1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Scalability test comparing RCU vs other mechanisms
4 // for acquiring references on objects.
5 //
6 // Copyright (C) Google, 2020.
7 //
8 // Author: Joel Fernandes <[email protected]>
9
10 #define pr_fmt(fmt) fmt
11
12 #include <linux/atomic.h>
13 #include <linux/bitops.h>
14 #include <linux/completion.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/interrupt.h>
20 #include <linux/kthread.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/notifier.h>
26 #include <linux/percpu.h>
27 #include <linux/rcupdate.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/reboot.h>
30 #include <linux/sched.h>
31 #include <linux/seq_buf.h>
32 #include <linux/spinlock.h>
33 #include <linux/smp.h>
34 #include <linux/stat.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/torture.h>
38 #include <linux/types.h>
39 #include <linux/sched/clock.h>
40
41 #include "rcu.h"
42
43 #define SCALE_FLAG "-ref-scale: "
44
45 #define SCALEOUT(s, x...) \
46 pr_alert("%s" SCALE_FLAG s, scale_type, ## x)
47
48 #define VERBOSE_SCALEOUT(s, x...) \
49 do { \
50 if (verbose) \
51 pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \
52 } while (0)
53
54 static atomic_t verbose_batch_ctr;
55
56 #define VERBOSE_SCALEOUT_BATCH(s, x...) \
57 do { \
58 if (verbose && \
59 (verbose_batched <= 0 || \
60 !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) { \
61 schedule_timeout_uninterruptible(1); \
62 pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \
63 } \
64 } while (0)
65
66 #define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x)
67
68 MODULE_DESCRIPTION("Scalability test for object reference mechanisms");
69 MODULE_LICENSE("GPL");
70 MODULE_AUTHOR("Joel Fernandes (Google) <[email protected]>");
71
72 static char *scale_type = "rcu";
73 module_param(scale_type, charp, 0444);
74 MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
75
76 torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
77 torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s");
78
79 // Number of seconds to extend warm-up and cool-down for multiple guest OSes
80 torture_param(long, guest_os_delay, 0,
81 "Number of seconds to extend warm-up/cool-down for multiple guest OSes.");
82 // Wait until there are multiple CPUs before starting test.
83 torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0,
84 "Holdoff time before test start (s)");
85 // Number of typesafe_lookup structures, that is, the degree of concurrency.
86 torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures.");
87 // Number of loops per experiment, all readers execute operations concurrently.
88 torture_param(long, loops, 10000, "Number of loops per experiment.");
89 // Number of readers, with -1 defaulting to about 75% of the CPUs.
90 torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs.");
91 // Number of runs.
92 torture_param(int, nruns, 30, "Number of experiments to run.");
93 // Reader delay in nanoseconds, 0 for no delay.
94 torture_param(int, readdelay, 0, "Read-side delay in nanoseconds.");
95
96 #ifdef MODULE
97 # define REFSCALE_SHUTDOWN 0
98 #else
99 # define REFSCALE_SHUTDOWN 1
100 #endif
101
102 torture_param(bool, shutdown, REFSCALE_SHUTDOWN,
103 "Shutdown at end of scalability tests.");
104
105 struct reader_task {
106 struct task_struct *task;
107 int start_reader;
108 wait_queue_head_t wq;
109 u64 last_duration_ns;
110 };
111
112 static struct task_struct *shutdown_task;
113 static wait_queue_head_t shutdown_wq;
114
115 static struct task_struct *main_task;
116 static wait_queue_head_t main_wq;
117 static int shutdown_start;
118
119 static struct reader_task *reader_tasks;
120
121 // Number of readers that are part of the current experiment.
122 static atomic_t nreaders_exp;
123
124 // Use to wait for all threads to start.
125 static atomic_t n_init;
126 static atomic_t n_started;
127 static atomic_t n_warmedup;
128 static atomic_t n_cooleddown;
129
130 // Track which experiment is currently running.
131 static int exp_idx;
132
133 // Operations vector for selecting different types of tests.
134 struct ref_scale_ops {
135 bool (*init)(void);
136 void (*cleanup)(void);
137 void (*readsection)(const int nloops);
138 void (*delaysection)(const int nloops, const int udl, const int ndl);
139 const char *name;
140 };
141
142 static const struct ref_scale_ops *cur_ops;
143
un_delay(const int udl,const int ndl)144 static void un_delay(const int udl, const int ndl)
145 {
146 if (udl)
147 udelay(udl);
148 if (ndl)
149 ndelay(ndl);
150 }
151
ref_rcu_read_section(const int nloops)152 static void ref_rcu_read_section(const int nloops)
153 {
154 int i;
155
156 for (i = nloops; i >= 0; i--) {
157 rcu_read_lock();
158 rcu_read_unlock();
159 }
160 }
161
ref_rcu_delay_section(const int nloops,const int udl,const int ndl)162 static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl)
163 {
164 int i;
165
166 for (i = nloops; i >= 0; i--) {
167 rcu_read_lock();
168 un_delay(udl, ndl);
169 rcu_read_unlock();
170 }
171 }
172
rcu_sync_scale_init(void)173 static bool rcu_sync_scale_init(void)
174 {
175 return true;
176 }
177
178 static const struct ref_scale_ops rcu_ops = {
179 .init = rcu_sync_scale_init,
180 .readsection = ref_rcu_read_section,
181 .delaysection = ref_rcu_delay_section,
182 .name = "rcu"
183 };
184
185 // Definitions for SRCU ref scale testing.
186 DEFINE_STATIC_SRCU(srcu_refctl_scale);
187 static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale;
188
srcu_ref_scale_read_section(const int nloops)189 static void srcu_ref_scale_read_section(const int nloops)
190 {
191 int i;
192 int idx;
193
194 for (i = nloops; i >= 0; i--) {
195 idx = srcu_read_lock(srcu_ctlp);
196 srcu_read_unlock(srcu_ctlp, idx);
197 }
198 }
199
srcu_ref_scale_delay_section(const int nloops,const int udl,const int ndl)200 static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
201 {
202 int i;
203 int idx;
204
205 for (i = nloops; i >= 0; i--) {
206 idx = srcu_read_lock(srcu_ctlp);
207 un_delay(udl, ndl);
208 srcu_read_unlock(srcu_ctlp, idx);
209 }
210 }
211
212 static const struct ref_scale_ops srcu_ops = {
213 .init = rcu_sync_scale_init,
214 .readsection = srcu_ref_scale_read_section,
215 .delaysection = srcu_ref_scale_delay_section,
216 .name = "srcu"
217 };
218
srcu_lite_ref_scale_read_section(const int nloops)219 static void srcu_lite_ref_scale_read_section(const int nloops)
220 {
221 int i;
222 int idx;
223
224 for (i = nloops; i >= 0; i--) {
225 idx = srcu_read_lock_lite(srcu_ctlp);
226 srcu_read_unlock_lite(srcu_ctlp, idx);
227 }
228 }
229
srcu_lite_ref_scale_delay_section(const int nloops,const int udl,const int ndl)230 static void srcu_lite_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
231 {
232 int i;
233 int idx;
234
235 for (i = nloops; i >= 0; i--) {
236 idx = srcu_read_lock_lite(srcu_ctlp);
237 un_delay(udl, ndl);
238 srcu_read_unlock_lite(srcu_ctlp, idx);
239 }
240 }
241
242 static const struct ref_scale_ops srcu_lite_ops = {
243 .init = rcu_sync_scale_init,
244 .readsection = srcu_lite_ref_scale_read_section,
245 .delaysection = srcu_lite_ref_scale_delay_section,
246 .name = "srcu-lite"
247 };
248
249 #ifdef CONFIG_TASKS_RCU
250
251 // Definitions for RCU Tasks ref scale testing: Empty read markers.
252 // These definitions also work for RCU Rude readers.
rcu_tasks_ref_scale_read_section(const int nloops)253 static void rcu_tasks_ref_scale_read_section(const int nloops)
254 {
255 int i;
256
257 for (i = nloops; i >= 0; i--)
258 continue;
259 }
260
rcu_tasks_ref_scale_delay_section(const int nloops,const int udl,const int ndl)261 static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
262 {
263 int i;
264
265 for (i = nloops; i >= 0; i--)
266 un_delay(udl, ndl);
267 }
268
269 static const struct ref_scale_ops rcu_tasks_ops = {
270 .init = rcu_sync_scale_init,
271 .readsection = rcu_tasks_ref_scale_read_section,
272 .delaysection = rcu_tasks_ref_scale_delay_section,
273 .name = "rcu-tasks"
274 };
275
276 #define RCU_TASKS_OPS &rcu_tasks_ops,
277
278 #else // #ifdef CONFIG_TASKS_RCU
279
280 #define RCU_TASKS_OPS
281
282 #endif // #else // #ifdef CONFIG_TASKS_RCU
283
284 #ifdef CONFIG_TASKS_TRACE_RCU
285
286 // Definitions for RCU Tasks Trace ref scale testing.
rcu_trace_ref_scale_read_section(const int nloops)287 static void rcu_trace_ref_scale_read_section(const int nloops)
288 {
289 int i;
290
291 for (i = nloops; i >= 0; i--) {
292 rcu_read_lock_trace();
293 rcu_read_unlock_trace();
294 }
295 }
296
rcu_trace_ref_scale_delay_section(const int nloops,const int udl,const int ndl)297 static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
298 {
299 int i;
300
301 for (i = nloops; i >= 0; i--) {
302 rcu_read_lock_trace();
303 un_delay(udl, ndl);
304 rcu_read_unlock_trace();
305 }
306 }
307
308 static const struct ref_scale_ops rcu_trace_ops = {
309 .init = rcu_sync_scale_init,
310 .readsection = rcu_trace_ref_scale_read_section,
311 .delaysection = rcu_trace_ref_scale_delay_section,
312 .name = "rcu-trace"
313 };
314
315 #define RCU_TRACE_OPS &rcu_trace_ops,
316
317 #else // #ifdef CONFIG_TASKS_TRACE_RCU
318
319 #define RCU_TRACE_OPS
320
321 #endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
322
323 // Definitions for reference count
324 static atomic_t refcnt;
325
ref_refcnt_section(const int nloops)326 static void ref_refcnt_section(const int nloops)
327 {
328 int i;
329
330 for (i = nloops; i >= 0; i--) {
331 atomic_inc(&refcnt);
332 atomic_dec(&refcnt);
333 }
334 }
335
ref_refcnt_delay_section(const int nloops,const int udl,const int ndl)336 static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl)
337 {
338 int i;
339
340 for (i = nloops; i >= 0; i--) {
341 atomic_inc(&refcnt);
342 un_delay(udl, ndl);
343 atomic_dec(&refcnt);
344 }
345 }
346
347 static const struct ref_scale_ops refcnt_ops = {
348 .init = rcu_sync_scale_init,
349 .readsection = ref_refcnt_section,
350 .delaysection = ref_refcnt_delay_section,
351 .name = "refcnt"
352 };
353
354 // Definitions for rwlock
355 static rwlock_t test_rwlock;
356
ref_rwlock_init(void)357 static bool ref_rwlock_init(void)
358 {
359 rwlock_init(&test_rwlock);
360 return true;
361 }
362
ref_rwlock_section(const int nloops)363 static void ref_rwlock_section(const int nloops)
364 {
365 int i;
366
367 for (i = nloops; i >= 0; i--) {
368 read_lock(&test_rwlock);
369 read_unlock(&test_rwlock);
370 }
371 }
372
ref_rwlock_delay_section(const int nloops,const int udl,const int ndl)373 static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl)
374 {
375 int i;
376
377 for (i = nloops; i >= 0; i--) {
378 read_lock(&test_rwlock);
379 un_delay(udl, ndl);
380 read_unlock(&test_rwlock);
381 }
382 }
383
384 static const struct ref_scale_ops rwlock_ops = {
385 .init = ref_rwlock_init,
386 .readsection = ref_rwlock_section,
387 .delaysection = ref_rwlock_delay_section,
388 .name = "rwlock"
389 };
390
391 // Definitions for rwsem
392 static struct rw_semaphore test_rwsem;
393
ref_rwsem_init(void)394 static bool ref_rwsem_init(void)
395 {
396 init_rwsem(&test_rwsem);
397 return true;
398 }
399
ref_rwsem_section(const int nloops)400 static void ref_rwsem_section(const int nloops)
401 {
402 int i;
403
404 for (i = nloops; i >= 0; i--) {
405 down_read(&test_rwsem);
406 up_read(&test_rwsem);
407 }
408 }
409
ref_rwsem_delay_section(const int nloops,const int udl,const int ndl)410 static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl)
411 {
412 int i;
413
414 for (i = nloops; i >= 0; i--) {
415 down_read(&test_rwsem);
416 un_delay(udl, ndl);
417 up_read(&test_rwsem);
418 }
419 }
420
421 static const struct ref_scale_ops rwsem_ops = {
422 .init = ref_rwsem_init,
423 .readsection = ref_rwsem_section,
424 .delaysection = ref_rwsem_delay_section,
425 .name = "rwsem"
426 };
427
428 // Definitions for global spinlock
429 static DEFINE_RAW_SPINLOCK(test_lock);
430
ref_lock_section(const int nloops)431 static void ref_lock_section(const int nloops)
432 {
433 int i;
434
435 preempt_disable();
436 for (i = nloops; i >= 0; i--) {
437 raw_spin_lock(&test_lock);
438 raw_spin_unlock(&test_lock);
439 }
440 preempt_enable();
441 }
442
ref_lock_delay_section(const int nloops,const int udl,const int ndl)443 static void ref_lock_delay_section(const int nloops, const int udl, const int ndl)
444 {
445 int i;
446
447 preempt_disable();
448 for (i = nloops; i >= 0; i--) {
449 raw_spin_lock(&test_lock);
450 un_delay(udl, ndl);
451 raw_spin_unlock(&test_lock);
452 }
453 preempt_enable();
454 }
455
456 static const struct ref_scale_ops lock_ops = {
457 .readsection = ref_lock_section,
458 .delaysection = ref_lock_delay_section,
459 .name = "lock"
460 };
461
462 // Definitions for global irq-save spinlock
463
ref_lock_irq_section(const int nloops)464 static void ref_lock_irq_section(const int nloops)
465 {
466 unsigned long flags;
467 int i;
468
469 preempt_disable();
470 for (i = nloops; i >= 0; i--) {
471 raw_spin_lock_irqsave(&test_lock, flags);
472 raw_spin_unlock_irqrestore(&test_lock, flags);
473 }
474 preempt_enable();
475 }
476
ref_lock_irq_delay_section(const int nloops,const int udl,const int ndl)477 static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl)
478 {
479 unsigned long flags;
480 int i;
481
482 preempt_disable();
483 for (i = nloops; i >= 0; i--) {
484 raw_spin_lock_irqsave(&test_lock, flags);
485 un_delay(udl, ndl);
486 raw_spin_unlock_irqrestore(&test_lock, flags);
487 }
488 preempt_enable();
489 }
490
491 static const struct ref_scale_ops lock_irq_ops = {
492 .readsection = ref_lock_irq_section,
493 .delaysection = ref_lock_irq_delay_section,
494 .name = "lock-irq"
495 };
496
497 // Definitions acquire-release.
498 static DEFINE_PER_CPU(unsigned long, test_acqrel);
499
ref_acqrel_section(const int nloops)500 static void ref_acqrel_section(const int nloops)
501 {
502 unsigned long x;
503 int i;
504
505 preempt_disable();
506 for (i = nloops; i >= 0; i--) {
507 x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
508 smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
509 }
510 preempt_enable();
511 }
512
ref_acqrel_delay_section(const int nloops,const int udl,const int ndl)513 static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl)
514 {
515 unsigned long x;
516 int i;
517
518 preempt_disable();
519 for (i = nloops; i >= 0; i--) {
520 x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
521 un_delay(udl, ndl);
522 smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
523 }
524 preempt_enable();
525 }
526
527 static const struct ref_scale_ops acqrel_ops = {
528 .readsection = ref_acqrel_section,
529 .delaysection = ref_acqrel_delay_section,
530 .name = "acqrel"
531 };
532
533 static volatile u64 stopopts;
534
ref_sched_clock_section(const int nloops)535 static void ref_sched_clock_section(const int nloops)
536 {
537 u64 x = 0;
538 int i;
539
540 preempt_disable();
541 for (i = nloops; i >= 0; i--)
542 x += sched_clock();
543 preempt_enable();
544 stopopts = x;
545 }
546
ref_sched_clock_delay_section(const int nloops,const int udl,const int ndl)547 static void ref_sched_clock_delay_section(const int nloops, const int udl, const int ndl)
548 {
549 u64 x = 0;
550 int i;
551
552 preempt_disable();
553 for (i = nloops; i >= 0; i--) {
554 x += sched_clock();
555 un_delay(udl, ndl);
556 }
557 preempt_enable();
558 stopopts = x;
559 }
560
561 static const struct ref_scale_ops sched_clock_ops = {
562 .readsection = ref_sched_clock_section,
563 .delaysection = ref_sched_clock_delay_section,
564 .name = "sched-clock"
565 };
566
567
ref_clock_section(const int nloops)568 static void ref_clock_section(const int nloops)
569 {
570 u64 x = 0;
571 int i;
572
573 preempt_disable();
574 for (i = nloops; i >= 0; i--)
575 x += ktime_get_real_fast_ns();
576 preempt_enable();
577 stopopts = x;
578 }
579
ref_clock_delay_section(const int nloops,const int udl,const int ndl)580 static void ref_clock_delay_section(const int nloops, const int udl, const int ndl)
581 {
582 u64 x = 0;
583 int i;
584
585 preempt_disable();
586 for (i = nloops; i >= 0; i--) {
587 x += ktime_get_real_fast_ns();
588 un_delay(udl, ndl);
589 }
590 preempt_enable();
591 stopopts = x;
592 }
593
594 static const struct ref_scale_ops clock_ops = {
595 .readsection = ref_clock_section,
596 .delaysection = ref_clock_delay_section,
597 .name = "clock"
598 };
599
ref_jiffies_section(const int nloops)600 static void ref_jiffies_section(const int nloops)
601 {
602 u64 x = 0;
603 int i;
604
605 preempt_disable();
606 for (i = nloops; i >= 0; i--)
607 x += jiffies;
608 preempt_enable();
609 stopopts = x;
610 }
611
ref_jiffies_delay_section(const int nloops,const int udl,const int ndl)612 static void ref_jiffies_delay_section(const int nloops, const int udl, const int ndl)
613 {
614 u64 x = 0;
615 int i;
616
617 preempt_disable();
618 for (i = nloops; i >= 0; i--) {
619 x += jiffies;
620 un_delay(udl, ndl);
621 }
622 preempt_enable();
623 stopopts = x;
624 }
625
626 static const struct ref_scale_ops jiffies_ops = {
627 .readsection = ref_jiffies_section,
628 .delaysection = ref_jiffies_delay_section,
629 .name = "jiffies"
630 };
631
632 ////////////////////////////////////////////////////////////////////////
633 //
634 // Methods leveraging SLAB_TYPESAFE_BY_RCU.
635 //
636
637 // Item to look up in a typesafe manner. Array of pointers to these.
638 struct refscale_typesafe {
639 atomic_t rts_refctr; // Used by all flavors
640 spinlock_t rts_lock;
641 seqlock_t rts_seqlock;
642 unsigned int a;
643 unsigned int b;
644 };
645
646 static struct kmem_cache *typesafe_kmem_cachep;
647 static struct refscale_typesafe **rtsarray;
648 static long rtsarray_size;
649 static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand);
650 static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start);
651 static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start);
652
653 // Conditionally acquire an explicit in-structure reference count.
typesafe_ref_acquire(struct refscale_typesafe * rtsp,unsigned int * start)654 static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
655 {
656 return atomic_inc_not_zero(&rtsp->rts_refctr);
657 }
658
659 // Unconditionally release an explicit in-structure reference count.
typesafe_ref_release(struct refscale_typesafe * rtsp,unsigned int start)660 static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start)
661 {
662 if (!atomic_dec_return(&rtsp->rts_refctr)) {
663 WRITE_ONCE(rtsp->a, rtsp->a + 1);
664 kmem_cache_free(typesafe_kmem_cachep, rtsp);
665 }
666 return true;
667 }
668
669 // Unconditionally acquire an explicit in-structure spinlock.
typesafe_lock_acquire(struct refscale_typesafe * rtsp,unsigned int * start)670 static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
671 {
672 spin_lock(&rtsp->rts_lock);
673 return true;
674 }
675
676 // Unconditionally release an explicit in-structure spinlock.
typesafe_lock_release(struct refscale_typesafe * rtsp,unsigned int start)677 static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start)
678 {
679 spin_unlock(&rtsp->rts_lock);
680 return true;
681 }
682
683 // Unconditionally acquire an explicit in-structure sequence lock.
typesafe_seqlock_acquire(struct refscale_typesafe * rtsp,unsigned int * start)684 static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
685 {
686 *start = read_seqbegin(&rtsp->rts_seqlock);
687 return true;
688 }
689
690 // Conditionally release an explicit in-structure sequence lock. Return
691 // true if this release was successful, that is, if no retry is required.
typesafe_seqlock_release(struct refscale_typesafe * rtsp,unsigned int start)692 static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start)
693 {
694 return !read_seqretry(&rtsp->rts_seqlock, start);
695 }
696
697 // Do a read-side critical section with the specified delay in
698 // microseconds and nanoseconds inserted so as to increase probability
699 // of failure.
typesafe_delay_section(const int nloops,const int udl,const int ndl)700 static void typesafe_delay_section(const int nloops, const int udl, const int ndl)
701 {
702 unsigned int a;
703 unsigned int b;
704 int i;
705 long idx;
706 struct refscale_typesafe *rtsp;
707 unsigned int start;
708
709 for (i = nloops; i >= 0; i--) {
710 preempt_disable();
711 idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size;
712 preempt_enable();
713 retry:
714 rcu_read_lock();
715 rtsp = rcu_dereference(rtsarray[idx]);
716 a = READ_ONCE(rtsp->a);
717 if (!rts_acquire(rtsp, &start)) {
718 rcu_read_unlock();
719 goto retry;
720 }
721 if (a != READ_ONCE(rtsp->a)) {
722 (void)rts_release(rtsp, start);
723 rcu_read_unlock();
724 goto retry;
725 }
726 un_delay(udl, ndl);
727 b = READ_ONCE(rtsp->a);
728 // Remember, seqlock read-side release can fail.
729 if (!rts_release(rtsp, start)) {
730 rcu_read_unlock();
731 goto retry;
732 }
733 WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b);
734 b = rtsp->b;
735 rcu_read_unlock();
736 WARN_ON_ONCE(a * a != b);
737 }
738 }
739
740 // Because the acquisition and release methods are expensive, there
741 // is no point in optimizing away the un_delay() function's two checks.
742 // Thus simply define typesafe_read_section() as a simple wrapper around
743 // typesafe_delay_section().
typesafe_read_section(const int nloops)744 static void typesafe_read_section(const int nloops)
745 {
746 typesafe_delay_section(nloops, 0, 0);
747 }
748
749 // Allocate and initialize one refscale_typesafe structure.
typesafe_alloc_one(void)750 static struct refscale_typesafe *typesafe_alloc_one(void)
751 {
752 struct refscale_typesafe *rtsp;
753
754 rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL);
755 if (!rtsp)
756 return NULL;
757 atomic_set(&rtsp->rts_refctr, 1);
758 WRITE_ONCE(rtsp->a, rtsp->a + 1);
759 WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a);
760 return rtsp;
761 }
762
763 // Slab-allocator constructor for refscale_typesafe structures created
764 // out of a new slab of system memory.
refscale_typesafe_ctor(void * rtsp_in)765 static void refscale_typesafe_ctor(void *rtsp_in)
766 {
767 struct refscale_typesafe *rtsp = rtsp_in;
768
769 spin_lock_init(&rtsp->rts_lock);
770 seqlock_init(&rtsp->rts_seqlock);
771 preempt_disable();
772 rtsp->a = torture_random(this_cpu_ptr(&refscale_rand));
773 preempt_enable();
774 }
775
776 static const struct ref_scale_ops typesafe_ref_ops;
777 static const struct ref_scale_ops typesafe_lock_ops;
778 static const struct ref_scale_ops typesafe_seqlock_ops;
779
780 // Initialize for a typesafe test.
typesafe_init(void)781 static bool typesafe_init(void)
782 {
783 long idx;
784 long si = lookup_instances;
785
786 typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe",
787 sizeof(struct refscale_typesafe), sizeof(void *),
788 SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor);
789 if (!typesafe_kmem_cachep)
790 return false;
791 if (si < 0)
792 si = -si * nr_cpu_ids;
793 else if (si == 0)
794 si = nr_cpu_ids;
795 rtsarray_size = si;
796 rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL);
797 if (!rtsarray)
798 return false;
799 for (idx = 0; idx < rtsarray_size; idx++) {
800 rtsarray[idx] = typesafe_alloc_one();
801 if (!rtsarray[idx])
802 return false;
803 }
804 if (cur_ops == &typesafe_ref_ops) {
805 rts_acquire = typesafe_ref_acquire;
806 rts_release = typesafe_ref_release;
807 } else if (cur_ops == &typesafe_lock_ops) {
808 rts_acquire = typesafe_lock_acquire;
809 rts_release = typesafe_lock_release;
810 } else if (cur_ops == &typesafe_seqlock_ops) {
811 rts_acquire = typesafe_seqlock_acquire;
812 rts_release = typesafe_seqlock_release;
813 } else {
814 WARN_ON_ONCE(1);
815 return false;
816 }
817 return true;
818 }
819
820 // Clean up after a typesafe test.
typesafe_cleanup(void)821 static void typesafe_cleanup(void)
822 {
823 long idx;
824
825 if (rtsarray) {
826 for (idx = 0; idx < rtsarray_size; idx++)
827 kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]);
828 kfree(rtsarray);
829 rtsarray = NULL;
830 rtsarray_size = 0;
831 }
832 kmem_cache_destroy(typesafe_kmem_cachep);
833 typesafe_kmem_cachep = NULL;
834 rts_acquire = NULL;
835 rts_release = NULL;
836 }
837
838 // The typesafe_init() function distinguishes these structures by address.
839 static const struct ref_scale_ops typesafe_ref_ops = {
840 .init = typesafe_init,
841 .cleanup = typesafe_cleanup,
842 .readsection = typesafe_read_section,
843 .delaysection = typesafe_delay_section,
844 .name = "typesafe_ref"
845 };
846
847 static const struct ref_scale_ops typesafe_lock_ops = {
848 .init = typesafe_init,
849 .cleanup = typesafe_cleanup,
850 .readsection = typesafe_read_section,
851 .delaysection = typesafe_delay_section,
852 .name = "typesafe_lock"
853 };
854
855 static const struct ref_scale_ops typesafe_seqlock_ops = {
856 .init = typesafe_init,
857 .cleanup = typesafe_cleanup,
858 .readsection = typesafe_read_section,
859 .delaysection = typesafe_delay_section,
860 .name = "typesafe_seqlock"
861 };
862
rcu_scale_one_reader(void)863 static void rcu_scale_one_reader(void)
864 {
865 if (readdelay <= 0)
866 cur_ops->readsection(loops);
867 else
868 cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000);
869 }
870
871 // Warm up cache, or, if needed run a series of rcu_scale_one_reader()
872 // to allow multiple rcuscale guest OSes to collect mutually valid data.
rcu_scale_warm_cool(void)873 static void rcu_scale_warm_cool(void)
874 {
875 unsigned long jdone = jiffies + (guest_os_delay > 0 ? guest_os_delay * HZ : -1);
876
877 do {
878 rcu_scale_one_reader();
879 cond_resched();
880 } while (time_before(jiffies, jdone));
881 }
882
883 // Reader kthread. Repeatedly does empty RCU read-side
884 // critical section, minimizing update-side interference.
885 static int
ref_scale_reader(void * arg)886 ref_scale_reader(void *arg)
887 {
888 unsigned long flags;
889 long me = (long)arg;
890 struct reader_task *rt = &(reader_tasks[me]);
891 u64 start;
892 s64 duration;
893
894 VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me);
895 WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)));
896 set_user_nice(current, MAX_NICE);
897 atomic_inc(&n_init);
898 if (holdoff)
899 schedule_timeout_interruptible(holdoff * HZ);
900 repeat:
901 VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id());
902
903 // Wait for signal that this reader can start.
904 wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) ||
905 torture_must_stop());
906
907 if (torture_must_stop())
908 goto end;
909
910 // Make sure that the CPU is affinitized appropriately during testing.
911 WARN_ON_ONCE(raw_smp_processor_id() != me % nr_cpu_ids);
912
913 WRITE_ONCE(rt->start_reader, 0);
914 if (!atomic_dec_return(&n_started))
915 while (atomic_read_acquire(&n_started))
916 cpu_relax();
917
918 VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx);
919
920
921 // To reduce noise, do an initial cache-warming invocation, check
922 // in, and then keep warming until everyone has checked in.
923 rcu_scale_one_reader();
924 if (!atomic_dec_return(&n_warmedup))
925 while (atomic_read_acquire(&n_warmedup))
926 rcu_scale_one_reader();
927 // Also keep interrupts disabled. This also has the effect
928 // of preventing entries into slow path for rcu_read_unlock().
929 local_irq_save(flags);
930 start = ktime_get_mono_fast_ns();
931
932 rcu_scale_one_reader();
933
934 duration = ktime_get_mono_fast_ns() - start;
935 local_irq_restore(flags);
936
937 rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration;
938 // To reduce runtime-skew noise, do maintain-load invocations until
939 // everyone is done.
940 if (!atomic_dec_return(&n_cooleddown))
941 while (atomic_read_acquire(&n_cooleddown))
942 rcu_scale_one_reader();
943
944 if (atomic_dec_and_test(&nreaders_exp))
945 wake_up(&main_wq);
946
947 VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)",
948 me, exp_idx, atomic_read(&nreaders_exp));
949
950 if (!torture_must_stop())
951 goto repeat;
952 end:
953 torture_kthread_stopping("ref_scale_reader");
954 return 0;
955 }
956
reset_readers(void)957 static void reset_readers(void)
958 {
959 int i;
960 struct reader_task *rt;
961
962 for (i = 0; i < nreaders; i++) {
963 rt = &(reader_tasks[i]);
964
965 rt->last_duration_ns = 0;
966 }
967 }
968
969 // Print the results of each reader and return the sum of all their durations.
process_durations(int n)970 static u64 process_durations(int n)
971 {
972 int i;
973 struct reader_task *rt;
974 struct seq_buf s;
975 char *buf;
976 u64 sum = 0;
977
978 buf = kmalloc(800 + 64, GFP_KERNEL);
979 if (!buf)
980 return 0;
981 seq_buf_init(&s, buf, 800 + 64);
982
983 seq_buf_printf(&s, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)",
984 exp_idx);
985
986 for (i = 0; i < n && !torture_must_stop(); i++) {
987 rt = &(reader_tasks[i]);
988
989 if (i % 5 == 0)
990 seq_buf_putc(&s, '\n');
991
992 if (seq_buf_used(&s) >= 800) {
993 pr_alert("%s", seq_buf_str(&s));
994 seq_buf_clear(&s);
995 }
996
997 seq_buf_printf(&s, "%d: %llu\t", i, rt->last_duration_ns);
998
999 sum += rt->last_duration_ns;
1000 }
1001 pr_alert("%s\n", seq_buf_str(&s));
1002
1003 kfree(buf);
1004 return sum;
1005 }
1006
1007 // The main_func is the main orchestrator, it performs a bunch of
1008 // experiments. For every experiment, it orders all the readers
1009 // involved to start and waits for them to finish the experiment. It
1010 // then reads their timestamps and starts the next experiment. Each
1011 // experiment progresses from 1 concurrent reader to N of them at which
1012 // point all the timestamps are printed.
main_func(void * arg)1013 static int main_func(void *arg)
1014 {
1015 int exp, r;
1016 char buf1[64];
1017 char *buf;
1018 u64 *result_avg;
1019
1020 set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids));
1021 set_user_nice(current, MAX_NICE);
1022
1023 VERBOSE_SCALEOUT("main_func task started");
1024 result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL);
1025 buf = kzalloc(800 + 64, GFP_KERNEL);
1026 if (!result_avg || !buf) {
1027 SCALEOUT_ERRSTRING("out of memory");
1028 goto oom_exit;
1029 }
1030 if (holdoff)
1031 schedule_timeout_interruptible(holdoff * HZ);
1032
1033 // Wait for all threads to start.
1034 atomic_inc(&n_init);
1035 while (atomic_read(&n_init) < nreaders + 1)
1036 schedule_timeout_uninterruptible(1);
1037
1038 // Start exp readers up per experiment
1039 rcu_scale_warm_cool();
1040 for (exp = 0; exp < nruns && !torture_must_stop(); exp++) {
1041 if (torture_must_stop())
1042 goto end;
1043
1044 reset_readers();
1045 atomic_set(&nreaders_exp, nreaders);
1046 atomic_set(&n_started, nreaders);
1047 atomic_set(&n_warmedup, nreaders);
1048 atomic_set(&n_cooleddown, nreaders);
1049
1050 exp_idx = exp;
1051
1052 for (r = 0; r < nreaders; r++) {
1053 smp_store_release(&reader_tasks[r].start_reader, 1);
1054 wake_up(&reader_tasks[r].wq);
1055 }
1056
1057 VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers",
1058 nreaders);
1059
1060 wait_event(main_wq,
1061 !atomic_read(&nreaders_exp) || torture_must_stop());
1062
1063 VERBOSE_SCALEOUT("main_func: experiment ended");
1064
1065 if (torture_must_stop())
1066 goto end;
1067
1068 result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops);
1069 }
1070 rcu_scale_warm_cool();
1071
1072 // Print the average of all experiments
1073 SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
1074
1075 pr_alert("Runs\tTime(ns)\n");
1076 for (exp = 0; exp < nruns; exp++) {
1077 u64 avg;
1078 u32 rem;
1079
1080 avg = div_u64_rem(result_avg[exp], 1000, &rem);
1081 sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem);
1082 strcat(buf, buf1);
1083 if (strlen(buf) >= 800) {
1084 pr_alert("%s", buf);
1085 buf[0] = 0;
1086 }
1087 }
1088
1089 pr_alert("%s", buf);
1090
1091 oom_exit:
1092 // This will shutdown everything including us.
1093 if (shutdown) {
1094 shutdown_start = 1;
1095 wake_up(&shutdown_wq);
1096 }
1097
1098 // Wait for torture to stop us
1099 while (!torture_must_stop())
1100 schedule_timeout_uninterruptible(1);
1101
1102 end:
1103 torture_kthread_stopping("main_func");
1104 kfree(result_avg);
1105 kfree(buf);
1106 return 0;
1107 }
1108
1109 static void
ref_scale_print_module_parms(const struct ref_scale_ops * cur_ops,const char * tag)1110 ref_scale_print_module_parms(const struct ref_scale_ops *cur_ops, const char *tag)
1111 {
1112 pr_alert("%s" SCALE_FLAG
1113 "--- %s: verbose=%d verbose_batched=%d shutdown=%d holdoff=%d lookup_instances=%ld loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag,
1114 verbose, verbose_batched, shutdown, holdoff, lookup_instances, loops, nreaders, nruns, readdelay);
1115 }
1116
1117 static void
ref_scale_cleanup(void)1118 ref_scale_cleanup(void)
1119 {
1120 int i;
1121
1122 if (torture_cleanup_begin())
1123 return;
1124
1125 if (!cur_ops) {
1126 torture_cleanup_end();
1127 return;
1128 }
1129
1130 if (reader_tasks) {
1131 for (i = 0; i < nreaders; i++)
1132 torture_stop_kthread("ref_scale_reader",
1133 reader_tasks[i].task);
1134 }
1135 kfree(reader_tasks);
1136
1137 torture_stop_kthread("main_task", main_task);
1138 kfree(main_task);
1139
1140 // Do scale-type-specific cleanup operations.
1141 if (cur_ops->cleanup != NULL)
1142 cur_ops->cleanup();
1143
1144 torture_cleanup_end();
1145 }
1146
1147 // Shutdown kthread. Just waits to be awakened, then shuts down system.
1148 static int
ref_scale_shutdown(void * arg)1149 ref_scale_shutdown(void *arg)
1150 {
1151 wait_event_idle(shutdown_wq, shutdown_start);
1152
1153 smp_mb(); // Wake before output.
1154 ref_scale_cleanup();
1155 kernel_power_off();
1156
1157 return -EINVAL;
1158 }
1159
1160 static int __init
ref_scale_init(void)1161 ref_scale_init(void)
1162 {
1163 long i;
1164 int firsterr = 0;
1165 static const struct ref_scale_ops *scale_ops[] = {
1166 &rcu_ops, &srcu_ops, &srcu_lite_ops, RCU_TRACE_OPS RCU_TASKS_OPS
1167 &refcnt_ops, &rwlock_ops, &rwsem_ops, &lock_ops, &lock_irq_ops,
1168 &acqrel_ops, &sched_clock_ops, &clock_ops, &jiffies_ops,
1169 &typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops,
1170 };
1171
1172 if (!torture_init_begin(scale_type, verbose))
1173 return -EBUSY;
1174
1175 for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
1176 cur_ops = scale_ops[i];
1177 if (strcmp(scale_type, cur_ops->name) == 0)
1178 break;
1179 }
1180 if (i == ARRAY_SIZE(scale_ops)) {
1181 pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
1182 pr_alert("rcu-scale types:");
1183 for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
1184 pr_cont(" %s", scale_ops[i]->name);
1185 pr_cont("\n");
1186 firsterr = -EINVAL;
1187 cur_ops = NULL;
1188 goto unwind;
1189 }
1190 if (cur_ops->init)
1191 if (!cur_ops->init()) {
1192 firsterr = -EUCLEAN;
1193 goto unwind;
1194 }
1195
1196 ref_scale_print_module_parms(cur_ops, "Start of test");
1197
1198 // Shutdown task
1199 if (shutdown) {
1200 init_waitqueue_head(&shutdown_wq);
1201 firsterr = torture_create_kthread(ref_scale_shutdown, NULL,
1202 shutdown_task);
1203 if (torture_init_error(firsterr))
1204 goto unwind;
1205 schedule_timeout_uninterruptible(1);
1206 }
1207
1208 // Reader tasks (default to ~75% of online CPUs).
1209 if (nreaders < 0)
1210 nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2);
1211 if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops))
1212 loops = 1;
1213 if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders))
1214 nreaders = 1;
1215 if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns))
1216 nruns = 1;
1217 reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]),
1218 GFP_KERNEL);
1219 if (!reader_tasks) {
1220 SCALEOUT_ERRSTRING("out of memory");
1221 firsterr = -ENOMEM;
1222 goto unwind;
1223 }
1224
1225 VERBOSE_SCALEOUT("Starting %d reader threads", nreaders);
1226
1227 for (i = 0; i < nreaders; i++) {
1228 init_waitqueue_head(&reader_tasks[i].wq);
1229 firsterr = torture_create_kthread(ref_scale_reader, (void *)i,
1230 reader_tasks[i].task);
1231 if (torture_init_error(firsterr))
1232 goto unwind;
1233 }
1234
1235 // Main Task
1236 init_waitqueue_head(&main_wq);
1237 firsterr = torture_create_kthread(main_func, NULL, main_task);
1238 if (torture_init_error(firsterr))
1239 goto unwind;
1240
1241 torture_init_end();
1242 return 0;
1243
1244 unwind:
1245 torture_init_end();
1246 ref_scale_cleanup();
1247 if (shutdown) {
1248 WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST));
1249 kernel_power_off();
1250 }
1251 return firsterr;
1252 }
1253
1254 module_init(ref_scale_init);
1255 module_exit(ref_scale_cleanup);
1256