_ptr(sdd->sg, cpu);
1225 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1226
1227 /* Increase refcounts for claim_allocations: */
1228 already_visited = atomic_inc_return(&sg->ref) > 1;
1229 /* sgc visits should follow a similar trend as sg */
1230 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1231
1232 /* If we have already visited that group, it's already initialized. */
1233 if (already_visited)
1234 return sg;
1235
1236 if (child) {
1237 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1238 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1239 sg->flags = child->flags;
1240 } else {
1241 cpumask_set_cpu(cpu, sched_group_span(sg));
1242 cpumask_set_cpu(cpu, group_balance_mask(sg));
1243 }
1244
1245 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1246 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1247 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1248
1249 return sg;
1250 }
1251
1252 /*
1253 * build_sched_groups will build a circular linked list of the groups
1254 * covered by the given span, will set each group's ->cpumask correctly,
1255 * and will initialize their ->sgc.
1256 *
1257 * Assumes the sched_domain tree is fully constructed
1258 */
1259 static int
build_sched_groups(struct sched_domain * sd,int cpu)1260 build_sched_groups(struct sched_domain *sd, int cpu)
1261 {
1262 struct sched_group *first = NULL, *last = NULL;
1263 struct sd_data *sdd = sd->private;
1264 const struct cpumask *span = sched_domain_span(sd);
1265 struct cpumask *covered;
1266 int i;
1267
1268 lockdep_assert_held(&sched_domains_mutex);
1269 covered = sched_domains_tmpmask;
1270
1271 cpumask_clear(covered);
1272
1273 for_each_cpu_wrap(i, span, cpu) {
1274 struct sched_group *sg;
1275
1276 if (cpumask_test_cpu(i, covered))
1277 continue;
1278
1279 sg = get_group(i, sdd);
1280
1281 cpumask_or(covered, covered, sched_group_span(sg));
1282
1283 if (!first)
1284 first = sg;
1285 if (last)
1286 last->next = sg;
1287 last = sg;
1288 }
1289 last->next = first;
1290 sd->groups = first;
1291
1292 return 0;
1293 }
1294
1295 /*
1296 * Initialize sched groups cpu_capacity.
1297 *
1298 * cpu_capacity indicates the capacity of sched group, which is used while
1299 * distributing the load between different sched groups in a sched domain.
1300 * Typically cpu_capacity for all the groups in a sched domain will be same
1301 * unless there are asymmetries in the topology. If there are asymmetries,
1302 * group having more cpu_capacity will pickup more load compared to the
1303 * group having less cpu_capacity.
1304 */
init_sched_groups_capacity(int cpu,struct sched_domain * sd)1305 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1306 {
1307 struct sched_group *sg = sd->groups;
1308 struct cpumask *mask = sched_domains_tmpmask2;
1309
1310 WARN_ON(!sg);
1311
1312 do {
1313 int cpu, cores = 0, max_cpu = -1;
1314
1315 sg->group_weight = cpumask_weight(sched_group_span(sg));
1316
1317 cpumask_copy(mask, sched_group_span(sg));
1318 for_each_cpu(cpu, mask) {
1319 cores++;
1320 #ifdef CONFIG_SCHED_SMT
1321 cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1322 #endif
1323 }
1324 sg->cores = cores;
1325
1326 if (!(sd->flags & SD_ASYM_PACKING))
1327 goto next;
1328
1329 for_each_cpu(cpu, sched_group_span(sg)) {
1330 if (max_cpu < 0)
1331 max_cpu = cpu;
1332 else if (sched_asym_prefer(cpu, max_cpu))
1333 max_cpu = cpu;
1334 }
1335 sg->asym_prefer_cpu = max_cpu;
1336
1337 next:
1338 sg = sg->next;
1339 } while (sg != sd->groups);
1340
1341 if (cpu != group_balance_cpu(sg))
1342 return;
1343
1344 update_group_capacity(sd, cpu);
1345 }
1346
1347 /*
1348 * Set of available CPUs grouped by their corresponding capacities
1349 * Each list entry contains a CPU mask reflecting CPUs that share the same
1350 * capacity.
1351 * The lifespan of data is unlimited.
1352 */
1353 LIST_HEAD(asym_cap_list);
1354
1355 /*
1356 * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1357 * Provides sd_flags reflecting the asymmetry scope.
1358 */
1359 static inline int
asym_cpu_capacity_classify(const struct cpumask * sd_span,const struct cpumask * cpu_map)1360 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1361 const struct cpumask *cpu_map)
1362 {
1363 struct asym_cap_data *entry;
1364 int count = 0, miss = 0;
1365
1366 /*
1367 * Count how many unique CPU capacities this domain spans across
1368 * (compare sched_domain CPUs mask with ones representing available
1369 * CPUs capacities). Take into account CPUs that might be offline:
1370 * skip those.
1371 */
1372 list_for_each_entry(entry, &asym_cap_list, link) {
1373 if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1374 ++count;
1375 else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1376 ++miss;
1377 }
1378
1379 WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1380
1381 /* No asymmetry detected */
1382 if (count < 2)
1383 return 0;
1384 /* Some of the available CPU capacity values have not been detected */
1385 if (miss)
1386 return SD_ASYM_CPUCAPACITY;
1387
1388 /* Full asymmetry */
1389 return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1390
1391 }
1392
free_asym_cap_entry(struct rcu_head * head)1393 static void free_asym_cap_entry(struct rcu_head *head)
1394 {
1395 struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu);
1396 kfree(entry);
1397 }
1398
asym_cpu_capacity_update_data(int cpu)1399 static inline void asym_cpu_capacity_update_data(int cpu)
1400 {
1401 unsigned long capacity = arch_scale_cpu_capacity(cpu);
1402 struct asym_cap_data *insert_entry = NULL;
1403 struct asym_cap_data *entry;
1404
1405 /*
1406 * Search if capacity already exits. If not, track which the entry
1407 * where we should insert to keep the list ordered descending.
1408 */
1409 list_for_each_entry(entry, &asym_cap_list, link) {
1410 if (capacity == entry->capacity)
1411 goto done;
1412 else if (!insert_entry && capacity > entry->capacity)
1413 insert_entry = list_prev_entry(entry, link);
1414 }
1415
1416 entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1417 if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1418 return;
1419 entry->capacity = capacity;
1420
1421 /* If NULL then the new capacity is the smallest, add last. */
1422 if (!insert_entry)
1423 list_add_tail_rcu(&entry->link, &asym_cap_list);
1424 else
1425 list_add_rcu(&entry->link, &insert_entry->link);
1426 done:
1427 __cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1428 }
1429
1430 /*
1431 * Build-up/update list of CPUs grouped by their capacities
1432 * An update requires explicit request to rebuild sched domains
1433 * with state indicating CPU topology changes.
1434 */
asym_cpu_capacity_scan(void)1435 static void asym_cpu_capacity_scan(void)
1436 {
1437 struct asym_cap_data *entry, *next;
1438 int cpu;
1439
1440 list_for_each_entry(entry, &asym_cap_list, link)
1441 cpumask_clear(cpu_capacity_span(entry));
1442
1443 for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1444 asym_cpu_capacity_update_data(cpu);
1445
1446 list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1447 if (cpumask_empty(cpu_capacity_span(entry))) {
1448 list_del_rcu(&entry->link);
1449 call_rcu(&entry->rcu, free_asym_cap_entry);
1450 }
1451 }
1452
1453 /*
1454 * Only one capacity value has been detected i.e. this system is symmetric.
1455 * No need to keep this data around.
1456 */
1457 if (list_is_singular(&asym_cap_list)) {
1458 entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1459 list_del_rcu(&entry->link);
1460 call_rcu(&entry->rcu, free_asym_cap_entry);
1461 }
1462 }
1463
1464 /*
1465 * Initializers for schedule domains
1466 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1467 */
1468
1469 static int default_relax_domain_level = -1;
1470 int sched_domain_level_max;
1471
setup_relax_domain_level(char * str)1472 static int __init setup_relax_domain_level(char *str)
1473 {
1474 if (kstrtoint(str, 0, &default_relax_domain_level))
1475 pr_warn("Unable to set relax_domain_level\n");
1476
1477 return 1;
1478 }
1479 __setup("relax_domain_level=", setup_relax_domain_level);
1480
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)1481 static void set_domain_attribute(struct sched_domain *sd,
1482 struct sched_domain_attr *attr)
1483 {
1484 int request;
1485
1486 if (!attr || attr->relax_domain_level < 0) {
1487 if (default_relax_domain_level < 0)
1488 return;
1489 request = default_relax_domain_level;
1490 } else
1491 request = attr->relax_domain_level;
1492
1493 if (sd->level >= request) {
1494 /* Turn off idle balance on this domain: */
1495 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1496 }
1497 }
1498
1499 static void __sdt_free(const struct cpumask *cpu_map);
1500 static int __sdt_alloc(const struct cpumask *cpu_map);
1501
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)1502 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1503 const struct cpumask *cpu_map)
1504 {
1505 switch (what) {
1506 case sa_rootdomain:
1507 if (!atomic_read(&d->rd->refcount))
1508 free_rootdomain(&d->rd->rcu);
1509 fallthrough;
1510 case sa_sd:
1511 free_percpu(d->sd);
1512 fallthrough;
1513 case sa_sd_storage:
1514 __sdt_free(cpu_map);
1515 fallthrough;
1516 case sa_none:
1517 break;
1518 }
1519 }
1520
1521 static enum s_alloc
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)1522 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1523 {
1524 memset(d, 0, sizeof(*d));
1525
1526 if (__sdt_alloc(cpu_map))
1527 return sa_sd_storage;
1528 d->sd = alloc_percpu(struct sched_domain *);
1529 if (!d->sd)
1530 return sa_sd_storage;
1531 d->rd = alloc_rootdomain();
1532 if (!d->rd)
1533 return sa_sd;
1534
1535 return sa_rootdomain;
1536 }
1537
1538 /*
1539 * NULL the sd_data elements we've used to build the sched_domain and
1540 * sched_group structure so that the subsequent __free_domain_allocs()
1541 * will not free the data we're using.
1542 */
claim_allocations(int cpu,struct sched_domain * sd)1543 static void claim_allocations(int cpu, struct sched_domain *sd)
1544 {
1545 struct sd_data *sdd = sd->private;
1546
1547 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1548 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1549
1550 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1551 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1552
1553 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1554 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1555
1556 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1557 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1558 }
1559
1560 #ifdef CONFIG_NUMA
1561 enum numa_topology_type sched_numa_topology_type;
1562
1563 static int sched_domains_numa_levels;
1564 static int sched_domains_curr_level;
1565
1566 int sched_max_numa_distance;
1567 static int *sched_domains_numa_distance;
1568 static struct cpumask ***sched_domains_numa_masks;
1569 #endif
1570
1571 /*
1572 * SD_flags allowed in topology descriptions.
1573 *
1574 * These flags are purely descriptive of the topology and do not prescribe
1575 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1576 * function. For details, see include/linux/sched/sd_flags.h.
1577 *
1578 * SD_SHARE_CPUCAPACITY
1579 * SD_SHARE_LLC
1580 * SD_CLUSTER
1581 * SD_NUMA
1582 *
1583 * Odd one out, which beside describing the topology has a quirk also
1584 * prescribes the desired behaviour that goes along with it:
1585 *
1586 * SD_ASYM_PACKING - describes SMT quirks
1587 */
1588 #define TOPOLOGY_SD_FLAGS \
1589 (SD_SHARE_CPUCAPACITY | \
1590 SD_CLUSTER | \
1591 SD_SHARE_LLC | \
1592 SD_NUMA | \
1593 SD_ASYM_PACKING)
1594
1595 static struct sched_domain *
sd_init(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain * child,int cpu)1596 sd_init(struct sched_domain_topology_level *tl,
1597 const struct cpumask *cpu_map,
1598 struct sched_domain *child, int cpu)
1599 {
1600 struct sd_data *sdd = &tl->data;
1601 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1602 int sd_id, sd_weight, sd_flags = 0;
1603 struct cpumask *sd_span;
1604
1605 #ifdef CONFIG_NUMA
1606 /*
1607 * Ugly hack to pass state to sd_numa_mask()...
1608 */
1609 sched_domains_curr_level = tl->numa_level;
1610 #endif
1611
1612 sd_weight = cpumask_weight(tl->mask(cpu));
1613
1614 if (tl->sd_flags)
1615 sd_flags = (*tl->sd_flags)();
1616 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1617 "wrong sd_flags in topology description\n"))
1618 sd_flags &= TOPOLOGY_SD_FLAGS;
1619
1620 *sd = (struct sched_domain){
1621 .min_interval = sd_weight,
1622 .max_interval = 2*sd_weight,
1623 .busy_factor = 16,
1624 .imbalance_pct = 117,
1625
1626 .cache_nice_tries = 0,
1627
1628 .flags = 1*SD_BALANCE_NEWIDLE
1629 | 1*SD_BALANCE_EXEC
1630 | 1*SD_BALANCE_FORK
1631 | 0*SD_BALANCE_WAKE
1632 | 1*SD_WAKE_AFFINE
1633 | 0*SD_SHARE_CPUCAPACITY
1634 | 0*SD_SHARE_LLC
1635 | 0*SD_SERIALIZE
1636 | 1*SD_PREFER_SIBLING
1637 | 0*SD_NUMA
1638 | sd_flags
1639 ,
1640
1641 .last_balance = jiffies,
1642 .balance_interval = sd_weight,
1643 .max_newidle_lb_cost = 0,
1644 .last_decay_max_lb_cost = jiffies,
1645 .child = child,
1646 .name = tl->name,
1647 };
1648
1649 sd_span = sched_domain_span(sd);
1650 cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1651 sd_id = cpumask_first(sd_span);
1652
1653 sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1654
1655 WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1656 (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1657 "CPU capacity asymmetry not supported on SMT\n");
1658
1659 /*
1660 * Convert topological properties into behaviour.
1661 */
1662 /* Don't attempt to spread across CPUs of different capacities. */
1663 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1664 sd->child->flags &= ~SD_PREFER_SIBLING;
1665
1666 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1667 sd->imbalance_pct = 110;
1668
1669 } else if (sd->flags & SD_SHARE_LLC) {
1670 sd->imbalance_pct = 117;
1671 sd->cache_nice_tries = 1;
1672
1673 #ifdef CONFIG_NUMA
1674 } else if (sd->flags & SD_NUMA) {
1675 sd->cache_nice_tries = 2;
1676
1677 sd->flags &= ~SD_PREFER_SIBLING;
1678 sd->flags |= SD_SERIALIZE;
1679 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1680 sd->flags &= ~(SD_BALANCE_EXEC |
1681 SD_BALANCE_FORK |
1682 SD_WAKE_AFFINE);
1683 }
1684
1685 #endif
1686 } else {
1687 sd->cache_nice_tries = 1;
1688 }
1689
1690 /*
1691 * For all levels sharing cache; connect a sched_domain_shared
1692 * instance.
1693 */
1694 if (sd->flags & SD_SHARE_LLC) {
1695 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1696 atomic_inc(&sd->shared->ref);
1697 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1698 }
1699
1700 sd->private = sdd;
1701
1702 return sd;
1703 }
1704
1705 /*
1706 * Topology list, bottom-up.
1707 */
1708 static struct sched_domain_topology_level default_topology[] = {
1709 #ifdef CONFIG_SCHED_SMT
1710 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1711 #endif
1712
1713 #ifdef CONFIG_SCHED_CLUSTER
1714 { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1715 #endif
1716
1717 #ifdef CONFIG_SCHED_MC
1718 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1719 #endif
1720 { cpu_cpu_mask, SD_INIT_NAME(PKG) },
1721 { NULL, },
1722 };
1723
1724 static struct sched_domain_topology_level *sched_domain_topology =
1725 default_topology;
1726 static struct sched_domain_topology_level *sched_domain_topology_saved;
1727
1728 #define for_each_sd_topology(tl) \
1729 for (tl = sched_domain_topology; tl->mask; tl++)
1730
set_sched_topology(struct sched_domain_topology_level * tl)1731 void __init set_sched_topology(struct sched_domain_topology_level *tl)
1732 {
1733 if (WARN_ON_ONCE(sched_smp_initialized))
1734 return;
1735
1736 sched_domain_topology = tl;
1737 sched_domain_topology_saved = NULL;
1738 }
1739
1740 #ifdef CONFIG_NUMA
1741
sd_numa_mask(int cpu)1742 static const struct cpumask *sd_numa_mask(int cpu)
1743 {
1744 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1745 }
1746
sched_numa_warn(const char * str)1747 static void sched_numa_warn(const char *str)
1748 {
1749 static int done = false;
1750 int i,j;
1751
1752 if (done)
1753 return;
1754
1755 done = true;
1756
1757 printk(KERN_WARNING "ERROR: %s\n\n", str);
1758
1759 for (i = 0; i < nr_node_ids; i++) {
1760 printk(KERN_WARNING " ");
1761 for (j = 0; j < nr_node_ids; j++) {
1762 if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1763 printk(KERN_CONT "(%02d) ", node_distance(i,j));
1764 else
1765 printk(KERN_CONT " %02d ", node_distance(i,j));
1766 }
1767 printk(KERN_CONT "\n");
1768 }
1769 printk(KERN_WARNING "\n");
1770 }
1771
find_numa_distance(int distance)1772 bool find_numa_distance(int distance)
1773 {
1774 bool found = false;
1775 int i, *distances;
1776
1777 if (distance == node_distance(0, 0))
1778 return true;
1779
1780 rcu_read_lock();
1781 distances = rcu_dereference(sched_domains_numa_distance);
1782 if (!distances)
1783 goto unlock;
1784 for (i = 0; i < sched_domains_numa_levels; i++) {
1785 if (distances[i] == distance) {
1786 found = true;
1787 break;
1788 }
1789 }
1790 unlock:
1791 rcu_read_unlock();
1792
1793 return found;
1794 }
1795
1796 #define for_each_cpu_node_but(n, nbut) \
1797 for_each_node_state(n, N_CPU) \
1798 if (n == nbut) \
1799 continue; \
1800 else
1801
1802 /*
1803 * A system can have three types of NUMA topology:
1804 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1805 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1806 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1807 *
1808 * The difference between a glueless mesh topology and a backplane
1809 * topology lies in whether communication between not directly
1810 * connected nodes goes through intermediary nodes (where programs
1811 * could run), or through backplane controllers. This affects
1812 * placement of programs.
1813 *
1814 * The type of topology can be discerned with the following tests:
1815 * - If the maximum distance between any nodes is 1 hop, the system
1816 * is directly connected.
1817 * - If for two nodes A and B, located N > 1 hops away from each other,
1818 * there is an intermediary node C, which is < N hops away from both
1819 * nodes A and B, the system is a glueless mesh.
1820 */
init_numa_topology_type(int offline_node)1821 static void init_numa_topology_type(int offline_node)
1822 {
1823 int a, b, c, n;
1824
1825 n = sched_max_numa_distance;
1826
1827 if (sched_domains_numa_levels <= 2) {
1828 sched_numa_topology_type = NUMA_DIRECT;
1829 return;
1830 }
1831
1832 for_each_cpu_node_but(a, offline_node) {
1833 for_each_cpu_node_but(b, offline_node) {
1834 /* Find two nodes furthest removed from each other. */
1835 if (node_distance(a, b) < n)
1836 continue;
1837
1838 /* Is there an intermediary node between a and b? */
1839 for_each_cpu_node_but(c, offline_node) {
1840 if (node_distance(a, c) < n &&
1841 node_distance(b, c) < n) {
1842 sched_numa_topology_type =
1843 NUMA_GLUELESS_MESH;
1844 return;
1845 }
1846 }
1847
1848 sched_numa_topology_type = NUMA_BACKPLANE;
1849 return;
1850 }
1851 }
1852
1853 pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1854 sched_numa_topology_type = NUMA_DIRECT;
1855 }
1856
1857
1858 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1859
sched_init_numa(int offline_node)1860 void sched_init_numa(int offline_node)
1861 {
1862 struct sched_domain_topology_level *tl;
1863 unsigned long *distance_map;
1864 int nr_levels = 0;
1865 int i, j;
1866 int *distances;
1867 struct cpumask ***masks;
1868
1869 /*
1870 * O(nr_nodes^2) de-duplicating selection sort -- in order to find the
1871 * unique distances in the node_distance() table.
1872 */
1873 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1874 if (!distance_map)
1875 return;
1876
1877 bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1878 for_each_cpu_node_but(i, offline_node) {
1879 for_each_cpu_node_but(j, offline_node) {
1880 int distance = node_distance(i, j);
1881
1882 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1883 sched_numa_warn("Invalid distance value range");
1884 bitmap_free(distance_map);
1885 return;
1886 }
1887
1888 bitmap_set(distance_map, distance, 1);
1889 }
1890 }
1891 /*
1892 * We can now figure out how many unique distance values there are and
1893 * allocate memory accordingly.
1894 */
1895 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1896
1897 distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1898 if (!distances) {
1899 bitmap_free(distance_map);
1900 return;
1901 }
1902
1903 for (i = 0, j = 0; i < nr_levels; i++, j++) {
1904 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1905 distances[i] = j;
1906 }
1907 rcu_assign_pointer(sched_domains_numa_distance, distances);
1908
1909 bitmap_free(distance_map);
1910
1911 /*
1912 * 'nr_levels' contains the number of unique distances
1913 *
1914 * The sched_domains_numa_distance[] array includes the actual distance
1915 * numbers.
1916 */
1917
1918 /*
1919 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1920 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1921 * the array will contain less then 'nr_levels' members. This could be
1922 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1923 * in other functions.
1924 *
1925 * We reset it to 'nr_levels' at the end of this function.
1926 */
1927 sched_domains_numa_levels = 0;
1928
1929 masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1930 if (!masks)
1931 return;
1932
1933 /*
1934 * Now for each level, construct a mask per node which contains all
1935 * CPUs of nodes that are that many hops away from us.
1936 */
1937 for (i = 0; i < nr_levels; i++) {
1938 masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1939 if (!masks[i])
1940 return;
1941
1942 for_each_cpu_node_but(j, offline_node) {
1943 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1944 int k;
1945
1946 if (!mask)
1947 return;
1948
1949 masks[i][j] = mask;
1950
1951 for_each_cpu_node_but(k, offline_node) {
1952 if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1953 sched_numa_warn("Node-distance not symmetric");
1954
1955 if (node_distance(j, k) > sched_domains_numa_distance[i])
1956 continue;
1957
1958 cpumask_or(mask, mask, cpumask_of_node(k));
1959 }
1960 }
1961 }
1962 rcu_assign_pointer(sched_domains_numa_masks, masks);
1963
1964 /* Compute default topology size */
1965 for (i = 0; sched_domain_topology[i].mask; i++);
1966
1967 tl = kzalloc((i + nr_levels + 1) *
1968 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1969 if (!tl)
1970 return;
1971
1972 /*
1973 * Copy the default topology bits..
1974 */
1975 for (i = 0; sched_domain_topology[i].mask; i++)
1976 tl[i] = sched_domain_topology[i];
1977
1978 /*
1979 * Add the NUMA identity distance, aka single NODE.
1980 */
1981 tl[i++] = (struct sched_domain_topology_level){
1982 .mask = sd_numa_mask,
1983 .numa_level = 0,
1984 SD_INIT_NAME(NODE)
1985 };
1986
1987 /*
1988 * .. and append 'j' levels of NUMA goodness.
1989 */
1990 for (j = 1; j < nr_levels; i++, j++) {
1991 tl[i] = (struct sched_domain_topology_level){
1992 .mask = sd_numa_mask,
1993 .sd_flags = cpu_numa_flags,
1994 .flags = SDTL_OVERLAP,
1995 .numa_level = j,
1996 SD_INIT_NAME(NUMA)
1997 };
1998 }
1999
2000 sched_domain_topology_saved = sched_domain_topology;
2001 sched_domain_topology = tl;
2002
2003 sched_domains_numa_levels = nr_levels;
2004 WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
2005
2006 init_numa_topology_type(offline_node);
2007 }
2008
2009
sched_reset_numa(void)2010 static void sched_reset_numa(void)
2011 {
2012 int nr_levels, *distances;
2013 struct cpumask ***masks;
2014
2015 nr_levels = sched_domains_numa_levels;
2016 sched_domains_numa_levels = 0;
2017 sched_max_numa_distance = 0;
2018 sched_numa_topology_type = NUMA_DIRECT;
2019 distances = sched_domains_numa_distance;
2020 rcu_assign_pointer(sched_domains_numa_distance, NULL);
2021 masks = sched_domains_numa_masks;
2022 rcu_assign_pointer(sched_domains_numa_masks, NULL);
2023 if (distances || masks) {
2024 int i, j;
2025
2026 synchronize_rcu();
2027 kfree(distances);
2028 for (i = 0; i < nr_levels && masks; i++) {
2029 if (!masks[i])
2030 continue;
2031 for_each_node(j)
2032 kfree(masks[i][j]);
2033 kfree(masks[i]);
2034 }
2035 kfree(masks);
2036 }
2037 if (sched_domain_topology_saved) {
2038 kfree(sched_domain_topology);
2039 sched_domain_topology = sched_domain_topology_saved;
2040 sched_domain_topology_saved = NULL;
2041 }
2042 }
2043
2044 /*
2045 * Call with hotplug lock held
2046 */
sched_update_numa(int cpu,bool online)2047 void sched_update_numa(int cpu, bool online)
2048 {
2049 int node;
2050
2051 node = cpu_to_node(cpu);
2052 /*
2053 * Scheduler NUMA topology is updated when the first CPU of a
2054 * node is onlined or the last CPU of a node is offlined.
2055 */
2056 if (cpumask_weight(cpumask_of_node(node)) != 1)
2057 return;
2058
2059 sched_reset_numa();
2060 sched_init_numa(online ? NUMA_NO_NODE : node);
2061 }
2062
sched_domains_numa_masks_set(unsigned int cpu)2063 void sched_domains_numa_masks_set(unsigned int cpu)
2064 {
2065 int node = cpu_to_node(cpu);
2066 int i, j;
2067
2068 for (i = 0; i < sched_domains_numa_levels; i++) {
2069 for (j = 0; j < nr_node_ids; j++) {
2070 if (!node_state(j, N_CPU))
2071 continue;
2072
2073 /* Set ourselves in the remote node's masks */
2074 if (node_distance(j, node) <= sched_domains_numa_distance[i])
2075 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2076 }
2077 }
2078 }
2079
sched_domains_numa_masks_clear(unsigned int cpu)2080 void sched_domains_numa_masks_clear(unsigned int cpu)
2081 {
2082 int i, j;
2083
2084 for (i = 0; i < sched_domains_numa_levels; i++) {
2085 for (j = 0; j < nr_node_ids; j++) {
2086 if (sched_domains_numa_masks[i][j])
2087 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2088 }
2089 }
2090 }
2091
2092 /*
2093 * sched_numa_find_closest() - given the NUMA topology, find the cpu
2094 * closest to @cpu from @cpumask.
2095 * cpumask: cpumask to find a cpu from
2096 * cpu: cpu to be close to
2097 *
2098 * returns: cpu, or nr_cpu_ids when nothing found.
2099 */
sched_numa_find_closest(const struct cpumask * cpus,int cpu)2100 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2101 {
2102 int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2103 struct cpumask ***masks;
2104
2105 rcu_read_lock();
2106 masks = rcu_dereference(sched_domains_numa_masks);
2107 if (!masks)
2108 goto unlock;
2109 for (i = 0; i < sched_domains_numa_levels; i++) {
2110 if (!masks[i][j])
2111 break;
2112 cpu = cpumask_any_and(cpus, masks[i][j]);
2113 if (cpu < nr_cpu_ids) {
2114 found = cpu;
2115 break;
2116 }
2117 }
2118 unlock:
2119 rcu_read_unlock();
2120
2121 return found;
2122 }
2123
2124 struct __cmp_key {
2125 const struct cpumask *cpus;
2126 struct cpumask ***masks;
2127 int node;
2128 int cpu;
2129 int w;
2130 };
2131
hop_cmp(const void * a,const void * b)2132 static int hop_cmp(const void *a, const void *b)
2133 {
2134 struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2135 struct __cmp_key *k = (struct __cmp_key *)a;
2136
2137 if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2138 return 1;
2139
2140 if (b == k->masks) {
2141 k->w = 0;
2142 return 0;
2143 }
2144
2145 prev_hop = *((struct cpumask ***)b - 1);
2146 k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2147 if (k->w <= k->cpu)
2148 return 0;
2149
2150 return -1;
2151 }
2152
2153 /**
2154 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2155 * from @cpus to @cpu, taking into account distance
2156 * from a given @node.
2157 * @cpus: cpumask to find a cpu from
2158 * @cpu: CPU to start searching
2159 * @node: NUMA node to order CPUs by distance
2160 *
2161 * Return: cpu, or nr_cpu_ids when nothing found.
2162 */
sched_numa_find_nth_cpu(const struct cpumask * cpus,int cpu,int node)2163 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2164 {
2165 struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2166 struct cpumask ***hop_masks;
2167 int hop, ret = nr_cpu_ids;
2168
2169 if (node == NUMA_NO_NODE)
2170 return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2171
2172 rcu_read_lock();
2173
2174 /* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2175 node = numa_nearest_node(node, N_CPU);
2176 k.node = node;
2177
2178 k.masks = rcu_dereference(sched_domains_numa_masks);
2179 if (!k.masks)
2180 goto unlock;
2181
2182 hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2183 hop = hop_masks - k.masks;
2184
2185 ret = hop ?
2186 cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2187 cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2188 unlock:
2189 rcu_read_unlock();
2190 return ret;
2191 }
2192 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2193
2194 /**
2195 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2196 * @node
2197 * @node: The node to count hops from.
2198 * @hops: Include CPUs up to that many hops away. 0 means local node.
2199 *
2200 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2201 * @node, an error value otherwise.
2202 *
2203 * Requires rcu_lock to be held. Returned cpumask is only valid within that
2204 * read-side section, copy it if required beyond that.
2205 *
2206 * Note that not all hops are equal in distance; see sched_init_numa() for how
2207 * distances and masks are handled.
2208 * Also note that this is a reflection of sched_domains_numa_masks, which may change
2209 * during the lifetime of the system (offline nodes are taken out of the masks).
2210 */
sched_numa_hop_mask(unsigned int node,unsigned int hops)2211 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2212 {
2213 struct cpumask ***masks;
2214
2215 if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2216 return ERR_PTR(-EINVAL);
2217
2218 masks = rcu_dereference(sched_domains_numa_masks);
2219 if (!masks)
2220 return ERR_PTR(-EBUSY);
2221
2222 return masks[hops][node];
2223 }
2224 EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2225
2226 #endif /* CONFIG_NUMA */
2227
__sdt_alloc(const struct cpumask * cpu_map)2228 static int __sdt_alloc(const struct cpumask *cpu_map)
2229 {
2230 struct sched_domain_topology_level *tl;
2231 int j;
2232
2233 for_each_sd_topology(tl) {
2234 struct sd_data *sdd = &tl->data;
2235
2236 sdd->sd = alloc_percpu(struct sched_domain *);
2237 if (!sdd->sd)
2238 return -ENOMEM;
2239
2240 sdd->sds = alloc_percpu(struct sched_domain_shared *);
2241 if (!sdd->sds)
2242 return -ENOMEM;
2243
2244 sdd->sg = alloc_percpu(struct sched_group *);
2245 if (!sdd->sg)
2246 return -ENOMEM;
2247
2248 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2249 if (!sdd->sgc)
2250 return -ENOMEM;
2251
2252 for_each_cpu(j, cpu_map) {
2253 struct sched_domain *sd;
2254 struct sched_domain_shared *sds;
2255 struct sched_group *sg;
2256 struct sched_group_capacity *sgc;
2257
2258 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2259 GFP_KERNEL, cpu_to_node(j));
2260 if (!sd)
2261 return -ENOMEM;
2262
2263 *per_cpu_ptr(sdd->sd, j) = sd;
2264
2265 sds = kzalloc_node(sizeof(struct sched_domain_shared),
2266 GFP_KERNEL, cpu_to_node(j));
2267 if (!sds)
2268 return -ENOMEM;
2269
2270 *per_cpu_ptr(sdd->sds, j) = sds;
2271
2272 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2273 GFP_KERNEL, cpu_to_node(j));
2274 if (!sg)
2275 return -ENOMEM;
2276
2277 sg->next = sg;
2278
2279 *per_cpu_ptr(sdd->sg, j) = sg;
2280
2281 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2282 GFP_KERNEL, cpu_to_node(j));
2283 if (!sgc)
2284 return -ENOMEM;
2285
2286 #ifdef CONFIG_SCHED_DEBUG
2287 sgc->id = j;
2288 #endif
2289
2290 *per_cpu_ptr(sdd->sgc, j) = sgc;
2291 }
2292 }
2293
2294 return 0;
2295 }
2296
__sdt_free(const struct cpumask * cpu_map)2297 static void __sdt_free(const struct cpumask *cpu_map)
2298 {
2299 struct sched_domain_topology_level *tl;
2300 int j;
2301
2302 for_each_sd_topology(tl) {
2303 struct sd_data *sdd = &tl->data;
2304
2305 for_each_cpu(j, cpu_map) {
2306 struct sched_domain *sd;
2307
2308 if (sdd->sd) {
2309 sd = *per_cpu_ptr(sdd->sd, j);
2310 if (sd && (sd->flags & SD_OVERLAP))
2311 free_sched_groups(sd->groups, 0);
2312 kfree(*per_cpu_ptr(sdd->sd, j));
2313 }
2314
2315 if (sdd->sds)
2316 kfree(*per_cpu_ptr(sdd->sds, j));
2317 if (sdd->sg)
2318 kfree(*per_cpu_ptr(sdd->sg, j));
2319 if (sdd->sgc)
2320 kfree(*per_cpu_ptr(sdd->sgc, j));
2321 }
2322 free_percpu(sdd->sd);
2323 sdd->sd = NULL;
2324 free_percpu(sdd->sds);
2325 sdd->sds = NULL;
2326 free_percpu(sdd->sg);
2327 sdd->sg = NULL;
2328 free_percpu(sdd->sgc);
2329 sdd->sgc = NULL;
2330 }
2331 }
2332
build_sched_domain(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int cpu)2333 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2334 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2335 struct sched_domain *child, int cpu)
2336 {
2337 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2338
2339 if (child) {
2340 sd->level = child->level + 1;
2341 sched_domain_level_max = max(sched_domain_level_max, sd->level);
2342 child->parent = sd;
2343
2344 if (!cpumask_subset(sched_domain_span(child),
2345 sched_domain_span(sd))) {
2346 pr_err("BUG: arch topology borken\n");
2347 pr_err(" the %s domain not a subset of the %s domain\n",
2348 child->name, sd->name);
2349 /* Fixup, ensure @sd has at least @child CPUs. */
2350 cpumask_or(sched_domain_span(sd),
2351 sched_domain_span(sd),
2352 sched_domain_span(child));
2353 }
2354
2355 }
2356 set_domain_attribute(sd, attr);
2357
2358 return sd;
2359 }
2360
2361 /*
2362 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2363 * any two given CPUs at this (non-NUMA) topology level.
2364 */
topology_span_sane(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,int cpu)2365 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2366 const struct cpumask *cpu_map, int cpu)
2367 {
2368 int i = cpu + 1;
2369
2370 /* NUMA levels are allowed to overlap */
2371 if (tl->flags & SDTL_OVERLAP)
2372 return true;
2373
2374 /*
2375 * Non-NUMA levels cannot partially overlap - they must be either
2376 * completely equal or completely disjoint. Otherwise we can end up
2377 * breaking the sched_group lists - i.e. a later get_group() pass
2378 * breaks the linking done for an earlier span.
2379 */
2380 for_each_cpu_from(i, cpu_map) {
2381 /*
2382 * We should 'and' all those masks with 'cpu_map' to exactly
2383 * match the topology we're about to build, but that can only
2384 * remove CPUs, which only lessens our ability to detect
2385 * overlaps
2386 */
2387 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2388 cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2389 return false;
2390 }
2391
2392 return true;
2393 }
2394
2395 /*
2396 * Build sched domains for a given set of CPUs and attach the sched domains
2397 * to the individual CPUs
2398 */
2399 static int
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)2400 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2401 {
2402 enum s_alloc alloc_state = sa_none;
2403 struct sched_domain *sd;
2404 struct s_data d;
2405 struct rq *rq = NULL;
2406 int i, ret = -ENOMEM;
2407 bool has_asym = false;
2408 bool has_cluster = false;
2409
2410 if (WARN_ON(cpumask_empty(cpu_map)))
2411 goto error;
2412
2413 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2414 if (alloc_state != sa_rootdomain)
2415 goto error;
2416
2417 /* Set up domains for CPUs specified by the cpu_map: */
2418 for_each_cpu(i, cpu_map) {
2419 struct sched_domain_topology_level *tl;
2420
2421 sd = NULL;
2422 for_each_sd_topology(tl) {
2423
2424 if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2425 goto error;
2426
2427 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2428
2429 has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2430
2431 if (tl == sched_domain_topology)
2432 *per_cpu_ptr(d.sd, i) = sd;
2433 if (tl->flags & SDTL_OVERLAP)
2434 sd->flags |= SD_OVERLAP;
2435 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2436 break;
2437 }
2438 }
2439
2440 /* Build the groups for the domains */
2441 for_each_cpu(i, cpu_map) {
2442 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2443 sd->span_weight = cpumask_weight(sched_domain_span(sd));
2444 if (sd->flags & SD_OVERLAP) {
2445 if (build_overlap_sched_groups(sd, i))
2446 goto error;
2447 } else {
2448 if (build_sched_groups(sd, i))
2449 goto error;
2450 }
2451 }
2452 }
2453
2454 /*
2455 * Calculate an allowed NUMA imbalance such that LLCs do not get
2456 * imbalanced.
2457 */
2458 for_each_cpu(i, cpu_map) {
2459 unsigned int imb = 0;
2460 unsigned int imb_span = 1;
2461
2462 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2463 struct sched_domain *child = sd->child;
2464
2465 if (!(sd->flags & SD_SHARE_LLC) && child &&
2466 (child->flags & SD_SHARE_LLC)) {
2467 struct sched_domain __rcu *top_p;
2468 unsigned int nr_llcs;
2469
2470 /*
2471 * For a single LLC per node, allow an
2472 * imbalance up to 12.5% of the node. This is
2473 * arbitrary cutoff based two factors -- SMT and
2474 * memory channels. For SMT-2, the intent is to
2475 * avoid premature sharing of HT resources but
2476 * SMT-4 or SMT-8 *may* benefit from a different
2477 * cutoff. For memory channels, this is a very
2478 * rough estimate of how many channels may be
2479 * active and is based on recent CPUs with
2480 * many cores.
2481 *
2482 * For multiple LLCs, allow an imbalance
2483 * until multiple tasks would share an LLC
2484 * on one node while LLCs on another node
2485 * remain idle. This assumes that there are
2486 * enough logical CPUs per LLC to avoid SMT
2487 * factors and that there is a correlation
2488 * between LLCs and memory channels.
2489 */
2490 nr_llcs = sd->span_weight / child->span_weight;
2491 if (nr_llcs == 1)
2492 imb = sd->span_weight >> 3;
2493 else
2494 imb = nr_llcs;
2495 imb = max(1U, imb);
2496 sd->imb_numa_nr = imb;
2497
2498 /* Set span based on the first NUMA domain. */
2499 top_p = sd->parent;
2500 while (top_p && !(top_p->flags & SD_NUMA)) {
2501 top_p = top_p->parent;
2502 }
2503 imb_span = top_p ? top_p->span_weight : sd->span_weight;
2504 } else {
2505 int factor = max(1U, (sd->span_weight / imb_span));
2506
2507 sd->imb_numa_nr = imb * factor;
2508 }
2509 }
2510 }
2511
2512 /* Calculate CPU capacity for physical packages and nodes */
2513 for (i = nr_cpumask_bits-1; i >= 0; i--) {
2514 if (!cpumask_test_cpu(i, cpu_map))
2515 continue;
2516
2517 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2518 claim_allocations(i, sd);
2519 init_sched_groups_capacity(i, sd);
2520 }
2521 }
2522
2523 /* Attach the domains */
2524 rcu_read_lock();
2525 for_each_cpu(i, cpu_map) {
2526 rq = cpu_rq(i);
2527 sd = *per_cpu_ptr(d.sd, i);
2528
2529 cpu_attach_domain(sd, d.rd, i);
2530
2531 if (lowest_flag_domain(i, SD_CLUSTER))
2532 has_cluster = true;
2533 }
2534 rcu_read_unlock();
2535
2536 if (has_asym)
2537 static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2538
2539 if (has_cluster)
2540 static_branch_inc_cpuslocked(&sched_cluster_active);
2541
2542 if (rq && sched_debug_verbose)
2543 pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map));
2544
2545 ret = 0;
2546 error:
2547 __free_domain_allocs(&d, alloc_state, cpu_map);
2548
2549 return ret;
2550 }
2551
2552 /* Current sched domains: */
2553 static cpumask_var_t *doms_cur;
2554
2555 /* Number of sched domains in 'doms_cur': */
2556 static int ndoms_cur;
2557
2558 /* Attributes of custom domains in 'doms_cur' */
2559 static struct sched_domain_attr *dattr_cur;
2560
2561 /*
2562 * Special case: If a kmalloc() of a doms_cur partition (array of
2563 * cpumask) fails, then fallback to a single sched domain,
2564 * as determined by the single cpumask fallback_doms.
2565 */
2566 static cpumask_var_t fallback_doms;
2567
2568 /*
2569 * arch_update_cpu_topology lets virtualized architectures update the
2570 * CPU core maps. It is supposed to return 1 if the topology changed
2571 * or 0 if it stayed the same.
2572 */
arch_update_cpu_topology(void)2573 int __weak arch_update_cpu_topology(void)
2574 {
2575 return 0;
2576 }
2577
alloc_sched_domains(unsigned int ndoms)2578 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2579 {
2580 int i;
2581 cpumask_var_t *doms;
2582
2583 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2584 if (!doms)
2585 return NULL;
2586 for (i = 0; i < ndoms; i++) {
2587 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2588 free_sched_domains(doms, i);
2589 return NULL;
2590 }
2591 }
2592 return doms;
2593 }
2594
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)2595 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2596 {
2597 unsigned int i;
2598 for (i = 0; i < ndoms; i++)
2599 free_cpumask_var(doms[i]);
2600 kfree(doms);
2601 }
2602
2603 /*
2604 * Set up scheduler domains and groups. For now this just excludes isolated
2605 * CPUs, but could be used to exclude other special cases in the future.
2606 */
sched_init_domains(const struct cpumask * cpu_map)2607 int __init sched_init_domains(const struct cpumask *cpu_map)
2608 {
2609 int err;
2610
2611 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2612 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2613 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2614
2615 arch_update_cpu_topology();
2616 asym_cpu_capacity_scan();
2617 ndoms_cur = 1;
2618 doms_cur = alloc_sched_domains(ndoms_cur);
2619 if (!doms_cur)
2620 doms_cur = &fallback_doms;
2621 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2622 err = build_sched_domains(doms_cur[0], NULL);
2623
2624 return err;
2625 }
2626
2627 /*
2628 * Detach sched domains from a group of CPUs specified in cpu_map
2629 * These CPUs will now be attached to the NULL domain
2630 */
detach_destroy_domains(const struct cpumask * cpu_map)2631 static void detach_destroy_domains(const struct cpumask *cpu_map)
2632 {
2633 unsigned int cpu = cpumask_any(cpu_map);
2634 int i;
2635
2636 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2637 static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2638
2639 if (static_branch_unlikely(&sched_cluster_active))
2640 static_branch_dec_cpuslocked(&sched_cluster_active);
2641
2642 rcu_read_lock();
2643 for_each_cpu(i, cpu_map)
2644 cpu_attach_domain(NULL, &def_root_domain, i);
2645 rcu_read_unlock();
2646 }
2647
2648 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)2649 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2650 struct sched_domain_attr *new, int idx_new)
2651 {
2652 struct sched_domain_attr tmp;
2653
2654 /* Fast path: */
2655 if (!new && !cur)
2656 return 1;
2657
2658 tmp = SD_ATTR_INIT;
2659
2660 return !memcmp(cur ? (cur + idx_cur) : &tmp,
2661 new ? (new + idx_new) : &tmp,
2662 sizeof(struct sched_domain_attr));
2663 }
2664
2665 /*
2666 * Partition sched domains as specified by the 'ndoms_new'
2667 * cpumasks in the array doms_new[] of cpumasks. This compares
2668 * doms_new[] to the current sched domain partitioning, doms_cur[].
2669 * It destroys each deleted domain and builds each new domain.
2670 *
2671 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2672 * The masks don't intersect (don't overlap.) We should setup one
2673 * sched domain for each mask. CPUs not in any of the cpumasks will
2674 * not be load balanced. If the same cpumask appears both in the
2675 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2676 * it as it is.
2677 *
2678 * The passed in 'doms_new' should be allocated using
2679 * alloc_sched_domains. This routine takes ownership of it and will
2680 * free_sched_domains it when done with it. If the caller failed the
2681 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2682 * and partition_sched_domains() will fallback to the single partition
2683 * 'fallback_doms', it also forces the domains to be rebuilt.
2684 *
2685 * If doms_new == NULL it will be replaced with cpu_online_mask.
2686 * ndoms_new == 0 is a special case for destroying existing domains,
2687 * and it will not create the default domain.
2688 *
2689 * Call with hotplug lock and sched_domains_mutex held
2690 */
partition_sched_domains_locked(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2691 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2692 struct sched_domain_attr *dattr_new)
2693 {
2694 bool __maybe_unused has_eas = false;
2695 int i, j, n;
2696 int new_topology;
2697
2698 lockdep_assert_held(&sched_domains_mutex);
2699
2700 /* Let the architecture update CPU core mappings: */
2701 new_topology = arch_update_cpu_topology();
2702 /* Trigger rebuilding CPU capacity asymmetry data */
2703 if (new_topology)
2704 asym_cpu_capacity_scan();
2705
2706 if (!doms_new) {
2707 WARN_ON_ONCE(dattr_new);
2708 n = 0;
2709 doms_new = alloc_sched_domains(1);
2710 if (doms_new) {
2711 n = 1;
2712 cpumask_and(doms_new[0], cpu_active_mask,
2713 housekeeping_cpumask(HK_TYPE_DOMAIN));
2714 }
2715 } else {
2716 n = ndoms_new;
2717 }
2718
2719 /* Destroy deleted domains: */
2720 for (i = 0; i < ndoms_cur; i++) {
2721 for (j = 0; j < n && !new_topology; j++) {
2722 if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2723 dattrs_equal(dattr_cur, i, dattr_new, j)) {
2724 struct root_domain *rd;
2725
2726 /*
2727 * This domain won't be destroyed and as such
2728 * its dl_bw->total_bw needs to be cleared.
2729 * Tasks contribution will be then recomputed
2730 * in function dl_update_tasks_root_domain(),
2731 * dl_servers contribution in function
2732 * dl_restore_server_root_domain().
2733 */
2734 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2735 dl_clear_root_domain(rd);
2736 goto match1;
2737 }
2738 }
2739 /* No match - a current sched domain not in new doms_new[] */
2740 detach_destroy_domains(doms_cur[i]);
2741 match1:
2742 ;
2743 }
2744
2745 n = ndoms_cur;
2746 if (!doms_new) {
2747 n = 0;
2748 doms_new = &fallback_doms;
2749 cpumask_and(doms_new[0], cpu_active_mask,
2750 housekeeping_cpumask(HK_TYPE_DOMAIN));
2751 }
2752
2753 /* Build new domains: */
2754 for (i = 0; i < ndoms_new; i++) {
2755 for (j = 0; j < n && !new_topology; j++) {
2756 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2757 dattrs_equal(dattr_new, i, dattr_cur, j))
2758 goto match2;
2759 }
2760 /* No match - add a new doms_new */
2761 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2762 match2:
2763 ;
2764 }
2765
2766 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2767 /* Build perf domains: */
2768 for (i = 0; i < ndoms_new; i++) {
2769 for (j = 0; j < n && !sched_energy_update; j++) {
2770 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2771 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2772 has_eas = true;
2773 goto match3;
2774 }
2775 }
2776 /* No match - add perf domains for a new rd */
2777 has_eas |= build_perf_domains(doms_new[i]);
2778 match3:
2779 ;
2780 }
2781 sched_energy_set(has_eas);
2782 #endif
2783
2784 /* Remember the new sched domains: */
2785 if (doms_cur != &fallback_doms)
2786 free_sched_domains(doms_cur, ndoms_cur);
2787
2788 kfree(dattr_cur);
2789 doms_cur = doms_new;
2790 dattr_cur = dattr_new;
2791 ndoms_cur = ndoms_new;
2792
2793 update_sched_domain_debugfs();
2794 dl_rebuild_rd_accounting();
2795 }
2796
2797 /*
2798 * Call with hotplug lock held
2799 */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2800 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2801 struct sched_domain_attr *dattr_new)
2802 {
2803 sched_domains_mutex_lock();
2804 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2805 sched_domains_mutex_unlock();
2806 }
2807