1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * core.c - Kernel Live Patching Core
4 *
5 * Copyright (C) 2014 Seth Jennings <[email protected]>
6 * Copyright (C) 2014 SUSE
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/mutex.h>
14 #include <linux/slab.h>
15 #include <linux/list.h>
16 #include <linux/kallsyms.h>
17 #include <linux/livepatch.h>
18 #include <linux/elf.h>
19 #include <linux/moduleloader.h>
20 #include <linux/completion.h>
21 #include <linux/memory.h>
22 #include <linux/rcupdate.h>
23 #include <asm/cacheflush.h>
24 #include "core.h"
25 #include "patch.h"
26 #include "state.h"
27 #include "transition.h"
28
29 /*
30 * klp_mutex is a coarse lock which serializes access to klp data. All
31 * accesses to klp-related variables and structures must have mutex protection,
32 * except within the following functions which carefully avoid the need for it:
33 *
34 * - klp_ftrace_handler()
35 * - klp_update_patch_state()
36 * - __klp_sched_try_switch()
37 */
38 DEFINE_MUTEX(klp_mutex);
39
40 /*
41 * Actively used patches: enabled or in transition. Note that replaced
42 * or disabled patches are not listed even though the related kernel
43 * module still can be loaded.
44 */
45 LIST_HEAD(klp_patches);
46
47 static struct kobject *klp_root_kobj;
48
klp_is_module(struct klp_object * obj)49 static bool klp_is_module(struct klp_object *obj)
50 {
51 return obj->name;
52 }
53
54 /* sets obj->mod if object is not vmlinux and module is found */
klp_find_object_module(struct klp_object * obj)55 static void klp_find_object_module(struct klp_object *obj)
56 {
57 struct module *mod;
58
59 if (!klp_is_module(obj))
60 return;
61
62 rcu_read_lock_sched();
63 /*
64 * We do not want to block removal of patched modules and therefore
65 * we do not take a reference here. The patches are removed by
66 * klp_module_going() instead.
67 */
68 mod = find_module(obj->name);
69 /*
70 * Do not mess work of klp_module_coming() and klp_module_going().
71 * Note that the patch might still be needed before klp_module_going()
72 * is called. Module functions can be called even in the GOING state
73 * until mod->exit() finishes. This is especially important for
74 * patches that modify semantic of the functions.
75 */
76 if (mod && mod->klp_alive)
77 obj->mod = mod;
78
79 rcu_read_unlock_sched();
80 }
81
klp_initialized(void)82 static bool klp_initialized(void)
83 {
84 return !!klp_root_kobj;
85 }
86
klp_find_func(struct klp_object * obj,struct klp_func * old_func)87 static struct klp_func *klp_find_func(struct klp_object *obj,
88 struct klp_func *old_func)
89 {
90 struct klp_func *func;
91
92 klp_for_each_func(obj, func) {
93 if ((strcmp(old_func->old_name, func->old_name) == 0) &&
94 (old_func->old_sympos == func->old_sympos)) {
95 return func;
96 }
97 }
98
99 return NULL;
100 }
101
klp_find_object(struct klp_patch * patch,struct klp_object * old_obj)102 static struct klp_object *klp_find_object(struct klp_patch *patch,
103 struct klp_object *old_obj)
104 {
105 struct klp_object *obj;
106
107 klp_for_each_object(patch, obj) {
108 if (klp_is_module(old_obj)) {
109 if (klp_is_module(obj) &&
110 strcmp(old_obj->name, obj->name) == 0) {
111 return obj;
112 }
113 } else if (!klp_is_module(obj)) {
114 return obj;
115 }
116 }
117
118 return NULL;
119 }
120
121 struct klp_find_arg {
122 const char *name;
123 unsigned long addr;
124 unsigned long count;
125 unsigned long pos;
126 };
127
klp_match_callback(void * data,unsigned long addr)128 static int klp_match_callback(void *data, unsigned long addr)
129 {
130 struct klp_find_arg *args = data;
131
132 args->addr = addr;
133 args->count++;
134
135 /*
136 * Finish the search when the symbol is found for the desired position
137 * or the position is not defined for a non-unique symbol.
138 */
139 if ((args->pos && (args->count == args->pos)) ||
140 (!args->pos && (args->count > 1)))
141 return 1;
142
143 return 0;
144 }
145
klp_find_callback(void * data,const char * name,unsigned long addr)146 static int klp_find_callback(void *data, const char *name, unsigned long addr)
147 {
148 struct klp_find_arg *args = data;
149
150 if (strcmp(args->name, name))
151 return 0;
152
153 return klp_match_callback(data, addr);
154 }
155
klp_find_object_symbol(const char * objname,const char * name,unsigned long sympos,unsigned long * addr)156 static int klp_find_object_symbol(const char *objname, const char *name,
157 unsigned long sympos, unsigned long *addr)
158 {
159 struct klp_find_arg args = {
160 .name = name,
161 .addr = 0,
162 .count = 0,
163 .pos = sympos,
164 };
165
166 if (objname)
167 module_kallsyms_on_each_symbol(objname, klp_find_callback, &args);
168 else
169 kallsyms_on_each_match_symbol(klp_match_callback, name, &args);
170
171 /*
172 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
173 * otherwise ensure the symbol position count matches sympos.
174 */
175 if (args.addr == 0)
176 pr_err("symbol '%s' not found in symbol table\n", name);
177 else if (args.count > 1 && sympos == 0) {
178 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
179 name, objname);
180 } else if (sympos != args.count && sympos > 0) {
181 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
182 sympos, name, objname ? objname : "vmlinux");
183 } else {
184 *addr = args.addr;
185 return 0;
186 }
187
188 *addr = 0;
189 return -EINVAL;
190 }
191
klp_resolve_symbols(Elf_Shdr * sechdrs,const char * strtab,unsigned int symndx,Elf_Shdr * relasec,const char * sec_objname)192 static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
193 unsigned int symndx, Elf_Shdr *relasec,
194 const char *sec_objname)
195 {
196 int i, cnt, ret;
197 char sym_objname[MODULE_NAME_LEN];
198 char sym_name[KSYM_NAME_LEN];
199 Elf_Rela *relas;
200 Elf_Sym *sym;
201 unsigned long sympos, addr;
202 bool sym_vmlinux;
203 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
204
205 /*
206 * Since the field widths for sym_objname and sym_name in the sscanf()
207 * call are hard-coded and correspond to MODULE_NAME_LEN and
208 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
209 * and KSYM_NAME_LEN have the values we expect them to have.
210 *
211 * Because the value of MODULE_NAME_LEN can differ among architectures,
212 * we use the smallest/strictest upper bound possible (56, based on
213 * the current definition of MODULE_NAME_LEN) to prevent overflows.
214 */
215 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512);
216
217 relas = (Elf_Rela *) relasec->sh_addr;
218 /* For each rela in this klp relocation section */
219 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
220 sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
221 if (sym->st_shndx != SHN_LIVEPATCH) {
222 pr_err("symbol %s is not marked as a livepatch symbol\n",
223 strtab + sym->st_name);
224 return -EINVAL;
225 }
226
227 /* Format: .klp.sym.sym_objname.sym_name,sympos */
228 cnt = sscanf(strtab + sym->st_name,
229 ".klp.sym.%55[^.].%511[^,],%lu",
230 sym_objname, sym_name, &sympos);
231 if (cnt != 3) {
232 pr_err("symbol %s has an incorrectly formatted name\n",
233 strtab + sym->st_name);
234 return -EINVAL;
235 }
236
237 sym_vmlinux = !strcmp(sym_objname, "vmlinux");
238
239 /*
240 * Prevent module-specific KLP rela sections from referencing
241 * vmlinux symbols. This helps prevent ordering issues with
242 * module special section initializations. Presumably such
243 * symbols are exported and normal relas can be used instead.
244 */
245 if (!sec_vmlinux && sym_vmlinux) {
246 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section\n",
247 sym_name);
248 return -EINVAL;
249 }
250
251 /* klp_find_object_symbol() treats a NULL objname as vmlinux */
252 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
253 sym_name, sympos, &addr);
254 if (ret)
255 return ret;
256
257 sym->st_value = addr;
258 }
259
260 return 0;
261 }
262
clear_relocate_add(Elf_Shdr * sechdrs,const char * strtab,unsigned int symindex,unsigned int relsec,struct module * me)263 void __weak clear_relocate_add(Elf_Shdr *sechdrs,
264 const char *strtab,
265 unsigned int symindex,
266 unsigned int relsec,
267 struct module *me)
268 {
269 }
270
271 /*
272 * At a high-level, there are two types of klp relocation sections: those which
273 * reference symbols which live in vmlinux; and those which reference symbols
274 * which live in other modules. This function is called for both types:
275 *
276 * 1) When a klp module itself loads, the module code calls this function to
277 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
278 * These relocations are written to the klp module text to allow the patched
279 * code/data to reference unexported vmlinux symbols. They're written as
280 * early as possible to ensure that other module init code (.e.g.,
281 * jump_label_apply_nops) can access any unexported vmlinux symbols which
282 * might be referenced by the klp module's special sections.
283 *
284 * 2) When a to-be-patched module loads -- or is already loaded when a
285 * corresponding klp module loads -- klp code calls this function to write
286 * module-specific klp relocations (.klp.rela.{module}.* sections). These
287 * are written to the klp module text to allow the patched code/data to
288 * reference symbols which live in the to-be-patched module or one of its
289 * module dependencies. Exported symbols are supported, in addition to
290 * unexported symbols, in order to enable late module patching, which allows
291 * the to-be-patched module to be loaded and patched sometime *after* the
292 * klp module is loaded.
293 */
klp_write_section_relocs(struct module * pmod,Elf_Shdr * sechdrs,const char * shstrtab,const char * strtab,unsigned int symndx,unsigned int secndx,const char * objname,bool apply)294 static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
295 const char *shstrtab, const char *strtab,
296 unsigned int symndx, unsigned int secndx,
297 const char *objname, bool apply)
298 {
299 int cnt, ret;
300 char sec_objname[MODULE_NAME_LEN];
301 Elf_Shdr *sec = sechdrs + secndx;
302
303 /*
304 * Format: .klp.rela.sec_objname.section_name
305 * See comment in klp_resolve_symbols() for an explanation
306 * of the selected field width value.
307 */
308 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
309 sec_objname);
310 if (cnt != 1) {
311 pr_err("section %s has an incorrectly formatted name\n",
312 shstrtab + sec->sh_name);
313 return -EINVAL;
314 }
315
316 if (strcmp(objname ? objname : "vmlinux", sec_objname))
317 return 0;
318
319 if (apply) {
320 ret = klp_resolve_symbols(sechdrs, strtab, symndx,
321 sec, sec_objname);
322 if (ret)
323 return ret;
324
325 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
326 }
327
328 clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
329 return 0;
330 }
331
klp_apply_section_relocs(struct module * pmod,Elf_Shdr * sechdrs,const char * shstrtab,const char * strtab,unsigned int symndx,unsigned int secndx,const char * objname)332 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
333 const char *shstrtab, const char *strtab,
334 unsigned int symndx, unsigned int secndx,
335 const char *objname)
336 {
337 return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx,
338 secndx, objname, true);
339 }
340
341 /*
342 * Sysfs Interface
343 *
344 * /sys/kernel/livepatch
345 * /sys/kernel/livepatch/<patch>
346 * /sys/kernel/livepatch/<patch>/enabled
347 * /sys/kernel/livepatch/<patch>/transition
348 * /sys/kernel/livepatch/<patch>/force
349 * /sys/kernel/livepatch/<patch>/replace
350 * /sys/kernel/livepatch/<patch>/stack_order
351 * /sys/kernel/livepatch/<patch>/<object>
352 * /sys/kernel/livepatch/<patch>/<object>/patched
353 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
354 */
355 static int __klp_disable_patch(struct klp_patch *patch);
356
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)357 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
358 const char *buf, size_t count)
359 {
360 struct klp_patch *patch;
361 int ret;
362 bool enabled;
363
364 ret = kstrtobool(buf, &enabled);
365 if (ret)
366 return ret;
367
368 patch = container_of(kobj, struct klp_patch, kobj);
369
370 mutex_lock(&klp_mutex);
371
372 if (patch->enabled == enabled) {
373 /* already in requested state */
374 ret = -EINVAL;
375 goto out;
376 }
377
378 /*
379 * Allow to reverse a pending transition in both ways. It might be
380 * necessary to complete the transition without forcing and breaking
381 * the system integrity.
382 *
383 * Do not allow to re-enable a disabled patch.
384 */
385 if (patch == klp_transition_patch)
386 klp_reverse_transition();
387 else if (!enabled)
388 ret = __klp_disable_patch(patch);
389 else
390 ret = -EINVAL;
391
392 out:
393 mutex_unlock(&klp_mutex);
394
395 if (ret)
396 return ret;
397 return count;
398 }
399
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)400 static ssize_t enabled_show(struct kobject *kobj,
401 struct kobj_attribute *attr, char *buf)
402 {
403 struct klp_patch *patch;
404
405 patch = container_of(kobj, struct klp_patch, kobj);
406 return sysfs_emit(buf, "%d\n", patch->enabled);
407 }
408
transition_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)409 static ssize_t transition_show(struct kobject *kobj,
410 struct kobj_attribute *attr, char *buf)
411 {
412 struct klp_patch *patch;
413
414 patch = container_of(kobj, struct klp_patch, kobj);
415 return sysfs_emit(buf, "%d\n", patch == klp_transition_patch);
416 }
417
force_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)418 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
419 const char *buf, size_t count)
420 {
421 struct klp_patch *patch;
422 int ret;
423 bool val;
424
425 ret = kstrtobool(buf, &val);
426 if (ret)
427 return ret;
428
429 if (!val)
430 return count;
431
432 mutex_lock(&klp_mutex);
433
434 patch = container_of(kobj, struct klp_patch, kobj);
435 if (patch != klp_transition_patch) {
436 mutex_unlock(&klp_mutex);
437 return -EINVAL;
438 }
439
440 klp_force_transition();
441
442 mutex_unlock(&klp_mutex);
443
444 return count;
445 }
446
replace_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)447 static ssize_t replace_show(struct kobject *kobj,
448 struct kobj_attribute *attr, char *buf)
449 {
450 struct klp_patch *patch;
451
452 patch = container_of(kobj, struct klp_patch, kobj);
453 return sysfs_emit(buf, "%d\n", patch->replace);
454 }
455
stack_order_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)456 static ssize_t stack_order_show(struct kobject *kobj,
457 struct kobj_attribute *attr, char *buf)
458 {
459 struct klp_patch *patch, *this_patch;
460 int stack_order = 0;
461
462 this_patch = container_of(kobj, struct klp_patch, kobj);
463
464 mutex_lock(&klp_mutex);
465
466 klp_for_each_patch(patch) {
467 stack_order++;
468 if (patch == this_patch)
469 break;
470 }
471
472 mutex_unlock(&klp_mutex);
473
474 return sysfs_emit(buf, "%d\n", stack_order);
475 }
476
477 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
478 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
479 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
480 static struct kobj_attribute replace_kobj_attr = __ATTR_RO(replace);
481 static struct kobj_attribute stack_order_kobj_attr = __ATTR_RO(stack_order);
482 static struct attribute *klp_patch_attrs[] = {
483 &enabled_kobj_attr.attr,
484 &transition_kobj_attr.attr,
485 &force_kobj_attr.attr,
486 &replace_kobj_attr.attr,
487 &stack_order_kobj_attr.attr,
488 NULL
489 };
490 ATTRIBUTE_GROUPS(klp_patch);
491
patched_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)492 static ssize_t patched_show(struct kobject *kobj,
493 struct kobj_attribute *attr, char *buf)
494 {
495 struct klp_object *obj;
496
497 obj = container_of(kobj, struct klp_object, kobj);
498 return sysfs_emit(buf, "%d\n", obj->patched);
499 }
500
501 static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched);
502 static struct attribute *klp_object_attrs[] = {
503 &patched_kobj_attr.attr,
504 NULL,
505 };
506 ATTRIBUTE_GROUPS(klp_object);
507
klp_free_object_dynamic(struct klp_object * obj)508 static void klp_free_object_dynamic(struct klp_object *obj)
509 {
510 kfree(obj->name);
511 kfree(obj);
512 }
513
514 static void klp_init_func_early(struct klp_object *obj,
515 struct klp_func *func);
516 static void klp_init_object_early(struct klp_patch *patch,
517 struct klp_object *obj);
518
klp_alloc_object_dynamic(const char * name,struct klp_patch * patch)519 static struct klp_object *klp_alloc_object_dynamic(const char *name,
520 struct klp_patch *patch)
521 {
522 struct klp_object *obj;
523
524 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
525 if (!obj)
526 return NULL;
527
528 if (name) {
529 obj->name = kstrdup(name, GFP_KERNEL);
530 if (!obj->name) {
531 kfree(obj);
532 return NULL;
533 }
534 }
535
536 klp_init_object_early(patch, obj);
537 obj->dynamic = true;
538
539 return obj;
540 }
541
klp_free_func_nop(struct klp_func * func)542 static void klp_free_func_nop(struct klp_func *func)
543 {
544 kfree(func->old_name);
545 kfree(func);
546 }
547
klp_alloc_func_nop(struct klp_func * old_func,struct klp_object * obj)548 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
549 struct klp_object *obj)
550 {
551 struct klp_func *func;
552
553 func = kzalloc(sizeof(*func), GFP_KERNEL);
554 if (!func)
555 return NULL;
556
557 if (old_func->old_name) {
558 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
559 if (!func->old_name) {
560 kfree(func);
561 return NULL;
562 }
563 }
564
565 klp_init_func_early(obj, func);
566 /*
567 * func->new_func is same as func->old_func. These addresses are
568 * set when the object is loaded, see klp_init_object_loaded().
569 */
570 func->old_sympos = old_func->old_sympos;
571 func->nop = true;
572
573 return func;
574 }
575
klp_add_object_nops(struct klp_patch * patch,struct klp_object * old_obj)576 static int klp_add_object_nops(struct klp_patch *patch,
577 struct klp_object *old_obj)
578 {
579 struct klp_object *obj;
580 struct klp_func *func, *old_func;
581
582 obj = klp_find_object(patch, old_obj);
583
584 if (!obj) {
585 obj = klp_alloc_object_dynamic(old_obj->name, patch);
586 if (!obj)
587 return -ENOMEM;
588 }
589
590 klp_for_each_func(old_obj, old_func) {
591 func = klp_find_func(obj, old_func);
592 if (func)
593 continue;
594
595 func = klp_alloc_func_nop(old_func, obj);
596 if (!func)
597 return -ENOMEM;
598 }
599
600 return 0;
601 }
602
603 /*
604 * Add 'nop' functions which simply return to the caller to run
605 * the original function. The 'nop' functions are added to a
606 * patch to facilitate a 'replace' mode.
607 */
klp_add_nops(struct klp_patch * patch)608 static int klp_add_nops(struct klp_patch *patch)
609 {
610 struct klp_patch *old_patch;
611 struct klp_object *old_obj;
612
613 klp_for_each_patch(old_patch) {
614 klp_for_each_object(old_patch, old_obj) {
615 int err;
616
617 err = klp_add_object_nops(patch, old_obj);
618 if (err)
619 return err;
620 }
621 }
622
623 return 0;
624 }
625
klp_kobj_release_patch(struct kobject * kobj)626 static void klp_kobj_release_patch(struct kobject *kobj)
627 {
628 struct klp_patch *patch;
629
630 patch = container_of(kobj, struct klp_patch, kobj);
631 complete(&patch->finish);
632 }
633
634 static const struct kobj_type klp_ktype_patch = {
635 .release = klp_kobj_release_patch,
636 .sysfs_ops = &kobj_sysfs_ops,
637 .default_groups = klp_patch_groups,
638 };
639
klp_kobj_release_object(struct kobject * kobj)640 static void klp_kobj_release_object(struct kobject *kobj)
641 {
642 struct klp_object *obj;
643
644 obj = container_of(kobj, struct klp_object, kobj);
645
646 if (obj->dynamic)
647 klp_free_object_dynamic(obj);
648 }
649
650 static const struct kobj_type klp_ktype_object = {
651 .release = klp_kobj_release_object,
652 .sysfs_ops = &kobj_sysfs_ops,
653 .default_groups = klp_object_groups,
654 };
655
klp_kobj_release_func(struct kobject * kobj)656 static void klp_kobj_release_func(struct kobject *kobj)
657 {
658 struct klp_func *func;
659
660 func = container_of(kobj, struct klp_func, kobj);
661
662 if (func->nop)
663 klp_free_func_nop(func);
664 }
665
666 static const struct kobj_type klp_ktype_func = {
667 .release = klp_kobj_release_func,
668 .sysfs_ops = &kobj_sysfs_ops,
669 };
670
__klp_free_funcs(struct klp_object * obj,bool nops_only)671 static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
672 {
673 struct klp_func *func, *tmp_func;
674
675 klp_for_each_func_safe(obj, func, tmp_func) {
676 if (nops_only && !func->nop)
677 continue;
678
679 list_del(&func->node);
680 kobject_put(&func->kobj);
681 }
682 }
683
684 /* Clean up when a patched object is unloaded */
klp_free_object_loaded(struct klp_object * obj)685 static void klp_free_object_loaded(struct klp_object *obj)
686 {
687 struct klp_func *func;
688
689 obj->mod = NULL;
690
691 klp_for_each_func(obj, func) {
692 func->old_func = NULL;
693
694 if (func->nop)
695 func->new_func = NULL;
696 }
697 }
698
__klp_free_objects(struct klp_patch * patch,bool nops_only)699 static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
700 {
701 struct klp_object *obj, *tmp_obj;
702
703 klp_for_each_object_safe(patch, obj, tmp_obj) {
704 __klp_free_funcs(obj, nops_only);
705
706 if (nops_only && !obj->dynamic)
707 continue;
708
709 list_del(&obj->node);
710 kobject_put(&obj->kobj);
711 }
712 }
713
klp_free_objects(struct klp_patch * patch)714 static void klp_free_objects(struct klp_patch *patch)
715 {
716 __klp_free_objects(patch, false);
717 }
718
klp_free_objects_dynamic(struct klp_patch * patch)719 static void klp_free_objects_dynamic(struct klp_patch *patch)
720 {
721 __klp_free_objects(patch, true);
722 }
723
724 /*
725 * This function implements the free operations that can be called safely
726 * under klp_mutex.
727 *
728 * The operation must be completed by calling klp_free_patch_finish()
729 * outside klp_mutex.
730 */
klp_free_patch_start(struct klp_patch * patch)731 static void klp_free_patch_start(struct klp_patch *patch)
732 {
733 if (!list_empty(&patch->list))
734 list_del(&patch->list);
735
736 klp_free_objects(patch);
737 }
738
739 /*
740 * This function implements the free part that must be called outside
741 * klp_mutex.
742 *
743 * It must be called after klp_free_patch_start(). And it has to be
744 * the last function accessing the livepatch structures when the patch
745 * gets disabled.
746 */
klp_free_patch_finish(struct klp_patch * patch)747 static void klp_free_patch_finish(struct klp_patch *patch)
748 {
749 /*
750 * Avoid deadlock with enabled_store() sysfs callback by
751 * calling this outside klp_mutex. It is safe because
752 * this is called when the patch gets disabled and it
753 * cannot get enabled again.
754 */
755 kobject_put(&patch->kobj);
756 wait_for_completion(&patch->finish);
757
758 /* Put the module after the last access to struct klp_patch. */
759 if (!patch->forced)
760 module_put(patch->mod);
761 }
762
763 /*
764 * The livepatch might be freed from sysfs interface created by the patch.
765 * This work allows to wait until the interface is destroyed in a separate
766 * context.
767 */
klp_free_patch_work_fn(struct work_struct * work)768 static void klp_free_patch_work_fn(struct work_struct *work)
769 {
770 struct klp_patch *patch =
771 container_of(work, struct klp_patch, free_work);
772
773 klp_free_patch_finish(patch);
774 }
775
klp_free_patch_async(struct klp_patch * patch)776 void klp_free_patch_async(struct klp_patch *patch)
777 {
778 klp_free_patch_start(patch);
779 schedule_work(&patch->free_work);
780 }
781
klp_free_replaced_patches_async(struct klp_patch * new_patch)782 void klp_free_replaced_patches_async(struct klp_patch *new_patch)
783 {
784 struct klp_patch *old_patch, *tmp_patch;
785
786 klp_for_each_patch_safe(old_patch, tmp_patch) {
787 if (old_patch == new_patch)
788 return;
789 klp_free_patch_async(old_patch);
790 }
791 }
792
klp_init_func(struct klp_object * obj,struct klp_func * func)793 static int klp_init_func(struct klp_object *obj, struct klp_func *func)
794 {
795 if (!func->old_name)
796 return -EINVAL;
797
798 /*
799 * NOPs get the address later. The patched module must be loaded,
800 * see klp_init_object_loaded().
801 */
802 if (!func->new_func && !func->nop)
803 return -EINVAL;
804
805 if (strlen(func->old_name) >= KSYM_NAME_LEN)
806 return -EINVAL;
807
808 INIT_LIST_HEAD(&func->stack_node);
809 func->patched = false;
810 func->transition = false;
811
812 /* The format for the sysfs directory is <function,sympos> where sympos
813 * is the nth occurrence of this symbol in kallsyms for the patched
814 * object. If the user selects 0 for old_sympos, then 1 will be used
815 * since a unique symbol will be the first occurrence.
816 */
817 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
818 func->old_name,
819 func->old_sympos ? func->old_sympos : 1);
820 }
821
klp_write_object_relocs(struct klp_patch * patch,struct klp_object * obj,bool apply)822 static int klp_write_object_relocs(struct klp_patch *patch,
823 struct klp_object *obj,
824 bool apply)
825 {
826 int i, ret;
827 struct klp_modinfo *info = patch->mod->klp_info;
828
829 for (i = 1; i < info->hdr.e_shnum; i++) {
830 Elf_Shdr *sec = info->sechdrs + i;
831
832 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
833 continue;
834
835 ret = klp_write_section_relocs(patch->mod, info->sechdrs,
836 info->secstrings,
837 patch->mod->core_kallsyms.strtab,
838 info->symndx, i, obj->name, apply);
839 if (ret)
840 return ret;
841 }
842
843 return 0;
844 }
845
klp_apply_object_relocs(struct klp_patch * patch,struct klp_object * obj)846 static int klp_apply_object_relocs(struct klp_patch *patch,
847 struct klp_object *obj)
848 {
849 return klp_write_object_relocs(patch, obj, true);
850 }
851
klp_clear_object_relocs(struct klp_patch * patch,struct klp_object * obj)852 static void klp_clear_object_relocs(struct klp_patch *patch,
853 struct klp_object *obj)
854 {
855 klp_write_object_relocs(patch, obj, false);
856 }
857
858 /* parts of the initialization that is done only when the object is loaded */
klp_init_object_loaded(struct klp_patch * patch,struct klp_object * obj)859 static int klp_init_object_loaded(struct klp_patch *patch,
860 struct klp_object *obj)
861 {
862 struct klp_func *func;
863 int ret;
864
865 if (klp_is_module(obj)) {
866 /*
867 * Only write module-specific relocations here
868 * (.klp.rela.{module}.*). vmlinux-specific relocations were
869 * written earlier during the initialization of the klp module
870 * itself.
871 */
872 ret = klp_apply_object_relocs(patch, obj);
873 if (ret)
874 return ret;
875 }
876
877 klp_for_each_func(obj, func) {
878 ret = klp_find_object_symbol(obj->name, func->old_name,
879 func->old_sympos,
880 (unsigned long *)&func->old_func);
881 if (ret)
882 return ret;
883
884 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
885 &func->old_size, NULL);
886 if (!ret) {
887 pr_err("kallsyms size lookup failed for '%s'\n",
888 func->old_name);
889 return -ENOENT;
890 }
891
892 if (func->nop)
893 func->new_func = func->old_func;
894
895 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
896 &func->new_size, NULL);
897 if (!ret) {
898 pr_err("kallsyms size lookup failed for '%s' replacement\n",
899 func->old_name);
900 return -ENOENT;
901 }
902 }
903
904 return 0;
905 }
906
klp_init_object(struct klp_patch * patch,struct klp_object * obj)907 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
908 {
909 struct klp_func *func;
910 int ret;
911 const char *name;
912
913 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
914 return -EINVAL;
915
916 obj->patched = false;
917 obj->mod = NULL;
918
919 klp_find_object_module(obj);
920
921 name = klp_is_module(obj) ? obj->name : "vmlinux";
922 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
923 if (ret)
924 return ret;
925
926 klp_for_each_func(obj, func) {
927 ret = klp_init_func(obj, func);
928 if (ret)
929 return ret;
930 }
931
932 if (klp_is_object_loaded(obj))
933 ret = klp_init_object_loaded(patch, obj);
934
935 return ret;
936 }
937
klp_init_func_early(struct klp_object * obj,struct klp_func * func)938 static void klp_init_func_early(struct klp_object *obj,
939 struct klp_func *func)
940 {
941 kobject_init(&func->kobj, &klp_ktype_func);
942 list_add_tail(&func->node, &obj->func_list);
943 }
944
klp_init_object_early(struct klp_patch * patch,struct klp_object * obj)945 static void klp_init_object_early(struct klp_patch *patch,
946 struct klp_object *obj)
947 {
948 INIT_LIST_HEAD(&obj->func_list);
949 kobject_init(&obj->kobj, &klp_ktype_object);
950 list_add_tail(&obj->node, &patch->obj_list);
951 }
952
klp_init_patch_early(struct klp_patch * patch)953 static void klp_init_patch_early(struct klp_patch *patch)
954 {
955 struct klp_object *obj;
956 struct klp_func *func;
957
958 INIT_LIST_HEAD(&patch->list);
959 INIT_LIST_HEAD(&patch->obj_list);
960 kobject_init(&patch->kobj, &klp_ktype_patch);
961 patch->enabled = false;
962 patch->forced = false;
963 INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
964 init_completion(&patch->finish);
965
966 klp_for_each_object_static(patch, obj) {
967 klp_init_object_early(patch, obj);
968
969 klp_for_each_func_static(obj, func) {
970 klp_init_func_early(obj, func);
971 }
972 }
973 }
974
klp_init_patch(struct klp_patch * patch)975 static int klp_init_patch(struct klp_patch *patch)
976 {
977 struct klp_object *obj;
978 int ret;
979
980 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
981 if (ret)
982 return ret;
983
984 if (patch->replace) {
985 ret = klp_add_nops(patch);
986 if (ret)
987 return ret;
988 }
989
990 klp_for_each_object(patch, obj) {
991 ret = klp_init_object(patch, obj);
992 if (ret)
993 return ret;
994 }
995
996 list_add_tail(&patch->list, &klp_patches);
997
998 return 0;
999 }
1000
__klp_disable_patch(struct klp_patch * patch)1001 static int __klp_disable_patch(struct klp_patch *patch)
1002 {
1003 struct klp_object *obj;
1004
1005 if (WARN_ON(!patch->enabled))
1006 return -EINVAL;
1007
1008 if (klp_transition_patch)
1009 return -EBUSY;
1010
1011 klp_init_transition(patch, KLP_TRANSITION_UNPATCHED);
1012
1013 klp_for_each_object(patch, obj)
1014 if (obj->patched)
1015 klp_pre_unpatch_callback(obj);
1016
1017 /*
1018 * Enforce the order of the func->transition writes in
1019 * klp_init_transition() and the TIF_PATCH_PENDING writes in
1020 * klp_start_transition(). In the rare case where klp_ftrace_handler()
1021 * is called shortly after klp_update_patch_state() switches the task,
1022 * this ensures the handler sees that func->transition is set.
1023 */
1024 smp_wmb();
1025
1026 klp_start_transition();
1027 patch->enabled = false;
1028 klp_try_complete_transition();
1029
1030 return 0;
1031 }
1032
__klp_enable_patch(struct klp_patch * patch)1033 static int __klp_enable_patch(struct klp_patch *patch)
1034 {
1035 struct klp_object *obj;
1036 int ret;
1037
1038 if (klp_transition_patch)
1039 return -EBUSY;
1040
1041 if (WARN_ON(patch->enabled))
1042 return -EINVAL;
1043
1044 pr_notice("enabling patch '%s'\n", patch->mod->name);
1045
1046 klp_init_transition(patch, KLP_TRANSITION_PATCHED);
1047
1048 /*
1049 * Enforce the order of the func->transition writes in
1050 * klp_init_transition() and the ops->func_stack writes in
1051 * klp_patch_object(), so that klp_ftrace_handler() will see the
1052 * func->transition updates before the handler is registered and the
1053 * new funcs become visible to the handler.
1054 */
1055 smp_wmb();
1056
1057 klp_for_each_object(patch, obj) {
1058 if (!klp_is_object_loaded(obj))
1059 continue;
1060
1061 ret = klp_pre_patch_callback(obj);
1062 if (ret) {
1063 pr_warn("pre-patch callback failed for object '%s'\n",
1064 klp_is_module(obj) ? obj->name : "vmlinux");
1065 goto err;
1066 }
1067
1068 ret = klp_patch_object(obj);
1069 if (ret) {
1070 pr_warn("failed to patch object '%s'\n",
1071 klp_is_module(obj) ? obj->name : "vmlinux");
1072 goto err;
1073 }
1074 }
1075
1076 klp_start_transition();
1077 patch->enabled = true;
1078 klp_try_complete_transition();
1079
1080 return 0;
1081 err:
1082 pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1083
1084 klp_cancel_transition();
1085 return ret;
1086 }
1087
1088 /**
1089 * klp_enable_patch() - enable the livepatch
1090 * @patch: patch to be enabled
1091 *
1092 * Initializes the data structure associated with the patch, creates the sysfs
1093 * interface, performs the needed symbol lookups and code relocations,
1094 * registers the patched functions with ftrace.
1095 *
1096 * This function is supposed to be called from the livepatch module_init()
1097 * callback.
1098 *
1099 * Return: 0 on success, otherwise error
1100 */
klp_enable_patch(struct klp_patch * patch)1101 int klp_enable_patch(struct klp_patch *patch)
1102 {
1103 int ret;
1104 struct klp_object *obj;
1105
1106 if (!patch || !patch->mod || !patch->objs)
1107 return -EINVAL;
1108
1109 klp_for_each_object_static(patch, obj) {
1110 if (!obj->funcs)
1111 return -EINVAL;
1112 }
1113
1114
1115 if (!is_livepatch_module(patch->mod)) {
1116 pr_err("module %s is not marked as a livepatch module\n",
1117 patch->mod->name);
1118 return -EINVAL;
1119 }
1120
1121 if (!klp_initialized())
1122 return -ENODEV;
1123
1124 if (!klp_have_reliable_stack()) {
1125 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1126 pr_warn("The livepatch transition may never complete.\n");
1127 }
1128
1129 mutex_lock(&klp_mutex);
1130
1131 if (!klp_is_patch_compatible(patch)) {
1132 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1133 patch->mod->name);
1134 mutex_unlock(&klp_mutex);
1135 return -EINVAL;
1136 }
1137
1138 if (!try_module_get(patch->mod)) {
1139 mutex_unlock(&klp_mutex);
1140 return -ENODEV;
1141 }
1142
1143 klp_init_patch_early(patch);
1144
1145 ret = klp_init_patch(patch);
1146 if (ret)
1147 goto err;
1148
1149 ret = __klp_enable_patch(patch);
1150 if (ret)
1151 goto err;
1152
1153 mutex_unlock(&klp_mutex);
1154
1155 return 0;
1156
1157 err:
1158 klp_free_patch_start(patch);
1159
1160 mutex_unlock(&klp_mutex);
1161
1162 klp_free_patch_finish(patch);
1163
1164 return ret;
1165 }
1166 EXPORT_SYMBOL_GPL(klp_enable_patch);
1167
1168 /*
1169 * This function unpatches objects from the replaced livepatches.
1170 *
1171 * We could be pretty aggressive here. It is called in the situation where
1172 * these structures are no longer accessed from the ftrace handler.
1173 * All functions are redirected by the klp_transition_patch. They
1174 * use either a new code or they are in the original code because
1175 * of the special nop function patches.
1176 *
1177 * The only exception is when the transition was forced. In this case,
1178 * klp_ftrace_handler() might still see the replaced patch on the stack.
1179 * Fortunately, it is carefully designed to work with removed functions
1180 * thanks to RCU. We only have to keep the patches on the system. Also
1181 * this is handled transparently by patch->module_put.
1182 */
klp_unpatch_replaced_patches(struct klp_patch * new_patch)1183 void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1184 {
1185 struct klp_patch *old_patch;
1186
1187 klp_for_each_patch(old_patch) {
1188 if (old_patch == new_patch)
1189 return;
1190
1191 old_patch->enabled = false;
1192 klp_unpatch_objects(old_patch);
1193 }
1194 }
1195
1196 /*
1197 * This function removes the dynamically allocated 'nop' functions.
1198 *
1199 * We could be pretty aggressive. NOPs do not change the existing
1200 * behavior except for adding unnecessary delay by the ftrace handler.
1201 *
1202 * It is safe even when the transition was forced. The ftrace handler
1203 * will see a valid ops->func_stack entry thanks to RCU.
1204 *
1205 * We could even free the NOPs structures. They must be the last entry
1206 * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1207 * It does the same as klp_synchronize_transition() to make sure that
1208 * nobody is inside the ftrace handler once the operation finishes.
1209 *
1210 * IMPORTANT: It must be called right after removing the replaced patches!
1211 */
klp_discard_nops(struct klp_patch * new_patch)1212 void klp_discard_nops(struct klp_patch *new_patch)
1213 {
1214 klp_unpatch_objects_dynamic(klp_transition_patch);
1215 klp_free_objects_dynamic(klp_transition_patch);
1216 }
1217
1218 /*
1219 * Remove parts of patches that touch a given kernel module. The list of
1220 * patches processed might be limited. When limit is NULL, all patches
1221 * will be handled.
1222 */
klp_cleanup_module_patches_limited(struct module * mod,struct klp_patch * limit)1223 static void klp_cleanup_module_patches_limited(struct module *mod,
1224 struct klp_patch *limit)
1225 {
1226 struct klp_patch *patch;
1227 struct klp_object *obj;
1228
1229 klp_for_each_patch(patch) {
1230 if (patch == limit)
1231 break;
1232
1233 klp_for_each_object(patch, obj) {
1234 if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1235 continue;
1236
1237 if (patch != klp_transition_patch)
1238 klp_pre_unpatch_callback(obj);
1239
1240 pr_notice("reverting patch '%s' on unloading module '%s'\n",
1241 patch->mod->name, obj->mod->name);
1242 klp_unpatch_object(obj);
1243
1244 klp_post_unpatch_callback(obj);
1245 klp_clear_object_relocs(patch, obj);
1246 klp_free_object_loaded(obj);
1247 break;
1248 }
1249 }
1250 }
1251
klp_module_coming(struct module * mod)1252 int klp_module_coming(struct module *mod)
1253 {
1254 int ret;
1255 struct klp_patch *patch;
1256 struct klp_object *obj;
1257
1258 if (WARN_ON(mod->state != MODULE_STATE_COMING))
1259 return -EINVAL;
1260
1261 if (!strcmp(mod->name, "vmlinux")) {
1262 pr_err("vmlinux.ko: invalid module name\n");
1263 return -EINVAL;
1264 }
1265
1266 mutex_lock(&klp_mutex);
1267 /*
1268 * Each module has to know that klp_module_coming()
1269 * has been called. We never know what module will
1270 * get patched by a new patch.
1271 */
1272 mod->klp_alive = true;
1273
1274 klp_for_each_patch(patch) {
1275 klp_for_each_object(patch, obj) {
1276 if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1277 continue;
1278
1279 obj->mod = mod;
1280
1281 ret = klp_init_object_loaded(patch, obj);
1282 if (ret) {
1283 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1284 patch->mod->name, obj->mod->name, ret);
1285 goto err;
1286 }
1287
1288 pr_notice("applying patch '%s' to loading module '%s'\n",
1289 patch->mod->name, obj->mod->name);
1290
1291 ret = klp_pre_patch_callback(obj);
1292 if (ret) {
1293 pr_warn("pre-patch callback failed for object '%s'\n",
1294 obj->name);
1295 goto err;
1296 }
1297
1298 ret = klp_patch_object(obj);
1299 if (ret) {
1300 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1301 patch->mod->name, obj->mod->name, ret);
1302
1303 klp_post_unpatch_callback(obj);
1304 goto err;
1305 }
1306
1307 if (patch != klp_transition_patch)
1308 klp_post_patch_callback(obj);
1309
1310 break;
1311 }
1312 }
1313
1314 mutex_unlock(&klp_mutex);
1315
1316 return 0;
1317
1318 err:
1319 /*
1320 * If a patch is unsuccessfully applied, return
1321 * error to the module loader.
1322 */
1323 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1324 patch->mod->name, obj->mod->name, obj->mod->name);
1325 mod->klp_alive = false;
1326 obj->mod = NULL;
1327 klp_cleanup_module_patches_limited(mod, patch);
1328 mutex_unlock(&klp_mutex);
1329
1330 return ret;
1331 }
1332
klp_module_going(struct module * mod)1333 void klp_module_going(struct module *mod)
1334 {
1335 if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1336 mod->state != MODULE_STATE_COMING))
1337 return;
1338
1339 mutex_lock(&klp_mutex);
1340 /*
1341 * Each module has to know that klp_module_going()
1342 * has been called. We never know what module will
1343 * get patched by a new patch.
1344 */
1345 mod->klp_alive = false;
1346
1347 klp_cleanup_module_patches_limited(mod, NULL);
1348
1349 mutex_unlock(&klp_mutex);
1350 }
1351
klp_init(void)1352 static int __init klp_init(void)
1353 {
1354 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1355 if (!klp_root_kobj)
1356 return -ENOMEM;
1357
1358 return 0;
1359 }
1360
1361 module_init(klp_init);
1362