1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _KERNEL_STATS_H
3 #define _KERNEL_STATS_H
4 
5 #ifdef CONFIG_SCHEDSTATS
6 
7 extern struct static_key_false sched_schedstats;
8 
9 /*
10  * Expects runqueue lock to be held for atomicity of update
11  */
12 static inline void
rq_sched_info_arrive(struct rq * rq,unsigned long long delta)13 rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
14 {
15 	if (rq) {
16 		rq->rq_sched_info.run_delay += delta;
17 		rq->rq_sched_info.pcount++;
18 	}
19 }
20 
21 /*
22  * Expects runqueue lock to be held for atomicity of update
23  */
24 static inline void
rq_sched_info_depart(struct rq * rq,unsigned long long delta)25 rq_sched_info_depart(struct rq *rq, unsigned long long delta)
26 {
27 	if (rq)
28 		rq->rq_cpu_time += delta;
29 }
30 
31 static inline void
rq_sched_info_dequeue(struct rq * rq,unsigned long long delta)32 rq_sched_info_dequeue(struct rq *rq, unsigned long long delta)
33 {
34 	if (rq)
35 		rq->rq_sched_info.run_delay += delta;
36 }
37 #define   schedstat_enabled()		static_branch_unlikely(&sched_schedstats)
38 #define __schedstat_inc(var)		do { var++; } while (0)
39 #define   schedstat_inc(var)		do { if (schedstat_enabled()) { var++; } } while (0)
40 #define __schedstat_add(var, amt)	do { var += (amt); } while (0)
41 #define   schedstat_add(var, amt)	do { if (schedstat_enabled()) { var += (amt); } } while (0)
42 #define __schedstat_set(var, val)	do { var = (val); } while (0)
43 #define   schedstat_set(var, val)	do { if (schedstat_enabled()) { var = (val); } } while (0)
44 #define   schedstat_val(var)		(var)
45 #define   schedstat_val_or_zero(var)	((schedstat_enabled()) ? (var) : 0)
46 
47 void __update_stats_wait_start(struct rq *rq, struct task_struct *p,
48 			       struct sched_statistics *stats);
49 
50 void __update_stats_wait_end(struct rq *rq, struct task_struct *p,
51 			     struct sched_statistics *stats);
52 void __update_stats_enqueue_sleeper(struct rq *rq, struct task_struct *p,
53 				    struct sched_statistics *stats);
54 
55 static inline void
check_schedstat_required(void)56 check_schedstat_required(void)
57 {
58 	if (schedstat_enabled())
59 		return;
60 
61 	/* Force schedstat enabled if a dependent tracepoint is active */
62 	if (trace_sched_stat_wait_enabled()    ||
63 	    trace_sched_stat_sleep_enabled()   ||
64 	    trace_sched_stat_iowait_enabled()  ||
65 	    trace_sched_stat_blocked_enabled() ||
66 	    trace_sched_stat_runtime_enabled())
67 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, stat_blocked and stat_runtime require the kernel parameter schedstats=enable or kernel.sched_schedstats=1\n");
68 }
69 
70 #else /* !CONFIG_SCHEDSTATS: */
71 
rq_sched_info_arrive(struct rq * rq,unsigned long long delta)72 static inline void rq_sched_info_arrive  (struct rq *rq, unsigned long long delta) { }
rq_sched_info_dequeue(struct rq * rq,unsigned long long delta)73 static inline void rq_sched_info_dequeue(struct rq *rq, unsigned long long delta) { }
rq_sched_info_depart(struct rq * rq,unsigned long long delta)74 static inline void rq_sched_info_depart  (struct rq *rq, unsigned long long delta) { }
75 # define   schedstat_enabled()		0
76 # define __schedstat_inc(var)		do { } while (0)
77 # define   schedstat_inc(var)		do { } while (0)
78 # define __schedstat_add(var, amt)	do { } while (0)
79 # define   schedstat_add(var, amt)	do { } while (0)
80 # define __schedstat_set(var, val)	do { } while (0)
81 # define   schedstat_set(var, val)	do { } while (0)
82 # define   schedstat_val(var)		0
83 # define   schedstat_val_or_zero(var)	0
84 
85 # define __update_stats_wait_start(rq, p, stats)       do { } while (0)
86 # define __update_stats_wait_end(rq, p, stats)         do { } while (0)
87 # define __update_stats_enqueue_sleeper(rq, p, stats)  do { } while (0)
88 # define check_schedstat_required()                    do { } while (0)
89 
90 #endif /* CONFIG_SCHEDSTATS */
91 
92 #ifdef CONFIG_FAIR_GROUP_SCHED
93 struct sched_entity_stats {
94 	struct sched_entity     se;
95 	struct sched_statistics stats;
96 } __no_randomize_layout;
97 #endif
98 
99 static inline struct sched_statistics *
__schedstats_from_se(struct sched_entity * se)100 __schedstats_from_se(struct sched_entity *se)
101 {
102 #ifdef CONFIG_FAIR_GROUP_SCHED
103 	if (!entity_is_task(se))
104 		return &container_of(se, struct sched_entity_stats, se)->stats;
105 #endif
106 	return &task_of(se)->stats;
107 }
108 
109 #ifdef CONFIG_PSI
110 void psi_task_change(struct task_struct *task, int clear, int set);
111 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
112 		     bool sleep);
113 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
114 void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev);
115 #else
psi_account_irqtime(struct rq * rq,struct task_struct * curr,struct task_struct * prev)116 static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
117 				       struct task_struct *prev) {}
118 #endif /*CONFIG_IRQ_TIME_ACCOUNTING */
119 /*
120  * PSI tracks state that persists across sleeps, such as iowaits and
121  * memory stalls. As a result, it has to distinguish between sleeps,
122  * where a task's runnable state changes, and migrations, where a task
123  * and its runnable state are being moved between CPUs and runqueues.
124  *
125  * A notable case is a task whose dequeue is delayed. PSI considers
126  * those sleeping, but because they are still on the runqueue they can
127  * go through migration requeues. In this case, *sleeping* states need
128  * to be transferred.
129  */
psi_enqueue(struct task_struct * p,int flags)130 static inline void psi_enqueue(struct task_struct *p, int flags)
131 {
132 	int clear = 0, set = 0;
133 
134 	if (static_branch_likely(&psi_disabled))
135 		return;
136 
137 	/* Same runqueue, nothing changed for psi */
138 	if (flags & ENQUEUE_RESTORE)
139 		return;
140 
141 	/* psi_sched_switch() will handle the flags */
142 	if (task_on_cpu(task_rq(p), p))
143 		return;
144 
145 	if (p->se.sched_delayed) {
146 		/* CPU migration of "sleeping" task */
147 		SCHED_WARN_ON(!(flags & ENQUEUE_MIGRATED));
148 		if (p->in_memstall)
149 			set |= TSK_MEMSTALL;
150 		if (p->in_iowait)
151 			set |= TSK_IOWAIT;
152 	} else if (flags & ENQUEUE_MIGRATED) {
153 		/* CPU migration of runnable task */
154 		set = TSK_RUNNING;
155 		if (p->in_memstall)
156 			set |= TSK_MEMSTALL | TSK_MEMSTALL_RUNNING;
157 	} else {
158 		/* Wakeup of new or sleeping task */
159 		if (p->in_iowait)
160 			clear |= TSK_IOWAIT;
161 		set = TSK_RUNNING;
162 		if (p->in_memstall)
163 			set |= TSK_MEMSTALL_RUNNING;
164 	}
165 
166 	psi_task_change(p, clear, set);
167 }
168 
psi_dequeue(struct task_struct * p,int flags)169 static inline void psi_dequeue(struct task_struct *p, int flags)
170 {
171 	if (static_branch_likely(&psi_disabled))
172 		return;
173 
174 	/* Same runqueue, nothing changed for psi */
175 	if (flags & DEQUEUE_SAVE)
176 		return;
177 
178 	/*
179 	 * A voluntary sleep is a dequeue followed by a task switch. To
180 	 * avoid walking all ancestors twice, psi_task_switch() handles
181 	 * TSK_RUNNING and TSK_IOWAIT for us when it moves TSK_ONCPU.
182 	 * Do nothing here.
183 	 */
184 	if (flags & DEQUEUE_SLEEP)
185 		return;
186 
187 	/*
188 	 * When migrating a task to another CPU, clear all psi
189 	 * state. The enqueue callback above will work it out.
190 	 */
191 	psi_task_change(p, p->psi_flags, 0);
192 }
193 
psi_ttwu_dequeue(struct task_struct * p)194 static inline void psi_ttwu_dequeue(struct task_struct *p)
195 {
196 	if (static_branch_likely(&psi_disabled))
197 		return;
198 	/*
199 	 * Is the task being migrated during a wakeup? Make sure to
200 	 * deregister its sleep-persistent psi states from the old
201 	 * queue, and let psi_enqueue() know it has to requeue.
202 	 */
203 	if (unlikely(p->psi_flags)) {
204 		struct rq_flags rf;
205 		struct rq *rq;
206 
207 		rq = __task_rq_lock(p, &rf);
208 		psi_task_change(p, p->psi_flags, 0);
209 		__task_rq_unlock(rq, &rf);
210 	}
211 }
212 
psi_sched_switch(struct task_struct * prev,struct task_struct * next,bool sleep)213 static inline void psi_sched_switch(struct task_struct *prev,
214 				    struct task_struct *next,
215 				    bool sleep)
216 {
217 	if (static_branch_likely(&psi_disabled))
218 		return;
219 
220 	psi_task_switch(prev, next, sleep);
221 }
222 
223 #else /* CONFIG_PSI */
psi_enqueue(struct task_struct * p,bool migrate)224 static inline void psi_enqueue(struct task_struct *p, bool migrate) {}
psi_dequeue(struct task_struct * p,bool migrate)225 static inline void psi_dequeue(struct task_struct *p, bool migrate) {}
psi_ttwu_dequeue(struct task_struct * p)226 static inline void psi_ttwu_dequeue(struct task_struct *p) {}
psi_sched_switch(struct task_struct * prev,struct task_struct * next,bool sleep)227 static inline void psi_sched_switch(struct task_struct *prev,
228 				    struct task_struct *next,
229 				    bool sleep) {}
psi_account_irqtime(struct rq * rq,struct task_struct * curr,struct task_struct * prev)230 static inline void psi_account_irqtime(struct rq *rq, struct task_struct *curr,
231 				       struct task_struct *prev) {}
232 #endif /* CONFIG_PSI */
233 
234 #ifdef CONFIG_SCHED_INFO
235 /*
236  * We are interested in knowing how long it was from the *first* time a
237  * task was queued to the time that it finally hit a CPU, we call this routine
238  * from dequeue_task() to account for possible rq->clock skew across CPUs. The
239  * delta taken on each CPU would annul the skew.
240  */
sched_info_dequeue(struct rq * rq,struct task_struct * t)241 static inline void sched_info_dequeue(struct rq *rq, struct task_struct *t)
242 {
243 	unsigned long long delta = 0;
244 
245 	if (!t->sched_info.last_queued)
246 		return;
247 
248 	delta = rq_clock(rq) - t->sched_info.last_queued;
249 	t->sched_info.last_queued = 0;
250 	t->sched_info.run_delay += delta;
251 	if (delta > t->sched_info.max_run_delay)
252 		t->sched_info.max_run_delay = delta;
253 	if (delta && (!t->sched_info.min_run_delay || delta < t->sched_info.min_run_delay))
254 		t->sched_info.min_run_delay = delta;
255 	rq_sched_info_dequeue(rq, delta);
256 }
257 
258 /*
259  * Called when a task finally hits the CPU.  We can now calculate how
260  * long it was waiting to run.  We also note when it began so that we
261  * can keep stats on how long its time-slice is.
262  */
sched_info_arrive(struct rq * rq,struct task_struct * t)263 static void sched_info_arrive(struct rq *rq, struct task_struct *t)
264 {
265 	unsigned long long now, delta = 0;
266 
267 	if (!t->sched_info.last_queued)
268 		return;
269 
270 	now = rq_clock(rq);
271 	delta = now - t->sched_info.last_queued;
272 	t->sched_info.last_queued = 0;
273 	t->sched_info.run_delay += delta;
274 	t->sched_info.last_arrival = now;
275 	t->sched_info.pcount++;
276 	if (delta > t->sched_info.max_run_delay)
277 		t->sched_info.max_run_delay = delta;
278 	if (delta && (!t->sched_info.min_run_delay || delta < t->sched_info.min_run_delay))
279 		t->sched_info.min_run_delay = delta;
280 
281 	rq_sched_info_arrive(rq, delta);
282 }
283 
284 /*
285  * This function is only called from enqueue_task(), but also only updates
286  * the timestamp if it is already not set.  It's assumed that
287  * sched_info_dequeue() will clear that stamp when appropriate.
288  */
sched_info_enqueue(struct rq * rq,struct task_struct * t)289 static inline void sched_info_enqueue(struct rq *rq, struct task_struct *t)
290 {
291 	if (!t->sched_info.last_queued)
292 		t->sched_info.last_queued = rq_clock(rq);
293 }
294 
295 /*
296  * Called when a process ceases being the active-running process involuntarily
297  * due, typically, to expiring its time slice (this may also be called when
298  * switching to the idle task).  Now we can calculate how long we ran.
299  * Also, if the process is still in the TASK_RUNNING state, call
300  * sched_info_enqueue() to mark that it has now again started waiting on
301  * the runqueue.
302  */
sched_info_depart(struct rq * rq,struct task_struct * t)303 static inline void sched_info_depart(struct rq *rq, struct task_struct *t)
304 {
305 	unsigned long long delta = rq_clock(rq) - t->sched_info.last_arrival;
306 
307 	rq_sched_info_depart(rq, delta);
308 
309 	if (task_is_running(t))
310 		sched_info_enqueue(rq, t);
311 }
312 
313 /*
314  * Called when tasks are switched involuntarily due, typically, to expiring
315  * their time slice.  (This may also be called when switching to or from
316  * the idle task.)  We are only called when prev != next.
317  */
318 static inline void
sched_info_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)319 sched_info_switch(struct rq *rq, struct task_struct *prev, struct task_struct *next)
320 {
321 	/*
322 	 * prev now departs the CPU.  It's not interesting to record
323 	 * stats about how efficient we were at scheduling the idle
324 	 * process, however.
325 	 */
326 	if (prev != rq->idle)
327 		sched_info_depart(rq, prev);
328 
329 	if (next != rq->idle)
330 		sched_info_arrive(rq, next);
331 }
332 
333 #else /* !CONFIG_SCHED_INFO: */
334 # define sched_info_enqueue(rq, t)	do { } while (0)
335 # define sched_info_dequeue(rq, t)	do { } while (0)
336 # define sched_info_switch(rq, t, next)	do { } while (0)
337 #endif /* CONFIG_SCHED_INFO */
338 
339 #endif /* _KERNEL_STATS_H */
340