1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright (C) IBM Corporation, 2002, 2004
6 *
7 * 2002-Oct Created by Vamsi Krishna S <[email protected]> Kernel
8 * Probes initial implementation (includes suggestions from
9 * Rusty Russell).
10 * 2004-Aug Updated by Prasanna S Panchamukhi <[email protected]> with
11 * hlists and exceptions notifier as suggested by Andi Kleen.
12 * 2004-July Suparna Bhattacharya <[email protected]> added jumper probes
13 * interface to access function arguments.
14 * 2004-Sep Prasanna S Panchamukhi <[email protected]> Changed Kprobes
15 * exceptions notifier to be first on the priority list.
16 * 2005-May Hien Nguyen <[email protected]>, Jim Keniston
17 * <[email protected]> and Prasanna S Panchamukhi
18 * <[email protected]> added function-return probes.
19 */
20
21 #define pr_fmt(fmt) "kprobes: " fmt
22
23 #include <linux/kprobes.h>
24 #include <linux/hash.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/stddef.h>
28 #include <linux/export.h>
29 #include <linux/kallsyms.h>
30 #include <linux/freezer.h>
31 #include <linux/seq_file.h>
32 #include <linux/debugfs.h>
33 #include <linux/sysctl.h>
34 #include <linux/kdebug.h>
35 #include <linux/memory.h>
36 #include <linux/ftrace.h>
37 #include <linux/cpu.h>
38 #include <linux/jump_label.h>
39 #include <linux/static_call.h>
40 #include <linux/perf_event.h>
41 #include <linux/execmem.h>
42 #include <linux/cleanup.h>
43
44 #include <asm/sections.h>
45 #include <asm/cacheflush.h>
46 #include <asm/errno.h>
47 #include <linux/uaccess.h>
48
49 #define KPROBE_HASH_BITS 6
50 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
51
52 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
53 #define kprobe_sysctls_init() do { } while (0)
54 #endif
55
56 static int kprobes_initialized;
57 /* kprobe_table can be accessed by
58 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
59 * Or
60 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
61 */
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63
64 /* NOTE: change this value only with 'kprobe_mutex' held */
65 static bool kprobes_all_disarmed;
66
67 /* This protects 'kprobe_table' and 'optimizing_list' */
68 static DEFINE_MUTEX(kprobe_mutex);
69 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
70
kprobe_lookup_name(const char * name,unsigned int __unused)71 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
72 unsigned int __unused)
73 {
74 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
75 }
76
77 /*
78 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
79 * kprobes can not probe.
80 */
81 static LIST_HEAD(kprobe_blacklist);
82
83 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
84 /*
85 * 'kprobe::ainsn.insn' points to the copy of the instruction to be
86 * single-stepped. x86_64, POWER4 and above have no-exec support and
87 * stepping on the instruction on a vmalloced/kmalloced/data page
88 * is a recipe for disaster
89 */
90 struct kprobe_insn_page {
91 struct list_head list;
92 kprobe_opcode_t *insns; /* Page of instruction slots */
93 struct kprobe_insn_cache *cache;
94 int nused;
95 int ngarbage;
96 char slot_used[];
97 };
98
slots_per_page(struct kprobe_insn_cache * c)99 static int slots_per_page(struct kprobe_insn_cache *c)
100 {
101 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
102 }
103
104 enum kprobe_slot_state {
105 SLOT_CLEAN = 0,
106 SLOT_DIRTY = 1,
107 SLOT_USED = 2,
108 };
109
alloc_insn_page(void)110 void __weak *alloc_insn_page(void)
111 {
112 /*
113 * Use execmem_alloc() so this page is within +/- 2GB of where the
114 * kernel image and loaded module images reside. This is required
115 * for most of the architectures.
116 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
117 */
118 return execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
119 }
120
free_insn_page(void * page)121 static void free_insn_page(void *page)
122 {
123 execmem_free(page);
124 }
125
126 struct kprobe_insn_cache kprobe_insn_slots = {
127 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
128 .alloc = alloc_insn_page,
129 .free = free_insn_page,
130 .sym = KPROBE_INSN_PAGE_SYM,
131 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
132 .insn_size = MAX_INSN_SIZE,
133 .nr_garbage = 0,
134 };
135 static int collect_garbage_slots(struct kprobe_insn_cache *c);
136
137 /**
138 * __get_insn_slot() - Find a slot on an executable page for an instruction.
139 * We allocate an executable page if there's no room on existing ones.
140 */
__get_insn_slot(struct kprobe_insn_cache * c)141 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
142 {
143 struct kprobe_insn_page *kip;
144
145 /* Since the slot array is not protected by rcu, we need a mutex */
146 guard(mutex)(&c->mutex);
147 do {
148 guard(rcu)();
149 list_for_each_entry_rcu(kip, &c->pages, list) {
150 if (kip->nused < slots_per_page(c)) {
151 int i;
152
153 for (i = 0; i < slots_per_page(c); i++) {
154 if (kip->slot_used[i] == SLOT_CLEAN) {
155 kip->slot_used[i] = SLOT_USED;
156 kip->nused++;
157 return kip->insns + (i * c->insn_size);
158 }
159 }
160 /* kip->nused is broken. Fix it. */
161 kip->nused = slots_per_page(c);
162 WARN_ON(1);
163 }
164 }
165 /* If there are any garbage slots, collect it and try again. */
166 } while (c->nr_garbage && collect_garbage_slots(c) == 0);
167
168 /* All out of space. Need to allocate a new page. */
169 kip = kmalloc(struct_size(kip, slot_used, slots_per_page(c)), GFP_KERNEL);
170 if (!kip)
171 return NULL;
172
173 kip->insns = c->alloc();
174 if (!kip->insns) {
175 kfree(kip);
176 return NULL;
177 }
178 INIT_LIST_HEAD(&kip->list);
179 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180 kip->slot_used[0] = SLOT_USED;
181 kip->nused = 1;
182 kip->ngarbage = 0;
183 kip->cache = c;
184 list_add_rcu(&kip->list, &c->pages);
185
186 /* Record the perf ksymbol register event after adding the page */
187 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
188 PAGE_SIZE, false, c->sym);
189
190 return kip->insns;
191 }
192
193 /* Return true if all garbages are collected, otherwise false. */
collect_one_slot(struct kprobe_insn_page * kip,int idx)194 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
195 {
196 kip->slot_used[idx] = SLOT_CLEAN;
197 kip->nused--;
198 if (kip->nused != 0)
199 return false;
200
201 /*
202 * Page is no longer in use. Free it unless
203 * it's the last one. We keep the last one
204 * so as not to have to set it up again the
205 * next time somebody inserts a probe.
206 */
207 if (!list_is_singular(&kip->list)) {
208 /*
209 * Record perf ksymbol unregister event before removing
210 * the page.
211 */
212 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
213 (unsigned long)kip->insns, PAGE_SIZE, true,
214 kip->cache->sym);
215 list_del_rcu(&kip->list);
216 synchronize_rcu();
217 kip->cache->free(kip->insns);
218 kfree(kip);
219 }
220 return true;
221 }
222
collect_garbage_slots(struct kprobe_insn_cache * c)223 static int collect_garbage_slots(struct kprobe_insn_cache *c)
224 {
225 struct kprobe_insn_page *kip, *next;
226
227 /* Ensure no-one is interrupted on the garbages */
228 synchronize_rcu();
229
230 list_for_each_entry_safe(kip, next, &c->pages, list) {
231 int i;
232
233 if (kip->ngarbage == 0)
234 continue;
235 kip->ngarbage = 0; /* we will collect all garbages */
236 for (i = 0; i < slots_per_page(c); i++) {
237 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
238 break;
239 }
240 }
241 c->nr_garbage = 0;
242 return 0;
243 }
244
__find_insn_page(struct kprobe_insn_cache * c,kprobe_opcode_t * slot,struct kprobe_insn_page ** pkip)245 static long __find_insn_page(struct kprobe_insn_cache *c,
246 kprobe_opcode_t *slot, struct kprobe_insn_page **pkip)
247 {
248 struct kprobe_insn_page *kip = NULL;
249 long idx;
250
251 guard(rcu)();
252 list_for_each_entry_rcu(kip, &c->pages, list) {
253 idx = ((long)slot - (long)kip->insns) /
254 (c->insn_size * sizeof(kprobe_opcode_t));
255 if (idx >= 0 && idx < slots_per_page(c)) {
256 *pkip = kip;
257 return idx;
258 }
259 }
260 /* Could not find this slot. */
261 WARN_ON(1);
262 *pkip = NULL;
263 return -1;
264 }
265
__free_insn_slot(struct kprobe_insn_cache * c,kprobe_opcode_t * slot,int dirty)266 void __free_insn_slot(struct kprobe_insn_cache *c,
267 kprobe_opcode_t *slot, int dirty)
268 {
269 struct kprobe_insn_page *kip = NULL;
270 long idx;
271
272 guard(mutex)(&c->mutex);
273 idx = __find_insn_page(c, slot, &kip);
274 /* Mark and sweep: this may sleep */
275 if (kip) {
276 /* Check double free */
277 WARN_ON(kip->slot_used[idx] != SLOT_USED);
278 if (dirty) {
279 kip->slot_used[idx] = SLOT_DIRTY;
280 kip->ngarbage++;
281 if (++c->nr_garbage > slots_per_page(c))
282 collect_garbage_slots(c);
283 } else {
284 collect_one_slot(kip, idx);
285 }
286 }
287 }
288
289 /*
290 * Check given address is on the page of kprobe instruction slots.
291 * This will be used for checking whether the address on a stack
292 * is on a text area or not.
293 */
__is_insn_slot_addr(struct kprobe_insn_cache * c,unsigned long addr)294 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
295 {
296 struct kprobe_insn_page *kip;
297 bool ret = false;
298
299 rcu_read_lock();
300 list_for_each_entry_rcu(kip, &c->pages, list) {
301 if (addr >= (unsigned long)kip->insns &&
302 addr < (unsigned long)kip->insns + PAGE_SIZE) {
303 ret = true;
304 break;
305 }
306 }
307 rcu_read_unlock();
308
309 return ret;
310 }
311
kprobe_cache_get_kallsym(struct kprobe_insn_cache * c,unsigned int * symnum,unsigned long * value,char * type,char * sym)312 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
313 unsigned long *value, char *type, char *sym)
314 {
315 struct kprobe_insn_page *kip;
316 int ret = -ERANGE;
317
318 rcu_read_lock();
319 list_for_each_entry_rcu(kip, &c->pages, list) {
320 if ((*symnum)--)
321 continue;
322 strscpy(sym, c->sym, KSYM_NAME_LEN);
323 *type = 't';
324 *value = (unsigned long)kip->insns;
325 ret = 0;
326 break;
327 }
328 rcu_read_unlock();
329
330 return ret;
331 }
332
333 #ifdef CONFIG_OPTPROBES
alloc_optinsn_page(void)334 void __weak *alloc_optinsn_page(void)
335 {
336 return alloc_insn_page();
337 }
338
free_optinsn_page(void * page)339 void __weak free_optinsn_page(void *page)
340 {
341 free_insn_page(page);
342 }
343
344 /* For optimized_kprobe buffer */
345 struct kprobe_insn_cache kprobe_optinsn_slots = {
346 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
347 .alloc = alloc_optinsn_page,
348 .free = free_optinsn_page,
349 .sym = KPROBE_OPTINSN_PAGE_SYM,
350 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
351 /* .insn_size is initialized later */
352 .nr_garbage = 0,
353 };
354 #endif /* CONFIG_OPTPROBES */
355 #endif /* __ARCH_WANT_KPROBES_INSN_SLOT */
356
357 /* We have preemption disabled.. so it is safe to use __ versions */
set_kprobe_instance(struct kprobe * kp)358 static inline void set_kprobe_instance(struct kprobe *kp)
359 {
360 __this_cpu_write(kprobe_instance, kp);
361 }
362
reset_kprobe_instance(void)363 static inline void reset_kprobe_instance(void)
364 {
365 __this_cpu_write(kprobe_instance, NULL);
366 }
367
368 /*
369 * This routine is called either:
370 * - under the 'kprobe_mutex' - during kprobe_[un]register().
371 * OR
372 * - with preemption disabled - from architecture specific code.
373 */
get_kprobe(void * addr)374 struct kprobe *get_kprobe(void *addr)
375 {
376 struct hlist_head *head;
377 struct kprobe *p;
378
379 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
380 hlist_for_each_entry_rcu(p, head, hlist,
381 lockdep_is_held(&kprobe_mutex)) {
382 if (p->addr == addr)
383 return p;
384 }
385
386 return NULL;
387 }
388 NOKPROBE_SYMBOL(get_kprobe);
389
390 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
391
392 /* Return true if 'p' is an aggregator */
kprobe_aggrprobe(struct kprobe * p)393 static inline bool kprobe_aggrprobe(struct kprobe *p)
394 {
395 return p->pre_handler == aggr_pre_handler;
396 }
397
398 /* Return true if 'p' is unused */
kprobe_unused(struct kprobe * p)399 static inline bool kprobe_unused(struct kprobe *p)
400 {
401 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
402 list_empty(&p->list);
403 }
404
405 /* Keep all fields in the kprobe consistent. */
copy_kprobe(struct kprobe * ap,struct kprobe * p)406 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
407 {
408 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
409 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
410 }
411
412 #ifdef CONFIG_OPTPROBES
413 /* NOTE: This is protected by 'kprobe_mutex'. */
414 static bool kprobes_allow_optimization;
415
416 /*
417 * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
418 * This must be called from arch-dep optimized caller.
419 */
opt_pre_handler(struct kprobe * p,struct pt_regs * regs)420 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
421 {
422 struct kprobe *kp;
423
424 list_for_each_entry_rcu(kp, &p->list, list) {
425 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
426 set_kprobe_instance(kp);
427 kp->pre_handler(kp, regs);
428 }
429 reset_kprobe_instance();
430 }
431 }
432 NOKPROBE_SYMBOL(opt_pre_handler);
433
434 /* Free optimized instructions and optimized_kprobe */
free_aggr_kprobe(struct kprobe * p)435 static void free_aggr_kprobe(struct kprobe *p)
436 {
437 struct optimized_kprobe *op;
438
439 op = container_of(p, struct optimized_kprobe, kp);
440 arch_remove_optimized_kprobe(op);
441 arch_remove_kprobe(p);
442 kfree(op);
443 }
444
445 /* Return true if the kprobe is ready for optimization. */
kprobe_optready(struct kprobe * p)446 static inline int kprobe_optready(struct kprobe *p)
447 {
448 struct optimized_kprobe *op;
449
450 if (kprobe_aggrprobe(p)) {
451 op = container_of(p, struct optimized_kprobe, kp);
452 return arch_prepared_optinsn(&op->optinsn);
453 }
454
455 return 0;
456 }
457
458 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
kprobe_disarmed(struct kprobe * p)459 bool kprobe_disarmed(struct kprobe *p)
460 {
461 struct optimized_kprobe *op;
462
463 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
464 if (!kprobe_aggrprobe(p))
465 return kprobe_disabled(p);
466
467 op = container_of(p, struct optimized_kprobe, kp);
468
469 return kprobe_disabled(p) && list_empty(&op->list);
470 }
471
472 /* Return true if the probe is queued on (un)optimizing lists */
kprobe_queued(struct kprobe * p)473 static bool kprobe_queued(struct kprobe *p)
474 {
475 struct optimized_kprobe *op;
476
477 if (kprobe_aggrprobe(p)) {
478 op = container_of(p, struct optimized_kprobe, kp);
479 if (!list_empty(&op->list))
480 return true;
481 }
482 return false;
483 }
484
485 /*
486 * Return an optimized kprobe whose optimizing code replaces
487 * instructions including 'addr' (exclude breakpoint).
488 */
get_optimized_kprobe(kprobe_opcode_t * addr)489 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
490 {
491 int i;
492 struct kprobe *p = NULL;
493 struct optimized_kprobe *op;
494
495 /* Don't check i == 0, since that is a breakpoint case. */
496 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
497 p = get_kprobe(addr - i);
498
499 if (p && kprobe_optready(p)) {
500 op = container_of(p, struct optimized_kprobe, kp);
501 if (arch_within_optimized_kprobe(op, addr))
502 return p;
503 }
504
505 return NULL;
506 }
507
508 /* Optimization staging list, protected by 'kprobe_mutex' */
509 static LIST_HEAD(optimizing_list);
510 static LIST_HEAD(unoptimizing_list);
511 static LIST_HEAD(freeing_list);
512
513 static void kprobe_optimizer(struct work_struct *work);
514 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
515 #define OPTIMIZE_DELAY 5
516
517 /*
518 * Optimize (replace a breakpoint with a jump) kprobes listed on
519 * 'optimizing_list'.
520 */
do_optimize_kprobes(void)521 static void do_optimize_kprobes(void)
522 {
523 lockdep_assert_held(&text_mutex);
524 /*
525 * The optimization/unoptimization refers 'online_cpus' via
526 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
527 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
528 * This combination can cause a deadlock (cpu-hotplug tries to lock
529 * 'text_mutex' but stop_machine() can not be done because
530 * the 'online_cpus' has been changed)
531 * To avoid this deadlock, caller must have locked cpu-hotplug
532 * for preventing cpu-hotplug outside of 'text_mutex' locking.
533 */
534 lockdep_assert_cpus_held();
535
536 /* Optimization never be done when disarmed */
537 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
538 list_empty(&optimizing_list))
539 return;
540
541 arch_optimize_kprobes(&optimizing_list);
542 }
543
544 /*
545 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
546 * if need) kprobes listed on 'unoptimizing_list'.
547 */
do_unoptimize_kprobes(void)548 static void do_unoptimize_kprobes(void)
549 {
550 struct optimized_kprobe *op, *tmp;
551
552 lockdep_assert_held(&text_mutex);
553 /* See comment in do_optimize_kprobes() */
554 lockdep_assert_cpus_held();
555
556 if (!list_empty(&unoptimizing_list))
557 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
558
559 /* Loop on 'freeing_list' for disarming and removing from kprobe hash list */
560 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
561 /* Switching from detour code to origin */
562 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
563 /* Disarm probes if marked disabled and not gone */
564 if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp))
565 arch_disarm_kprobe(&op->kp);
566 if (kprobe_unused(&op->kp)) {
567 /*
568 * Remove unused probes from hash list. After waiting
569 * for synchronization, these probes are reclaimed.
570 * (reclaiming is done by do_free_cleaned_kprobes().)
571 */
572 hlist_del_rcu(&op->kp.hlist);
573 } else
574 list_del_init(&op->list);
575 }
576 }
577
578 /* Reclaim all kprobes on the 'freeing_list' */
do_free_cleaned_kprobes(void)579 static void do_free_cleaned_kprobes(void)
580 {
581 struct optimized_kprobe *op, *tmp;
582
583 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
584 list_del_init(&op->list);
585 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
586 /*
587 * This must not happen, but if there is a kprobe
588 * still in use, keep it on kprobes hash list.
589 */
590 continue;
591 }
592 free_aggr_kprobe(&op->kp);
593 }
594 }
595
596 /* Start optimizer after OPTIMIZE_DELAY passed */
kick_kprobe_optimizer(void)597 static void kick_kprobe_optimizer(void)
598 {
599 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
600 }
601
602 /* Kprobe jump optimizer */
kprobe_optimizer(struct work_struct * work)603 static void kprobe_optimizer(struct work_struct *work)
604 {
605 guard(mutex)(&kprobe_mutex);
606
607 scoped_guard(cpus_read_lock) {
608 guard(mutex)(&text_mutex);
609
610 /*
611 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
612 * kprobes before waiting for quiesence period.
613 */
614 do_unoptimize_kprobes();
615
616 /*
617 * Step 2: Wait for quiesence period to ensure all potentially
618 * preempted tasks to have normally scheduled. Because optprobe
619 * may modify multiple instructions, there is a chance that Nth
620 * instruction is preempted. In that case, such tasks can return
621 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
622 * Note that on non-preemptive kernel, this is transparently converted
623 * to synchronoze_sched() to wait for all interrupts to have completed.
624 */
625 synchronize_rcu_tasks();
626
627 /* Step 3: Optimize kprobes after quiesence period */
628 do_optimize_kprobes();
629
630 /* Step 4: Free cleaned kprobes after quiesence period */
631 do_free_cleaned_kprobes();
632 }
633
634 /* Step 5: Kick optimizer again if needed */
635 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
636 kick_kprobe_optimizer();
637 }
638
wait_for_kprobe_optimizer_locked(void)639 static void wait_for_kprobe_optimizer_locked(void)
640 {
641 lockdep_assert_held(&kprobe_mutex);
642
643 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
644 mutex_unlock(&kprobe_mutex);
645
646 /* This will also make 'optimizing_work' execute immmediately */
647 flush_delayed_work(&optimizing_work);
648 /* 'optimizing_work' might not have been queued yet, relax */
649 cpu_relax();
650
651 mutex_lock(&kprobe_mutex);
652 }
653 }
654
655 /* Wait for completing optimization and unoptimization */
wait_for_kprobe_optimizer(void)656 void wait_for_kprobe_optimizer(void)
657 {
658 guard(mutex)(&kprobe_mutex);
659
660 wait_for_kprobe_optimizer_locked();
661 }
662
optprobe_queued_unopt(struct optimized_kprobe * op)663 bool optprobe_queued_unopt(struct optimized_kprobe *op)
664 {
665 struct optimized_kprobe *_op;
666
667 list_for_each_entry(_op, &unoptimizing_list, list) {
668 if (op == _op)
669 return true;
670 }
671
672 return false;
673 }
674
675 /* Optimize kprobe if p is ready to be optimized */
optimize_kprobe(struct kprobe * p)676 static void optimize_kprobe(struct kprobe *p)
677 {
678 struct optimized_kprobe *op;
679
680 /* Check if the kprobe is disabled or not ready for optimization. */
681 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
682 (kprobe_disabled(p) || kprobes_all_disarmed))
683 return;
684
685 /* kprobes with 'post_handler' can not be optimized */
686 if (p->post_handler)
687 return;
688
689 op = container_of(p, struct optimized_kprobe, kp);
690
691 /* Check there is no other kprobes at the optimized instructions */
692 if (arch_check_optimized_kprobe(op) < 0)
693 return;
694
695 /* Check if it is already optimized. */
696 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
697 if (optprobe_queued_unopt(op)) {
698 /* This is under unoptimizing. Just dequeue the probe */
699 list_del_init(&op->list);
700 }
701 return;
702 }
703 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
704
705 /*
706 * On the 'unoptimizing_list' and 'optimizing_list',
707 * 'op' must have OPTIMIZED flag
708 */
709 if (WARN_ON_ONCE(!list_empty(&op->list)))
710 return;
711
712 list_add(&op->list, &optimizing_list);
713 kick_kprobe_optimizer();
714 }
715
716 /* Short cut to direct unoptimizing */
force_unoptimize_kprobe(struct optimized_kprobe * op)717 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
718 {
719 lockdep_assert_cpus_held();
720 arch_unoptimize_kprobe(op);
721 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722 }
723
724 /* Unoptimize a kprobe if p is optimized */
unoptimize_kprobe(struct kprobe * p,bool force)725 static void unoptimize_kprobe(struct kprobe *p, bool force)
726 {
727 struct optimized_kprobe *op;
728
729 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
730 return; /* This is not an optprobe nor optimized */
731
732 op = container_of(p, struct optimized_kprobe, kp);
733 if (!kprobe_optimized(p))
734 return;
735
736 if (!list_empty(&op->list)) {
737 if (optprobe_queued_unopt(op)) {
738 /* Queued in unoptimizing queue */
739 if (force) {
740 /*
741 * Forcibly unoptimize the kprobe here, and queue it
742 * in the freeing list for release afterwards.
743 */
744 force_unoptimize_kprobe(op);
745 list_move(&op->list, &freeing_list);
746 }
747 } else {
748 /* Dequeue from the optimizing queue */
749 list_del_init(&op->list);
750 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
751 }
752 return;
753 }
754
755 /* Optimized kprobe case */
756 if (force) {
757 /* Forcibly update the code: this is a special case */
758 force_unoptimize_kprobe(op);
759 } else {
760 list_add(&op->list, &unoptimizing_list);
761 kick_kprobe_optimizer();
762 }
763 }
764
765 /* Cancel unoptimizing for reusing */
reuse_unused_kprobe(struct kprobe * ap)766 static int reuse_unused_kprobe(struct kprobe *ap)
767 {
768 struct optimized_kprobe *op;
769
770 /*
771 * Unused kprobe MUST be on the way of delayed unoptimizing (means
772 * there is still a relative jump) and disabled.
773 */
774 op = container_of(ap, struct optimized_kprobe, kp);
775 WARN_ON_ONCE(list_empty(&op->list));
776 /* Enable the probe again */
777 ap->flags &= ~KPROBE_FLAG_DISABLED;
778 /* Optimize it again. (remove from 'op->list') */
779 if (!kprobe_optready(ap))
780 return -EINVAL;
781
782 optimize_kprobe(ap);
783 return 0;
784 }
785
786 /* Remove optimized instructions */
kill_optimized_kprobe(struct kprobe * p)787 static void kill_optimized_kprobe(struct kprobe *p)
788 {
789 struct optimized_kprobe *op;
790
791 op = container_of(p, struct optimized_kprobe, kp);
792 if (!list_empty(&op->list))
793 /* Dequeue from the (un)optimization queue */
794 list_del_init(&op->list);
795 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
796
797 if (kprobe_unused(p)) {
798 /*
799 * Unused kprobe is on unoptimizing or freeing list. We move it
800 * to freeing_list and let the kprobe_optimizer() remove it from
801 * the kprobe hash list and free it.
802 */
803 if (optprobe_queued_unopt(op))
804 list_move(&op->list, &freeing_list);
805 }
806
807 /* Don't touch the code, because it is already freed. */
808 arch_remove_optimized_kprobe(op);
809 }
810
811 static inline
__prepare_optimized_kprobe(struct optimized_kprobe * op,struct kprobe * p)812 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
813 {
814 if (!kprobe_ftrace(p))
815 arch_prepare_optimized_kprobe(op, p);
816 }
817
818 /* Try to prepare optimized instructions */
prepare_optimized_kprobe(struct kprobe * p)819 static void prepare_optimized_kprobe(struct kprobe *p)
820 {
821 struct optimized_kprobe *op;
822
823 op = container_of(p, struct optimized_kprobe, kp);
824 __prepare_optimized_kprobe(op, p);
825 }
826
827 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */
alloc_aggr_kprobe(struct kprobe * p)828 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
829 {
830 struct optimized_kprobe *op;
831
832 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
833 if (!op)
834 return NULL;
835
836 INIT_LIST_HEAD(&op->list);
837 op->kp.addr = p->addr;
838 __prepare_optimized_kprobe(op, p);
839
840 return &op->kp;
841 }
842
843 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
844
845 /*
846 * Prepare an optimized_kprobe and optimize it.
847 * NOTE: 'p' must be a normal registered kprobe.
848 */
try_to_optimize_kprobe(struct kprobe * p)849 static void try_to_optimize_kprobe(struct kprobe *p)
850 {
851 struct kprobe *ap;
852 struct optimized_kprobe *op;
853
854 /* Impossible to optimize ftrace-based kprobe. */
855 if (kprobe_ftrace(p))
856 return;
857
858 /* For preparing optimization, jump_label_text_reserved() is called. */
859 guard(cpus_read_lock)();
860 guard(jump_label_lock)();
861 guard(mutex)(&text_mutex);
862
863 ap = alloc_aggr_kprobe(p);
864 if (!ap)
865 return;
866
867 op = container_of(ap, struct optimized_kprobe, kp);
868 if (!arch_prepared_optinsn(&op->optinsn)) {
869 /* If failed to setup optimizing, fallback to kprobe. */
870 arch_remove_optimized_kprobe(op);
871 kfree(op);
872 return;
873 }
874
875 init_aggr_kprobe(ap, p);
876 optimize_kprobe(ap); /* This just kicks optimizer thread. */
877 }
878
optimize_all_kprobes(void)879 static void optimize_all_kprobes(void)
880 {
881 struct hlist_head *head;
882 struct kprobe *p;
883 unsigned int i;
884
885 guard(mutex)(&kprobe_mutex);
886 /* If optimization is already allowed, just return. */
887 if (kprobes_allow_optimization)
888 return;
889
890 cpus_read_lock();
891 kprobes_allow_optimization = true;
892 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
893 head = &kprobe_table[i];
894 hlist_for_each_entry(p, head, hlist)
895 if (!kprobe_disabled(p))
896 optimize_kprobe(p);
897 }
898 cpus_read_unlock();
899 pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
900 }
901
902 #ifdef CONFIG_SYSCTL
unoptimize_all_kprobes(void)903 static void unoptimize_all_kprobes(void)
904 {
905 struct hlist_head *head;
906 struct kprobe *p;
907 unsigned int i;
908
909 guard(mutex)(&kprobe_mutex);
910 /* If optimization is already prohibited, just return. */
911 if (!kprobes_allow_optimization)
912 return;
913
914 cpus_read_lock();
915 kprobes_allow_optimization = false;
916 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
917 head = &kprobe_table[i];
918 hlist_for_each_entry(p, head, hlist) {
919 if (!kprobe_disabled(p))
920 unoptimize_kprobe(p, false);
921 }
922 }
923 cpus_read_unlock();
924 /* Wait for unoptimizing completion. */
925 wait_for_kprobe_optimizer_locked();
926 pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
927 }
928
929 static DEFINE_MUTEX(kprobe_sysctl_mutex);
930 static int sysctl_kprobes_optimization;
proc_kprobes_optimization_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)931 static int proc_kprobes_optimization_handler(const struct ctl_table *table,
932 int write, void *buffer,
933 size_t *length, loff_t *ppos)
934 {
935 int ret;
936
937 guard(mutex)(&kprobe_sysctl_mutex);
938 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
939 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
940
941 if (sysctl_kprobes_optimization)
942 optimize_all_kprobes();
943 else
944 unoptimize_all_kprobes();
945
946 return ret;
947 }
948
949 static const struct ctl_table kprobe_sysctls[] = {
950 {
951 .procname = "kprobes-optimization",
952 .data = &sysctl_kprobes_optimization,
953 .maxlen = sizeof(int),
954 .mode = 0644,
955 .proc_handler = proc_kprobes_optimization_handler,
956 .extra1 = SYSCTL_ZERO,
957 .extra2 = SYSCTL_ONE,
958 },
959 };
960
kprobe_sysctls_init(void)961 static void __init kprobe_sysctls_init(void)
962 {
963 register_sysctl_init("debug", kprobe_sysctls);
964 }
965 #endif /* CONFIG_SYSCTL */
966
967 /* Put a breakpoint for a probe. */
__arm_kprobe(struct kprobe * p)968 static void __arm_kprobe(struct kprobe *p)
969 {
970 struct kprobe *_p;
971
972 lockdep_assert_held(&text_mutex);
973
974 /* Find the overlapping optimized kprobes. */
975 _p = get_optimized_kprobe(p->addr);
976 if (unlikely(_p))
977 /* Fallback to unoptimized kprobe */
978 unoptimize_kprobe(_p, true);
979
980 arch_arm_kprobe(p);
981 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
982 }
983
984 /* Remove the breakpoint of a probe. */
__disarm_kprobe(struct kprobe * p,bool reopt)985 static void __disarm_kprobe(struct kprobe *p, bool reopt)
986 {
987 struct kprobe *_p;
988
989 lockdep_assert_held(&text_mutex);
990
991 /* Try to unoptimize */
992 unoptimize_kprobe(p, kprobes_all_disarmed);
993
994 if (!kprobe_queued(p)) {
995 arch_disarm_kprobe(p);
996 /* If another kprobe was blocked, re-optimize it. */
997 _p = get_optimized_kprobe(p->addr);
998 if (unlikely(_p) && reopt)
999 optimize_kprobe(_p);
1000 }
1001 /*
1002 * TODO: Since unoptimization and real disarming will be done by
1003 * the worker thread, we can not check whether another probe are
1004 * unoptimized because of this probe here. It should be re-optimized
1005 * by the worker thread.
1006 */
1007 }
1008
1009 #else /* !CONFIG_OPTPROBES */
1010
1011 #define optimize_kprobe(p) do {} while (0)
1012 #define unoptimize_kprobe(p, f) do {} while (0)
1013 #define kill_optimized_kprobe(p) do {} while (0)
1014 #define prepare_optimized_kprobe(p) do {} while (0)
1015 #define try_to_optimize_kprobe(p) do {} while (0)
1016 #define __arm_kprobe(p) arch_arm_kprobe(p)
1017 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
1018 #define kprobe_disarmed(p) kprobe_disabled(p)
1019 #define wait_for_kprobe_optimizer_locked() \
1020 lockdep_assert_held(&kprobe_mutex)
1021
reuse_unused_kprobe(struct kprobe * ap)1022 static int reuse_unused_kprobe(struct kprobe *ap)
1023 {
1024 /*
1025 * If the optimized kprobe is NOT supported, the aggr kprobe is
1026 * released at the same time that the last aggregated kprobe is
1027 * unregistered.
1028 * Thus there should be no chance to reuse unused kprobe.
1029 */
1030 WARN_ON_ONCE(1);
1031 return -EINVAL;
1032 }
1033
free_aggr_kprobe(struct kprobe * p)1034 static void free_aggr_kprobe(struct kprobe *p)
1035 {
1036 arch_remove_kprobe(p);
1037 kfree(p);
1038 }
1039
alloc_aggr_kprobe(struct kprobe * p)1040 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1041 {
1042 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1043 }
1044 #endif /* CONFIG_OPTPROBES */
1045
1046 #ifdef CONFIG_KPROBES_ON_FTRACE
1047 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1048 .func = kprobe_ftrace_handler,
1049 .flags = FTRACE_OPS_FL_SAVE_REGS,
1050 };
1051
1052 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1053 .func = kprobe_ftrace_handler,
1054 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1055 };
1056
1057 static int kprobe_ipmodify_enabled;
1058 static int kprobe_ftrace_enabled;
1059 bool kprobe_ftrace_disabled;
1060
__arm_kprobe_ftrace(struct kprobe * p,struct ftrace_ops * ops,int * cnt)1061 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1062 int *cnt)
1063 {
1064 int ret;
1065
1066 lockdep_assert_held(&kprobe_mutex);
1067
1068 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1069 if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1070 return ret;
1071
1072 if (*cnt == 0) {
1073 ret = register_ftrace_function(ops);
1074 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret)) {
1075 /*
1076 * At this point, sinec ops is not registered, we should be sefe from
1077 * registering empty filter.
1078 */
1079 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1080 return ret;
1081 }
1082 }
1083
1084 (*cnt)++;
1085 return ret;
1086 }
1087
arm_kprobe_ftrace(struct kprobe * p)1088 static int arm_kprobe_ftrace(struct kprobe *p)
1089 {
1090 bool ipmodify = (p->post_handler != NULL);
1091
1092 return __arm_kprobe_ftrace(p,
1093 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1094 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1095 }
1096
__disarm_kprobe_ftrace(struct kprobe * p,struct ftrace_ops * ops,int * cnt)1097 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1098 int *cnt)
1099 {
1100 int ret;
1101
1102 lockdep_assert_held(&kprobe_mutex);
1103
1104 if (*cnt == 1) {
1105 ret = unregister_ftrace_function(ops);
1106 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1107 return ret;
1108 }
1109
1110 (*cnt)--;
1111
1112 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1113 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1114 p->addr, ret);
1115 return ret;
1116 }
1117
disarm_kprobe_ftrace(struct kprobe * p)1118 static int disarm_kprobe_ftrace(struct kprobe *p)
1119 {
1120 bool ipmodify = (p->post_handler != NULL);
1121
1122 return __disarm_kprobe_ftrace(p,
1123 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1124 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1125 }
1126
kprobe_ftrace_kill(void)1127 void kprobe_ftrace_kill(void)
1128 {
1129 kprobe_ftrace_disabled = true;
1130 }
1131 #else /* !CONFIG_KPROBES_ON_FTRACE */
arm_kprobe_ftrace(struct kprobe * p)1132 static inline int arm_kprobe_ftrace(struct kprobe *p)
1133 {
1134 return -ENODEV;
1135 }
1136
disarm_kprobe_ftrace(struct kprobe * p)1137 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1138 {
1139 return -ENODEV;
1140 }
1141 #endif
1142
prepare_kprobe(struct kprobe * p)1143 static int prepare_kprobe(struct kprobe *p)
1144 {
1145 /* Must ensure p->addr is really on ftrace */
1146 if (kprobe_ftrace(p))
1147 return arch_prepare_kprobe_ftrace(p);
1148
1149 return arch_prepare_kprobe(p);
1150 }
1151
arm_kprobe(struct kprobe * kp)1152 static int arm_kprobe(struct kprobe *kp)
1153 {
1154 if (unlikely(kprobe_ftrace(kp)))
1155 return arm_kprobe_ftrace(kp);
1156
1157 guard(cpus_read_lock)();
1158 guard(mutex)(&text_mutex);
1159 __arm_kprobe(kp);
1160 return 0;
1161 }
1162
disarm_kprobe(struct kprobe * kp,bool reopt)1163 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1164 {
1165 if (unlikely(kprobe_ftrace(kp)))
1166 return disarm_kprobe_ftrace(kp);
1167
1168 guard(cpus_read_lock)();
1169 guard(mutex)(&text_mutex);
1170 __disarm_kprobe(kp, reopt);
1171 return 0;
1172 }
1173
1174 /*
1175 * Aggregate handlers for multiple kprobes support - these handlers
1176 * take care of invoking the individual kprobe handlers on p->list
1177 */
aggr_pre_handler(struct kprobe * p,struct pt_regs * regs)1178 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1179 {
1180 struct kprobe *kp;
1181
1182 list_for_each_entry_rcu(kp, &p->list, list) {
1183 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1184 set_kprobe_instance(kp);
1185 if (kp->pre_handler(kp, regs))
1186 return 1;
1187 }
1188 reset_kprobe_instance();
1189 }
1190 return 0;
1191 }
1192 NOKPROBE_SYMBOL(aggr_pre_handler);
1193
aggr_post_handler(struct kprobe * p,struct pt_regs * regs,unsigned long flags)1194 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1195 unsigned long flags)
1196 {
1197 struct kprobe *kp;
1198
1199 list_for_each_entry_rcu(kp, &p->list, list) {
1200 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1201 set_kprobe_instance(kp);
1202 kp->post_handler(kp, regs, flags);
1203 reset_kprobe_instance();
1204 }
1205 }
1206 }
1207 NOKPROBE_SYMBOL(aggr_post_handler);
1208
1209 /* Walks the list and increments 'nmissed' if 'p' has child probes. */
kprobes_inc_nmissed_count(struct kprobe * p)1210 void kprobes_inc_nmissed_count(struct kprobe *p)
1211 {
1212 struct kprobe *kp;
1213
1214 if (!kprobe_aggrprobe(p)) {
1215 p->nmissed++;
1216 } else {
1217 list_for_each_entry_rcu(kp, &p->list, list)
1218 kp->nmissed++;
1219 }
1220 }
1221 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1222
1223 static struct kprobe kprobe_busy = {
1224 .addr = (void *) get_kprobe,
1225 };
1226
kprobe_busy_begin(void)1227 void kprobe_busy_begin(void)
1228 {
1229 struct kprobe_ctlblk *kcb;
1230
1231 preempt_disable();
1232 __this_cpu_write(current_kprobe, &kprobe_busy);
1233 kcb = get_kprobe_ctlblk();
1234 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1235 }
1236
kprobe_busy_end(void)1237 void kprobe_busy_end(void)
1238 {
1239 __this_cpu_write(current_kprobe, NULL);
1240 preempt_enable();
1241 }
1242
1243 /* Add the new probe to 'ap->list'. */
add_new_kprobe(struct kprobe * ap,struct kprobe * p)1244 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1245 {
1246 if (p->post_handler)
1247 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1248
1249 list_add_rcu(&p->list, &ap->list);
1250 if (p->post_handler && !ap->post_handler)
1251 ap->post_handler = aggr_post_handler;
1252
1253 return 0;
1254 }
1255
1256 /*
1257 * Fill in the required fields of the aggregator kprobe. Replace the
1258 * earlier kprobe in the hlist with the aggregator kprobe.
1259 */
init_aggr_kprobe(struct kprobe * ap,struct kprobe * p)1260 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1261 {
1262 /* Copy the insn slot of 'p' to 'ap'. */
1263 copy_kprobe(p, ap);
1264 flush_insn_slot(ap);
1265 ap->addr = p->addr;
1266 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1267 ap->pre_handler = aggr_pre_handler;
1268 /* We don't care the kprobe which has gone. */
1269 if (p->post_handler && !kprobe_gone(p))
1270 ap->post_handler = aggr_post_handler;
1271
1272 INIT_LIST_HEAD(&ap->list);
1273 INIT_HLIST_NODE(&ap->hlist);
1274
1275 list_add_rcu(&p->list, &ap->list);
1276 hlist_replace_rcu(&p->hlist, &ap->hlist);
1277 }
1278
1279 /*
1280 * This registers the second or subsequent kprobe at the same address.
1281 */
register_aggr_kprobe(struct kprobe * orig_p,struct kprobe * p)1282 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1283 {
1284 int ret = 0;
1285 struct kprobe *ap = orig_p;
1286
1287 scoped_guard(cpus_read_lock) {
1288 /* For preparing optimization, jump_label_text_reserved() is called */
1289 guard(jump_label_lock)();
1290 guard(mutex)(&text_mutex);
1291
1292 if (!kprobe_aggrprobe(orig_p)) {
1293 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1294 ap = alloc_aggr_kprobe(orig_p);
1295 if (!ap)
1296 return -ENOMEM;
1297 init_aggr_kprobe(ap, orig_p);
1298 } else if (kprobe_unused(ap)) {
1299 /* This probe is going to die. Rescue it */
1300 ret = reuse_unused_kprobe(ap);
1301 if (ret)
1302 return ret;
1303 }
1304
1305 if (kprobe_gone(ap)) {
1306 /*
1307 * Attempting to insert new probe at the same location that
1308 * had a probe in the module vaddr area which already
1309 * freed. So, the instruction slot has already been
1310 * released. We need a new slot for the new probe.
1311 */
1312 ret = arch_prepare_kprobe(ap);
1313 if (ret)
1314 /*
1315 * Even if fail to allocate new slot, don't need to
1316 * free the 'ap'. It will be used next time, or
1317 * freed by unregister_kprobe().
1318 */
1319 return ret;
1320
1321 /* Prepare optimized instructions if possible. */
1322 prepare_optimized_kprobe(ap);
1323
1324 /*
1325 * Clear gone flag to prevent allocating new slot again, and
1326 * set disabled flag because it is not armed yet.
1327 */
1328 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1329 | KPROBE_FLAG_DISABLED;
1330 }
1331
1332 /* Copy the insn slot of 'p' to 'ap'. */
1333 copy_kprobe(ap, p);
1334 ret = add_new_kprobe(ap, p);
1335 }
1336
1337 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1338 ap->flags &= ~KPROBE_FLAG_DISABLED;
1339 if (!kprobes_all_disarmed) {
1340 /* Arm the breakpoint again. */
1341 ret = arm_kprobe(ap);
1342 if (ret) {
1343 ap->flags |= KPROBE_FLAG_DISABLED;
1344 list_del_rcu(&p->list);
1345 synchronize_rcu();
1346 }
1347 }
1348 }
1349 return ret;
1350 }
1351
arch_within_kprobe_blacklist(unsigned long addr)1352 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1353 {
1354 /* The '__kprobes' functions and entry code must not be probed. */
1355 return addr >= (unsigned long)__kprobes_text_start &&
1356 addr < (unsigned long)__kprobes_text_end;
1357 }
1358
__within_kprobe_blacklist(unsigned long addr)1359 static bool __within_kprobe_blacklist(unsigned long addr)
1360 {
1361 struct kprobe_blacklist_entry *ent;
1362
1363 if (arch_within_kprobe_blacklist(addr))
1364 return true;
1365 /*
1366 * If 'kprobe_blacklist' is defined, check the address and
1367 * reject any probe registration in the prohibited area.
1368 */
1369 list_for_each_entry(ent, &kprobe_blacklist, list) {
1370 if (addr >= ent->start_addr && addr < ent->end_addr)
1371 return true;
1372 }
1373 return false;
1374 }
1375
within_kprobe_blacklist(unsigned long addr)1376 bool within_kprobe_blacklist(unsigned long addr)
1377 {
1378 char symname[KSYM_NAME_LEN], *p;
1379
1380 if (__within_kprobe_blacklist(addr))
1381 return true;
1382
1383 /* Check if the address is on a suffixed-symbol */
1384 if (!lookup_symbol_name(addr, symname)) {
1385 p = strchr(symname, '.');
1386 if (!p)
1387 return false;
1388 *p = '\0';
1389 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1390 if (addr)
1391 return __within_kprobe_blacklist(addr);
1392 }
1393 return false;
1394 }
1395
1396 /*
1397 * arch_adjust_kprobe_addr - adjust the address
1398 * @addr: symbol base address
1399 * @offset: offset within the symbol
1400 * @on_func_entry: was this @addr+@offset on the function entry
1401 *
1402 * Typically returns @addr + @offset, except for special cases where the
1403 * function might be prefixed by a CFI landing pad, in that case any offset
1404 * inside the landing pad is mapped to the first 'real' instruction of the
1405 * symbol.
1406 *
1407 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1408 * instruction at +0.
1409 */
arch_adjust_kprobe_addr(unsigned long addr,unsigned long offset,bool * on_func_entry)1410 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1411 unsigned long offset,
1412 bool *on_func_entry)
1413 {
1414 *on_func_entry = !offset;
1415 return (kprobe_opcode_t *)(addr + offset);
1416 }
1417
1418 /*
1419 * If 'symbol_name' is specified, look it up and add the 'offset'
1420 * to it. This way, we can specify a relative address to a symbol.
1421 * This returns encoded errors if it fails to look up symbol or invalid
1422 * combination of parameters.
1423 */
1424 static kprobe_opcode_t *
_kprobe_addr(kprobe_opcode_t * addr,const char * symbol_name,unsigned long offset,bool * on_func_entry)1425 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1426 unsigned long offset, bool *on_func_entry)
1427 {
1428 if ((symbol_name && addr) || (!symbol_name && !addr))
1429 return ERR_PTR(-EINVAL);
1430
1431 if (symbol_name) {
1432 /*
1433 * Input: @sym + @offset
1434 * Output: @addr + @offset
1435 *
1436 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1437 * argument into it's output!
1438 */
1439 addr = kprobe_lookup_name(symbol_name, offset);
1440 if (!addr)
1441 return ERR_PTR(-ENOENT);
1442 }
1443
1444 /*
1445 * So here we have @addr + @offset, displace it into a new
1446 * @addr' + @offset' where @addr' is the symbol start address.
1447 */
1448 addr = (void *)addr + offset;
1449 if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1450 return ERR_PTR(-ENOENT);
1451 addr = (void *)addr - offset;
1452
1453 /*
1454 * Then ask the architecture to re-combine them, taking care of
1455 * magical function entry details while telling us if this was indeed
1456 * at the start of the function.
1457 */
1458 addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1459 if (!addr)
1460 return ERR_PTR(-EINVAL);
1461
1462 return addr;
1463 }
1464
kprobe_addr(struct kprobe * p)1465 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1466 {
1467 bool on_func_entry;
1468
1469 return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1470 }
1471
1472 /*
1473 * Check the 'p' is valid and return the aggregator kprobe
1474 * at the same address.
1475 */
__get_valid_kprobe(struct kprobe * p)1476 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1477 {
1478 struct kprobe *ap, *list_p;
1479
1480 lockdep_assert_held(&kprobe_mutex);
1481
1482 ap = get_kprobe(p->addr);
1483 if (unlikely(!ap))
1484 return NULL;
1485
1486 if (p == ap)
1487 return ap;
1488
1489 list_for_each_entry(list_p, &ap->list, list)
1490 if (list_p == p)
1491 /* kprobe p is a valid probe */
1492 return ap;
1493
1494 return NULL;
1495 }
1496
1497 /*
1498 * Warn and return error if the kprobe is being re-registered since
1499 * there must be a software bug.
1500 */
warn_kprobe_rereg(struct kprobe * p)1501 static inline int warn_kprobe_rereg(struct kprobe *p)
1502 {
1503 guard(mutex)(&kprobe_mutex);
1504
1505 if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1506 return -EINVAL;
1507
1508 return 0;
1509 }
1510
check_ftrace_location(struct kprobe * p)1511 static int check_ftrace_location(struct kprobe *p)
1512 {
1513 unsigned long addr = (unsigned long)p->addr;
1514
1515 if (ftrace_location(addr) == addr) {
1516 #ifdef CONFIG_KPROBES_ON_FTRACE
1517 p->flags |= KPROBE_FLAG_FTRACE;
1518 #else
1519 return -EINVAL;
1520 #endif
1521 }
1522 return 0;
1523 }
1524
is_cfi_preamble_symbol(unsigned long addr)1525 static bool is_cfi_preamble_symbol(unsigned long addr)
1526 {
1527 char symbuf[KSYM_NAME_LEN];
1528
1529 if (lookup_symbol_name(addr, symbuf))
1530 return false;
1531
1532 return str_has_prefix(symbuf, "__cfi_") ||
1533 str_has_prefix(symbuf, "__pfx_");
1534 }
1535
check_kprobe_address_safe(struct kprobe * p,struct module ** probed_mod)1536 static int check_kprobe_address_safe(struct kprobe *p,
1537 struct module **probed_mod)
1538 {
1539 int ret;
1540
1541 ret = check_ftrace_location(p);
1542 if (ret)
1543 return ret;
1544
1545 guard(jump_label_lock)();
1546
1547 /* Ensure the address is in a text area, and find a module if exists. */
1548 *probed_mod = NULL;
1549 if (!core_kernel_text((unsigned long) p->addr)) {
1550 guard(preempt)();
1551 *probed_mod = __module_text_address((unsigned long) p->addr);
1552 if (!(*probed_mod))
1553 return -EINVAL;
1554
1555 /*
1556 * We must hold a refcount of the probed module while updating
1557 * its code to prohibit unexpected unloading.
1558 */
1559 if (unlikely(!try_module_get(*probed_mod)))
1560 return -ENOENT;
1561 }
1562 /* Ensure it is not in reserved area. */
1563 if (in_gate_area_no_mm((unsigned long) p->addr) ||
1564 within_kprobe_blacklist((unsigned long) p->addr) ||
1565 jump_label_text_reserved(p->addr, p->addr) ||
1566 static_call_text_reserved(p->addr, p->addr) ||
1567 find_bug((unsigned long)p->addr) ||
1568 is_cfi_preamble_symbol((unsigned long)p->addr)) {
1569 module_put(*probed_mod);
1570 return -EINVAL;
1571 }
1572
1573 /* Get module refcount and reject __init functions for loaded modules. */
1574 if (IS_ENABLED(CONFIG_MODULES) && *probed_mod) {
1575 /*
1576 * If the module freed '.init.text', we couldn't insert
1577 * kprobes in there.
1578 */
1579 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1580 !module_is_coming(*probed_mod)) {
1581 module_put(*probed_mod);
1582 return -ENOENT;
1583 }
1584 }
1585
1586 return 0;
1587 }
1588
__register_kprobe(struct kprobe * p)1589 static int __register_kprobe(struct kprobe *p)
1590 {
1591 int ret;
1592 struct kprobe *old_p;
1593
1594 guard(mutex)(&kprobe_mutex);
1595
1596 old_p = get_kprobe(p->addr);
1597 if (old_p)
1598 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1599 return register_aggr_kprobe(old_p, p);
1600
1601 scoped_guard(cpus_read_lock) {
1602 /* Prevent text modification */
1603 guard(mutex)(&text_mutex);
1604 ret = prepare_kprobe(p);
1605 if (ret)
1606 return ret;
1607 }
1608
1609 INIT_HLIST_NODE(&p->hlist);
1610 hlist_add_head_rcu(&p->hlist,
1611 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1612
1613 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1614 ret = arm_kprobe(p);
1615 if (ret) {
1616 hlist_del_rcu(&p->hlist);
1617 synchronize_rcu();
1618 }
1619 }
1620
1621 /* Try to optimize kprobe */
1622 try_to_optimize_kprobe(p);
1623 return 0;
1624 }
1625
register_kprobe(struct kprobe * p)1626 int register_kprobe(struct kprobe *p)
1627 {
1628 int ret;
1629 struct module *probed_mod;
1630 kprobe_opcode_t *addr;
1631 bool on_func_entry;
1632
1633 /* Canonicalize probe address from symbol */
1634 addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1635 if (IS_ERR(addr))
1636 return PTR_ERR(addr);
1637 p->addr = addr;
1638
1639 ret = warn_kprobe_rereg(p);
1640 if (ret)
1641 return ret;
1642
1643 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1644 p->flags &= KPROBE_FLAG_DISABLED;
1645 if (on_func_entry)
1646 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1647 p->nmissed = 0;
1648 INIT_LIST_HEAD(&p->list);
1649
1650 ret = check_kprobe_address_safe(p, &probed_mod);
1651 if (ret)
1652 return ret;
1653
1654 ret = __register_kprobe(p);
1655
1656 if (probed_mod)
1657 module_put(probed_mod);
1658
1659 return ret;
1660 }
1661 EXPORT_SYMBOL_GPL(register_kprobe);
1662
1663 /* Check if all probes on the 'ap' are disabled. */
aggr_kprobe_disabled(struct kprobe * ap)1664 static bool aggr_kprobe_disabled(struct kprobe *ap)
1665 {
1666 struct kprobe *kp;
1667
1668 lockdep_assert_held(&kprobe_mutex);
1669
1670 list_for_each_entry(kp, &ap->list, list)
1671 if (!kprobe_disabled(kp))
1672 /*
1673 * Since there is an active probe on the list,
1674 * we can't disable this 'ap'.
1675 */
1676 return false;
1677
1678 return true;
1679 }
1680
__disable_kprobe(struct kprobe * p)1681 static struct kprobe *__disable_kprobe(struct kprobe *p)
1682 {
1683 struct kprobe *orig_p;
1684 int ret;
1685
1686 lockdep_assert_held(&kprobe_mutex);
1687
1688 /* Get an original kprobe for return */
1689 orig_p = __get_valid_kprobe(p);
1690 if (unlikely(orig_p == NULL))
1691 return ERR_PTR(-EINVAL);
1692
1693 if (kprobe_disabled(p))
1694 return orig_p;
1695
1696 /* Disable probe if it is a child probe */
1697 if (p != orig_p)
1698 p->flags |= KPROBE_FLAG_DISABLED;
1699
1700 /* Try to disarm and disable this/parent probe */
1701 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1702 /*
1703 * Don't be lazy here. Even if 'kprobes_all_disarmed'
1704 * is false, 'orig_p' might not have been armed yet.
1705 * Note arm_all_kprobes() __tries__ to arm all kprobes
1706 * on the best effort basis.
1707 */
1708 if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1709 ret = disarm_kprobe(orig_p, true);
1710 if (ret) {
1711 p->flags &= ~KPROBE_FLAG_DISABLED;
1712 return ERR_PTR(ret);
1713 }
1714 }
1715 orig_p->flags |= KPROBE_FLAG_DISABLED;
1716 }
1717
1718 return orig_p;
1719 }
1720
1721 /*
1722 * Unregister a kprobe without a scheduler synchronization.
1723 */
__unregister_kprobe_top(struct kprobe * p)1724 static int __unregister_kprobe_top(struct kprobe *p)
1725 {
1726 struct kprobe *ap, *list_p;
1727
1728 /* Disable kprobe. This will disarm it if needed. */
1729 ap = __disable_kprobe(p);
1730 if (IS_ERR(ap))
1731 return PTR_ERR(ap);
1732
1733 WARN_ON(ap != p && !kprobe_aggrprobe(ap));
1734
1735 /*
1736 * If the probe is an independent(and non-optimized) kprobe
1737 * (not an aggrprobe), the last kprobe on the aggrprobe, or
1738 * kprobe is already disarmed, just remove from the hash list.
1739 */
1740 if (ap == p ||
1741 (list_is_singular(&ap->list) && kprobe_disarmed(ap))) {
1742 /*
1743 * !disarmed could be happen if the probe is under delayed
1744 * unoptimizing.
1745 */
1746 hlist_del_rcu(&ap->hlist);
1747 return 0;
1748 }
1749
1750 /* If disabling probe has special handlers, update aggrprobe */
1751 if (p->post_handler && !kprobe_gone(p)) {
1752 list_for_each_entry(list_p, &ap->list, list) {
1753 if ((list_p != p) && (list_p->post_handler))
1754 break;
1755 }
1756 /* No other probe has post_handler */
1757 if (list_entry_is_head(list_p, &ap->list, list)) {
1758 /*
1759 * For the kprobe-on-ftrace case, we keep the
1760 * post_handler setting to identify this aggrprobe
1761 * armed with kprobe_ipmodify_ops.
1762 */
1763 if (!kprobe_ftrace(ap))
1764 ap->post_handler = NULL;
1765 }
1766 }
1767
1768 /*
1769 * Remove from the aggrprobe: this path will do nothing in
1770 * __unregister_kprobe_bottom().
1771 */
1772 list_del_rcu(&p->list);
1773 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1774 /*
1775 * Try to optimize this probe again, because post
1776 * handler may have been changed.
1777 */
1778 optimize_kprobe(ap);
1779 return 0;
1780
1781 }
1782
__unregister_kprobe_bottom(struct kprobe * p)1783 static void __unregister_kprobe_bottom(struct kprobe *p)
1784 {
1785 struct kprobe *ap;
1786
1787 if (list_empty(&p->list))
1788 /* This is an independent kprobe */
1789 arch_remove_kprobe(p);
1790 else if (list_is_singular(&p->list)) {
1791 /* This is the last child of an aggrprobe */
1792 ap = list_entry(p->list.next, struct kprobe, list);
1793 list_del(&p->list);
1794 free_aggr_kprobe(ap);
1795 }
1796 /* Otherwise, do nothing. */
1797 }
1798
register_kprobes(struct kprobe ** kps,int num)1799 int register_kprobes(struct kprobe **kps, int num)
1800 {
1801 int i, ret = 0;
1802
1803 if (num <= 0)
1804 return -EINVAL;
1805 for (i = 0; i < num; i++) {
1806 ret = register_kprobe(kps[i]);
1807 if (ret < 0) {
1808 if (i > 0)
1809 unregister_kprobes(kps, i);
1810 break;
1811 }
1812 }
1813 return ret;
1814 }
1815 EXPORT_SYMBOL_GPL(register_kprobes);
1816
unregister_kprobe(struct kprobe * p)1817 void unregister_kprobe(struct kprobe *p)
1818 {
1819 unregister_kprobes(&p, 1);
1820 }
1821 EXPORT_SYMBOL_GPL(unregister_kprobe);
1822
unregister_kprobes(struct kprobe ** kps,int num)1823 void unregister_kprobes(struct kprobe **kps, int num)
1824 {
1825 int i;
1826
1827 if (num <= 0)
1828 return;
1829 scoped_guard(mutex, &kprobe_mutex) {
1830 for (i = 0; i < num; i++)
1831 if (__unregister_kprobe_top(kps[i]) < 0)
1832 kps[i]->addr = NULL;
1833 }
1834 synchronize_rcu();
1835 for (i = 0; i < num; i++)
1836 if (kps[i]->addr)
1837 __unregister_kprobe_bottom(kps[i]);
1838 }
1839 EXPORT_SYMBOL_GPL(unregister_kprobes);
1840
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)1841 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1842 unsigned long val, void *data)
1843 {
1844 return NOTIFY_DONE;
1845 }
1846 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1847
1848 static struct notifier_block kprobe_exceptions_nb = {
1849 .notifier_call = kprobe_exceptions_notify,
1850 .priority = 0x7fffffff /* we need to be notified first */
1851 };
1852
1853 #ifdef CONFIG_KRETPROBES
1854
1855 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1856
1857 /* callbacks for objpool of kretprobe instances */
kretprobe_init_inst(void * nod,void * context)1858 static int kretprobe_init_inst(void *nod, void *context)
1859 {
1860 struct kretprobe_instance *ri = nod;
1861
1862 ri->rph = context;
1863 return 0;
1864 }
kretprobe_fini_pool(struct objpool_head * head,void * context)1865 static int kretprobe_fini_pool(struct objpool_head *head, void *context)
1866 {
1867 kfree(context);
1868 return 0;
1869 }
1870
free_rp_inst_rcu(struct rcu_head * head)1871 static void free_rp_inst_rcu(struct rcu_head *head)
1872 {
1873 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1874 struct kretprobe_holder *rph = ri->rph;
1875
1876 objpool_drop(ri, &rph->pool);
1877 }
1878 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1879
recycle_rp_inst(struct kretprobe_instance * ri)1880 static void recycle_rp_inst(struct kretprobe_instance *ri)
1881 {
1882 struct kretprobe *rp = get_kretprobe(ri);
1883
1884 if (likely(rp))
1885 objpool_push(ri, &rp->rph->pool);
1886 else
1887 call_rcu(&ri->rcu, free_rp_inst_rcu);
1888 }
1889 NOKPROBE_SYMBOL(recycle_rp_inst);
1890
1891 /*
1892 * This function is called from delayed_put_task_struct() when a task is
1893 * dead and cleaned up to recycle any kretprobe instances associated with
1894 * this task. These left over instances represent probed functions that
1895 * have been called but will never return.
1896 */
kprobe_flush_task(struct task_struct * tk)1897 void kprobe_flush_task(struct task_struct *tk)
1898 {
1899 struct kretprobe_instance *ri;
1900 struct llist_node *node;
1901
1902 /* Early boot, not yet initialized. */
1903 if (unlikely(!kprobes_initialized))
1904 return;
1905
1906 kprobe_busy_begin();
1907
1908 node = __llist_del_all(&tk->kretprobe_instances);
1909 while (node) {
1910 ri = container_of(node, struct kretprobe_instance, llist);
1911 node = node->next;
1912
1913 recycle_rp_inst(ri);
1914 }
1915
1916 kprobe_busy_end();
1917 }
1918 NOKPROBE_SYMBOL(kprobe_flush_task);
1919
free_rp_inst(struct kretprobe * rp)1920 static inline void free_rp_inst(struct kretprobe *rp)
1921 {
1922 struct kretprobe_holder *rph = rp->rph;
1923
1924 if (!rph)
1925 return;
1926 rp->rph = NULL;
1927 objpool_fini(&rph->pool);
1928 }
1929
1930 /* This assumes the 'tsk' is the current task or the is not running. */
__kretprobe_find_ret_addr(struct task_struct * tsk,struct llist_node ** cur)1931 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1932 struct llist_node **cur)
1933 {
1934 struct kretprobe_instance *ri = NULL;
1935 struct llist_node *node = *cur;
1936
1937 if (!node)
1938 node = tsk->kretprobe_instances.first;
1939 else
1940 node = node->next;
1941
1942 while (node) {
1943 ri = container_of(node, struct kretprobe_instance, llist);
1944 if (ri->ret_addr != kretprobe_trampoline_addr()) {
1945 *cur = node;
1946 return ri->ret_addr;
1947 }
1948 node = node->next;
1949 }
1950 return NULL;
1951 }
1952 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1953
1954 /**
1955 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1956 * @tsk: Target task
1957 * @fp: A frame pointer
1958 * @cur: a storage of the loop cursor llist_node pointer for next call
1959 *
1960 * Find the correct return address modified by a kretprobe on @tsk in unsigned
1961 * long type. If it finds the return address, this returns that address value,
1962 * or this returns 0.
1963 * The @tsk must be 'current' or a task which is not running. @fp is a hint
1964 * to get the currect return address - which is compared with the
1965 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1966 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1967 * first call, but '@cur' itself must NOT NULL.
1968 */
kretprobe_find_ret_addr(struct task_struct * tsk,void * fp,struct llist_node ** cur)1969 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1970 struct llist_node **cur)
1971 {
1972 struct kretprobe_instance *ri;
1973 kprobe_opcode_t *ret;
1974
1975 if (WARN_ON_ONCE(!cur))
1976 return 0;
1977
1978 do {
1979 ret = __kretprobe_find_ret_addr(tsk, cur);
1980 if (!ret)
1981 break;
1982 ri = container_of(*cur, struct kretprobe_instance, llist);
1983 } while (ri->fp != fp);
1984
1985 return (unsigned long)ret;
1986 }
1987 NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
1988
arch_kretprobe_fixup_return(struct pt_regs * regs,kprobe_opcode_t * correct_ret_addr)1989 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
1990 kprobe_opcode_t *correct_ret_addr)
1991 {
1992 /*
1993 * Do nothing by default. Please fill this to update the fake return
1994 * address on the stack with the correct one on each arch if possible.
1995 */
1996 }
1997
__kretprobe_trampoline_handler(struct pt_regs * regs,void * frame_pointer)1998 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1999 void *frame_pointer)
2000 {
2001 struct kretprobe_instance *ri = NULL;
2002 struct llist_node *first, *node = NULL;
2003 kprobe_opcode_t *correct_ret_addr;
2004 struct kretprobe *rp;
2005
2006 /* Find correct address and all nodes for this frame. */
2007 correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2008 if (!correct_ret_addr) {
2009 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2010 BUG_ON(1);
2011 }
2012
2013 /*
2014 * Set the return address as the instruction pointer, because if the
2015 * user handler calls stack_trace_save_regs() with this 'regs',
2016 * the stack trace will start from the instruction pointer.
2017 */
2018 instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2019
2020 /* Run the user handler of the nodes. */
2021 first = current->kretprobe_instances.first;
2022 while (first) {
2023 ri = container_of(first, struct kretprobe_instance, llist);
2024
2025 if (WARN_ON_ONCE(ri->fp != frame_pointer))
2026 break;
2027
2028 rp = get_kretprobe(ri);
2029 if (rp && rp->handler) {
2030 struct kprobe *prev = kprobe_running();
2031
2032 __this_cpu_write(current_kprobe, &rp->kp);
2033 ri->ret_addr = correct_ret_addr;
2034 rp->handler(ri, regs);
2035 __this_cpu_write(current_kprobe, prev);
2036 }
2037 if (first == node)
2038 break;
2039
2040 first = first->next;
2041 }
2042
2043 arch_kretprobe_fixup_return(regs, correct_ret_addr);
2044
2045 /* Unlink all nodes for this frame. */
2046 first = current->kretprobe_instances.first;
2047 current->kretprobe_instances.first = node->next;
2048 node->next = NULL;
2049
2050 /* Recycle free instances. */
2051 while (first) {
2052 ri = container_of(first, struct kretprobe_instance, llist);
2053 first = first->next;
2054
2055 recycle_rp_inst(ri);
2056 }
2057
2058 return (unsigned long)correct_ret_addr;
2059 }
NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)2060 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2061
2062 /*
2063 * This kprobe pre_handler is registered with every kretprobe. When probe
2064 * hits it will set up the return probe.
2065 */
2066 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2067 {
2068 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2069 struct kretprobe_holder *rph = rp->rph;
2070 struct kretprobe_instance *ri;
2071
2072 ri = objpool_pop(&rph->pool);
2073 if (!ri) {
2074 rp->nmissed++;
2075 return 0;
2076 }
2077
2078 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2079 objpool_push(ri, &rph->pool);
2080 return 0;
2081 }
2082
2083 arch_prepare_kretprobe(ri, regs);
2084
2085 __llist_add(&ri->llist, ¤t->kretprobe_instances);
2086
2087 return 0;
2088 }
2089 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2090 #else /* CONFIG_KRETPROBE_ON_RETHOOK */
2091 /*
2092 * This kprobe pre_handler is registered with every kretprobe. When probe
2093 * hits it will set up the return probe.
2094 */
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)2095 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2096 {
2097 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2098 struct kretprobe_instance *ri;
2099 struct rethook_node *rhn;
2100
2101 rhn = rethook_try_get(rp->rh);
2102 if (!rhn) {
2103 rp->nmissed++;
2104 return 0;
2105 }
2106
2107 ri = container_of(rhn, struct kretprobe_instance, node);
2108
2109 if (rp->entry_handler && rp->entry_handler(ri, regs))
2110 rethook_recycle(rhn);
2111 else
2112 rethook_hook(rhn, regs, kprobe_ftrace(p));
2113
2114 return 0;
2115 }
2116 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2117
kretprobe_rethook_handler(struct rethook_node * rh,void * data,unsigned long ret_addr,struct pt_regs * regs)2118 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2119 unsigned long ret_addr,
2120 struct pt_regs *regs)
2121 {
2122 struct kretprobe *rp = (struct kretprobe *)data;
2123 struct kretprobe_instance *ri;
2124 struct kprobe_ctlblk *kcb;
2125
2126 /* The data must NOT be null. This means rethook data structure is broken. */
2127 if (WARN_ON_ONCE(!data) || !rp->handler)
2128 return;
2129
2130 __this_cpu_write(current_kprobe, &rp->kp);
2131 kcb = get_kprobe_ctlblk();
2132 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2133
2134 ri = container_of(rh, struct kretprobe_instance, node);
2135 rp->handler(ri, regs);
2136
2137 __this_cpu_write(current_kprobe, NULL);
2138 }
2139 NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2140
2141 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2142
2143 /**
2144 * kprobe_on_func_entry() -- check whether given address is function entry
2145 * @addr: Target address
2146 * @sym: Target symbol name
2147 * @offset: The offset from the symbol or the address
2148 *
2149 * This checks whether the given @addr+@offset or @sym+@offset is on the
2150 * function entry address or not.
2151 * This returns 0 if it is the function entry, or -EINVAL if it is not.
2152 * And also it returns -ENOENT if it fails the symbol or address lookup.
2153 * Caller must pass @addr or @sym (either one must be NULL), or this
2154 * returns -EINVAL.
2155 */
kprobe_on_func_entry(kprobe_opcode_t * addr,const char * sym,unsigned long offset)2156 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2157 {
2158 bool on_func_entry;
2159 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2160
2161 if (IS_ERR(kp_addr))
2162 return PTR_ERR(kp_addr);
2163
2164 if (!on_func_entry)
2165 return -EINVAL;
2166
2167 return 0;
2168 }
2169
register_kretprobe(struct kretprobe * rp)2170 int register_kretprobe(struct kretprobe *rp)
2171 {
2172 int ret;
2173 int i;
2174 void *addr;
2175
2176 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2177 if (ret)
2178 return ret;
2179
2180 /* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2181 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2182 return -EINVAL;
2183
2184 if (kretprobe_blacklist_size) {
2185 addr = kprobe_addr(&rp->kp);
2186 if (IS_ERR(addr))
2187 return PTR_ERR(addr);
2188
2189 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2190 if (kretprobe_blacklist[i].addr == addr)
2191 return -EINVAL;
2192 }
2193 }
2194
2195 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2196 return -E2BIG;
2197
2198 rp->kp.pre_handler = pre_handler_kretprobe;
2199 rp->kp.post_handler = NULL;
2200
2201 /* Pre-allocate memory for max kretprobe instances */
2202 if (rp->maxactive <= 0)
2203 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2204
2205 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2206 rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler,
2207 sizeof(struct kretprobe_instance) +
2208 rp->data_size, rp->maxactive);
2209 if (IS_ERR(rp->rh))
2210 return PTR_ERR(rp->rh);
2211
2212 rp->nmissed = 0;
2213 /* Establish function entry probe point */
2214 ret = register_kprobe(&rp->kp);
2215 if (ret != 0) {
2216 rethook_free(rp->rh);
2217 rp->rh = NULL;
2218 }
2219 #else /* !CONFIG_KRETPROBE_ON_RETHOOK */
2220 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2221 if (!rp->rph)
2222 return -ENOMEM;
2223
2224 if (objpool_init(&rp->rph->pool, rp->maxactive, rp->data_size +
2225 sizeof(struct kretprobe_instance), GFP_KERNEL,
2226 rp->rph, kretprobe_init_inst, kretprobe_fini_pool)) {
2227 kfree(rp->rph);
2228 rp->rph = NULL;
2229 return -ENOMEM;
2230 }
2231 rcu_assign_pointer(rp->rph->rp, rp);
2232 rp->nmissed = 0;
2233 /* Establish function entry probe point */
2234 ret = register_kprobe(&rp->kp);
2235 if (ret != 0)
2236 free_rp_inst(rp);
2237 #endif
2238 return ret;
2239 }
2240 EXPORT_SYMBOL_GPL(register_kretprobe);
2241
register_kretprobes(struct kretprobe ** rps,int num)2242 int register_kretprobes(struct kretprobe **rps, int num)
2243 {
2244 int ret = 0, i;
2245
2246 if (num <= 0)
2247 return -EINVAL;
2248 for (i = 0; i < num; i++) {
2249 ret = register_kretprobe(rps[i]);
2250 if (ret < 0) {
2251 if (i > 0)
2252 unregister_kretprobes(rps, i);
2253 break;
2254 }
2255 }
2256 return ret;
2257 }
2258 EXPORT_SYMBOL_GPL(register_kretprobes);
2259
unregister_kretprobe(struct kretprobe * rp)2260 void unregister_kretprobe(struct kretprobe *rp)
2261 {
2262 unregister_kretprobes(&rp, 1);
2263 }
2264 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2265
unregister_kretprobes(struct kretprobe ** rps,int num)2266 void unregister_kretprobes(struct kretprobe **rps, int num)
2267 {
2268 int i;
2269
2270 if (num <= 0)
2271 return;
2272 for (i = 0; i < num; i++) {
2273 guard(mutex)(&kprobe_mutex);
2274
2275 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2276 rps[i]->kp.addr = NULL;
2277 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2278 rethook_free(rps[i]->rh);
2279 #else
2280 rcu_assign_pointer(rps[i]->rph->rp, NULL);
2281 #endif
2282 }
2283
2284 synchronize_rcu();
2285 for (i = 0; i < num; i++) {
2286 if (rps[i]->kp.addr) {
2287 __unregister_kprobe_bottom(&rps[i]->kp);
2288 #ifndef CONFIG_KRETPROBE_ON_RETHOOK
2289 free_rp_inst(rps[i]);
2290 #endif
2291 }
2292 }
2293 }
2294 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2295
2296 #else /* CONFIG_KRETPROBES */
register_kretprobe(struct kretprobe * rp)2297 int register_kretprobe(struct kretprobe *rp)
2298 {
2299 return -EOPNOTSUPP;
2300 }
2301 EXPORT_SYMBOL_GPL(register_kretprobe);
2302
register_kretprobes(struct kretprobe ** rps,int num)2303 int register_kretprobes(struct kretprobe **rps, int num)
2304 {
2305 return -EOPNOTSUPP;
2306 }
2307 EXPORT_SYMBOL_GPL(register_kretprobes);
2308
unregister_kretprobe(struct kretprobe * rp)2309 void unregister_kretprobe(struct kretprobe *rp)
2310 {
2311 }
2312 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2313
unregister_kretprobes(struct kretprobe ** rps,int num)2314 void unregister_kretprobes(struct kretprobe **rps, int num)
2315 {
2316 }
2317 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2318
pre_handler_kretprobe(struct kprobe * p,struct pt_regs * regs)2319 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2320 {
2321 return 0;
2322 }
2323 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2324
2325 #endif /* CONFIG_KRETPROBES */
2326
2327 /* Set the kprobe gone and remove its instruction buffer. */
kill_kprobe(struct kprobe * p)2328 static void kill_kprobe(struct kprobe *p)
2329 {
2330 struct kprobe *kp;
2331
2332 lockdep_assert_held(&kprobe_mutex);
2333
2334 /*
2335 * The module is going away. We should disarm the kprobe which
2336 * is using ftrace, because ftrace framework is still available at
2337 * 'MODULE_STATE_GOING' notification.
2338 */
2339 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2340 disarm_kprobe_ftrace(p);
2341
2342 p->flags |= KPROBE_FLAG_GONE;
2343 if (kprobe_aggrprobe(p)) {
2344 /*
2345 * If this is an aggr_kprobe, we have to list all the
2346 * chained probes and mark them GONE.
2347 */
2348 list_for_each_entry(kp, &p->list, list)
2349 kp->flags |= KPROBE_FLAG_GONE;
2350 p->post_handler = NULL;
2351 kill_optimized_kprobe(p);
2352 }
2353 /*
2354 * Here, we can remove insn_slot safely, because no thread calls
2355 * the original probed function (which will be freed soon) any more.
2356 */
2357 arch_remove_kprobe(p);
2358 }
2359
2360 /* Disable one kprobe */
disable_kprobe(struct kprobe * kp)2361 int disable_kprobe(struct kprobe *kp)
2362 {
2363 struct kprobe *p;
2364
2365 guard(mutex)(&kprobe_mutex);
2366
2367 /* Disable this kprobe */
2368 p = __disable_kprobe(kp);
2369
2370 return IS_ERR(p) ? PTR_ERR(p) : 0;
2371 }
2372 EXPORT_SYMBOL_GPL(disable_kprobe);
2373
2374 /* Enable one kprobe */
enable_kprobe(struct kprobe * kp)2375 int enable_kprobe(struct kprobe *kp)
2376 {
2377 int ret = 0;
2378 struct kprobe *p;
2379
2380 guard(mutex)(&kprobe_mutex);
2381
2382 /* Check whether specified probe is valid. */
2383 p = __get_valid_kprobe(kp);
2384 if (unlikely(p == NULL))
2385 return -EINVAL;
2386
2387 if (kprobe_gone(kp))
2388 /* This kprobe has gone, we couldn't enable it. */
2389 return -EINVAL;
2390
2391 if (p != kp)
2392 kp->flags &= ~KPROBE_FLAG_DISABLED;
2393
2394 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2395 p->flags &= ~KPROBE_FLAG_DISABLED;
2396 ret = arm_kprobe(p);
2397 if (ret) {
2398 p->flags |= KPROBE_FLAG_DISABLED;
2399 if (p != kp)
2400 kp->flags |= KPROBE_FLAG_DISABLED;
2401 }
2402 }
2403 return ret;
2404 }
2405 EXPORT_SYMBOL_GPL(enable_kprobe);
2406
2407 /* Caller must NOT call this in usual path. This is only for critical case */
dump_kprobe(struct kprobe * kp)2408 void dump_kprobe(struct kprobe *kp)
2409 {
2410 pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2411 kp->symbol_name, kp->offset, kp->addr);
2412 }
2413 NOKPROBE_SYMBOL(dump_kprobe);
2414
kprobe_add_ksym_blacklist(unsigned long entry)2415 int kprobe_add_ksym_blacklist(unsigned long entry)
2416 {
2417 struct kprobe_blacklist_entry *ent;
2418 unsigned long offset = 0, size = 0;
2419
2420 if (!kernel_text_address(entry) ||
2421 !kallsyms_lookup_size_offset(entry, &size, &offset))
2422 return -EINVAL;
2423
2424 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2425 if (!ent)
2426 return -ENOMEM;
2427 ent->start_addr = entry;
2428 ent->end_addr = entry + size;
2429 INIT_LIST_HEAD(&ent->list);
2430 list_add_tail(&ent->list, &kprobe_blacklist);
2431
2432 return (int)size;
2433 }
2434
2435 /* Add all symbols in given area into kprobe blacklist */
kprobe_add_area_blacklist(unsigned long start,unsigned long end)2436 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2437 {
2438 unsigned long entry;
2439 int ret = 0;
2440
2441 for (entry = start; entry < end; entry += ret) {
2442 ret = kprobe_add_ksym_blacklist(entry);
2443 if (ret < 0)
2444 return ret;
2445 if (ret == 0) /* In case of alias symbol */
2446 ret = 1;
2447 }
2448 return 0;
2449 }
2450
arch_kprobe_get_kallsym(unsigned int * symnum,unsigned long * value,char * type,char * sym)2451 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2452 char *type, char *sym)
2453 {
2454 return -ERANGE;
2455 }
2456
kprobe_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * sym)2457 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2458 char *sym)
2459 {
2460 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2461 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2462 return 0;
2463 #ifdef CONFIG_OPTPROBES
2464 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2465 return 0;
2466 #endif
2467 #endif
2468 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2469 return 0;
2470 return -ERANGE;
2471 }
2472
arch_populate_kprobe_blacklist(void)2473 int __init __weak arch_populate_kprobe_blacklist(void)
2474 {
2475 return 0;
2476 }
2477
2478 /*
2479 * Lookup and populate the kprobe_blacklist.
2480 *
2481 * Unlike the kretprobe blacklist, we'll need to determine
2482 * the range of addresses that belong to the said functions,
2483 * since a kprobe need not necessarily be at the beginning
2484 * of a function.
2485 */
populate_kprobe_blacklist(unsigned long * start,unsigned long * end)2486 static int __init populate_kprobe_blacklist(unsigned long *start,
2487 unsigned long *end)
2488 {
2489 unsigned long entry;
2490 unsigned long *iter;
2491 int ret;
2492
2493 for (iter = start; iter < end; iter++) {
2494 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2495 ret = kprobe_add_ksym_blacklist(entry);
2496 if (ret == -EINVAL)
2497 continue;
2498 if (ret < 0)
2499 return ret;
2500 }
2501
2502 /* Symbols in '__kprobes_text' are blacklisted */
2503 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2504 (unsigned long)__kprobes_text_end);
2505 if (ret)
2506 return ret;
2507
2508 /* Symbols in 'noinstr' section are blacklisted */
2509 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2510 (unsigned long)__noinstr_text_end);
2511
2512 return ret ? : arch_populate_kprobe_blacklist();
2513 }
2514
2515 #ifdef CONFIG_MODULES
2516 /* Remove all symbols in given area from kprobe blacklist */
kprobe_remove_area_blacklist(unsigned long start,unsigned long end)2517 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2518 {
2519 struct kprobe_blacklist_entry *ent, *n;
2520
2521 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2522 if (ent->start_addr < start || ent->start_addr >= end)
2523 continue;
2524 list_del(&ent->list);
2525 kfree(ent);
2526 }
2527 }
2528
kprobe_remove_ksym_blacklist(unsigned long entry)2529 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2530 {
2531 kprobe_remove_area_blacklist(entry, entry + 1);
2532 }
2533
add_module_kprobe_blacklist(struct module * mod)2534 static void add_module_kprobe_blacklist(struct module *mod)
2535 {
2536 unsigned long start, end;
2537 int i;
2538
2539 if (mod->kprobe_blacklist) {
2540 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2541 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2542 }
2543
2544 start = (unsigned long)mod->kprobes_text_start;
2545 if (start) {
2546 end = start + mod->kprobes_text_size;
2547 kprobe_add_area_blacklist(start, end);
2548 }
2549
2550 start = (unsigned long)mod->noinstr_text_start;
2551 if (start) {
2552 end = start + mod->noinstr_text_size;
2553 kprobe_add_area_blacklist(start, end);
2554 }
2555 }
2556
remove_module_kprobe_blacklist(struct module * mod)2557 static void remove_module_kprobe_blacklist(struct module *mod)
2558 {
2559 unsigned long start, end;
2560 int i;
2561
2562 if (mod->kprobe_blacklist) {
2563 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2564 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2565 }
2566
2567 start = (unsigned long)mod->kprobes_text_start;
2568 if (start) {
2569 end = start + mod->kprobes_text_size;
2570 kprobe_remove_area_blacklist(start, end);
2571 }
2572
2573 start = (unsigned long)mod->noinstr_text_start;
2574 if (start) {
2575 end = start + mod->noinstr_text_size;
2576 kprobe_remove_area_blacklist(start, end);
2577 }
2578 }
2579
2580 /* Module notifier call back, checking kprobes on the module */
kprobes_module_callback(struct notifier_block * nb,unsigned long val,void * data)2581 static int kprobes_module_callback(struct notifier_block *nb,
2582 unsigned long val, void *data)
2583 {
2584 struct module *mod = data;
2585 struct hlist_head *head;
2586 struct kprobe *p;
2587 unsigned int i;
2588 int checkcore = (val == MODULE_STATE_GOING);
2589
2590 guard(mutex)(&kprobe_mutex);
2591
2592 if (val == MODULE_STATE_COMING)
2593 add_module_kprobe_blacklist(mod);
2594
2595 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2596 return NOTIFY_DONE;
2597
2598 /*
2599 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2600 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2601 * notified, only '.init.text' section would be freed. We need to
2602 * disable kprobes which have been inserted in the sections.
2603 */
2604 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2605 head = &kprobe_table[i];
2606 hlist_for_each_entry(p, head, hlist)
2607 if (within_module_init((unsigned long)p->addr, mod) ||
2608 (checkcore &&
2609 within_module_core((unsigned long)p->addr, mod))) {
2610 /*
2611 * The vaddr this probe is installed will soon
2612 * be vfreed buy not synced to disk. Hence,
2613 * disarming the breakpoint isn't needed.
2614 *
2615 * Note, this will also move any optimized probes
2616 * that are pending to be removed from their
2617 * corresponding lists to the 'freeing_list' and
2618 * will not be touched by the delayed
2619 * kprobe_optimizer() work handler.
2620 */
2621 kill_kprobe(p);
2622 }
2623 }
2624 if (val == MODULE_STATE_GOING)
2625 remove_module_kprobe_blacklist(mod);
2626 return NOTIFY_DONE;
2627 }
2628
2629 static struct notifier_block kprobe_module_nb = {
2630 .notifier_call = kprobes_module_callback,
2631 .priority = 0
2632 };
2633
kprobe_register_module_notifier(void)2634 static int kprobe_register_module_notifier(void)
2635 {
2636 return register_module_notifier(&kprobe_module_nb);
2637 }
2638 #else
kprobe_register_module_notifier(void)2639 static int kprobe_register_module_notifier(void)
2640 {
2641 return 0;
2642 }
2643 #endif /* CONFIG_MODULES */
2644
kprobe_free_init_mem(void)2645 void kprobe_free_init_mem(void)
2646 {
2647 void *start = (void *)(&__init_begin);
2648 void *end = (void *)(&__init_end);
2649 struct hlist_head *head;
2650 struct kprobe *p;
2651 int i;
2652
2653 guard(mutex)(&kprobe_mutex);
2654
2655 /* Kill all kprobes on initmem because the target code has been freed. */
2656 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2657 head = &kprobe_table[i];
2658 hlist_for_each_entry(p, head, hlist) {
2659 if (start <= (void *)p->addr && (void *)p->addr < end)
2660 kill_kprobe(p);
2661 }
2662 }
2663 }
2664
init_kprobes(void)2665 static int __init init_kprobes(void)
2666 {
2667 int i, err;
2668
2669 /* FIXME allocate the probe table, currently defined statically */
2670 /* initialize all list heads */
2671 for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2672 INIT_HLIST_HEAD(&kprobe_table[i]);
2673
2674 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2675 __stop_kprobe_blacklist);
2676 if (err)
2677 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2678
2679 if (kretprobe_blacklist_size) {
2680 /* lookup the function address from its name */
2681 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2682 kretprobe_blacklist[i].addr =
2683 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2684 if (!kretprobe_blacklist[i].addr)
2685 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2686 kretprobe_blacklist[i].name);
2687 }
2688 }
2689
2690 /* By default, kprobes are armed */
2691 kprobes_all_disarmed = false;
2692
2693 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2694 /* Init 'kprobe_optinsn_slots' for allocation */
2695 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2696 #endif
2697
2698 err = arch_init_kprobes();
2699 if (!err)
2700 err = register_die_notifier(&kprobe_exceptions_nb);
2701 if (!err)
2702 err = kprobe_register_module_notifier();
2703
2704 kprobes_initialized = (err == 0);
2705 kprobe_sysctls_init();
2706 return err;
2707 }
2708 early_initcall(init_kprobes);
2709
2710 #if defined(CONFIG_OPTPROBES)
init_optprobes(void)2711 static int __init init_optprobes(void)
2712 {
2713 /*
2714 * Enable kprobe optimization - this kicks the optimizer which
2715 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2716 * not spawned in early initcall. So delay the optimization.
2717 */
2718 optimize_all_kprobes();
2719
2720 return 0;
2721 }
2722 subsys_initcall(init_optprobes);
2723 #endif
2724
2725 #ifdef CONFIG_DEBUG_FS
report_probe(struct seq_file * pi,struct kprobe * p,const char * sym,int offset,char * modname,struct kprobe * pp)2726 static void report_probe(struct seq_file *pi, struct kprobe *p,
2727 const char *sym, int offset, char *modname, struct kprobe *pp)
2728 {
2729 char *kprobe_type;
2730 void *addr = p->addr;
2731
2732 if (p->pre_handler == pre_handler_kretprobe)
2733 kprobe_type = "r";
2734 else
2735 kprobe_type = "k";
2736
2737 if (!kallsyms_show_value(pi->file->f_cred))
2738 addr = NULL;
2739
2740 if (sym)
2741 seq_printf(pi, "%px %s %s+0x%x %s ",
2742 addr, kprobe_type, sym, offset,
2743 (modname ? modname : " "));
2744 else /* try to use %pS */
2745 seq_printf(pi, "%px %s %pS ",
2746 addr, kprobe_type, p->addr);
2747
2748 if (!pp)
2749 pp = p;
2750 seq_printf(pi, "%s%s%s%s\n",
2751 (kprobe_gone(p) ? "[GONE]" : ""),
2752 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2753 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2754 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2755 }
2756
kprobe_seq_start(struct seq_file * f,loff_t * pos)2757 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2758 {
2759 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2760 }
2761
kprobe_seq_next(struct seq_file * f,void * v,loff_t * pos)2762 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2763 {
2764 (*pos)++;
2765 if (*pos >= KPROBE_TABLE_SIZE)
2766 return NULL;
2767 return pos;
2768 }
2769
kprobe_seq_stop(struct seq_file * f,void * v)2770 static void kprobe_seq_stop(struct seq_file *f, void *v)
2771 {
2772 /* Nothing to do */
2773 }
2774
show_kprobe_addr(struct seq_file * pi,void * v)2775 static int show_kprobe_addr(struct seq_file *pi, void *v)
2776 {
2777 struct hlist_head *head;
2778 struct kprobe *p, *kp;
2779 const char *sym;
2780 unsigned int i = *(loff_t *) v;
2781 unsigned long offset = 0;
2782 char *modname, namebuf[KSYM_NAME_LEN];
2783
2784 head = &kprobe_table[i];
2785 preempt_disable();
2786 hlist_for_each_entry_rcu(p, head, hlist) {
2787 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2788 &offset, &modname, namebuf);
2789 if (kprobe_aggrprobe(p)) {
2790 list_for_each_entry_rcu(kp, &p->list, list)
2791 report_probe(pi, kp, sym, offset, modname, p);
2792 } else
2793 report_probe(pi, p, sym, offset, modname, NULL);
2794 }
2795 preempt_enable();
2796 return 0;
2797 }
2798
2799 static const struct seq_operations kprobes_sops = {
2800 .start = kprobe_seq_start,
2801 .next = kprobe_seq_next,
2802 .stop = kprobe_seq_stop,
2803 .show = show_kprobe_addr
2804 };
2805
2806 DEFINE_SEQ_ATTRIBUTE(kprobes);
2807
2808 /* kprobes/blacklist -- shows which functions can not be probed */
kprobe_blacklist_seq_start(struct seq_file * m,loff_t * pos)2809 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2810 {
2811 mutex_lock(&kprobe_mutex);
2812 return seq_list_start(&kprobe_blacklist, *pos);
2813 }
2814
kprobe_blacklist_seq_next(struct seq_file * m,void * v,loff_t * pos)2815 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2816 {
2817 return seq_list_next(v, &kprobe_blacklist, pos);
2818 }
2819
kprobe_blacklist_seq_show(struct seq_file * m,void * v)2820 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2821 {
2822 struct kprobe_blacklist_entry *ent =
2823 list_entry(v, struct kprobe_blacklist_entry, list);
2824
2825 /*
2826 * If '/proc/kallsyms' is not showing kernel address, we won't
2827 * show them here either.
2828 */
2829 if (!kallsyms_show_value(m->file->f_cred))
2830 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2831 (void *)ent->start_addr);
2832 else
2833 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2834 (void *)ent->end_addr, (void *)ent->start_addr);
2835 return 0;
2836 }
2837
kprobe_blacklist_seq_stop(struct seq_file * f,void * v)2838 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2839 {
2840 mutex_unlock(&kprobe_mutex);
2841 }
2842
2843 static const struct seq_operations kprobe_blacklist_sops = {
2844 .start = kprobe_blacklist_seq_start,
2845 .next = kprobe_blacklist_seq_next,
2846 .stop = kprobe_blacklist_seq_stop,
2847 .show = kprobe_blacklist_seq_show,
2848 };
2849 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2850
arm_all_kprobes(void)2851 static int arm_all_kprobes(void)
2852 {
2853 struct hlist_head *head;
2854 struct kprobe *p;
2855 unsigned int i, total = 0, errors = 0;
2856 int err, ret = 0;
2857
2858 guard(mutex)(&kprobe_mutex);
2859
2860 /* If kprobes are armed, just return */
2861 if (!kprobes_all_disarmed)
2862 return 0;
2863
2864 /*
2865 * optimize_kprobe() called by arm_kprobe() checks
2866 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2867 * arm_kprobe.
2868 */
2869 kprobes_all_disarmed = false;
2870 /* Arming kprobes doesn't optimize kprobe itself */
2871 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2872 head = &kprobe_table[i];
2873 /* Arm all kprobes on a best-effort basis */
2874 hlist_for_each_entry(p, head, hlist) {
2875 if (!kprobe_disabled(p)) {
2876 err = arm_kprobe(p);
2877 if (err) {
2878 errors++;
2879 ret = err;
2880 }
2881 total++;
2882 }
2883 }
2884 }
2885
2886 if (errors)
2887 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2888 errors, total);
2889 else
2890 pr_info("Kprobes globally enabled\n");
2891
2892 return ret;
2893 }
2894
disarm_all_kprobes(void)2895 static int disarm_all_kprobes(void)
2896 {
2897 struct hlist_head *head;
2898 struct kprobe *p;
2899 unsigned int i, total = 0, errors = 0;
2900 int err, ret = 0;
2901
2902 guard(mutex)(&kprobe_mutex);
2903
2904 /* If kprobes are already disarmed, just return */
2905 if (kprobes_all_disarmed)
2906 return 0;
2907
2908 kprobes_all_disarmed = true;
2909
2910 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2911 head = &kprobe_table[i];
2912 /* Disarm all kprobes on a best-effort basis */
2913 hlist_for_each_entry(p, head, hlist) {
2914 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2915 err = disarm_kprobe(p, false);
2916 if (err) {
2917 errors++;
2918 ret = err;
2919 }
2920 total++;
2921 }
2922 }
2923 }
2924
2925 if (errors)
2926 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2927 errors, total);
2928 else
2929 pr_info("Kprobes globally disabled\n");
2930
2931 /* Wait for disarming all kprobes by optimizer */
2932 wait_for_kprobe_optimizer_locked();
2933 return ret;
2934 }
2935
2936 /*
2937 * XXX: The debugfs bool file interface doesn't allow for callbacks
2938 * when the bool state is switched. We can reuse that facility when
2939 * available
2940 */
read_enabled_file_bool(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)2941 static ssize_t read_enabled_file_bool(struct file *file,
2942 char __user *user_buf, size_t count, loff_t *ppos)
2943 {
2944 char buf[3];
2945
2946 if (!kprobes_all_disarmed)
2947 buf[0] = '1';
2948 else
2949 buf[0] = '0';
2950 buf[1] = '\n';
2951 buf[2] = 0x00;
2952 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2953 }
2954
write_enabled_file_bool(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)2955 static ssize_t write_enabled_file_bool(struct file *file,
2956 const char __user *user_buf, size_t count, loff_t *ppos)
2957 {
2958 bool enable;
2959 int ret;
2960
2961 ret = kstrtobool_from_user(user_buf, count, &enable);
2962 if (ret)
2963 return ret;
2964
2965 ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
2966 if (ret)
2967 return ret;
2968
2969 return count;
2970 }
2971
2972 static const struct file_operations fops_kp = {
2973 .read = read_enabled_file_bool,
2974 .write = write_enabled_file_bool,
2975 .llseek = default_llseek,
2976 };
2977
debugfs_kprobe_init(void)2978 static int __init debugfs_kprobe_init(void)
2979 {
2980 struct dentry *dir;
2981
2982 dir = debugfs_create_dir("kprobes", NULL);
2983
2984 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2985
2986 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
2987
2988 debugfs_create_file("blacklist", 0400, dir, NULL,
2989 &kprobe_blacklist_fops);
2990
2991 return 0;
2992 }
2993
2994 late_initcall(debugfs_kprobe_init);
2995 #endif /* CONFIG_DEBUG_FS */
2996